Abstract

An analysis is presented of the H-polarization diffraction due to a material discontinuity
formed by the junction of a thick dielectric half-plane with a metallic one having the same
thickness. This is accomplished by first considering the solution of several subproblems.
These include the direct diffraction and coupling due to a plane wave incident on a loaded
open-ended parallel plate waveguide and those of radiation and reflection by a waveguide
mode. The final solution for the diffraction by the metal-dielectric join is obtained by
introducing a perfectly conducting stub within the loaded guide and subsequently employing
the generalized scattering matrix formulation with the stub brought to the waveguide opening.
All of the analysis relating to the subproblems is done via the dual integral equation approach
or angular spectrum method. As expected the final expressions involve several Wiener-Hopf
split functions and an efficient numerical technique for their evaluation is given in an

appendix.
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I.  Introduction

The problem of scattering by a join formed by a semi-infinite material slab and a
thick perfectly conducting half-plane shown in Figure 1 is intimately related to those problems
represented by the geometries depicted in Figure 2. These are the dielectric slab extending to
infinity from a truncated parallel-plate waveguide (Figure 2a); a grounded dielectric slab with
truncated upper plate (Figure 2b); and a recessed material slab in a ground plane (Figure 2c).
The scope, though, of the previous work dealing with these closely allied structures has tended
to focus on limited aspects relating to the investigators' specific motivations. For example,
Angulo and Chang [1], Bates and Mittra [2], and Uchida and Aoki[3] have studied the
configurations shown in Figures 2a and 2b with regard to surface wave excitation by the
dominant parallel-plate waveguide mode. Chang and Kuester [4] considered the reflection of a
TEM wave incident upon a grounded dielectric slab with truncated upper plate (Figure 2b),
while Uchida and Aoki [3] and Fong [5] have investigated the radiation from the geometry in
Figure 2a caused by the dominant waveguide mode. Also, with respect to the recessed
material slab (Figure 2c), Kouyoumjian and Pathak [6] have examined the diffraction and
reflection of the lowest order surface wave mode incident upon the junction.

To the author's knowledge, the diffracted field by the configuration involving the
thick metallic dielectric junction as shown in Figure 1 has not yet been given. However, Aoki
and Uchida [7] attempted a solution of the closely related problem of a dielectric-dielectric
junction by introducing a Fourier series representation of the field and its derivatives at the
interface of the junction. Using such an expansion, Wiener-Hopf equations were generated in
terms of unknown spectral functions related to the total field. Unfortunately, the authors
attempt to obtain an explicit expression for these was not realized. Instead, their computation
involves an iterative solution requiring knowledge of rather complex integrals and functions
whose evaluation is cumbersome and could only be done approximately.

This paper is concerned with the diffraction by the thick metallic-dielectric join

illuminated with an H,-polarized plane wave. While the scope of this invetigation appears



immediately narrowed, this is not so. As will be seen, the diffraction from the geometry in
Figure 1 involves practically every aspect of the diffraction, radiation, and coupling problems
associated with the geometry given in Figure 2a. Additionally, with a simple application of
image theory, this knowledge translates to a characterization of the structures in Figure 2b and
Figure 2c. Those aspects which are not treated herein (such as surface wave excitation) are a
trivial extension of the present work and have been omitted due to the large body of previous
results available. While all of this lends validity to the problem at hand as a canonical one in
microstrip structures, further motivation is also derived when one considers the presence of
composite materials on man-made structures where the occurrence of material-metallic
junctions is common place.

The solution to the diffraction by the metallic-dielectric junction is constructed via
the generalized scattering matrix formulation (GSMF) pioneered by Pace and Mittra [8]. The
application of this method depends upon the solution to a number of individual problems, as
shown in Figure 3. Specifically, in addition to the direct diffraction problem, one must also
consider the coupling, reflection, and launching of waveguide modes at the loaded waveguide
mouth. Each of these will be analyzed via the angular spectrum method (also referred to as
the dual integral equation approach) [9], which provides a reduction in complexity over the
parallel (but completely equivalent) Wiener-Hopf technique. A crucial step in each of these
problems is the factorization of a particular complex function into components regular in the
upper and lower-half complex plane. Unfortunately, the factorization cannot be done
analytically and to circumvent this difficulty, an efficient numerical method is introduced
which may be employed to factorize an arbitrary complex function exhibiting proper behavior.

In the first part of this paper, the formal solution to the problem is presented. After a

short summary of the GSMF, the integral equations for H,-polarization incidence are

formulated in a consistent manner and boundary conditions are imposed to first extract the
coupling and direct diffraction coefficients, and, subsequently, the launching and reflection

coefficients. In the final part of the paper computed results are presented. The convergence



behavior of scattering patterns with respect to the included number of modes is examined, and
families of computed scattering patterns are presented for selected material parameters to

illustrate the scattering behavior of the dielectric-metallic join as a function of slab thickness.

IL  Scattering Matrix Formulation

The problem to be considered is that of an H,-polarized plane wave incident upon the

structure shown in Figure 1 at an angle ¢,. In order to apply the GSMF procedure, the stub

must be recessed a distance d into the waveguide, as shown in Figure 3a, forming the genesis
of the individual problems illustrated in Figures 3b-3f. At the end of the procedure, the
distance d is set to zero restoring the original geometry.

In accordance with the GSMF, the individual problems to be considered are as
follows:

1) Evaluation of the direct diffracted field by the substructure in Figure 3b due to

plane wave incidence. This field will be denoted as
-jkp

()
Hy, (6, ¢,) ~Spp 6,0 ) —=
)

where Spp is usually referred to as the diffraction coefficient and (p, ¢) are the cylindrical

coordinates of the far zone observation point.
2) Evaluation of the field coupled into the loaded parallel plate waveguide due to
plane wave incidence as shown in Figure 3c. Hereon we will denote the field associated with

the nth coupled mode as

H, (6) =C, (9,) ¢ "

where C,, (¢,) is usually referred to as the coupling coefficient and ky, is the propagation

constant associated with the nth mode.



3) Evaluation of the modal field reflected at the stub. This will be written as

[ eka i where[ o is the stub reflection coefficient of the nth mode to the mth mode.

mn

4) Evaluation of the reflected field at the waveguide mouth due to the nth mode.

This will be denoted by R__ e.]k’n ’ where R is the reflection coefficient of the nth mode to the mth

mode.
5) Evaluation of the far-zone radiated field due to an incident nth mode at the

waveguide mouth. This field will be denoted as
- jkp

H_ ©0)~L @)=

)

where L;, (¢) is usually referred to as the launching coefficient associated with the

nth waveguide mode.
Accordingly, the total far zone diffracted field by the recessed stub geometry in

Figure 3a is given by
e-jkP
H (6, 0,10~ [ Son .0 + Syop 0. 0,0 < W
'

where Syop (9, 9,,; d) is associated with the presence of the stub and, therefore, includes the

contribution of the modal fields within the waveguide. It can be written in a matrix form as

[10]
-1
Sviop @ 05 D =[L_®) 1 {l []- [Pyl (T, T [P, L Rmnl} [P_1(I_1[P_1(C_(0)]

2)

in which the brackets signify column or square matrices depending on whether one or two

subscripts appear, respectively. In addition, [I] denotes the identity matrix and [ Pp,,] is the

modal propagation matrix whose elements are given by



€)

Clearly, to obtain the far-zone scattered field by the dielectric-metallic join it is only required

to setd =0 in (1) and (2). In this case [ P,,] reduces to the identity matrix and

Smop (9, 9,) becomes

-1
Syop @ 0 =Syop @ 00 =[L_@1" ([Il-lfmnHRmnl} (M JIC, @] .

4
ITII. Plane Wave Diffraction and Coupling
The plane wave

. jk(xcos® +ysing )

I{‘z =e (o] [s)
i jk (x cos, + y sind )

E, =Zsin_ ¢ ®)
i jk(x cos¢° +ysing 0)

Ey =-Zcosp_e

is assumed to be incident upon the structure in Figure 3b, where Z is the free space

impedance, k is the free space wave number and ¢, is the angle of incidence measured from

the positive x-axis.

If the perfectly conducting half-planes are removed, then the plane wave (5) will

produce the total field



I-Ii+Hr - y>0

z Z
H = H 2t<y<0 ©)
tr
H y<-2t
where
jk(x cosg_ - y sing )
H=Re ¢ (7a)
j2kt
o, | (L+RSin [K 7+ 20 sing,) - Ty sin y sing) e -
=e (7b)
‘ sin (2k't smq)o)
jk(x cos¢ +ysm¢ )
H =T,e , (7¢)
PZP 2
P (1-Ry 0 )PP
=t = ®)
1- Rm PP, 1- RHO PbP
4 ktcosp cotd’ -j2 K't/sing’ j2ktcos(d - ¢' )sing'
P=e = ~,P=e °, P=e e ©

and Ry is the usual plane wave reflection coefficient associated with a material half space

having relative constitutive parameters €, and p,. In addition,

K=k Jep =xk (10)

where x is the refraction index and ¢_' is defined according to Snell's law

kcoso, =k cosd, . (11

The presence of the metallic half-planes causes the generation of the additional field



HZI y>0
H'= {H, -2<y<0 (12)
H; y<-2t

These may be represented in terms of an angular spectrum of plane waves [9]. Specifically, a

suitable spectral representation for them takes the form

Hil = J P (cosa) e Jkp cos (4-0) 4 , (13a)
C
HZZ _. [ Ql (COS(!) e jk'p cos (¢ +a) ) Q2 (COS(X) . j2k't sina’ . jk'p cos (¢ - a')] da | (l 3b)
C
H; — PZ (cos0)) e j2kt sino e jkp cos (¢ + o) do | (13c)
C

where C is the contour on which cosa runs from +ee to -c (see Figure 4) and P (cosa) with

Q1,2(cosa) are the spectra which must be determined via the application of the necessary

boundary conditions. Note also that o and o' are different parameters whose relationship will

be established later. The introduction of the factors eJ2ktsina an( e-j2k'tsing’ i totally arbitrary
and could have been omitted. However, such factors are expected to appear in the final
expressions for the spectra and are therefore included from the start in order to reduce the
complexity of the resulting integral equations. The corresponding expressions for the

z
x-directed component of the scattered electric fields are (E,_= ijy' H)

Eil =-Z I sina. P, (cosc) g P s (@-0) 40 , (14a)
C



Ex =z J‘ dng’ [ Q, (caso) € jip cos (@ +) | Q, (c0s0) € j2ia sina’ - jk'p cos (¢ - a')] do |

C
(14b)
E,=-Z j sina P, (coso) - W% ¢ P 0t @+ Dgq (140)
C
2
whereZ' =7 —=Z7
no
€
T
Accordingly, the total field due to a plane wave incidence in the presence of the
configuration in Figure 3b can be expressed as
H =H"+H (15)

with H‘z’w and H; as defined in (6) and (12), respectively. An exact expression for HIZ’w was given in (7).

However, explicit knowledge of HZ requires the determination of the angular spectra P, , (cosar) and

Q1,2 (cosa) appearing in expressions (13). This will be accomplished in the subsequent
sections via application of the following boundary conditions:

0
1) The total tangential electric field is continuous over -co<x<oo, y = { 2t } , implying the

boundary conditions

B1) E, =E,  over-ex<e, y=0,
B2) E,=E,  over-cecx<e, y=-2t,
since Ezw is already continuous.
2) The total magnetic field is continuous over x<0, y = {02t } , implying
(B3) H, =H,  overx<0, y=0,

(B4) H,=H, overx<0, y=-2t,



since le’w is already continuous.

3) The tangential electric field vanishes on the perfectly conducting half-planes, implying

i r s
(B5) E +E +E =0

(B6) E: +E, =0

where E] =-Zsing H, and E =Zsing_H, .

overx>0, y=0,

overx>0, y=-2t,

The application of boundary conditions (B1) and (B2) demand that

' ] . ' 2 2
kcosa = k'cosot oo k'sina'=k ‘/ K -cos o

2 2 T
1 - . , 2
P, (cosc) =—@ Q, (cosr) + Q, (coscx) ¢ ¥ K- cos “] :

and that

€ sino
T

2 2 T
1 .
oy - L e

Er SN

-j2kth2-xz +Q2(cosa)] .

(16)

(17a)

(17b)

Thus, the number of unknown spectra has now been reduced from four to two, implying that a

complete knowledge of the scattered field can be deduced from Q; 5 (cosar). Additionally, the

branch of ,/ K- cosza in (16) is chosen such that Im(,/ - cosza) <0for0<Re(a) <m. This

defines a mapping from the a-plane to the o'-plane as shown in Figure 5.

Enforcement of the boundary conditions (B3) - (B4) imply the integral equations

Ol

Ol

Pl (cosa) + Q1 (cosar) - Q2 (cosa) e

P, (cosa) - er (cosa) e

- j2k't sina’

-j2k't sinat’ e-jkx cosQ

do=0;x<0 ,

- jkx coso

+Q, (coso) [ e do = 0;x<0 .

(18a)

(18b)



When (17) is incorporated into (18) with a change of variable from a to A = cosa, and the

resulting equations are added and subtracted, we obtain the decoupled set

or / 2 .2 .
J' _Ql (k)+Q2(?~)]_“_)"27‘F3 W e = 0;x<0 | (19a)
b 1-
or 2 52 ,
[le (x)-czz(m]_._____*/“xzx F, )¢ " ah = 0;x<0 (195)
bt 1-
where
£ oo i[\/xz-nz cosh(la\/kz-xz)+er\/k,2-l sinh(kt\/lz-lcz )1 o0
s = a
€+1) A2 et -
and
3[,/73-»«2 sinh(kt‘/kz-xz)+er‘/7~2-l cosh(kt\/kz-lcz )]
F,(\) = = (20b)
4

2
(€ +1) 2. el W

Note that n deriving (20), we have defined (f A2 1 =jf1-2> md A2~ =jy/*-22 . In

addition, the complex A-plane defined by the mapping A = cosa is shown in Figure 6.

The boundary conditions (BS) and (B6) imply the integral equations

j jkx cosd,

[P ™™ dn=sno, a-Rpe " ;x>0 , (21a)
F 2Kt sing, jkx cosd,

J'P2(x)e"‘"‘dx=sm¢oTHe’ M 50 21b)

Substituting (17) into (21) and adding and subtracting the resulting equations we find

10



. 2 .2 o .
K -A -ikxA . 52kt sind,\ jkx cosd,
J[Ql(k)+Q2(k)] = Fl(k)eka dk=ersm¢o(1-RH+THe )c x>0
- 1-A
(22a)
¢ K2 - 7\.2 -jkxA . -j2kt sin¢\ jkx cos¢,
J[Ql(x)-Qz(x)] =F, ()¢ dh=¢ sinp (1-Ry-Tye )e ;x>0
-oo 1-A
(22b)
with
. 2
F (=122 VY @3)
2

The dual integral equations (19) and (22) are now sufficient for a solution of
Q1 (M) £ Qy (A). However, before such a solution can be pursued, it is necessary that
Fia (A) and F34 (A) be factorized into functions regular (i.e. free of poles, zeros and branch
points) in the upper and lower half of the complex A-plane. Utilizing the factorization

procedure outlined in Noble [11], F; » (A) may be factorized as

FEM=L MU QO , @4
) 2 %

where the functions denoted by L/U are regular in the upper/lower half of the A—plane.
Expressions for L 5 ), Uja (A) are given in Appendix A. On the other hand, the

factorization of F3 4 (A) into

F,()=L, MU, M) (25)
4 4 4

11



is much more involved. Notwithstanding, numerical and analytical techniques do exist for

accomplishing it [2,13]. The factorization of F34 (A) herein will be accomplished through a

recently developed numerical procedure with the final expressions of U3 4 (A) and L3 4 (A) in

terms of an integral over the convenient finite interval [0,1], as given in Appendix B. The
utility of this numerical technique also stems from the fact that it may be applied to a very

wide class of complex functions with no special preconditioning of these necessary (i.e.

involved treatment of poles, etc.). In passing, we note that for the special case of x =1,

Fj 2 (A) reduce to functions already encountered [12] and F34(A) =1

Using the factorizations (24) and (25) we many now proceed for a solution of the
spectra Q; 5 (A). Since (19) holds for x < 0, we may close the path of integration by a

semi-infinite contour in the upper half of the A-plane and employ Cauchy's theorem along with

(25) to deduce that

2 2
[QM+Q,M1Y= '} Ly AU, ) =U, @ 26)

1-A 4 B

where Uy g (A) are unknown functions regular in the upper half of the A-plane. Similarly,

(22) holds for x > 0 enabling us to close the path of integration by a semi-infinite contour in

the lower half of the A-plane and again invoke Cauchy's theorem along with (24) to obtain

Y e (1R AT e ) sing,
[Q M £Q,(] L W)U, () = —=
122 2 2 2mj A +cosd

12



L,
B

—_— @7
LA (-cosq)o)
B

where Ly g (A) are unknown functions regular in the lower half A-plane. Substituting (26) into

(27) it may be deduced that

‘/ 1+A Li (D)
L, = —, (28)
B L,

4

: o Us &) Uz (V)

13 42kt sin 2cos (¢ /2 3%/ M3
UA(A):J—’(l-RHiTHeJ2kt ¢°)’/_ D _1 =, 29)
B 2m 1-%  A+d U QU M)

2 2

since L g and U p are associated with different regions of regularity. Finally from (29) and

(26) it follows that
e, J1-12 JZoos @2y 1+2 s, U
Q) =—t (1-Rry )
» o [2 2 A+ LMY, MU, L)
-j sin U, (A
£(1-Ry-Tye ) &9 } (30)
L, ) U, M) U, (A)
and from (17)
1 o 2c0s (¢/2) ‘/1+ -j2kt singey Ly W) U5 (A)
P (M)=— Tye ) ————
2 4nj A+d LMU, Q)
-j2kt sin MU, (A
£(1-R,-Tye 4"’)i()ﬁ} 61)

L, W)U, ()

in which A = cos ¢,. These may now be substituted into (13) to obtain the field scattered by

the loaded parallel plate waveguide. This requires an evaluation of the resulting integrals as

13



described next.

To compute the field diffracted by the geometry in Figure 3b, (31) is substituted in

(13) and a steepest descent path approximation is performed for large kp. Noting that the

pertinent saddle point is at & = ¢ when ¢ < 7t and at o = 2% - ¢ when ¢ >t we find that

H~S,, ¢(,)"’-jkp
2z °DD \P* Yo/ T
o

where Spp (9, ¢, is the direct diffraction coefficient given by
17 cos (012) cos (6,/2) {1 }

SDD ©, (bo) = ‘/;1: cosh + cos¢° e—j2kt sing
(1 R.+T e'j2h sin¢°) Ll (COS¢) U3 (COS¢°) + (1 R.-T c-j2kt sin¢o) L2 (COS¢) U 4 (COS¢°)
S L o) U, sy " L, (cos8) U, (cos0))
(32)

in which the upper sign holds for 0 < ¢ <t and the lower for © < ¢ < 27.

For the computation of the field coupled into the waveguide (x>0), kp cannot be

assumed large. Therefore, one must employ a technique other than the steepest descent

method for its evaluation. A standard procedure is to transform (13b) to the A-plane giving

e fy2cos@/2) 141

H=H, =-— {(I-RH+THe

254 ‘/ - A2 (X+X0)
-j2kt sin U,(A
sn [k(y+t),/x2-x2]-j (1 -RH-THeJZh *) ) s [k (7+0) Y - 27 }

LM U, U, )

2k singy U, )
"L UM UR)

. 2 .
Ja N ik 33)

14



where we have defined A, =cos¢, . Since x>0, the above integrals can be evaluated via the

residue theorem after closing the path of integration by a semi-infinite contour in the lower

half of the A-plane. In doing this, it should be remarked, that the above integrand does not

have a branch at A = x. Noting now that Ui2 (\) have zeros at

_ 2_ 1“_2
hehy = [ (5E) (34)

and that '
U, () =L, (M) =2kt k-2 U, O (35)
we find
= sin -jkx "n
H=1,= ) C o[y +o]e (36)
n=0,1,2...
where
nn
i\ T3 2k Y208 02) ,/1 +A J2Kt sin,
Cn(¢o)='€,{i }c 2 (-l-“-)‘/_ (1-RyxTye’ )
0 nn cosdp + A
G ()
— in#0, (37a)
U, ) U, () L)
2 2 0 4
and
€ ﬁ cos (9 /2) J1+x 2kt sing, U,)
C,(0) = (1-Ry-Tye ) : n=0
2 Jkt cos, + K U,,(0) U, ) L,(x)
(37b)

are the coupling coefficients. In the above, the subscripts 2 denote odd and even n, respectively, and

15



ﬂé(MI

. A=A

U,(hy) =
2 n
As a check, we note that when €, = L. = 1, (32) and (37) reduce to the known

expressions given in [12]. In passing, we also note that if we were concerned with the modal

fields in the region x < 0, we would also have to consider the residues of the poles

corresponding to the zeros of L3 4 (cosa). These are precisely the surface wave modes of a
dielectric waveguide. Furthermore, any branch-cut contribution would also have to be

included.

IV. Radiation and Reflection by a Waveguide Mode
This problem is illustrated by Figures 3d, 3e, and 3f. The modal field (see (36) )

NP

E;;;j%( Z‘G);’,":[ 20+ )] .
is now assumed to be incident toward the waveguide mouth and present throughout the region
-0 <X <oo, 0>y>-2t.

Our solution for the radiated field and that reflected back into the waveguide will
follow the same general steps employed in the plane wave incidence analysis. The sum of the
radiated and reflected fields are now the scattered fields and since they are solely caused by
the currents on the perfectly conducting half-plane they can again be represented by (13) -
(14). In addition, all of the boundary conditions (B1) - (B6) stated earlier are still valid.

Their mathematical forms are now given by

16



B1) E., =E

1 =E, oOver -ee<x<e, y=0(,

B2 E. =E

o =E.; OVEI -o<X<eo, y=-2t,

®B3) H,=H,+H over x<0, y=0,
B4) H§3=H§2+Hiz over x<0, y=-2t,
BS) E,sd=0 over x>0, y=0,
B6) E,=0  over x>0, y=-2t,
since E; is already zero over the perfectly conducting half-planes.
Application of the boundary conditions (B1) - (B2) again result in the relations given
by (17). Thus the determination of Q, 5 (cosa) is our only remaining task. To find these, we

proceed with the application of boundary conditions (B3) and (B4), then add and subtract the

resulting equations to obtain

2 2 2
j[Q1 1+, 1 xx LA UM e an={ & x<0
38)

2 2
-A -jkxA

j[Q1 ®-0, ML g um o) B o ) e
> 2

cos(=——)e
er+1 2

(39)
By enforcing boundary conditions (B5) - (B6) and again adding and subtracting the resulting

equations, we also have that

17



2 .2

J.[Ql (7»)+Q2 M1 Ly um e an=0 ;x>0 | @0)
1-37
K- A2 jloh

_[[Q -0, W1 == LHUM™ 0 x50 @
1-A

Equations (38) with (40) and (39) with (41) form again a coupled set sufficient for the

solution of Qg 5 (A). In proceeding with this solution, we note that since (40) - (41) are valid

for x > 0, the path of integration may be closed by a semi-infinite contour in the lower half of

the A-plane, giving

2 .2

[Q (?»)+Q2 IR AS A L) UI(X)=LA°(7») , 42)
1-22 e
K- KZ

[Q1 ) - Q2 M1 = L) UZO»)=LB° M) 43)
1-A e

where L (A) and Ly (A) are again unknown functions regular in the lower half A-plane.

Similarly, because (38) - (39) apply to x < 0, we may close the path of integration with a

semi-infinite contour in the upper half of the A-plane resulting to

18



. nr
2 .2 -
[Q, M+Q, (m!E;T—gm Um={&* D™ A+r U A gy

2

1-A
U, WE, &
Up ME, M)
2_ 2 nm
Q m-0, MY Layum={ . s () Uy () @)
T 1A : :

€+Dmj A+ Uy (A)

where Uy , Up are unknown functions regular in the upper half of the A-plane and E5 g (A)
are unknown entire functions whose justification for the appearance of will soon become
apparent. Substituting (42), (43) into (44), (45) respectively, and equating regions of

regularity we find

U, M)

Jiau o |

U, 3

Jiruo

. , nn
&) J1en J1+4, L L A)

(e, +1) ] A+ Xn L, A) L, (kn)
L, W)= (460)

(46a)

U, W =U, M=

(46b)

UBo (x) = UB O") =

!

19



Ly O ={ o (464)
¢ &) Jien J14a, Loy, ()
| E+Dm  A+d LOLG)

We may now use (17), (44), (45), and (46) to determine the spectra 12%) (A) as

J1ed L in (3 JIHA, J1+A L WL 4
P (A)= L__E (X)+

Yo 2L, A (g+D2m A+ LML Q)
3 4 4
47)
J1+x Ly = J1en 142 L1ML1AY
P (W=7 LB 0t w2 Y1+hy ,
; 22L,0) A E+D2mj A+h L WLQ)
3 4 4
(48)

with the evaluation of E, (A) and Eg (A) remaining. From a straight forward examination of
the field behavior at the plate edges, it can be shown that [13] P (A) ~ A'12 as Re (A) = « and

since Ly 9 (A), L3 4 (A\) = 1 as Re (A) — oo, one concludes that

E,(M=E;(W)=0. 49

Consequently, we find that

20



PIOO\,)=iP2°(X)= cos " 2 J )"+{ n 2 2 N

, (50)
s +1)2nj L,WL, ()
4 4

/ 2 erSi“(.n.“_)
QW=£tQ M= 1-A Toos 2 \/1+7~‘/1+kn

L1@)
2
2 ;»2 (e.+1)2mj

A+A U MWL, AML ()
2 4 4

(51)
The radiated field is now found by substituting (50) into (13). After employing a steepest

descent path evaluation of the resulting integrals for large kp we obtain

H, ;

O<od<m jkp
B ={ o3 “EL @ 52)
% |H,; m<o<2n ,p "

where the launching coefficients L (4) are given by

e

. N . L, (cosdp)L, (A )
Lo ASlnnT1t C-Jﬂ/«i ﬁCOS¢/2 1+xn 12 12 )
n(,e B cos T 2tk (er + 1) COS¢ + )\'n L3(COS¢)L?1()\.H)
4

inwhichA=B=1when0<¢<nand A =e-j2ktsing B =_¢-j2kisind when rt < ¢ < 2.

The field reflected back into the waveguide is Hiz in (13) and is evaluated by the same

procedure employed for the coupled field. Specifically, we transform the integration path to

the A-plane and invoke Cauchy's theorem after closing the path of integration with a

semi-infinite circle in the lower half of the A-plane to obtain
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K =H, = D R,, 33[“7’:‘-@ +t)] S (54

e e mD,1,2 e
where
ea{l) ) _
Rmon cm 2 Jl-l-)\, J1+)\. ' 20',1) CJZ;m¢0 |
go, mn (€, + 1) A+ Ulz(xm)L% 0““)1‘% )
(55a)
e \/1+7~,. L) . s
ke <th, U, OLMLG)
Ryp=Rpp =0 (55¢)

are the reflection coefficients.

Finally, the matrix elements rm,, due to reflection from a perfectly conducting slab

are given for the H,-polarization by

1, m=n,
[ = (56)

0, m#n,

implying that [ rm,, ] is the identity matrix.

This completes the analysis required for the evaluation of the diffracted field Hz by the thick

metallic-dielectric join shown in Figure 1. Below we present some numerical data which
describe the scattering behavior of the metallic-dielectric join as function of thickness and the

dielectric's constitutive parameters.
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V. Numerical Results
Before proceeding with the computation of the diffracted field by the join as given in
(1), it is essential to first determine the minimum number of modes required to achieve

convergence of the infinite sum implied in (4). Such a convergence test was also done in [12]

where the special case of €. = |1 = 1 was considered, and was found that only a few

evanescent modes in addition to the propagating ones were required to obtain sufficient
computational accuracy. Unfortunately, as will be seen, the presence of the dielectric slab
complicates this issue and it is therefore necessary that we examine the convergence of the
solution as a function of the constitutive parameters of the slab. Further, we will limit our
interest to slab thickness less than a wavelength.

The convergence of the solution (1) is examined in Figure 7 where backscatter curves

are given for a metallic-dielectric join 0.95 wavelengths thick and for three separate sets of

values for €, L - As seen, for the case of €, = 2, |t = 1 at least twelve modes are required to

achieve convergence whereas, as noted in [12], for the case of no dielectric, five modes were
required. This is probably due to stronger diffractions from the lower dielectric-metallic
junction. However, as expected and shown in Figures 7b - 7c, when some loss is introduced in
the dielectric, convergence can be achieved with less modes.

Now that the convergence of the solution (1) has been examined, we can proceed
with the calculation of the scattering by the metallic-dielectric join shown in Figure 1. In

figures 8-10 we present a sequence of echowidth curves corresponding to three different sets of
(€, ;) and various join thicknesses from 0.01 to 0.75 wavelengths. Each figure includes a
family of curves for five thicknesses in the range 0.01A < 2t < 0.75\ computed for the

backscatter case and two bistatic situations with ¢, = 45° and ¢, = 150°. Unfortunately, no
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comparison with an alternate solution can be provided for any of the presented curves since to

our knowledge an alternative solution does not exist.

SUMMARY

The dual integral equation approach along with the generalized scattering matrix
formulation were employed for the diffraction analysis of a thick dielectric-metallic join with
H-polarization of incidence. To obtain the solution for diffracted field by the join we first
considered the problem of an open-ended waveguide loaded with an extended dielectric slab
and containing a recessed stub as shown in Figure 3a. Before proceeding with the application
of the scattering matrix formulation, the problems of 1) direct diffraction and coupling due to a
plane wave incidence and 2) radiation and reflection by a waveguide mode were first
considered. For each of the above problems the pertinent fields were first expressed in terms
of the plane wave spectra corresponding to the currents on the surface of the half-planes
forming the waveguide. The application of the boundary conditions then allowed us to find
explicit expressions for the current spectra after first decoupling the resulting dual integral
equations and subsequently employing an asymptotic or residue series evaluation of the
pertinent integrals. Implicit in this analysis is the Wiener-Hopf factorization of several
functions axid in some cases this was accomplished via numerical means using a new technique
described in Appendix B.

At the end of the paper, several backscatter and bistatic calculated echowidth patterns

are given for 0.01A < 2t < 0.75A corresponding to three sets of constitutive parameters for the
dielectric. In addition, a few curves are given which describe the convergence of the solution

as a function of the number of included modes.
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FIGURES
Figure 1.
Figure 2.

Figure 3.

Figure 4.

Figure S.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure Bl.
Figure B2.

Geometry of the metallic-dielectric join.

Structures related to the metallic-dielectric join. (a) Truncated parallel-plate
waveguide with extended dielectric loading. (b) Grounded dielectric slab with
truncated upper plate. (c) Material slab recessed in perfectly conducting
half-plane.

Illustration of stub geometry (a) and associated individual problems. (b) Direct
diffraction. (c) Coupling. (d) Reflection from the stub. (e) Reflection at the
waveguide mouth. (f) Launching or radiaton.

Ilustration of the C contour and the steepest descent path in the a-plane

along with the chosen branch cuts of v x—A and v k+ A .

Mapping of the contours shown in Figure 5 in the o' - plane,where cosa =
Kcosa',

Ilustration of the C contour in the A—plane, where A=cosc.

Convergence test of the solution given in equation (1). (a) 2t =0.95A, € =2,
H.=1. (b)2t=0.95A,¢ =5 -j0.5, H,=1.5-j0.1. (c)2t=0.954,
e=74-jl.1, 0, =14-j0.672.

H,-polarization calculated echowidth family curves for 2t = 0.01, 0.1, 0.25, 0.5
and 0.75 wavelengths. The constitutive parameters of the dielectric are & = 2 and
K, = 1. (a) Backscatter case. (b) Bistatic with ¢, = 45°, (c) Bistatic with

¢, = 150°.

H,-polarization calculated echowidth family curves for 2t = 0.01, 0.1, 0.25, 0.5
and 0.75 wavelengths. The constitutive parameters of the dielectric are

€ =5-j0.5, u,=1.4-j0.1. (a) Backscatter case. (b) Bistatic, ¢, = 45°.
(c) Bistatic, ¢, = 150°.

H,-polarization calculated echowidth family curves for 2t = 0.01, 0.1, 0.25, 0.5
and 0.75 wavelengths. The constitutive parameters of the dielectric are

€ =74-jl.1and u =1.4-j.672. (a) Backscatter case. (b) Bistatic, ¢, = 45°.
(c) Bistatic, ¢, = 150°.

Illustration of C;{ contour .
Illustration of the Cy contour with the permitted values of 6.
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Appendix A

Expressions for the Split Functions L 2(A) and Uq 2(A)

The split functions UZ(X) and Lz(l) arise in the factorization of the functions

2kt yf ¥A°
te ) as follows:

(1

2

. 2
N A (AD)

1

The U functions are free of branch cuts, poles and zeros (i.e., regular) in the upper half of the

A-plane shown in Fig. 6. Similarly the L functions are regular in the lower half of the A-plane.

These functions may be derived using the procedure given by Noble [11]. The appropriate
expres sions for the ejmt Convenﬁon employed in thiS paper are

2kt
U0 =L, (0) = JZexpl TO-X, AN T -;n-') (A Jexp(i2kth/nm) (A2)

i oo '.]Zkt
U,A) = Lz(-l) = cJﬂ/4 m‘/ K-\ eXp[-T(k)-Xz()»)!2 1;[6 (—nn—) (A-A Jexp(j2ktA/nr)

(A3)
where

-1
) = .jkt,/é-x’[l i M] , (Ad)
T
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X,(N) = Pt [0.4228 +1n (ft-) it lnz] B (A5)

2

n

and

(A6)

The branch of the logarithm appearing in the above function is that of -7 < Im(In) < 7t , while all
remaining branches are explicitly defined in Figures 4, 5, and 6.
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Appendix B
An Efficient Numerical Wiener-Hopf Factorization Method

A crucial and major step in obtaining a solution to a Weiner-Hopf equation is the

factorization/splitting of an even function F(a) into a product of two functions such that

F(cr) = L(cr) U(ar) (B1)

where o =0o+jT. In the above, U(a) is free of zeros, poles and branch cuts (i.e., regular) in the

upper half of the a-plane (t>t_) shown in Figure B1, while L(at) is regular in the lower half of
the a-plane (t<t,), where T_<t,_. To accomplish the factorization (B1) we must generally
assume that F(av) is regular within the strip T_ <t <t , where 1t are allowed to approach

vanishing values. If we further demand that F(a) — 1 uniformly as lol — o within the strip,

then U(a) and L(ox) are formally given by [13]

U(o) = L(-0at) = exp[H(a)] , Im(cr) >0 (B2)
where
Ho) = . I L) (B3)
2mj ¢ B-a

1

with C1 as shown in Figure B1. Note, however, that this last condition on F(a) does not

necessarily restrict its form since any F(a) can be modified as such in a recoverable manner.

Additionally, due to the even property of F(o) , we may set T_=-T, implying that the contour
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C1 (t=0) remains within the strip Itl <t as T4 become arbitrarily small.

Despite its general applicability, (B2) contains several barriers to its direct numerical
implementation. In addition to displaying infinite limits of integration, the contour integral
possesses an integrand which may become singular depending on the contour's location. Further,

care must be exercised to insure that a proper branch of the logarithm is taken so that In[F(B)] is
continuous on Cj . Under certain circumstances, however, these problems can be largely

alleviated via appropriate modification of (B2).

To this end, suppose that in addition to being regular in the strip Itl <t , F(B) is also
regular in the angular sector {B(t) =tei®;0<0 < 80,0 <t<o} forsome 8y and F(B(1) —

1 uniformly as t — o throughout the above sector. Since F(B) is even, this also implies it will

have the same properties in the additional angular sector {B(t) = el ;<0< n+0g, 0 <t<eo}.

Further, it should be noted that in general most functions requiring factorization in diffraction
theory are of this type and, therefore, this is not a significant restriction on F(a) . With the above

provisions on the regularity of F(B), it follows that C; can be rotated counter-clockwise about

the origin by an angle 8(0 <0 <8g) to contour Cj, as shown in Figure B2. H(a) is thus
modified a

H(o) =h(6 - 8, ) In[F(a)] + L J' In[F(@)] ap , (B3)
2mj ¢, B-o
where
0for 6< eq ’
-9.)= (B4)
h(®-04) 1for >0,
and
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(B5)

Addressing the singularities associated with the integrand of (B3), it is clear that the

numerator becomes infinite when B =B, , where B,,n=12,..N are the N zeros of F(B).
By virtue of the stipulated regularity of F(B) in the angular sectors defined above, B, are,
however, precluded from lying upon the contour C; . Nevertheless, as 8 approaches 0 or 6y, it

is possible for any of the B, to become arbitrarily close to Cp (for 8 — 0, this is true if T4 tend

to zero, which is often the case). Fortunately, the resulting singularity is logarithmic, implying that
it need be removed only a small distance from the contour Cy to substantially reduce the

singularity of the integrand. The obvious solution, therefore, is to restrict the permissible angular

variation to 8, <6 <8 -8, , where 3, , are small angles which may be determined empirically.
This scheme will work provided B,, are not in the vicinity of the origin which prevents the

contour in being distanced from the pertinent B, via a simple rotation.

In contrast to the numerator which may display a multitude of singularities, the denominator

contains a single zero at B =a . Recall that the only condition on o is that Im(ct) >0, admitting

the possibility of o lying close to or upon Cp . The simplest method to prevent this is to again

Im(or)
Re()

impose restrictions on 0 , so that 6 ¢ [0 o+ €, 0 - €] , where 9a=arctan|: ] and € isa

small angle to be determined empirically. However, the involved singularity is of higher-order

than the one previously encountered, implying that € >> 8. This greatly restricts the permitted

range of 0 if 0 <8y <6, and is undesirable since the quantity In[F(B)] may exhibit different

rates of convergence as P(t) — o among the admissible 8. One would therefore prefer to
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choose an optimum path Cp from the standpoint of numerical accuracy. Hence, it is of interest to

reduce the restricted range [8, + €, 0 - €] so that the likelihood of this range superimposing

itself upon a region of optimum convergence is minimized. An appropriate modification to (B3)
for accomplishing this is considered next.
The integral in (B3) is obviously not convenient for numerical implementation and it is

therefore necessary to rewrite it for that purpose. By introducing the substitution 3 = tei® along

with the even property of F(B) we obtain

- o
.[ In[F(te")] it

220 2 (B6)
0o te -a

jo
H(a) = h(8 - 8 )In[F(0)] + “"’J
T

which presents a numerical difficulty when the pole at t= aeJ9 is near the real axis. This can be
treated via an addition-subtraction process, provided o ¢ Cy . Specifically, we add and subtract

to the numerator its value at t = oe-j0 . By evaluating the additive term analytically, (B6)
becomes

a¢® [ In[F(te®)] - In[F(0)] N

: 220 2
T % ¢ -

H(0) = 7 In{F(@)] + , B7)

where the integrand is now regular at t = oe"J9 . This effectively reduces € to the order of §,

increasing the range of allowed 6 and thus eliminating the concerns noted in the previous
paragraph.
A final obstacle to the numerical evaluation of H(c) is the infinite upper integration limit of

(B7). This may be remedied via the change of variables [14] v = 72‘ arctan t to obtain
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— - In[F(0)]

H(o) = ln[F(a)] + J—-
0

dv . (B8)
] ( ) e,ze 2 2( TW)
sin 5 o cos 5

The integral can now be easily evaluated especially if 0 is chosen such that F(v) exhibits a rapid
decay as it increases from 0 to 1.
Expressions (B2) along with (B8) provide a complete prescription for factorizing an even

function regular on the strip Itl <t and the angular sectors 0<0< 0y, t<8<n+86;. The

integral in (B8) is over a convenient finite interval, and will be numerically tractable for 81 < 6 <
89 <9, , provided 8 ¢ [0, + €, 0, - €] if 0 <6, <6 and the zeros of F(B) are not too close

the origin. This allows a selection of 8 such that the numerical accuracy of (B2) and (B6) is
optimized. Additionally, care must be taken in defining the branch of the logarithm in (B8) so that

; v
F{eje tan (-2—)} remains continuous on the path of integration, eliminating a branch cut

contribution.
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Fig. 1. Geometry of the metallic-dielectric join.
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g.2. Structures related to the metallic-dielectric join.
(a) Truncated parallel plate waveguide with extended dielectric loading.

(b) Grounded dielectric slab with truncated upper plate.
(c) Material slab recessed in perfectly conducting half-plane.
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Fig. 8. Hj-polarization calculated echowidth family curves for 2t = 0.01, 0.1, 0.25, 0.5 and

0.75 wavelengths. The constitutive parameters of the dielectric are € =2, =1
(a) Backscatter case, (b) Bistatic with ¢, = 45°, (c) Bistatic with ¢, = 150°.
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Fig. 9. H,-polarization calculated echowidth family curves for 2t = 0.01, 0.1, 0.25, 0.5 and
0.75 wavelengths. The constitutive parameters of the dielectric are €. =5 - j0.5,

1. =1.4-j0.1. (a) Backscatter case, (b) Bistatic, ¢, = 45°, (c) Bistatic, ¢, = 150°.
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Fig. 10. H,-polarization calculated echowidth family curves for 2t = 0.01, 0.1, 0.25, 0.5 and

0.75 wavelengths. The constitutive parameters of the dielectric are €. =7.4 - j1.1
and u . =1.4- j0.672. (a) Backscatter case, (b) Bistatic, ¢, = 45°, (c) Bistatic,

0, = 150°.
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