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ABSTRACT

The Ada programming language has been under development for the Department of
Defense since 1976. Ada is intended as the Department of Defense's principal sys-
tem implementation language. In particular, one of the primary aims of Ada is for the
programming of real-time embedded systems. This paper describes how Ada can be
used to program a robot-based manufacturing cell, an example of a real-time embed-
ded system. The computing issues in manufacturing cells are discussed with respect
to Ada. Using an experimental manufacturing cell presently under construction as an
example, a strategy for robot programming based on Ada is described. A case study
of the software for the vision subsystem is used to illustrate a central feature of
Ada: data abstraction. Additional important features of Ada for software
management--program abstraction through generics and operator overloading, and
multitasking--are also illustrated. The principal advantages and difficulties in using
Ada for programming robot-based manufacturing cells are summarized based on the
software issues described and the case study.
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'Ada is a registered trademark of the Department of Defense
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1. INTRODUCTION

With the advent of robot-based manufacturing cells, the need for a standard
implementation language to program thesé cells has grown in importance. The
present practice of designing new robot languages for nearly every new robot may
satisfy the particular programming needs of each robot, but it is counterproductive
from the standpoint of developing integrated manufacturing cell technology. Stan-
dardization is clearly needed. Moreover, the current high level languages used to
implement the real-time requirements of manufacturing systems lack some of the
language tools, such as data abstraction, that facilitate programming in the large.
Indeed, even the most sophisticated robot, numerically controlled (NC) tool, and
related "manufacturing systems' programming languages presently in commercial use
support neither data abstraction nor other features appropriate for large scale pro-
gramming [Shi82, GSC82]. They are, therefore, unsuitable at the cell integration
level. However, the Department of Defense's (DoD's) future system implementation
language, Ada is an attempt to provide language constructs which can overcome most

of these shortcomings.

Ada was originally developed at the instigation of the DoD [DoD83] for program-
ming embedded systems. Examples of embedded systems are, to quote one of the
desigrers of the language, ''those for process control, missile guidance or even the
sequencing of a dishwasher"” ([Bar82], p. vii). We would add to that list robot-based
manufacturing cells. Ada is based on Pascal. However, significant extensions make
it the first practical language to bring together important features that include data
abstraction, separate compilation, multitasking, exception handling, encapsulation,
and program abstraction through generics and operator overloading. These exten-

sions make Ada garticularly appealing for programming large scale real-time embedded
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systems--a situation characteristic of robot-based manufacturing cells. Though fully
validated compilers have only recently become commercially available, DoD's strong
support of the language guarantees a large scale presence in the future. This,
therefore, warrants a serious inquiry into the feasibility of using Ada as a standard

implementation language for manufacturing cells.

This paper describes an initial effort at using Ada as the basis for programming
part of a manufacturing cell, specifically a robot, an interface to a vision sensor and
an interface to a Computer Aided Design (CAD) system. The system exploits the
features of data abstraction, separate compilation, multitasking, exception handling,
encapsulation, operator overloading and generics found in the language; it expands
on work summarized in [VMG83]. Some of the principal computing issues involved in
programming such a system are identified and discussed vis-a-vis the use of Ada.
Much of the discussion is based on the example of the vision subsystem developed
and the limitations and improvements encountered in the process. Section Il
discusses computing issues in manufacturing cells and how they relate to Ada. Sec-
tion 11l describes appropriate features of Ada and a strategy for using Ada. Section |V
illustrates one of the central features of Ada, data abstraction, by examining the
development of the vision subsystem software. Section V discusses how program
abstraction in the form of generics and operator overioading can be used to manage
program development. Section V| discusses how multitasking can be used. Section
VIl summarizes the experience to date and notes both important advantages to the

use of Ada and areas of concern where more work is needed.
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Il. COMPUTING ISSUES IN MANUFACTURING CELLS

To illustrate some of the computing problems which arise in flexible manufactur-
ing cells, consider the simple cell shown in Figure 1, major portions of which are
presently under development in the Robot Research Laboratory at the University of
Michigan. This cell is a simple machine loading/unloading system consisting of a pro-
cess machine (an NC milling machine for this example); an input conveyor; a camera
and associated machine vision system to sense incoming parts; a robot for loading,
unloading and tool changes; and an output conveyor. The incoming stock may arrive

randomly oriented and must be located and identified by a machine vision system
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Figure 1. Manufacturing Cell.
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using the camera before being grasped by the robot. This example is conceptually
relatively straightforward and, in fact, it omits some additional features one might
realistically expect such as post machining inspection and adaptive control of the
machining process. It is sufficient, however, for illustrating the principal points to be

discussed.

The above example can also be used to illustrate a related activity which we
believe will be of great importance in the future and which impinges on the current
paper: the use of CAD information for driving cell operations. Our goal is for the cell
to be able to manufacture any part within some reasonable class without human
intervention. In other words, the cell will be able to automatically adapt to a particu-
lar type of part once the part has been identified by the vision system. In addition, in
contrast to present practice, there will be no loss of production time due to training
either the robot or the machine vision system [Hil80, Gle79, Per81]. Information to
allow the vision system to identify a part and to allow the rest of the cell to perform
the appropriate operations on the part is derived from a CAD database. Therefore, it
is a prerequisite that all the parts to be handled by the cell have been designed via a

CAD system.

The computer system which manages this cell must interact with a variety of
devices and with at least one level of external computer system. The complexity of
the resultant system, the interaction with real-time devices, and the interaction with

the external computer system create the prircipal computing problem. A hierarchical

computer system for controlling the cell is shown in Figure 22. A central celi control

computer manages the overall behavior of the cell and handles communications with
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2Similar hierarchical structures have been proposed by several authors, e.g.
Albus [AMB83] and Wisnosky [Wis81]
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Figure 2. Cell Control.

the CAD database (in the cell being developed this is a multiprocessor version of

Intel's iIAPX432). Dedicated microcomputers function as attached processors to the

cell controller and interface with the various physical process machines and sensars

Revised March 23, 1984



RSD-TR-15.83.r

in the cell (in the cell being developed these are typically Intel 8086 based micro-
computers). Even if all the necessary algorithms were known, which is far from the
case [Loz83], there are significant computing issues remaining:
» The development and management of the complex real-time software sys-
tem to control the cell.

« The extraction of information from the CAD system to assist cell opera-
tions.

« The architecture of the computer system (hardware and software) to sup-
port the cell.

« The computational speed to meet the real-time requirements.

This paper primarily addresses the first of these points. The second point is beyond
the scope of this paper although it does impinge upon the case study that we
present. Research into the use of CAD information for cell operations beyond
automatic production of NC tool programs is still in its infancy. Some early work in
this area can be found in [WWV82, Bau81, Bau82]. The last two issues are also
beyond the scope of this paper; more on them can be found in [TuM81, Mud81,

MVA82, OMK83].

The software aspect of robot cell control itself encompasses a number of

issues. Among the more important are:

» The management of large compiex software systems.

« The efficiency of code produced for real-time applications.
» [nterprocess communication and task synchronization.

« Portability.

« Program debugging, particularly the real-time aspects.
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The first of these issues becomes more important when one considers complex
systems with sophisticated sensors and several robots rather than a single dumb
robot. Such systems will be much more common in the future, and the need to manage
the ensuing software complexity will be correspondingly greater. The proven way of
dealing with complexity in any system, software or otherwise, is to partition it into
subsystems whose complexity is manageable. This partitioning is important not only
in the design phase but also for system maintenance, where, in the case of embed-
ded systems, it has been shown that often over 70% of the lifetime cost of large

embedded software goes into software maintenance [Coo82].

The second of these issues, computation speed, is a function not only of the
underlying hardware but also of the efficiency of the code emitted by the translator.
Several software techniques have evolved for dealing with this issue, two of the
most important being code optimization and in-line code substitution. The first will
almost certainly be developed for any translator used widely by the military or indus-
try. The second can be particularly important when data abstraction causes a iarge
number of procedure calls (as it does in Ada). Nevertheless, the effectiveness of

these, particularly for a language as large as Ada, is a matter of serious concern.

The third of these issues, interprocess communication and task synchronization,
arises out of a need to support a muitiprocessing system (see Figure 2). Communica-
tion and synchronization are required in various multiprocessing situations: among
tasks executing on the same processor, between a central control process and a
dedicated attached processor controlling some sensor or robot joint, and among tasks
executing on separate general purpose processors. Ideally, a robot programming

language shculd support communication and synchronization mechanisms.
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The fourth of these issues, portability among different robots and computer sys-
tems, is one of the principal difficulties with most robot programming languages. Little
has been done to address this problem. It is most important that future language

efforts not be made heavily machine dependent.

Finally, the fifth issue, program debugging, is complicated by the real-time
aspect [VoR77]. Reconstructing real-time events to track down errors is usually dif-
ficult and often impossible because of the irreproducibility of the external real-time
events. Further, due to the fact that the physical movement of the devices under
computer control can be very slow (at least compared to computer speeds), painfully
long debug times can result. Unfortunately, the debugging issue cannot be ignored
because the occurrence of an error which cannot be halted in midstream can be both

dangerous and expensive.

The features present in Ada permit many of these issues to be addressed. The
following section sketchs a general way in which Ada can be tailored for expressing

robot, sensor and CAD operations.
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ill. ADA FOR CELL PROGRAMMING

Ada has been expressly designed to facilitate the development and mainte-
nance of large software systems through partitioning. Separate compilation allows a
team of cell designers to work concurrently on the development of separate subsys-
tems. It also allows subsystems to be easily modified without affecting the rest of
the system--an important feature for maintaining the system. Ada relies on data and
program abstraction to simplify the construction of subsystem interfaces. Further,
Ada provides multitasking and timing constructs, an essential ingredient in manufac-
turing cells where there are typically several computation tasks that need to be per-

formed in real-time.

In this section we describe in a general way the important features of Ada and a
strategy that can be used for developing a robot and sensor programming system
based on the use of Ada. The design goals of Ada directly address most of the issues
raised above, and these will be discussed in the context of their use for the pro-
gramming system. The strategy and example described are based on the experimen-
tal system being implemented at the University of Michigan. The system will be used
as an experimental vehicle for testing algorithms linking CAD to robot and sensor
operation and for testing object-based architectures (see below) for robot/sensor
systems. As of this writing, a vision system, a robot system, and aigorithms for CAD-
based vision training and determination of grip positions are functional. (The example

below will illustrate some of these features while indicating the use of Ada.)

A. FEATURES OF ADA

The underlying philosophy of Ada is centered upon the use of objects for pro-
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gram design. An object is a data structure> having a unique identifier and an associ-
ated set of functions and procedures that can operate on it [Org82]. These "opera-
tors'' are the only allowed means of manipulating the object. A number of advantages
follow from this "object-based' programming methodology. Objects and their associ-
ated functions and procedures form natural boundaries along which to subdivide sys-
tems. In addition, because the structure of a data type is hidden from all but its
associated operators, changes to the structure have a limited impact greatly simpli-
fying program modification and maintenance. In effect, the data type can be
abstracted and known only through operations on it. Thus, object-based programming
provides a way to implement data abstraction, which, as a result of work in program-
ming language design during the 1970's, has emerged as a major organizational con-
cept in programming languages [Sha80]. Several experimental programming
languages have been implemented that were designed containing features to support
abstract data types, but, with the possible exception of Modula-2 [Wir82] and Con-

current Pascal [Bri77], Ada is the first that is likely to see wide-spread use.

Ada provides a construct called a package that allows the programmer to encap-
sulate objects and their associated functions and procedures. In addition, it has
private types and limited private types that further restrict encapsulation so that
objects thus typed, while visible to program parts, can only be manipulated through
procedure and function references. Together these features permit the programmer
to hide data structure implementation and create abstract data types. The package
definition consists of two parts, a specification part and a body. The specification
part introduces the data types, variables and procedures visible to the user of the

package. The body contains the implementation of the package and may be

LR L L L L L e L L L Db ]

3 The meaning of the term "object" is not universally agreed upon; our usage is
fairly narrow. See [Ren82] for a discussion of various viewpoints.
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accessed only by the mechanism stated in the package specification.

Program abstraction is possible through the use of generic packages and sub-
programs, and operator overloading. These are a step in the direction of polymorphic
function implementation [Mil78, GoY80], and they allow, among other things, opera-
tions to be defined over a set of data types, thus providing a broader use of objects.
An example is given in a later section. As shall be discussed further, the object and

package concepts address the management and portability of complex software.

Ada also provides a task construct which is a means of dividing a program into
logically concurrent operations with possible synchronization between them [REM81].
In addition to forming the basis for reai-time operations, tasks aiso provide a means
of increasing processing efficiency in a paralilel processor environment. Syntacti-
cally, tasks bear a resemblance to packages in the sense that they both have a
specification part and a body. However, the specification part of a task is used
solely to declare the synchronization points or entry points to the task--the entry

points indicate where messages are received/transmitted by a task.

The program and data abstraction capabilities of Ada can give rise to a large
number of procedure calis which in turn add processing overhead to the program. Ada
provides an inline pragma (a compiler directive which expands the subroutine source
code in-line wherever called), thus eliminating some of the entry/exit overhead asso-

ciated with procedure calls. The effectiveness of the pragma has not been widely

tested as yet.

8. A STRATEGY FOR USING ADA

Manufacturing cell or robot programming based upon Ada depends upon three

central ideas:
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1. The use of Ada's extensibility.
2. The use of Ada's data and program abstraction.

3. The use of Ada's real-time muititasking capabilities.

The use of Ada for programming manufacturing cells begins with the definition of
objects for the various physical and logical components in the cell and the interfaces
to these objects. Among these are the problem oriented primatives one wouid like to
have in a robot language. These objects are embedded in Ada packages. Various
mechanisms can be easily implemented to (nearly) automatically make these objects
available to the programmer. The robot programmer can then use these objects and

interfaces as though they were part of the language specification.

To provide a concrete illustration of the use of Ada as the system implementa-
tion language for cell programming, a system consisting of a robot, a vision sensor and
a link to a CAD database (e.g., part of the system shown in Figures 1 and 2) is con-

sidered in a simplified manner. Four basic object types are defined in this illustration:

ROBOT --  Provides the basic robot interface.

POSITION

- Provides a set of data abstractions
for part and robot locations.

CAD_MODEL - Provides CAD database access.

VISION -- Provides an interface to the vision subsystem.

Each of these basic objects is associated with an Ada package. A view of a portion
of the main programs and the specification for each of these basic objects gives an

introduction to the object oriented design approach.

Figure 3 shows a portion of a sample main program. The action part of the
example shown is to find a part on the input conveyor, move the robot *o it and pick

it up. It is assumed that the set of parts that could potentially appear on the
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conveyor are assigned to the variable SET_OF_PARTS. As mentioned earlier, the cell
automatically reprograms itself to handle any one of the set once it has been identi-
fied by the vision subsystem. The names of the parts are assigned to SET_OF_PARTS
from a terminal (see Figure 2). This information is transmitted to procedure MAIN by a
command interpreter (not shown). Details such as following a particular speed profile
or the handling of exceptions are omitted since they would tend to obscure the
example. It is assumed that the geometry of the part is available in a CAD database
and that off-line utilities are available to provide recognition information to the vision
system (see next section) and the location on the part where it can be picked up
(the grasp points are defined in a local coordinate system of the part itseif). Such

utilities are, in fact, under development and nearly complete [WWV82].

The first part of this example identifies Ada packages which provide data types
and services to the main program. The with and use clauses are the mechanism by
which the robot environment is made available. (In the program parts shown, words in
lower case bold are Ada key words. The upper case words are user-defined, or
predefined, package, function, procedure, type or variable names.) The with clause
tells the compiler that the programmer intends to use data types, procedures, and
functions defined in the package named after the with. The use clause tells the
compiler that the programmer wishes to reference the déta types, procedures and
functions defined in the package named after the use by the names given in the
package definition without including the name of the package as a qualifier. In gen-
eral, however, the user might not even have to enter these with and use clauses
directly. The use and with clauses could be placed in a program template with which
the user begins. Alternatively an include pragma could be added to the compiler

which would read a file of with and use clauses and include them in the program. in
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with TEXT_10;

with POSITION; use POSITION;
with CAD_MODEL; use CAD_MODEL;
with VISION; use VISION;

with ROBOT; use ROBOT;
procedure MAIN is

N: INTEGER;
begin

GET(N);
declare

SET_OF _PARTS: PART_SET (1..N);

X: PART;
TARGET_LOC, PICK: FRAME;

begin

C ALIBRATE;
N
.

SET_SPEED (FAST);

X:= FIND (DECISION_JREE (SET_OF_PARTS));
PICK:= PICK_APP_POINT (X.NAME, X.STABLE_POS);
TARGET_LOC:= X.LOCATION X PICK;

MOVE (TARGET_LOC);
SET_SPEED (SLOW);

PICK:= PICK_POINT (X. NAME, X.STABLE_POS);
TARGET_OC:= X. LOCATION * PICK;

MOVE (TARGET._LOC);

CLOSE_GRIP;

end;

end MAIN;

-- Make the procedures, functions
-- and data types defined in the named
-- packages available to create a robot
-- environment for the precgrammer.

== Number in set of parts.

--input from terminal.

-- Set of parts that could potentlally
-- appear on the conveyor.

-- Data about the part found (6).

-- Coordinate frames for the part

~- and its grasp point (4).

-- Calibrate the robot before starting (7).

-- Set robot speed fast for motion
--to approach point (7).

-- Find and identify the part (5,6).

-- Approach point from CAD d/base (5).
-- Express approach point

-- in world coordinates (4).

-- Move to approach point (7).

-- Set robot speed slow for final

-- motion to grasp point (7).

-- Get grasp point from CAD database (5).
-- Put in world coordinates (4).

-~ Move to grasp point (7).

-- Grasp part (7).

Figure 3. Qutline of the Main Program Controlling the Robot.

this way an environment of data types, and primitive operations tailored to a specific

application, in this case robots, can be provided to the user.

15
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The second half of the main program shows the use of the data types and func-
tions provided by the Ada packages for the simple operation described above. The
syntax used is similar to that found in several robot languages and the type and vari-
able names are sufficiently mnemonic that one can follow the intent of ttrie srogram
with minimal reference to the supporting packages (see below). Note that comments
are introduced by a preceding '"--" and they can be placed anywhere in the text
stream. In addition, the comments in Figure 3 include one or two numbers in

parentheses that are the figure numbers of relevant packages.

FIND is a procedure in the VISION package that finds and identifies the part on
the input conveyor and returns the part's name, a 4x4 homogeneous transformation
giving the location of a coordinate frame for the part in terms of the robot's world
coordinates and an index of which stable position the part was found in. These three

items of data are stored as components of a record X.

PICK_APP_POINT and PICK_POINT are functions which return (from the CAD data-
base or utilities acting upon it) 4x4 homogeneous transformations which express the
approach and grasp points in terms of the coordinate frame for the part. The "*" has
been overloaded (see below) to mean multiplication of 4x4 matrices so that the
result is the transformation of the appropriate point in terms of the world coordinates
of the robot. TARGET_LOC holds this transformation and is the argument of the MOVE

procedure which actually causes robot motion.

Partial specifications for the packages referenced in Figure 3 are given in Fig-

ures 4 through 7.

The POSITION package defines the type FRAME to be a 4x4 ma‘rix for use as a
homogeneous transformation (Figure 4). This type is intended to be used to

represent various coordinate systems which will occur during the programming cf a
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package POSITION is

type COORD is new FLOAT;

type ANGLE is new FLOAT;

-- COORD and ANGLE are declared "new’ floating point types.
-- This way they will not be confused with other FLOAT's.

type FRAME is private;
-- FRAME is the representation of one ccordinate system in terms of another.

function BUILD_FRAME(X,Y,Z: in COORD; R,S,T: in ANGLE) return FRAME;
-- Allows FRAME's to be constructed from lower level primitives. Necessary
-- since FRAME is private and its structure cannot be directly accessed.

function "% ( A, B: in FRAME ) return FRAME;
-- This function expresses the coordinate frame represented by B in
~- terms of the one in which Ais represented, l.e., it is a transformation.

procedure UNBUILD_FRAME(A: in FRAME; X,Y,Z: out COORD; R,S,T: out ANGLE );
-- Complement of BUILD_FRAME.

private

type FRAME is array (1..4,1..4) of FLOAT; -- A 4 X4 homogeneous transformation.
end POSITION;

Figure 4. Package Specification for Coordinate Frames and Related Operations.

robot task in terms of other coordinate systems. While the 4x4 homogeneous matrix
representation is most common for coordinate systems, it 1s not the only possibility.
The POSITION package simply provides a standard interface to the programmers. The
implementation can be changed, even placed in special hardware, without the robot
programmer having to change any code. The use of the attribute private means that
the programmer cannot use any knowledge of how the data types is to be imple-
mented. The function definition "*" gives meaning to the operation * in the context
of two variables of type FRAME. This process is called overloading of the operator *.
The implementation of the function (not shown) will implement a multiplication of two
4x4 matrices. The special structure of the homogeneous transformation might be
taken into account in the implementation, but this is of no concern to the programmer,

who need only be concerned with using the function.
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The package CAD_MODEL provides an interface to the off-line CAD system (Fig-
ure 5). This kind of package is not part of standard robot systems, but is an impor-
tant part of our research on integrating robot programming and CAD. Several kinds of
information can be derived from the CAD system. The vision system (see next sec-
tion) calculates a set of features (area, perimeter, number of holes, etc.) from the
image of the part being identified and uses a decision tree calculated from the set of
parts which might be present to identify the part. Normally, the decision tree is
obtained by on-line training of the vision system. However, the decision tree can be

precalculated from the part description in the CAD database and stored for use by

with POSITION; use POSITION;

package CAD_MODEL is
type PART_ID is private;
type D_LNFO is private;
type DECISION_INFO is access D_INFO;
type PART_SET is array (INTEGER range <>) of PART_ID;
type STABLE_POSITION is private;
type S_POS_SET is array (INTEGER range <> ) of STABLE_POSITION;
function DECISION_TREE (S: in PART_SET) return DECISION_INFO;
function STABLE_POS_SET (PART_NAME: in PART_LD) return S_POS_SET;
function PICK_POINT (PART_NAME: in PART_ID;
STABLE_POS: in STABLE_POSITION) return FRAME;
function PICK_APP_POINT (PART_NAME: in PART_LD;
STABLE_POS: in STABLE_POSITION) return FRAME;

private

type PART_ID is new STRING (1..8);

-- Eight character part identifier.
type STABLE_POSITION is new INTEGER;

--Index of stable positions.

type D_INFO is -- Node in binary tree.
record

VALUE: FLOAT;
LLINK: DEC!ISION_LNFO;
RLINK: DECISION_INFO;
end record;
end CAD_MODEL;

Figure 5. Package Specification for CAD_IVIODEL.

Revised March 23, 1984 18



RSD-TR-15.83.r

the programming system. Similarly, grasp points for the parts can be precalculated

[wwvs2].

The functions of CAD_MODEL access the database holding the required values,
and the data types defined provide the views of the data required by other pack-
ages. PART_ID and PART_SET provide data types for identifying one or a set of
part(s). Each part will typically have a set of stable positions in which it may lie.
These may also be determined off-line from the CAD database. The example shows
the stable position identified by an integer index, though since the type is private
this fact may not be used by the rest of the program. The stable position is part of
the information returned by the VISION system and is used by PICK_APP_POINT and
PICK_POINT to determine the relative position of the approach and grasp points of the
part. The function STABLE_POS_SET returns the set of stable positions in which a
given part may be found. DECISION_TREE returns the decision information which is
used by VISION as the bas.is for distinguishing a set of parts from one another. The

decision information is a binary tree pointed to by a variable of access type DECI-

SION.

The VISION package provides the interface to the vision subsystem (Figure 6).
It uses the data types and interfaces provided by CAD_MODEL. The type PART that
it defines has three components: the name of the part, a coordinate frame giving its
location in terms of the world coordinates, and the stable position in which it was
found. The function FIND causes a picture to be taken and returns a variable of type

PART giving the pertinent information about the object found.

Finally, the ROBOT package provides a simple interface 1o the robot (Figure 7).

The intended operation should be obvious from the procedure rrames chosen.
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with CAD_MODEL; use CAD_MODEL;
package VISION is

type PART is
record
NAME: PART_LD;
LOCATION: FRAME;
STABLE_POS: STABLE_POSITION;
end record;

function FIND (D_T: in DECISION_NFO) return PART;
-- identifies the part, its location and the position it is in.

end VISION;

Figure 8. Package Specification for VISION.

One principal advantage of this system is its modularity and extensibility. If a
new sensing or algorithmic capability is added, one need only insert a new package
for it, insert the appropriate use and with clauses to make the addition availabie to
the user, and recompile the system. If one wishes to make the program available to
run with a different robot (of sufficient physical capabilities to handle the probiem)
only the package ROBOT need be changed. A standardization of the package inter-
face specification, then, could lead to ready availability of ROBOT packages for a
wide variety of robots and a much easier porting of programs from one robot to

another.
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with POSITION; use POSITION;
package ROBOT is

SLOW: constant := 0.7; -- Fine motion speed.
FAST: constant:= 1.0; -- Approach speed.
subtype SPEED is FLOAT range SLOW..FAST;

-- Bound speed for safety check.
procedure CALIBRATE; -- Calibrate the robot arm prior to use.
procedure MOVE(DESTINATION: in FRAME);

-- Move to a point given by applying

--the transform represented by FRAME.
procedure OPEN_GRIP;
procedure CLOSE_GRIP;
procedure SET_SPEED (SPD: in SPEED);

end ROBOT;

Figure 7. Package Specification for ROBOT.

iV. DATA ABSTRACTION

In the previous section the use of the separate compilation and the package
facilities of Ada to create a robot programming environment were illustrated. In this
and the next section the use of Ada is viewed from a different perspective: that of
incorporating modern software concepts such as data and program abstraction into
the robot programming environment. If properly used these features can bring

several additional advantages to the robot programming system, including:

Clearer conceptualization of the probiem being programmed.

Better data security and avoidance of side effects.

+ Easier modification of the implementation.

Better maintainability and readability of the code.
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These advantages, of course, are not intrinsic to Ada, but may be achieved to varying
degrees in different languages by good programmers. However, Ada does provide the
mechanism to make their use convenient. As robot programs become larger and
encompass more of the manufacturing cell, these advantages will rise sharply in

importance.

To provide a more detailed study of the use of Ada data and programming
abstraction for cell control, a case study of one subsystem of the cell, the CAD-

based vision system, is explored.

A. OVERVIEW OF THE VISION SYSTEM -

The vision subsystem was developed to allow recognition of non-overlapping
parts in our experimental manufacturing cell. It was not intended to produce new
algorithms for computer vision, nor was it intended to be a simple transliteration of an
existing vision system into Ada code. Rather, the goals of the vision subsystem were
to implement the SRI (Stanford Research Institute) vision algorithms, taking advan-
tage 6f the facilities provided in the Ada programming language to explore both the

use of Ada and the use of CAD information to replace the vision training phase.

The SRI vision algorithms are described in [Gle79] (for additional important con-
cepts see [DKN76, DuN76]). They are intended to classify non-overlapping parts
represented as dark silhouettes against a light background. The image used is a
matrix of binary valued pixels. The vision algorithms compute a set of features from
the silhouettes. These include: area, A; perimeter, P, and PZ/A; number of holes and
hole area; position of centroid and its angle of orientation with respect to the field of
view; bounding box length and width; maximum, minimum and average distance of the
perimeter from centroid (see Figure 8). A subset of the features (determined by the

specific vision task at hand) are used to classify the parts viewed. The type of
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Figure 8, Typical Silhouette Features.

visual recognition that the SRI system is capable of is clearly very restricted. How-

ever, the system represents a judicious mix of well understood techniques that are
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versatile enough for many industrial applications and that can be easily implemented
in a small rugged low cost package. Indeed, systems based upon these techniques

are now being produced by several vendors.

The connection of the vision system to the skeleton robot programming environ-
ment actually requires more detail than illustrated in Section llIl. The with clause must

be expanded to include other packages which are referenced by the function of

VISION. Figure 6 is be modified to:
with CAD_MODEL; use CAD_MODEL;
with ANALYZE; use ANALYZE;

package VISION is

end VISION;

The package ANALYZE provides the procedures and functions which calculate the

features of the part to be recognized.

Actually, there are several levels of hierarchical decomposition within ANALYZE.
It references three packages which are collectively responsible for determining the

features of the object. Its specification begins:

package ANALYZE is
procedure SCANLINE_ENCODER (...);

procedure CONNECTIVITY_ANALYSIS (...);
procedure FINAL_FEATURE_CALCULATIONS (...);

end ANALYZE;

The implementation (not shown) of FIND in VISION uses SCANLINE_ENCODER,

CONNECTIVITY_ANALYSIS and FINAL_FEATURE_CALCULATIONS to determine the part

Revised March 23, 1984 24



RSD-TR-15.83.r

features needed to use the decision tree. The following discussion will show how Ada

has been employed to achieve the benefits of medern software concepts.

B. ADA-BASED IMPLEMENTATION OF FEATURE EXTRACTION

1. Operation Overview

ANALYZE operates on a binary matrix of pixels that forms the image. The image
is processed in raster scan order (one row at a time). Each raster scanline is con-
verted from a row of light and dark pixels to a smaller sequence of ''runs” of contigu-
ous pixels of a particular color. For example, the center scanline depicted in Figure 9
has three runs of 3 (dark), 4 (light) and 4 (dark). Thus, the scanline can be '"run
length encoded" by the sequence 3-4-4 with one additional bit to indicate that the

first run is dark. Dark runs are interpreted as belonging to a non-overiapping part,

Figure 9. Scanlines of Pixels.

25 Revised March 23, 1984



RSD-TR-15.83.r

while light runs are considered empty space surrounding the part or holes in the part.

Next, consecutive scanlines are analyzed for connectivity, overlapping dark runs
and overlapping light runs are linked to form parts and holes respectively. The con-
secutive scanlines of Figure 9 are linked into three regions: two potential parts
separated by a gap or hole. As part of the linking or region growing operation, the
number of pixels in each region (area), and the first and second moments of each
region are calculated. This is accomplished by adding the values for each scanline to
partial sums being accumulated in an intermediate feature (hole) vector. In addition,
a list of the perimeter pixels of each part (hole) is maintained. Thus, when all the
runs for a part (hole) have been linked together the intermediate feature vector and
perimeter list contain the information which is needed to calculate the final feature

values for each part.

2. Object-based Modularization

Program modularization using Ada objects is based upon creating an access
module for each data structure which must be used by all procedures or functions
referencing the data objects. Figure 10 shows the relation of the data entities, the
access modules and the routines provided by ANALYZE. The double headed hollow
arrows indicate module access to data structures. These modules are the only ones
that need to know the implementation details of the data structure. The data struc-
tures (see right hand column of Fig. 10) operated on by the feature extraction pro-

gram are as follows:

IMAGE -- The camera's 256X256 pixel image.
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ENCODED_SCANLINE -- Expanded run length encoding of a
scanline which includes the values
needed to calculate the first and
second moments, etc.

INTERMEDIATE_FEATURE_VECTOR -- Values accumulated from the
ENCODED_SCANLINE's.

PERIMETER -- Contains all the exterior pixels
for a given part (hole).

FINAL_FEATURE_VECTOR -- Scalar values for each feature of
each part and hole in the scene.

The operation of the feature calculation can be viewed, as follows:
SCANLINE_ENCODER (SLE) obtains lines one at a time from the IMAGE module and
encodes them, and, through the SCANLINE module stores the encoded scanlines. The
scanlines are next accessed by CONNECTIVITY_ANALYSIS (CNA) which performs
analysis of connected regions. CNA processing of one scanline can be done con-
currently with the generation of the encodings of the scanline by SLE. The operation
of FINAL_FEATURE_CALCULATION (FFC) can be similarly overlapped with that of CNA.
The clear conceptualization afforded by this view of the operation exposes the fact
that logically the above three subprograms can be considered to be operating in a
pipelined fashion. In section VI it will be shown how this logical pipelining could be

translated into actual pipelining using Ada tasking.

By way of contrast, Figure 11 shows a counterpart of Figure 10 that would be
typical of the more common control-based approach in which the program is based
upon the flow of control. The more convoluted diagram obscures the conceptual sim-
plicity apparent in the object-based approach. The procedures and functions in this
case directly access the data structures they need. Data security is thus violated
and possibility of spreading the effects of programming errors is increased (unwanted

side effects).
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Figure 10, Object-based Modularization.
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Figure 11, Typical Control-based Modularization.
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3. Modification and Maintainability of the Program

The maintainability of the program is also substantially enhanced by the use of
object-based modularization in Ada. The separation of the specification and imple-
mentation parts of a package provides a localization in procedure implementation
changes. Both data structure and code changes are simplified. When modifications
are required to the data structure, the only code which must be modified is in the
local modules which have exclusive access to the data. For example, it is unimpor-
tant for the program to know the actual implementation of the IMAGE module, as long
as there is a means of finding the coordinates where the image changes from light to

dark and dark to light. The specification for the IMAGE package appears as:

package IMAGE is

LOAD_NEW_IMAGE (...) -- Command camera to take a picture and
return results.
NEXT_LIGHT_PIXEL (...) =-- Return coordinates.
NEXT_DARK_PIXEL (...) -- Return coordinates.
IMAGE end;

which clearly has the needed access functions. The other modules used have similar

simplicity and mnemonic association with the required data access functions.

The above capability was used to considerable advantage during the debugging
of the system. In actual operaticn, LOAD_NEW_IMAGE causes a GE-TN2500 camera
to load an image into a frame grabber; an attached processor then translates the
resulting matrix into a run length encoding and transfers the encoded image to the
iAPX432. The vision system was ready for debugging, however, before the frame

grabber was completed. To debug the system a simple package substitution was
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made: the IMAGE module access routines were changed to request column and row
information from an operator's terminal. This proved to be an effective way to debug

the system.

C. OBJECTS IN ADA

Object-based programs are rather difficult to implement in traditional block
structured high-level languages. For example, data structures which must be
accessed by separate blocks must be visibie to at least one block within which the
separate blocks are nested. This leaves open the possibility of other nested blocks
having unintended access to the data structures. In less restrictive languages
memory locations can be made available to the subprograms which need access to
them; however, this again raises the question of undesirable accessibility. In con-
trast, objects in Ada can be encapsulated with the package construct. Controlled
access to the object is defined by the specification part of the package which for-
mally defines visibility and scope rules for variable data objects and subprograms,
and creates a visible environment for both the package body and any modules out-
side the package which need to manipulate objects in the package. Therefore, the
specification is the construct that facilitates abstraction and permits easy implemen-
tation of abstract data types. The package body compietes the code for each pro-
cedure and function in the package specification. The body and any modules which
reference the package can be compiled separately from the specification as long as
they are able to recreate the environment of the specification section during their
own compilation. In this way strong static-semantic checking can be achieved con-

currently with separate compilation.
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V. PROGRAM ABSTRACTION

A major objective of software management is in the ability to reuse algorithms
that have been implemented previously. However, an undersirable attribute of
strongly typed languages is the inability of type independent operations to be used
on a variety of conflicting data-types. Ada allows one to write a form of subroutine
or package, (called generic subroutines or packages) in which the data-types mani-
pulated are formal parameters. The Ada source code is then expanded as necessary
to implement the desired subroutine or package for each data type desired. The

expansion process, called instantiation, is similar to macro expansion.

Generics are not limited, however, to operations which are independent of the
data-types involved. Though not as flexible as polymorphic functions [Mil78], Ada
generics can adjust for broad classes of objects by use of the with clause [DoD83]
and by passing functions as parameters during instantiation. in this way operations
which are specific to the data-type given as a generic formal parameter can be
inherited. For example, if the FRAME type of the package POSITION were used as an

argument to a generic procedure, the "*"' would inherit the meaning of matrix multiply.

The concept of generics raises several interesting questions. One is whether a
generic robot package can be defined and instantiated for specific instances of dif-
ferent robots. To test this on a limited scale, the use of generics in the vision sys-
tem was examined. Contemporary vision systems [Hil80, BaT81] utilize a list of
nearly forty features which could be useful in distinguishing parts from one other,
inspecting parts or guiding specific assembly operations. Most vision systems calcu-
late subsets of four to twelve features from this list. Because of the limited amount
of time, no vision system calculates the entire list at run-time. Selection of the

proper subset is, therefore, crucial for an efficient solution. Furthermore, different

Revised March 23, 1984 32



RSD-TR-15.83.r

applications require different subsets.

To obtain a vision system which could be easily adapted to a variety of vision
tasks, a library of routines to calculate all features from an
INTERMEDIATE_FEATURE_VECTOR could be established. (See Figure 10 to relate
module names to ensuing discussion.) Next, a generic FINAL_LFEATURE_CALCULATION
procedure could be written in which the FINAL_FEATURE_VECTOR is defined only in
terms of the number of features desired. This is illustrated in Figure 12. The generic
procedure is called FINAL_FEAT_CALC. Its operation is expressed primarily in terms of
a set of individual feature calculation functions generically called FEAT_CALC_1,..,
FEAT_CALC_N. To create an actual instance of FINAL FEAT_CALC which can be used
to calculate a final feature vector, one must identify the set of features desired
(accomplished by type DESIRED_FEATURES in the example) and supply actual objects
for the generic parameters of FINAL_FEAT_CALC. FEATURE_CALC_1.. FEATURE_CALC_N
in the example, must be separately prepared. The instantiation creates an actual
procedure FINAL_FEATURE_CALCULATION which can be used to calculate the final
feature vector. The point, of course, is that one can create different final feature

calculations procedures by supplying different feature calculation functions.

While it was originally envisioned that through the use of generics a variety of
relatively specific and efficient vision systems could be produced at a minimal pro-
gramming cost, it is not clear that a great deal can be gained. One still must write all
of the individual routines for feature calculation. Generics simply provides one way
of incorporating the specific set to be used. Moreover, the example of Figure 12
requires advance knowledge of the number of features to be used and is not amen-
able to use of a loop construct in implementation. These two restrictions might be

eliminated by implementing the feature calculation routines as tasks and making one
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of the generic parameters to FINAL_FEAT_CALC a record whose components contain
access pointers to the individual feature tasks. The record could have a discriminant
stating the number of components. However, it hardly seems worth the extra com-

plexity. The use of generics, then, to build a specially tailored vision system does

not seem to offer as much as originally anticipated.
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generic

type FEATURES is (<>); --enumeration of desired features
package FINAL_FEATURES Is

type FEATURE_VECTOR Is array (FEATURES) of FLOAT;
end FINAL_FEATURES:

--Next we define the generic feature calculation procedure
generic

type FEATURES Is (<>); --enumeration of desired features
type FINAL_FEATURE_VECTOR is private;

type INTERM_VECTOR is private;

with function FEAT_CAL 1 (INTERM: in INTERM_VECTOR) return FLOAT;

with function FEAT_CALC_N (INTERM: in INTERM_VECTOR) return FLOAT;

procedure FINAL_FEAT_CALC(IMFV: in INTERM_VECTOR; FFCV: out FINAL_FEATURE_VEC TOR);
procedure FINAL_FEAT_CALC(IMFV: in INTERM_VECTOR; FFCV: out FINAL_FEATURE_VECTOR) is

INDEX: FEATURES; --index into FINAL_ FEATURE_VECTOR

begin
INDEX := FEATURES'FIRST;
FFCV (INDEX) := FEAT_CALC_J1 (IMFV);

[ ]
[ ]
INDEX := FEATURES'SUCC (INDEX);
FFCV(INDEX) := FEAT_CALC_N(IMFV);
end FINAL_FEAT_CALC;

--Next,we show a sample instantiation of final feature calculation
type DESIRED_FEATURES is (FEAT 1, .., FEATN);

package FINAL is new FINAL_FEATURES(DESIRED_FEATURES); --This creates a package
--with the desired feature vector.

procedure FINAL_ FEATURE_CALCULATION Is new FINAL_FEAT_CALC(

DESIRED_FEATURES, --This now exists from the above subtype.
FINAL.FEATURE_VECTOR, --This exists from the above package instantiation.
INTERMEDIATE_FEATURE_VECTOR, --This is defined elsewhere in the vision system.
FEATURE_CALC1, --This must be previously defined.

®

L
FEATURE_CALCN); --This must be previously defined.

--Actual performance of the feature calculations occurs upon the following call assuming
--X and Y suitably declared earlier

FINAL_FEATURE_C ALCULATION(X,Y);
Figure 12

VI, MULTITASKING
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The cell control computer (the iAPX432) in our experimental cell has a multipro-
cessor architecture which automatically provides parallel computation for mulitiple
concurrent processes. Coupled with Ada's explicit multiprocessing through the task
construct, it is possible to easily speed up some computation through parallel pro-

cessing. This is illustrated for the vision system.

Again using the ANALYZE package as an example, consider the processing of
the three subprograms for scanline encoding (SLE), connectivity analysis (CNA) and
final feature calculation (FFC). The clear conceptualization of Figure 10 suggests
that the calculation can be pipelined, and through tasking and multiprocessing this
can be converted to parallel computations. Instead of waiting for the all of the scan-
lines to be entirely encoded, CNA can begin after SLE has processed a single scan-
line. While CNA is processing one line of data SLE can generate the next encoded
scanline. A similar process can take place between CNA and FFC. Thus, conceptually
each of the three tasks can be considered to be executing in a loop: fetching infor-

mation from the previous task and sending information to following task (see Figure

13).

This pipelining can show a substantial reduction in processing time. With pipelin-
ing the processing time has a lower time bound equal to the time to process a single
data item by all the tasks (filling the pipeline up) plus the time for the slowest task to
work on k—1 data items where k is the total number of data items processed. Let
T(k) be the time to run a program on k data records without multitasking, and let
MT(k) be the time to run the same program (now composed of n tasks, P1,...,Pn) with

multitasking, then:

MT(K) = time(P1+P2+...+Pn) +(k—1)*time(max(P1,P2,..Pn)) < T(k)
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Figure 13. Multitasking.

assuming sufficient processors are available. This, of course, is an ideal situation
which assumes uniformity in the processing of data items and little or no overhead to
manage the extra processors. Nevertheless, programs which cycle through large

data sets on systems with enough processors should gravitate to this lower bound.

Transmission overhead is incurred with every transaction from the attached pro-
cessor. This transmission overhead can also be overlapped with the operation of the

SLE task, effectively hiding the overhead.
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The calculations in-the third task, the final feature calculations (FFC), con-
veniently separate into independent subtasks such as bounding box calculations,
hole calculations, perimeter calculations, etc., all requiring the same input, the
INTERMEDIATE_FEATURE_VECTOR, and all outputting to unique locations in the
FINAL_FEATURE_VECTOR. These independent calculations can be grouped into parallel
subtasks within the FFC task. The parent task (FFC) merely passes chunks of work
to each subtask and waits for them to finish (see Figure 12). Processing time for the
tasks is bounded by the time necessary to process a data item through the longest

subtask. In other words:
MT(K) = time(max(P1,P2,P3,...,Pn)) < T(k)

where P1,...,Pn are the n tasks that can run in parallel. Again, this is an ideal situa-
tion, but processing using this technique should reflect significant speed up provided

the necessary processors are available.

The structure of an example Ada procedure corresponding to Figure 13 which

illustrates the pipeline and parallel computations possible is shown in Figure 14.

Vil, SUMMARY AND CONCLUSIONS

The future development of automated manufacturing cells will be increasingly
linked to the integration of cell components amongst themselves and with higher level
computer aided engineering functions. This integration will depend upon increasingly
complex and sophisticated computer systems. The DoD language Ada was developed
specifically for large complex real-time embedded software systems. This paper has
outlined its use as the basis for developing manufacturing cell software and illus-

trated this with the implementation of a computer vision module via Ada. Five issues
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procedure SLE is

task CNAis
entry START;
end CNA;

task FFC Is
entry START;
end FFC;

task body CNA is
begin
loop
accept START;

-- perform connectivity analysis on one line;
FFC.START;
end loop;

end CNA;

task body FFC is

begin
loop
accept START;
declare
task FC1;
task FCN;
task body FC1 is
begin
--perform feature calculation update on one line of data
end FC1;
task bedy FCN is
begin
--perform feature calculation update on one line of data
end FCN;
begin
--just let the feature tasks run in parallel
end;
end loop;
end FFC;
begin -- SLE
loop  --until done
--perform one line of scan line encoding analysis
CNASTART;
end loop;
end SLE;

Figure 14
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in robot cell software were identified at the beginning of the paper: complexity, code
efficiency, communication and synchronization, portability and debugging. Our experi-
ence to date has touched upon a majority, but not all, of these issues. The foilowing

paragraphs summarize our experience and conclusions about them.

From the view points of managing complex software, providing an application
specific programming environment to the user, and achieving language standardiza-
tion, Ada provides a number of advantages. These include:

» The use of data abstraction and operator overloading to create well modu-
larized application specific code helps usability, readability and maintaina-
bility.

« The resulting application package can create a reasonable application
specific environment.

» The strong type checking significantly aids debugging.

» The separate compilation features in conjunction with the other features
above aids flexibility and helps portability.

e The expressive power of the language is excellent.

These advantages are not surprising. They are exactly what computer scientists
have been predicting for several years. Having these capabilities widely available in
a standardized language, however, is very significant. Indeed, it is this standardiza~
tion of Ada that can greatly aid in standardizing application specific "languages'’ and

giving them portability. The portability can be inherited, to a large measure, from Ada.

Generics, on the other hand, while of great use in dealing with common data
structures over different primitive data types, was of less utility than originally
expected in the application specific uses for which it was examined. It is possible to

instantiate an application specific vision module, as shown above. Similarly, one
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could conceive of using generics to manage the production of code for different
robots--just instantiate the code for the robot you want from some generic package.
However, since in both the vision case and in the multiple robot case, the controlling
algorithms are different, one would have to pass in to the generic package (as
parameters) the functions which perform the calculations specific to a given instan-
tiation. While feasible, this eliminates much of the advantage to using generics. The
resulting principle advantage would be an enforcement of a standard way of dealing

with all features in the vision system or all robots in a multiple robot situation.

There are also a number of concerns which have arisen which either are a

detraction to some users or bear further investigation:

» The heavy use of data abstractions creates additional procedure calls and

corresponding overhead which can cause difficuity in a real-time environ-
ment.

« Strong typing can get in the way of what one wants to do.

s How usable will Ada really be, even with good environment creation through
special packages, to the noncomputer professional?

« The debugging of robot programs requires close interaction with the pro-
grammer. It is not clear this can happen with Ada.

« The integration of systems involving multiple processors does not permit
Ada communication and synchronization mechanisms to be fully utilized.

The use of the inline pragma was tested in our implementation of the vision system.
By using infine for the most frequently used low level routines the computation time
was reduced by a factor of nearly four. This must not be taken too seriously, how-
ever. The architecture of the iIAPX 432 makes it particularly susceptible to ineffi-
ciency on context switching. Thus, the inline improvements in our experiments are
probably much greater than will be obtained in general. Further investigation on the

effectiveness of the expansion should be carried out. Also, the Ada inline pragma
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causes all invocations of a procedure to be expanded, while for memory management
purposes, the programmer might find it more convenient to be able to selectively

expand procedure calls.

The strong typing argument has raged for some time and is not specific to robot
or manufacturing cell applications. We believe that as the size and complexity of a

software project increase so does the importance of using strong typing.

We do not ever expect to see robots on manufacturing cells programmed in Ada
by shop floor personnel. We expect that as more complex arrangements of robots,
sensors and other machines are built and as better links with computer aided
engineering and computer aided design database are forged, shop floor personnel will
cease to "'program’ robots. Rather they will interact with a program to identify what
is to be done next or which option to choose in responding to an exception. The
actual programming will be done in a more generic fashion by a person who has a good
mix of manufacturing and computer engineering/science in his/her background. A

person with this type of training should be able to deal with a '"roboticized Ada'.

The debugging issue is one that requires considerable additional research. Al
Ada implementations in progress are based on a compile transiation while almost all
robot programming languages are based on interpretive translation. From the point of
view of the programmer, however, the robot program may be a separately prepared
and debugged entity. What is really necessary is a fast interactive translate/debug
system. This does not preclude compile translation, particularly if used in conjunction

with a simulator [Kre82], [Duk83], [PBB83].

Interprocess communication has been investigated in two contexts, the muiti-
tasking version of the vision system described in the previous section and attached

processors for low level vision and robot control. The effectiveness of the former
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depends upon multiple processors with the capability to automatically pick up tasks
and execute them as they are created. The latter did not really use the synchroniza-
tion mechanisms of Ada; the communication was necessarily handled through low level
1/0 drivers. This points to a major limitation in nearly all approaches to the integra-
tion of multiple smart devices, the need to deal with all devices via expiicit 1/0 and
program the devices in (often) different languages (PL/M and assembly language in
our case). Often the processes with which one wants to communicate or synchronize
exist on separate processors and the language communication and synchronization
mechanisms do not extend across machine boundaries. Consequently, we feel there
is a strong need for a system integration language which can extend across machine
boundaries. Whether or not Ada is suitable for such extensions is currently under

investigation.

Recent programming language research has yielded a number of new concepts
which will aid the program development process. A number of these are incorporated
into Ada. Future languages will undoubtably encompass more of these concepts.
However, at present, the considerable resources being put‘into the Ada effort by the
DoD coupled with its orientation toward real-time embedded systems makes us
believe it will be a significant factor in the future. While we are not yet prepared to
state that Ada is the answer to robot and manufacturing cell programming, we have

been pleased with it so far and feel further investigation is warranted.
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