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Introduction

Multi-attribute utility theory (MAUT) combines a class of psychological
measurement models and scaling procedures that can be applied to the evaluation
of alternatives with multiple value relevant attributes. For example,

MAUT can be used to analyze preferences between cars described by the attributes
cost, comfort, prestige, and performance. MAUT may also be applied as a decision
aiding technology for decomposing a complex evaluation.task into a set of simpler
subtasks. TFor example, the decision maker might be asked to assess the utility
of each alternative with respect to each attribute and to assign importance
weights to each attribute. Then an appropriate combination rule is used to
aggregate utility across attributes.

Two major theoretical approaches to multi-attribute utility assessment
have been developed. Both provide an axiomatic justification for the existence
of a utility function over multi-attributed alternatives which decomposes into
single attribute utility functions. The approaches to the representations,
however, differ substantially. The theory of conjoint measurement (Krantz, 1964;
Luce and Tukey, 1964; Krantz, Luce, Suppes, and Tversky, 1971) simultaneously
constrﬁctsthe overall and single attribute utility functions. In its additive
form the conjoint measurement representation is given by

n
F(Xl’XQ""’xi""’Xn) = 'Z fi(xi) [1]
i=1
where s denotes the state of the outcome x = (xl’XQ""’Xi""’Xn) in the i~th
attribute, fi is the utility function over the states of the i-th attribute, and

F is the overall utility function. The conjoint measurement representation F

preserves the decision maker's preference ordering for riskless decisions, but it



cannot necessarily be applied to decision under risk, where alternatives
are not only multi-attributed but also uncertain.

Multi-attribute expected utility theory (Fishburn, 1965, 1370; Keeney,
1969, 1971, 1973; Raiffa, 1969), on the other hand, was explicitly designed
for decisions under risk. The utility function U obtained with this approach
not only preserves the decision maker's riskless preference order, but also may
be used in expected utility computations to select among risky alternatives.
For example, the additive expected utility representation is of the form

m n
U(§1*§ ""’Ej""’zm) =j§lpj iEl ui(xij) [2]
where X = (§1’§Q""’§j""’§m) is a risky alternative for which the multi-
attributed outcome Ej is received if event Ej occurs, pj is the probability of
this event, xij is the state of the i-th attribute of outcome Ej’ u, is the
utility function over the i-th attribute, and U is the expected utility for
the risky alternative X .

The models above consider the problem of risk preferences and multi-attribute
preferences. In most complex models of this sort, we would also want to reflect
time preferences. No joint axiomatization of time, risk, and multi-attribute
preferences is available at present, but Meyer (1969), Pollard (1969), and Fishburn
(1970) axiomatized joint time and risk preferences. In the multi-attribute context
one might want to consider a time stationary, additive expected utility model :

n

p. I g.(x,.) [3]
1 7350 1 1k

™M o

\k-1
k=1 3

n~g

G(él,gg,...,gk,...,g_) =

where % is an uncertain, multi-attributed alternative to be received at time k.
A is a factor which discounts the expected utility for the k-th time interval.

The total discount in this particular model is an exponential function of the

time index k.



Equations [1]-[3] are examples of highly structured decomposition models.
The degree to which a model allows a decomposition of the evaluation of complex
alternatives into independent evaluation aspects such as uncertainties, time-
discounts, and single attribute utilities distinguishes between the models.

How far one can go in decomposing the evaluation task depends on criucial inde-
pendence assumptions which constitute the measurement theoretic basis for the
models and justify their application in a particular choice situation.

MAUT is primarily concerned with the independence of attributes, which per-
mits the evaluation of multi-attribute alternatives by breaking them down into single
attribute evaluations. This ""riskless decomposition", as we shall call it,
is, however, only a first step in MAUT. If alternatives become risky or time-
variable, the decomposition over. attributes is closely linked to the decomposition
over uncertain events and time intervals. It should be kept in mind that the
kinds of MAUT representations and construction procedures are quite different if
one considers time preferences, risk preferences, neither,or both. MAUT is
ultimately linked to expectation and time discounting models in their joint
tization. This fact is expressed in [1]-[3] in the different single attribute
utility function fi,ui, and Bs-

Another distinguishing factor of the model examples discussed so far is
their algebraic (i.e. non-probabilistic) and compensatory nature. This is the
class of models we will discuss in this paper. We will exclude some algebraic
compensatory models such as the additive difference models (Beals, Krantz, and
Tversky, 1968; Tversky, 1969), because they allow intransitive preferences. We
will also exclude models of the conjunctive-disjunctive type like lexicographic
models, satisficing models, or elimination by aspects models. These models are
discussed in Fishburn (1870), Tversky (1972), and Fischer (1972a). Non-compen-

satory models may describe heuristic strategies applied by the decision maker in



actual evaluation situations, but they seldom can be justified as models of
rational choice behavior (Tversky, 1969).

Researchers concerned with the technological aspects of MAUT, notably
Edwards (1971), typically worked with simple additive models like [1] or [2].
The argument for MAUT as a decision technology goes as follows. Since the
evaluation of multi-attributed alternatives is often difficult, leading to
inconsistent judgments and simplistic strategies, the choice problem is first
structured by determining the basic dimensions of importance. Then the evaluation
task is decomposed into the evaluation of each alternative with respect to each
attribute, and the estimation of importance weights for the different attributes.
Weights and single attribute utility functions are aggregated using a weighted
additive model to generate an overall evaluation. Where the choice situation
becomes more complex, as in [2] or [3], parameters like X and pj are assessed

in addition to weights and utility functions.

These models have intuitive rational appeal and are robust against minor
model violations. Additive models can approximate other models rather well,
when utilities in single attributes are monotone functions of the attribute
values. Arguments for the robustness of models like [1]-[3] can be found in
Yntema and Torgerson (1961), Fischer (1972b), and v. Winterfeldt and Edwards

(1972).

Note that a rigorous axiomatic test of the models is impossible in complex
real choice situations because it would require judgments which the decision maker
is unable to make, for example, ordering complex alternatives consistently. It is
just this inability which leads to the application of MAUT as a decision aid. Con-
sequently the applied work in MAUT has typically been more concerned with

structuring the decision problem, assessing model parameters, and sensitivity

analyses than with an axiomatic justification of the models used.



Recent summary papers by v. Winterfeldt (1971), Fischer (1972a), and
MacCrimmon (1973), give an account of the theoretical and applied MAUT
research which has been done since the pioneering work of Yntema and
Torgerson (1961) and Shepard (1964). The present paper will try to fill in
some gaps left by these articles. Stressing the modelling aspect of MAUT,
we want to demonstrate that MAUT is much more than a simple additive algorithm.
We will discuss a variety of additive and non-additive multi-attribute utility
models, their inter-relations and their differences. Especially we want to
stress the qualitative measurement theoretic assumptions on which these
models rest. An understanding of these assumptions and their relations
can assist a decision analyst in choosing an appropriate multi-
attribute model for a particular choice problem.

The outline of this paper is as follows. First we will give a general
classification scheme for choice situations and models which apply to them.
Then we will discuss some special cases like the riskless and the risky time
invariant multi-attribute situation, and we will describe a general analysis
to test models for these cases. Some situations for which no model yet exists
will be discussed and some structural relations among models for risk, time,
and multi-attribute preferences will be sketched. Next, we give a summary
of assessment procedures for the evaluation of multi-attributed alternatives,

and finally, we briefly review the experimental applications of MAUT.



A Classification of Choice Situations and Models

To facilitate the discussion of choice situations and models, we will
use the following conventions. An cutcome is a (possibly multi-attributed)
sure thing to be received at a specified time. A gamble is a distribution of

outcomes over events. A consumption stream is a distribution of outcomes or

gambles over time periods. As a general term for any choice entity like an
outcome, a gamble, or a consumption stream, we will use the term alternative.
Decision problems are complicated by the multi-dimensionality of out-
comes, by uncertainty, and by time variability. The presence or absence of
these three aspects lead to a classification of choice situations into 23

cases, which are described in Table 1. The last column contains a brief

description of the basic models which apply to these cases. Cases 1-4 are
the crucial ones for the present analysis since they include multi-attribute
preferences. Cases 5-8 are included for completeness and to demonstrate some
interesting relations among models.

In each of the 8 choice situations, the basic alternative can be described
as a vector or a matrix. In case 1, for example, alternatives are vectors of
values in the single attributes, in case 3 they are vectors representing a
consumption stream in which each outcome is itself a vector. Such a vectorial
representation presupposes that the choice situation is already highly structured

and that attribute states have been characterized numerically. We will not go

into a discussion of the very important problem of arriving at a vectorial



representation through structuring the decision problem. The reader is
referred to Raiffa (1968, 1969) and Edwards (1971). Rather we will assume
these vectors as a starting point.

Instead of a vector representation, we could have described alternatives
by trees, as it is common practice in decision analysis. We use the vector
notation, however, because it facilitates the explanation of the various tests
and models we will discuss. We concede that vectorial representations are not
always convenient, and sometimes they do not even comply with the rationale of
a model (for example, Luce and Krantz's conditional expected utility model
(1971)). Thus, our vector representation should be viewed as a convenient
simplification for the sake of explanation and discussion.

Case 1 is characterized by time invariance, certainty, and multi-
dimensionality of alternatives. To be classified into this category a
decision situation must satisfy three criteria. First, the outcome to be
received must have multiple value relevant attributes. Second, all outcomes
must be received at the same time (not necessarily the present). And third,
the outcome associated with each alternative must be known with certainty.
Situations like this are extremely rare in real world decision problems. But
if uncertainty and time are of little importance to the decision maker, or
if their variability is but minor, one may want to consider case 1 as an

idealized prototype.



In case 1 the basic choice alternative is a multi-attributed outcome x

which can be represented as a vector of its components in the single attributes:.

Attributes
«
Al Ay Agy iy Ay ey A
X = (xl, x2, Xgs e Xis ey xn)

The weakest representation among the models for case 1 is a simple order
preserving map F from vectors into the real numbers, where no decomposition of
F is allowed. If F can be decomposed into single attribute functions fi with-
out the existence of a specified composition rule, we can apply trade-off models.
The most structured models are the conjoint measurement models which specify
the rule which combines the functions fi' We will later discuss each of these
classes of models in detail.

Case 2 in Table 1 describes a time invariant choice between gambles with
multi-attributed outcomes. For example, alternative x may be to immediately
accept a job offer with a fair salary and location. Alternative y might be to
refuse this sure offer and wait to see if an application for a different job
with higher salary and a good location will be accepted. A choice between x
and y depends not only on attribute values, but also on the probability attached
to the uncertain event, namely being accepted for the more desirable job.

A choice alternative in case 2 can be represented as a vector of multi-

attributed outcomes §j’ which are received if an event Ej occurs:



Events
By Bys Bgs vevnens By e B
X = (Xl’ Xps Xgs veeees s Eﬁ’ ..... s Em)

i.e. as a distribution of multi-attributed outcomes over events, which can

also be written as a matrix:

Events
E1 E2 ....... EJ ....... Em
Xll xl2 ....... xlj e xlm A1
X X X X A A
21 722 "ttt 2j ‘ 2m 2 t
. . . . N
X =
£ T
. . . i
xil x12 . ij ottt im Ai b
u
t
. e
nl xn2 ....... an e am An S

Two types of basically different models represent case 2, both based on
the expected utility hypothesis. The first assumes some riskless representation,
as in case 1, and then monotonically transforms it to obtain a risky utility
function U (see Boyd, 1970; Fischer, 1972a). The second assumes a decomposition
of U directly into components similar to the decomposition of F in case 1. Our
discussion of the models in case 2 will mainly be concerned with the latter case.
Prominent representations are the additive and the multiplicative expected utility

models (Pollak, 1967; Raiffa, 1969; Keeney, 1969, 1971, 1973; Fishburn, 1970).
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Case 3 in Table 1 stands for a riskless choice between multi-attributed
alternatives which may be received at different time intervals. To stay in
our job-offer example, both jobs may be open for sure, but in case X the job
could begin in two weeks, whereas in case y the job might begin in half a
year.

The vectorial representation of alternatives in case 3 is very similar
to case 2. Here the multi-attributed outcomes are distributed over different

time intervals instead of events:

Times
t1 t2 tk . tQ,

. X1p Xpp e Xy oer Xppl A
Times : A
X1 %22 Xop ot Xl Ay :
tl: t29 > tk’ ’ t,Q, . T
x = (x;, X X X,) = 1
___1, ___2’ ’ ___k’ ’ 2’ b
Xi1 %2 ot Nk ottt Xl M :
e
s

*n1 xn2 o Xk ot Xn4 An

We would like to offer a discussion of some models at this point, but
we can't., In spite of the structural similarity with the uncertain, ﬁulti—
attribute case, nobody has undertaken the task of modelling case 3 yet.

From our later discussion of case 2, the approach to such a model should be
obvious, and basically the same models and tests will apply for this case as

for case 2.
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Things are not much better in case 4, the most complex and probably
also the most common decision situation; here the alternatives are con-
sumption streams of gambles with multi-attributed outcomes. Putting our
examples from cases 2 and 3 together, alternative x may be to accept the
first job offer right now, and get--in two weeks--a job with fair salary
and location. Alternative y is to refuse the sure job and see if the application
for the job with the higher salary and location is accepted, then wait for
half a year before starting the job.

An alternative X in case 4 is represented by a vector of matrices or a

matrix with vector elements:

Events
El EZ . Ej Em

X X et Xey eer X Y
X, X, cee Xip eee X t T
Eps Eps oo Egy oon By 12 %22 j2 0 Im2| T2 T
= . L] . . m
X = (X Xgs eees X5 > X N
S

4k Xk vt Bk ot Ak Yk

o X vt K Xl Y
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where
Attributes
A1 A2 ces Ai cen A.n
X, = (X1 Xnugs sees Xiors e X )
=jk 1jk’ “2jk ijk njk

No model is available at present for this most complex case. But the work
of Meyer (1969) who modelled case 8--the case in which the outcomes in the above
matrix are single valued--suggests a combination of the models for cases 2 and
3 to a joint axiomatization of time, risk, and multi-attribute preferences.

We conclude the discussion of the classification of choice situations and
models with the cases 5-8, in which outcomes are not multi-attributed but rather
single valued, as in the case of monetary outcomes. These cases have interesting
structural relations with the cases 1-4.

Case 5 is the simplest situation. Here choices are made between single
valued outcomes, which are typically received immediately and with no uncertainty.
Choices between more or less profit, a higher or a lower production rate are
examples. Models for this case include simple orders and difference structures
(Krantz, Luce, Suppes, and Tversky, 1971). Case 5 is usually uninteresting for
decision aiding since preferences are generally immediate and obvious--notably
by monotonicity assumptions.

Case 6 has been discussed most ektensively in the literature. Choices
between uncertain single valued outcomes characterize this situation. Gambles
for monetary outcomes are the typical examples, and they can be described, much

like case 1, as a vector of single values, where values are distributed over
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events instead of attributes:

Events
El E2 e Ej .. B
X = (xl, Xos ves xj, cen xm)

:The most prominent models are the SEU and the EU models, discussed in
Savage (1954), Fishburn (1970),and Luce and Krantz (1971). Decision analysis
(Raiffa, 1968) rests heavily on the assumpfions of these models.

Other models proposed are the minimax model, the minimax regret model (Savage,
1954; Luce and Raiffa, 1957) and portfolio theory (Coombs, 1972).

Case 7 describes situations in which single valued outcomes are received
at different times with certainty. A realistic alternative may be a salary
distribution over the next‘year. Again--as in cases 1 and 6--the representation

of such an alternative is a vector of outcomes, this time distributed over time-

intervals:
Times
tl t2 e tk . oo tl
X = (xl, Xos wees Xy ooen xz)

Models applicable here include a simple additive conjoint measurement model,
additive models with variable discount rates, or models with constant discount
rates. These are discussed in Koopmans (1960), Fishburn (1970), and

Krantz, Luce, Suppes, and Tversky (1971).
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The final case 8 is structurally very.similar to our cases 2 and 3.
Here the basic choice alternative is a distribution of single valued outcomes
over events (i.e. gambles) which are to be received at different times.
Investment plans are typically of that sort. The alternatives can be

_ described as vectors of gambles or matrices:

Events
El E2 cee EJ Em
X1 %21 000 %51 0 B
Events
X150 %22 %52 Xm2| %2 T
E1 E2 EJ Em . . i
: m
X (X, X4 s s X ) = t e
= =1 =2 | —m

X1 Xk Xsg - ka ty s

Lxlz XZ’L e e XJ:Q/ c o sz t,Q/

Pollak (1967) and Meyer (1969) have modelled this case baéically in the same
fashion as Keeney (1971, 1973) modelled case 2, replacing multi-attribute out-
comes by consumption streams (see also Pollard (1969); Fishburn (1970). Their more
unique representatibns are achieved by assuming additional constraints like

time stationarity.
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MAUT Models and Their Axiomatic Foundation

In the following we will assume that a preliminary analysis has
identified the choice situation which a decision maker faces and that the
structuring process resulted in a description of alternatives as matrices
or vectors, in the form described in the preceding section. This section
will discuss the multi-attribute models in Table 1 in more detail.

The basic axioms which determine the admissible degree of decomposition and
thus separate these models are described in a way that provides a decision
analyst with a systematic testing procedure to choose an evaluation model among
those suitable for the choice situation.

A word of caution is appropriate before we go into more detail.

Measurement theoretic tests can never guarantee that a model chosen is the

correct one. Rather they provide a tool to elimiate models that are clearly
wrong. The axioms we will discuss are typically necessary for a given represen-
tation. None of these axioms can be verified, since they generally apply to an
infinite domain. We also cannot expect a decision maker to satisfy these axioms
in a descriptive sense since he almost certainly will show inconsistencies and

he may use non-compensatory simplistic strategies in complex choice situations
(for a discussion of man's limited ability to handle complex choice situations see
Slovic and Lichtenstein, 1971; and Slovic, 1972).

To illustrate this last point, consider the transitivity assumption, a
cornerstone of almost all measurement theoretic models. Inconsistent judgments
and imperfect discriminations will frequently cause intuitive judgments to violate
the transitivity principle. Does it still make sense to talk about a measurement

theoretic justification of these models ? We think so.
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First, the basic axioms, like the independence assumptions, can be tested
roughly by presenting the decision maker with "easy" choices. In fact, the
anglyst, who constructs these choices, wants to make it easy for the decision
maker to violate model assumptions svstematically, so that he can discover
which assumptions are appropriate.

Second, model parameters can often be assessed on the basis of judgments
about alternatives, that are easy to compare. The more structured a model,
the easier such constructive procedures typically are.

If, therefore, in a subset of choice alternatives the decision maker
satisfies transitivity and all other model assumptions, and if this subset is
sufficiently rich to assess the basic model parameters, then one can have some
faith in an extrapolation of the evaluation function constructed. One should be
willing to follow the prescription of such a model as long as one believes that
outside the "easy" subset failures of model assumptions in actual tests are not
systematic, or are due to systematic applications of obviously unsatis-
factory simplifying strategies.

In summary, our discussion of the axiomatic foundation of MAUT
is designed to sharpen the decision analyst's eye for the places where
things can go wrong with a model, and to enable him to ask sophisticated
questions to discover those systematic violations which are intended and

rationally justified by the decision maker.
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Case 1: Riskless, time invariant,multi-attributed alternatives.

The tests which separate between the models in case 1 are summarized

in Table 2 as a tree to which we will frequently refer.

The first test, in the table labelled as 1-WCUI, checks to determine
if any one attribute is Weakly Conditional Utility Independent of all others,
i. e. if preferences for values in that attribute are independent of constant
values in the other attributes. The term WCUI has been used by Raiffa (1969)
for the single independence assumption in conjoint meaéurement theory (Kranfz, Luce,
Suppes, and Tversky, 1971). It is also sometimes called preferential independence
(Keeney, 1973), monotonicity, or single cancellation. Formally, the test is of the

following form : does there exist an i such that

Attributes Attributes

AL A, o A ACAL ...
12 A A A e Ay Ay e B A A e Ay

(al,az,...,ai_l,x.,a.

(b

12022+ +905

for all Xis Vi aj, bj’ j#i.
Here and in the following a and b stand for values which are constant
across alternatives, x and y stand for variables. x >y means "y is not

preferred to x', = means > and < . "iff" should be read as "if and only if".
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As an illustration for 1-WCUI consider the attributes of a used
car such as mileage, age, and body condition. Can you imagine that you
would prefer a more expensive car over a less expensive one, if all
other attribute values are equal ? If not, the attribute "price" is
1-WCUI. Now add the attributes '"'size of the car' and ''power-steering''.
You may always prefer a larger car over a smaller car, if both have
power-steering, but this preference can reverse if they don't, since in
this case the larger car is more difficult to handle in many situationms.
Therefore size may not be WCUI of the rest of the attributes, when
the attribute 'power-steering'" is included.

If 1-WCUI fails , i. e. if no attribute is WCUI of the rest,

the only model applicable is a simple order model of the type

Model 1.1

\&

X2y iff F(x) > F(Z_)

In this model, the choice is left to the decision maker's intuition, and
it would be an appropriate representation for his judgmental process, if his

choices are transitive. Model 1.1 is obviously of little use in decision

analysis.



- 19 -

If 1-WCUI holds, we next test if n-WCUI holds, that is, if 1-WCUI
holds for all n attributes. The size of an apartment, its location and
its rent could be considered attributes which are n-WCUI. You typically
prefer less rent, more room and a better location, no matter what the
other attribute values are. If this test fails, we can apply model 1.2

which allows a partial decomposition of the function F in model 1.1

Model 1.2
( 5 . >
X3y iff F[f(xl,x2,. o¥s 15 Ky iae .xn), fi(xi)] >
F[f(ylay29' . "Yi—l’ yi+l" . °yn)§ fi(yi)]

This model is of some help in decision analyses. Tor every multi-attribute

outcome an outcome is found which is indifferent to it and has constant values

in all dimensions except the dimension which is WCUI. 1Instead of comparing

the original outcomes, one now compares the outcomes which are equated inall
attributes except attribute 1. If this attribute is, for example, monetary

costs or payoffs, choices are immediately prescribed through the monotonicity of the
the utility function over this attribute. Of course, the whole model stands

and falls with the ability of the decision maker to make reasonable trade-offs.
Otherwise the constructive procedure will fail. Often the trade-off procedure

can be facilitated by a stepwise iteration in which one dimension is traded off

after another to arrive at a standard outcome which varies only in one dimension.



- 20 -

If n-WCUI is satisfied, we next test more general independence

conditions, called joint independencies. A set of attributes is said to be

jointly independent of the rest if the preference order of alternatives which

vary

only in these attributes, remains invariant for any fixed levels of the

remaining attributes. For example, attributes 1 and 2 are jointly independent

of attributes 3 through n if

iff

Attributes Attributes
Al A2 A3 A4' . .Ai. . .An Al A2 A3 Au. . .Ai. . .An
(xl,x2,a3,au,. Coesdise .,an) p3 (yl,y2,a3,au,. R L .,an)
(x15%3DgsDyse « w5bise o osD ) 2 (357,55 50 + asDese . 4sb)

for all xl,xz,yl,yz,ai,bi,_i = 3,4,. ., .n.

For example, when choosing among different job offers, your

preferences over combinations of salary and staff benefits will most

certainly be jointly independent of, say, the size of the town you would

work

in. The most interesting cases of violations of the joint independence

conditions are those in which n-WCUI is satisfied. Those violations

are typically subtle in nature and hard to find. Suppose you work in

a large city and want to rent a house or an apartment. Your options

have

the following attribute values :

a) farm (F) - city apartment (A) ,

b) one hour car ride to work ( lh ) - 20 minutes car ride to work ( 20 min ),
c) high speed transportation system near by (HIST) - no high speed trans-

portation system ( NHST ).
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The authors gave the following rank orders of alternatives, depending on

the presence or the absence of the high speed transit system :

1) ( F, 20 min, HST ) 1) ( F, 20 min, NHST )
2) (F, 1h, HST) 2) (A, 20 min, NHST )
3) (A, 20 min, HST ) 3 (F, 1lh,  NHST)
4) (A, 1h, HST ) 4) (A, 1h, NHST ).

Living on a farm in the country seemed to us very attractive, and the long

car ride to work did not matter much with the convenience of the high speed
transportation system. With no high speed transportation system the shorter
ride from the apartment outweighed the benefits of living on the farm.

This produced a switch in our preferences which violated the joint independence
assumption. But the reader can also check that we always preferred the farm
over the apartment and the shorter ride over the longer ride, when other values

were held fixed. Since, in addition, we would always prefer HST over NHST, we
satisfied n-WCUI.

If no joint independence condition is satisfied, we can, by virtue

of n-WCUI, apply the following total decomposition model:

Model 1.3

x3y @ iff
FIE (%)), £505), o 5 £ ()1 2 FIE (), £,00,), «on 5 £ 0y )]

This model is already of substantial help in decision analyses, since it

allows us to construct independent utility functions in the single attributes and

to think about trade-offs between some dimensions independent of the values of

others. Even more helpful is an admissibility analysis which excludes outcomes
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which are dominated in all single dimension utilities. Once the inadmissible
alternatives are eliminated, one can think about reasonable composition rules F,
which model 1.3 does not specify. The application of different combination rules

and a sensitivity analysis of model parameters can then determine the best or

a few good outcomes.

Between models 1.2 and 1.3 there is a large class of models which
allow a decomposition depending on which 1-WCUI conditions hold. The reader

will readily be able to extrapolate to these models.

If all joint independencies can be justified or if critical tests
of them do not fail, we can apply the most structured model in case 2, the

additive conjoint measurement model 1.4:

Model 1.4

3 iff p 2 a
22y (x) = (I, £,(x) > I £.(y;) = F(y)

In this model single attribute utility functions are constructed and the
sum of these functions represents the worth of each alternative.
Some other models can be expressed as special cases of model 1.4. The

multiplicative representation

x 3y ME rr(x) =
1

nas
fa

1
£, (xi) > :

is an additive representation by

F(x) = log F'(x) = 2

n
' -
: log f, (Xi) =L £ (Xi)

1 1=1
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Similarily, the quasi-additive representation (here in a two attribute

example)

X2y iff

PI(x) = 10+ E)(xy) + K £1(x) - Flx)) >

fl(yl) + f2(y2) + k fl(yl) . f2(y2) = F"(y)
can be transformed into a multiplicative model. Let

F'(x) =1+k F'"(x) = [1 +k fl"(xl)] c [1+k f2”(x2)]

1 -
fi (Xi) =1+k fi" (Xi)

which gives us the multiplicative form

F'(x) = fl‘(xl) . f2'(x2)
This multiplicative form can then be reduced to the additive representation
by logarithmic transformations as above.

The reason that these representations are equivalent in a conjoint
measurement sense is that the logarithmic transformations of F' and F'" are
admissijble , because they preserve the order of preferences, which is the
basic property of F, F', and F'". This point is important, since herein lies
a basic difference between additive riskless models and additive expected
utility models.

As we discussed the riskless multi-attribute models, we proceeded
from the most general and unstructured model 1.1 to the special and
highly structured case 1.4 by adding assumptions and restrictions.
0f course, the decision analyst may choose to apply the more general models,

whenever a special case can be justified on the basis of qualitative tests.
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For example, he may use the partial decomposition model 1.2, if an additive
model is appropriate. Which model among those justified to choose is a practical
problem. The more structrured models 1.3 and 1.4 usually make the task of
assessing model parameters easier. However, if one believes that the decision maker
can make reasonable trade-offs of the type discussed, applying model 1.2 is often
more suitable, because trade-off models are more economical, if the number of
alternatives is small. In addition, some decision makers are more familiar with
the kinds of judgments required in those models, e.g. trade-offs into the
dollar dimension.

We will not dischss other so called simple polynomials as combination rules
in representétions for multi-attribute choice situations, since this has been
done in detail in the literature. The reader interested in such representations

is referred to Krantz, Luce, Suppes, and Tversky (1971) and to Krantz and Tversky

(1971).
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Case 2 : Risky, time invariant, multi-attributed alternatives.

At first glance a possible approach to multi-attribute representations in
the presence of uncertainty may be to first check which axioms for riskless
choices are satisfied, then find a representation for choices under uncer-
tainty and combine both models. For example, one might want to consider the
additive model 1.4 with F and fi as the multi-attribute riskless representation,
and an expected utility model with a'function U defined over multi-attributed
alternatives.

Unfortunately, nothing guarantees that U will decompose additively if F
does ( in fact, this will be the case only if U is a linear function of F ).
Take, for example, U(x) = log F(x). We would then obtain the following represen-
tation, which does not allow an additive decomposition of U into single attribute

ui's, although F is decomposed into fi's:

, m n m n
x»y iff X p. logl f.(x..) 2 L p. logl
= = I A T5 Bt N I W 5|

fi(yij)
In other words, multi-attributed alternatives may have an additive representation
under certainty and not under uncertainty. It can easily be seen by taking
degenerate gambles that the reverse is not true. An additive representation
under risk implies an additive representation under certainty.

At this point we distinguish between two approaches to modelling
multi-attribute preferences under uncertainty. The first approach
makes use of riskless representations and searches for a suitable trans-
formation h which maps F into U. The second approach first constructs U

and then adds assumptions which justify a decomposition of U into single

attribute components.
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Both approaches, however, assume the existence of U, i.e., a representation
for choices among risky alternatives where multiattribute outcomes x are treated
as primitives. The classical representation is, of course, that of expected

utility theory, or subjective expeéxad utility theory, with the representation

Model 2.1
Events
Ej By Eg ... B ... B E| By Bg ... B, ... B
X =(X]XpXgse e s Xise s X)) 7 (VgsYpodgserwslyoereody)= . iff
m m
Ux) = z p, Ux.)Z7Z p. U(y;) = U
= ya1 17521 j &

The crucial assumption to be satisfied for an expected utility representation

is the sure thing principle. One testable version of the sure thing principle

says that preferences among gambles should not depend on the values of outcomes
which are constant in a subset of events. In vector notation the sure thing
principle asserts, for example, that the following is true (note the similarity

with the joint independence assumption in case 1)

Events Events
Bp By By Bye « WBye o B E) By By By Ege o B
(Ry5Xpo8g58)50 « 5550+ +583p) 3 (7595585850 ¢ es3yse o 4n3) 1FF
(5.1’52’9.3’1_)4" . '9]_3_]':' . 'S_I_)_m) ?. (_Y_l3_y_2>§89_]_3_4>' . .,P‘j,. . °:2m)

for all El’KQ’XliYQ’Qi’bi’ i=3,4,. . .,m
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In the above case the sure thing principle would hold for the events 3 to m.
Theoretically, the sure thing principle would have to be tested for all subsets
of events and for all combinations of outcomes. But the idea behind the axiom
can be easily checked by constructing some critical examples.

Another critical assumption in an EU-representation is that no outcome
should be infinitely desirable or undesirable. A stronger version of this
assumption asserts that for all outcomes x, y, and z for which §_é y 2z

events E and T (non E) exist such that

E E
y= (x,2)

This assumption can usually be checked by thought experiments.

The reader interested in a discussion of the two basic axioms of an
EU-representation is referred to Savage (1954), Luce and Raiffa (1957),

and Ellsberg (1961) all of which describe illuminating counterexamples.

If either of the two EU-assumptions is violated, then decision theory
can do little to assist the decision maker. Other models which apply to
decision making under uncertainty are Coombs' portfolio theory and the minimax-
models. Neither has been widely used for decision aiding and it can be argued
that both lack the rational justification of the EU-model. Accordingly, we
will base our subsequent discussion on the assumption that there exists a utility

function U over multi-attributed alternatives which follows the EU-principle.
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Table 3 describes in tree form the sequence of tests which separate

between the different risky multi-attribute utility models. The test which

separates the twb modelling approaches we discussed earlier is called

Strong Conditional Utility Independence (SCUI). This axiom is the probabilisitic
equivalent of WCUI and joint independence. SCUI says that preferences among
uncertain multi-attributed alternatives in which a subset of attributes

has constant values across all outcomes should not depend upon the

particular level at which these constant values are held fixed. In matrix

notation, for example, attributes 1 and 2 would be SCUI of attributes

3 ton if
Events
E, E, EJ E E, E, EJ E
r T -
*11 X120 X5 00 X Y11 Y1z - V15 0 Yl A
g
- H
21 ¥a2 +vr X3 c00 Fop Y21 Y22 === Y25 0 Yami A2 4
t
a3 a3 a3 33 3 a3 a3 a3 a3 j A3 E
i . i
b
u
al a1 a1 a1 ai a1 al a, A1 ;
S
a a ee. @ - | a a ves @ ve. A A
n n n nJ n n n n n
o L— J

iff
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E, E, E, E_ E, E, E, E_
X)X 15 X1n] Y11 V12 Y15 Yim. M
X1 Xop w0t Xgy c0r X Y1 Yo2 0t Y25 vt Yoam Ao
by b, b, b, b, by b, by A,
b, b, b b, b, b, ...b; b ‘ A,
g : |

i b by b, b, | _bn b b bnj A

for all xlj’ X2j’ ylj’ y2j’ a. , b, ,i=3,4, ...n;3j=1,2, ..., m

Since only outcome values in the first two attributes are uncertain,
we dropped the second index in the a's and b's. The constants a; and bi

can be thought of as sure things restricted to a subset of attributes.
Note that WCUI and joint independencies are SCUI-conditions for degenerate
gambles, i.e. for single events. Other useful formulations of SCUI can be

found in Raiffa (1969) and Keeney (1969, 1973).
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For a counter-example consider the following two gambles x and y :

By E) Ey E,
- - "
$100 - § 50 $15  § 15
2(_ = X= i
- Color Color - iColor Color
| TV set TV set| LTV set TV set

where the events E1 and E2

the possible loss of § 50 does not weigh too much with the color TV set as a

are equally likely. You may prefer x over y , since

sure thing, and since a shot at an additional $ 100 seems more attractive than
$ 15 for sure. Now assume that both gambles had the same money amounts as

outcomes but no color TV set. In this case you may choose y over x since

the possible loss of § 50 appears more severe with no color TV set as a con-
solation. If you think that such a switch is reasonable, you violate SCUI.
Although the riskless independence assumptions are clearly satisfied in this
example, the violation of SCUI prevents the application of a simple risky
decomposition model.

When SCUI is not satisfied, we consider the class of models in which
a riskless decomposition is monotonically transformed to obtain a utility
function U. So the left branch of table 3 goes through all the tests which we
discussed in the preceding section. Depending on which riskless decomposition
model holds, we can apply a partial decomposition expected utility model (2.2),
a total decomposition expected utility model (2.4), or a riskless additive
decomposition expected utility model (2.4) by transforming the riskless utility
function F into an EU-representation U. Raiffa (1969), Boyd (1970), and
Fischer (1972a) discuss these cases in greater detail. Methods for constructing
the appropriate transformation h will be discussed in the assessment part of

the present paper.
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If SCUI holds, we next test a condition named marginal equivalence

(Fishburn, 1965, 1970) or marginality (Raiffa, 1969). Marginality requires
that risky multi-attributed alternatives are judged solely on the basis of the
marginal probability distribution over the single attribute values. Specifically,

marginality requires the following alternatives to be judged equivalent:

Events
E E E .

1 ) ; E_ E, E, By . .+ .E_
™ x X . .. — - ' ' '] A
1 F120 0 ¥y *1m X110 Kppr v cFyge s Xl AL
t
. T
X X X X é X' .l ' ' A i
i1 %1 i5° ° Fim I U RN £ R T i b
. . . . . . 4
t
' ' . . . ' ' e
Lﬁxnl an an' * X _ Xni %no an° ' 'XnmJ An s

where all E. are assumed to be equally likely and the right alternative is
generated by permuting values Xij within the rows of the left alternative.
It can easily be seen that under these two conditions the marginal probability
of receiving any attribute value is the same for both alternatives.
Pollak (1967) and Fishburn (1965, 1970) state equivalent but formally different
versions of the marginality assumption, assuming only two equally likely events.
Which formulation to use is a matter of the practicability and the sensitivity
of the tests.

As a counter-example for the marginality assumption, consider a commodity
bundle with two attributes, a car (Al) and a certain amount of money (Az),
as outcomes of a gamble. Marginality would require you to be indifferent

between the following gambles x and bR
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E £ rEl E .
- j
| 4000 $ 0 $ —l | 0 $ 4000 S
27 | a1973 a 1961 Y = 31973 a 1961
LPorsche VW | Porsche VW _

whenever Bl and E2 are equally likely.
It does not take much sophisticated experimentation to see that most

decision makers will prefer the right alternative, although the marginal distributic

are the same in both cases. The most typical reason given for this preference is

that in any event the right alternative gives you a fairly good outcome, while

in the left alternative you take a chance at getting stuck with an old and

rusty VW. Such a variance preference seems to be the most probable reason for

‘violations of marginality.

If marginality is not satisfied, but SCUI is, we can represent the

choice situation by the following multiplicative model:

Model 2.5

Events
E1 E2 E3 EJ Em E1 E2 E3 BJ Em
(‘&1’5'2’3‘(‘3,..',2(‘:5,.-.,'}'({11) ? ('X'l’X'Z"X'B’.“’X'j’...’Xm) iff

: m n
Ax.)1 > o op. [om ouw(x,.)]
ul(xl])J t=1 p] [i=l l( 1]

m n
L op. [ m
=1 "] i=1 J=

J

This model is equivalent to the quasiadditive model, by

- 1
ui(xij) = (l+kiui (xij)), ki>o.
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I marginality is sutisfied, an additive expected utility model

is justified.

Model 2.6
Events
E1 EZ' EJ Em El E2 ’Ej . .Em
(EJ’EQ""’fj"“’Em) > (XJ’XQ""’X§’°'°’Xm) iff
m n m n
jfl P; 151 Ui(xij) > jil pjiEl ui(yij)

Model 2.5 and its quasiadditive equivalent cannot be treated as a special
case of Model 2.6, as we did in the riskless context, since the log-transformation
would destroy the interval scale properties of U, which exists by virtue of the EU-
representation. Note that both 2.5 and 2.6 require that preferences be
additive in a conjoint measurement sense. Thus,whenever the assumptions of
these models are met, the analyst may also use model 2.4, in which a con-
joint measurement representation F is transformed to reflect the decision

maker's attitude towards risk. Of course, he could also apply the more

general cases 2.2 and 2.3, when practical and feasible.

Cases 3 and 4 : Other multi-attribute models.

The choice situation described in cases 3 and 4 of table 1 have not been

modelled yet, but the approach is straightforward.
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Case 3 can be handled very similarly to case 2. First, one models
time preferences over multi-attributed alternatives. Models for this case are

available and coincide with the models for case 7. Such a model could be of

the form
Times

£ty ety tg 'tl t, t ety
XqsXnseaosXiganns d .
(x;5%, X Xy 2 (LgsXpseeesdyseres¥y) iff

3 ) o

WL A 8(y) 2 L A G(y)

k-1

or similar versions, where kk = A . Here, of course, Xy is the multi-
attributed alternative to be received at time k, Ak is a discounting factor.
Both representations are discussed in Fishburn (1970) and Krantz, Luce, Suppes
and Tversky (1971),

Given a time preference utility function G, we can then ask what
condition must be satisfied to allow a decomposition of G into single attribute
components g, . The main condition is again SCUI, i.e., its time - equivalent
formulation. In fact, all conditions in Table 2 (except of marginality) can
be applied directly to this situation by replacing events by time intervals.
Marginality does not seem to have a direct time - equivalent formulation.

Case 4 in Table 1 describes the most complex choice situation.

Conceivably a representation for the time variable, uncertain, multi-attribute
choice can be constructed by a sequential application of the steps discussed

in case 2. For example, one could start with a utility function U defined

over risky consumption streams, then go through Table 2 to discover if U decomposes
additively over time, and then repeat that analysis to see if the uk's decompose

additively or multiplicatively over attributes.
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Some relations between multi-attribute and unidimensional models.

Unidimensional models like the ones for the choice situations 6-8 in
Table 1 have some interesting structural relations to multi-attribute models.
Cases 6 and 7 can be modelled basically in the same way as in case 1. In all
three cases we are dealing with a function from vectors into the real numbers;
what changes is the interpretation of vector elements. In case 1 an element
X, is a value of a multi-attributed outcome in attribute i, in case 6 it is
the amount of a single commodity to be received if event Ei occurs, in case
7 it is the value of a single commodity to be received at time ti' All three
cases can be analyzed in a similar way as outlined in Table‘2. In case 1, however,
we were satisfied with a simple additive conjoint measurement representation.
For cases 6 and 7.we would wish more unique representations, since we would
expect some relation between utility functions u. or g..

One additional condition we could test is whether a standard sequence in
one time interval or conditional on one event is also a standard sequence in
any other. This condition, introduced in an axiom system by Luce and Krantz
(1971) will guarantee that the ui's or the gi‘s differ only in their units.

For case 6 this would mean an expected utility representation. For case 7
it is an additive time preference model with a variable discounting factor.

Another condition, which results in an additive time preference structure
with constant discounting rates as is a stationarity assumption discussed in

Fishburn (1970) and Krantz, Luce, Suppes, and Tversky, (1971).
The two models in case 8, explicated by Meyer (1969) follow exactly

the pattern of Table 2, i.e., they are additive or multiplicative expected
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utility representations where the decomposition is over time intervals
instead of attributes. Meyer achieves his constant discount rate representation
with an additional stationarity assumption.

So much for the models MAUT is concerned with and embedded in.

One is tempted to ask : is it really that damaging if one decomposes the
judgmental task more than the tests allow ? What would happen, for example,
if an additive model is applied, although some independence assumptions

are violated ?

First, the model ‘parameters will depend on the subset of alternatives
which were used to construct them. This is typicaily the point where the
decision maker himself raises objections against the procedure. The judgments
to elicit the parameters may not make any sense to him because of dependencies.
Second, violations of the independence assumptions imply that at least in séme
cases the model prescriptions will be necessarily wrong. Which specific pre-
scriptions are wrong will depend on the model parameters used. Both consequences
suggest the usefulness of consistency checks while constructing model parameters
as a non-qualitative complement to the previously discussed tests.

In the following section we will discuss the assessment procedures
necessary tb construct model parameters. The reader should bear in mind that

these procedures only make.sense if the model assumptions have been checked

and accepted.
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Assessment Procedures

The three most important constructive devices for assessing utility
functions like F, G, U, fi’ gs> and u, are trade-offs, standard sequences,
and Basic Reference Lottery Tickets (Brlts). Trade-offs are used in models
1.2, 1.3, 2.2, and 2.3. Standard sequences are constructed to assess single
dimension utility functions fi in the additive models 1.4 and 2.4. Brlts are
the basic tools to construct the expected utility functions U and u. in the models
of case 2.

Trade-off procedures. Let us assume that we have to base our decision

aid on model 1.2 of the preceding section, i.e., we found only one attribute 1
which is independent of all others. We can then construct for each multi-
attributed outcome an equivalent outcome with specified constant values in

all but the i-th attribute. In other words, we find for each x and y

x = (x,,X X x) = (a,,a.,. . .,xl . e )
- 12722 0 it T Tyt T 1’72 i? Ap

= (y,,y v y.) = (a.,a.,. . . yl . . oesa)
y yl’ pac o Yo o eo¥y 12990 Vg 23

for some constant values aj, j#i. Here and in the following the superscripts
for the values of the trade-off attribute i mean that in the r-th trade-off step
this attribute value is changed to, say, xir. After this trade-off we determine
the preference order for attribute i, i.e., we construct an order preserving
utility function fi. This can easily be done for commodities like money.

Then the decision maker should prefer x to y if and only if
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1, s o 1

The trade-off procedure can be facilitated by decomposing it into n-1 steps

as demonstrated in the following example :

X = (Xl’x2" v oeaRise .,xn) =
1 .

(al,x2,. R ST .,Xn) =

. 2 “

(al,aQ,. SEEE PP .,xn) =

(8, 8,9+ .,x?—l,. . oesa)
1°72 1 n

Again x would be preferred to an alternative y if and only

1 n-1

n= Q

Standard sequences. Constructing utility functions with standard

sequences 1is necessary in a conjoint measurement representation which yield
F and fi which are unique up to linear transformations. Fishburn (1967)
describes this as the ''saw-tooth" method. The procedure can best be demonstrated
in two dimensions, i.e., we assume that multi-attributed outcomes are of the
form (xl,x2).

We first pick an arbitrary zero point of the scale, usually the worst
conceivable or actual combination of attribute values, say (xi*,xzk),
and define

F(xl*,x ) =0

o

We also pick an arbitrary unit value on the first attribute, say x We

1
1
i

then construct a standard sequence on attribute 2, i.e., a sequence of x2
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which is equally spaced in utilities. In order to guarantee equally
spaced utilities, we make every increase in attribute 2 equivalent to
the standard increase in attribute 1 from X) 4 to xi ; thus the standard

sequence is defined by the following judgements :

[}

1 , 1
(Xl ’XQ*) (xlz':’XQ)

(14

11 2
(Xl,.XQ) (Xl* 3x2)
1 2y - 3
(xl ,X2) - (xl* QXQ)
and, in general,

1 i-
(x Xl 1

. i
12%5 ) = (Xl*’XQ)'

Graphically, this procedure can be represented as follows :
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Since Xoks x;, xg, e x;, .+.. are equally spaced in utility, we can

plot the utility function f

fz(xg)
4
3
2
1 4
Q o
A
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Similarily, we can use the interval Rogs X; to lay off a standard sequence
in attribute 1, thus constructing fl' Note that fl and f2 are automatically
in the appropriate units by the choice of the unit in attribute 1, which
determined the unit in attribute 2.

In some applications of MAUT weighting factors and utility functiomns
are separated. From a conjoint measurement point of view such weights are
vacuous. Separating the estimation of weights and utility functions may
nevertheless be a helpful further decomposition of the assessment task.

To illustrate, suppose that in the example above we choose arbitrary
units xi and x;, i.e., it is not necessarily true that (xi,xQ*) = (xl*,xé).
Then we are working not with the utility functions fl and f2, which have

a common unit of measure, but rather with fi and fé, which are linearly

related to fl and f2, respectively. In other words

f, =w, f. + k., for some w,.>0, k., i=1,2
i i~i i i i

Now take any two indifferent (but not equal) outcomes
(xl,x2) = (yl’y2)

and we get by the additive conjoint measurement representation
wlfl(xl) + w2f2(x2) + kl + k2 =

wlfl(yl) + W2f2(y2) + kl + k2

] - 1

v By (yp) - ) (xy)
B ]

wy £y (xp) - £ (yp)

Any two weights which satisfy the above condition will do.
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Basic reference lottery tickets.--In any expected utility model the

utility of an alternative x is defined as the probability U(x) which makes
x as a sure thing indifferent to a gamble in which one receives an alternative
x% with probability U(x) and an alternative x« with probability 1-U(x) - x*
is the outcome with the best conceivable values s in all attributes, X4 is the
outcome, with the worst conceivable values X3 in all attributes. Raiffa (1968)
terms such lotteries brlts, and they are often denoted by {x*, U(x), X}

We argued earlier that a riskless utility function could be transformed
into a risky utility function by finding an appropriate monotone transform h
over riskless functions. Brlts provide a means for finding this transform.
For example, consider the trade-off procedures of models 2.2 and 2.3. These
procedures trade-off all values into a standard attribute i, with all remaining
attributes held fixed at standard levels 3y Thus, to obtain a risky utility
function U over the set of outcomes in question, we need only to assess a
utility function over the standard trade-off attribute i. Consider

the outcome which after trade-offs is equivalent to (al,aQ,a CXsae .,an).

3

Then we define the utility of this outcome to be ui(xi),where ui(xi) is obtained

from the brlt

3
“w

(al,az,. oXgae .,an) E'{(al,aQ,. R D an), ui(xi),
(al,aQ,. SRR STPR .,an)},

Brlts may also be used totransform riskless additive conjoint measurement
utility functions into risky (possibly non-additive) utility functions. First,
we construct F and fi's using the conjoint measurement procedure. Then we

select several outcomes which cover the full range of F and which are easy
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to compare with the two extreme outcomes x* and x,. We assign utilities

U to these selected points using the brlt procedure. We next plot the U-values
corresponding to the F values for the particular outcomes selected. Bysmoothing
a curve through these points we may approximate the transform h which relates

F to U. Thus, for any riskless outcome X, we first find fi(xi), then sum

the fi's to get F(x), and then refer to a plot like the one below to find its

associated U(x) = h{ F(x)}.

u
A
100 o
75
U = h[F(x)]
50
25
1 I X ) g
10 20 30 40 50 60 70 80 90 100 F
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Brlts also provide the basic procedure for developing risky multi-
attribute utility functions in which U and component us functions are obtained
without reference to a riskless utility function F. In particular, we refer here
to the multiplicative (2.5) and the additive (2.6) expected utility models
developed by Raiffa (1969) and Keeney (1971, 1973). The component ug functions
are obtained by assessing brlts of the form

(al,aQ, RS ST .,an) = {(al,aQ,. CoLXLEL L "an)Jui(Xi)’
(al,aQ,. N S .,an)}.
Such component functions necessarily range from 0 to 1, as does the overall
utility function U when the brlt procedure is used. To match the u, functions

in units, weighting factors W in models 2.5 and 2.6 are obtained by assessing

brlts of the form

(Xl*,xz*,- o« e ,X’;{,- . .,Xn*) é{ -2_(_*, Wi, _}i* }'

Assuming that SCUI is satisfied, U is additive if and only if these Wy
sum to 1 (this is the non-qualitative equivalent to marginality). When they
do, we obtain the representation

n e
LW, ui(xi.).

U(x.) =
-] i=1 J
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When the W do not sum to 1 we obtain the multiplicative form

n

oL o,y (x0T,

1+ %k U(x.) =
—] i=1 ]

Here k is a constant reflecting the type and degree of non-additivity. It
can be estimated from the W, using a simple iterative procedure described

in Keeney. Note that the above model formulations are equivalent to the
formulations on pp. 32 . The only difference here is that the scaling
constants w. are made explicit.

Other scaling procedures. Fishburn (1967) describes 24 methods of

estimating additive utilities, providing a good source for a wide variety

of assessment techniques. Some of these methods, particularly those involving
rating scales estimates of component functions and ratio estimates of importance
weights, have been widely used in real world applications of MAUT (Edwards, 1971).
It should be noted, however, that the trade-off, standard sequence, and brlt
procedures are the only ones which are directly based on the models described.
Other procedures may involve judgments, for which the models do not provide

a basis. Nevertheless, there is reason to believe that other assessment
techniques ought to provide excellent approximations to the methods explicitly
justified bv the axioms. This conclusion is based partly on mathematical arguments
relating to the relative insensitivity of the models to minor errors in the
parameters fi’ g;» W, etc., and in part on experimental studies which have

indicated a high degree of convergence across scaling techniques (Fischer, 1972b).
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Experimental Applications of Multi-attribute Utility Theory

Validating MAUT models.

A number of experimental studies of preferences for multi-attributed
alternatives have been designed to validate particular scaling procedures.
Although several approaches to this validation problem are possible (Fischer,
1972a), most experimenters have adopted a convergent validity strategy.

In particular, MAUT methods have been validated by comparing their implications
with the wholistic ( or intuitive ) preferences of the decision maker. To

the extent that MAUT model reproduce these wholistic preferences, it is said

to provide a valid indicator of utility.

Several psychologists have objected to this validation strategy. They
argue that as the number of dimensions characterizing alternatives becomes
large information overload problems will arise and wholistic judgements will
become subject to a substantial degree of random error  (Shepard, 1964 ,

Slovic and Lichtenstein, 1971). In addition, information overload may induce
decision makers to adopt simplifying heuristic strategies such as the satisficing
or lexicographic rules which have properties which are quite undesirable from

a normative standpoint (Tversky, 1969). Considerations such as these have

led Shepard (1964), Hoepfl and Huber (1970), and Edwards (1971) to suggest that
MAUT procedures should not be validated against wholistic preferences, but rather
should simply be accepted as valid. While we are sympathetic with the arguments
sketched above, they only hold when the number of dimensions describing alternatives
is large -- say greater than five. For decisions involving a smaller number

of dimensions, the convergent validity approach seems quite reasonable.
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Unfortunately, almost all validation studies have considered only
riskless preferences. In addition, they have generally considered only simple
additive rating scale methods for constructing a MAUT model. The approach
adopted in these studies also has been relatively atheoretical. Rather than
testing the assumptions required for additivity, experimenters have simply
correlated a subject's wholistic responses with the utilities generated by his
additive rating scale model. The results of these studies have generally
been quite encouraging with correlations occasionally in the .70s, but
typically in the high .80s or low .90s (Pollack, 1964; Yntema and Klem, 1965;
Hoepfl and Huber, 1970; Huber, Daneshgar,and Ford; 1971, Pai, Gustafson, and
Kiner, 1971; v. Winterfeldt , 1971; Fischer, 1972b). Fischer (1972b) also
considered a simple additive trade-off procedure aﬁd obtained correlations in
the mid .90s.

Experimental work in the area of risky multi-attribute decision making is almost
non-existent. This seems to reflect the fact that most psychologists are unfamiliar
with the multi-attribute utility approach to risky choices. Only two experi-
mental applications of the risky MAUT measurement procedures have been reported.
v.Winterfeldt (1971) studied students' preferences for apartments described by
14 attributes. Direct tests of independence assumptions where independence was
doubtful revealed that the subjects' preferences were additive in a conjoint
measurement sense, whereas in the same cases marginality was violated. Nevertheless,
a correlational analysis indicated that the additive risky utility model (2.6)
provided a fairly good approximation to the students' wholistic utility assess-
ments. Fischer (1972b) studied preferences for risky job alternatives described
by three attributes. Statistical analyses revealed that the wholistic preferences

of 6 of the 10 subjects displayed small but significant departures from additivity.
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Nevertheless, additive (2.6) and non-additive (2.4 and 2.5) risky utility
models afforded essentially equal predictions of the wholistic utility
judgements, with mean correlations :n the mid .90s.

It seems apparent that much more research on risky and riskless
multi-attribute decision making is required. The validity
of the MAUT models must be established through direct tests of the measure-
ment theoretic axioms. And the relative ability of the various MAUT models
to approximate intuitive preferences or other appropriate validation criteria
should be assessed in a wide variety of realistic contexts.

Statistical models of preferences for multi-attributed alternatives.

The experiments discussed above utilized a decomposition approach to
multi-attribute utility assessment in which the decision maker makes assess-
ments about the components of an alternative and a mathematical composition rule
is used to aggregate information across components to assign an overall utility
to an alternative. The testing procedure which we discussed provides a formal
basis for selecting an appropriate composition rule. A number of investigators
have adopted a different strategy in which subjects make only overall wholistic
judgements about the utility of alternatives. Multivariate statistical procedures
are then applied to obtain a multi-attribute utility function, and to identify
a composition rule implied in the intuitive judgments. Because Slovic and
Lichtenstein (1971) provide a recent and excellent review of this approach,
we consider it only briefly here.

Like the MAUT validation studies discussed earlier, statistical modelling
experiments have been primarily concerned with riskless choice. And like the

MAUT studies, the goal of most statistical modelling studies has been pragmatic
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rather than theoretical -- experimenters have attempted to show that
linear additive models can provide a good approximation to the decision
maker's preferences. Typically these studies have attempted to represent
these preferences with a linear regression model, using the multiple correla-
tion coefficient as a measure of goodness of fit. In most cases the quality
of the approximations provided by this approach has been quite good, with
correlations ranging from the .70 to the .90s ( Bowman,1963; Huber, Sahney,
and Ford, 1969; Hoepfl and Huber, 1970; Huber, Daneshgar, and Ford, 1971; Dawes,
1970; Einhorn, 1971). Several researchers examined non linear regression models --
in which the independent variables were logarithmically transformed -- and
multiplicative regression models -- in which both the independent and the de-
pendent variables were logarithmically transformed (Huber,Sahney, and Ford,
1969; Huber, Daneshgar, and Ford, 1971; Einhorn, 1971). Although there were
cases in which the data of individual subjects were better approximated by these
more complex models, there are few instances in which the improvement in pre-
diction was substantial. And in most cases simple linear additive models
did just as well as or better than the more complex models.

Anderson (1970) has argued that regression procedures do not provide
a sensitive test between models, and that analysis of variance procedures should
be used instead. Sidowski and Anderson (1967) and Shanteau and Anderson (1969),
for example, found significant and meaningful interactions in situations where
additive models provided near perfect approximations to the data. Such findings
are typical of analysis of variance studies. Although many subjects deviate

significantly from additivity, additive models usually provide excellent
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approximations to the subjects' judgments (Slovic and Lichtenstein, 1971).
It should be noted, however, that only one statistical modelling study
(Fischer, 1972b) has dealt with risky decision making where the arguments
against additivity are most compelli..g. Additional studies in risky real
world environments are clearly required before any strong conclusions

can be drawn.
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