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Abstract

This paper describes a new algorithm for the adaptive control of a robot manipulator which may
contain closed kinematic loops. The algorithm identifies the mass properties of each link and
the viscous friction coefficients for each joint of the manipulator. It is similar to the Newton-
Euler inverse dynamics algorithm and hence, obtains its computational efficiency through the
recursive nature of the algorithm.
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1 Introduction

The development of computationally efficient inverse dynamics algorithms for manipulators has
enabled motion control systems to be designed which theoretically produce motions identical to
the desired motions [1,2]. These algorithms are based upon a model which consist of a sequence
of rigid bodies interconnected by rotational or translational joints. The mass properties of each
link are assumed to be known exactly and nonlinearities such as link flexibility and gearing
backlash do not exist. The performance of these controllers is limited to the extent that the
actual manipulator exhibits these characteristics.

However, even if the manipulator can be modeled perfectly one must still consider the effects
of the unknown properties of an object being moved by a manipulator. For this reason and
the fact that the model parameters of existing manipulators are not known exactly, several
researchers have investigated the application of adaptive control methods. The approach of
initial efforts have been to model the manipulator as a linear system and to apply existing
adaptive control methods [3,4,5,6). The major assumption is that good results can be achieved
if the model parameters being identified are not changing rapidly. Stability has always been an
issue in this approach and no proof has ever been given.

Another approach to adaptive control of a manipulator has been to base the control on
the full nonlinear model of the manipulator which is used by the inverse dynamics algorithms.
The significant advantage of these approaches has been the ability of proving global stability.
Craig, et al., was the first to use this approach [7]. Their approach is to drive the manipulator
using an inverse dynamics model whose parameters are only estimates of the actual parameters.
If the model matches the actual manipulator, the manipulator motion will exactly track the
desired motion. Any deviation will be due to errors in the parameter estimates. The parameter
estimates are continuously modified based upon the deviation of the manipulator from the
desired trajectory. The method of parameter modification is chosen such that stability can be
shown using a Lyapunov function. The only drawbacks of this method is the need for an initial
guess of the unknown parameters which is near to the actual parameters, the need to invert a
large matrix at each iteration of the algorithm, and the need to measure the joint acceleration.
Of these three, the need for matrix inversion is the main problem.

A more recent extension of these results [8] have shown that the need for matrix inversion
and computing the joint accelerations can be eliminated by using a filtered form of the dynamic
equations of motion in the derivation of the adaptation law. However, the computational
complexity of the method is still relatively high.

Another similar approach to adaptive control has been proposed by Slotine and Li [9]. A
Lyapunov function is used to prove stability by showing that the output errors converge to a
sliding surface, which in turn implies that the tracking errors converge to zero. The advantages
over Craigs method is the elimination of the need for a close initial guess of the unknown
parameters and the measurement of acceleration. The main problem is in the computational
complexity of the algorithm. This is typical of controllers which are based upon the Lagrangian
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formulation of the manipulator dynamics.

In both of these adaptive control methods, there is the practical issue of computational
complexity. For this reason, neither have been applied to manipulators with more than two or
three degrees of freedom. In addition, both have been formulated for serial link manipulators
although many manipulators contain closed kinematic loops.

This paper presents an efficient solution to the problem of the adaptive control of a manip-
ulator containing closed kinematic loops and whose mass and friction parameters are unknown.
It adopts the basic method of Slotine and Li and addresses the issues of generality and com-
putational efficiency. Generality is obtained by allowing the manipulator to contain closed
kinematic loops. Computational efficiency is obtained by basing the control on an efficient
inverse dynamics model of the manipulator.

The body of the paper begins in the next section with a presentation of the notation used
in the paper. In addition, a new method of defining the kinematics of manipulators containing
closed kinematic loops is presented. The method is a simple extension of the D-H notation
[10] which is commonly used for serial link manipulators and naturally leads to the use of a
binary tree data structure for storing the manipulator model. Finally, the form of the kinematic
constraint equations which are characteristic of manipulators containing closed kinematic loops
is presented.

The next section presents a new inverse dynamics algorithm for manipulators containing
closed kinematic loops. In this algorithm only inertial and gravitational forces are computed.
This improves the computational efficiency over existing methods [11] by eliminating the need
for the computation of constraint forces.

The next section presents the adaptive controller. The use of the inverse dynamics model
of the manipulator in the formulation of the control directly leads to an efficient algorithm for
its implementation. Two important concepts which are introduced are spatial feedback vectors
and scaler feedback functions. The character of the control is dictated by the definition of these
vectors and functions.

The next section presents the details of the implementation of the controller and the final
section draws some conclusions and suggest some areas for further investigation.

2 Preliminaries

This section presents some preliminary material which supports the development of the results
in the following sections. First, the data structure used in the controller algorithm is described.
Next, the kinematic notation is presented followed by a section on the constraint equations
imposed by the closed kinematic loops. Finally, the method used to model the mass distribution
of the rigid links of the manipulator is presented.
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Figure 1: An Example Manipulator
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Figure 2: An Example Link, Numbered 3
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2.1 The Data Structure

In the implementation of the controller, several quantities associated with each link are needed,
such as: the link velocity, acceleration, and inertial forces and moments. This section presents
the data structure used to store this information. The form of this data structure is important
since the design of the control algorithm is directly linked to this data structure. An example
manipulator, illustrated in Figure 1, is used as bases for discussion.

In general, the number of rigid links in the manipulator is m + 1. For the example in Figure
1, m+1 = 8. The base link is numbered 0 and all other links are numbered in an arbitrary order
from 1 to m. It is apparent that a graph data structure could be used to store the information.
Each record or item in the data structure would be associated with a particular link and all
of the information needed about that link would be stored in the associated data record. The
problem with using this type of data structure is that it does not lead to a particularly simple
or efficient algorithm for the controller. A mmch better data structure is a binary tree data
structure. The remainder of this section develops the method of obtaining this type of data
structure.

We begin by selecting a set of joints such that if the associated links were disconnected at
these joints there would be a unique sequence of links connecting any given link to the base link.
An example of two joints which accomplish this are indicated in Figure 1 by the large arrows.
The resulting structure is a tree structure and we can now establish relationships between
different links in terms of their descendants and predecessors. For example, the descendants of
link 1 are links 2 and 3. The predecessors of link 7 are links 0 and 6. The immediate descendant
of link 1 is link 2 and the immediate predecessor of link 2 is link 1. We also note that some links
may have more than one immediate descendant. For example, link 0 has three: 1, 6, and 4.
The fact that a link could have an arbitrary number of immediate descendants cause practical
problems in the implementation of the controller. To get around this problem we introduce the
concept of connector links.

An example of a link with four joints is illustrated in Figure 2. The joint connecting
the immediate predecessor to the link is assigned the same number as the link. One of the
other three joints is used to locate the link coordinates. This determines the D-H kinematic
parameters a;, a;, d;, and ; as illustrated in the Figure 2. To locate the remaining two joints
with respect to link i coordinates we insert fictitious links, j and k, called connector links.
They are called connector links because they connect another sequence of links to the tree
structure. First is link j which is located relative to link 7 coordinates. The D-H kinematic
parameters [10], a;, aj, dj, and 0; are used to locate this link j coordinates with respect to
link ¢ coordinates. Next is link k which is located relative to link j coordinates. Again the D-H
kinematic parameters, ag, ag, di, and 8, are used to locate this link & coordinates with respect
to link j coordinates. Note that all of the kinematic parameters, a, a d, and 0, associated with
connector links are constant and that for both the connector and successor links the position and
orientation of the descendant with respect to the current link is described using homogeneous
transforms parameterized by the D-H kinematic parameters a, a, d and §. The real links are
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Figure 3: Binary Tree Structure

called successor links to distinguish them from the imaginary connector links.

Therefore, each link can have up to two immediate descendants. One would be a connector
link and the other would be a successor link. Only one of each type is allowed. Hence, with
the introduction of the connector links we have converted a general tree data structure into a
binary tree data structure.

For a given link, the first joint encountered when moving in the direction of the base is
numbered the same as the given link. Thus, all of the joints except those where the kinematic
loops have been broken have been assigned a number. There are m of these. Assuming there
are r independent loops the remaining = joints located at the points where the kinematic loops
have been broken are numbered from m + 1 to m + r making a total of m + r joints. Finally,
a fictitious successor link called a terminating link is associated with these joints and are given
the same number as the associated joint. The purpose of the terminating links are to allocate
a item in the data structure to store all of the information concerning the associated joints, for
example, their position and the viscous friction coefficients. The D-H kinematic parameters for
the terminating links are chosen so that the loop closure equations can be written in terms of
homogeneous transforms. This will be described in more detail in the section concerning the
constraint equations.

If link ¢ is a successor link then the associated joint is either translational or rotational. In
either case the joint position is denoted by ¢;. If the joint is translational then ¢; = d;. If the
joint is rotational then ¢; = 6;.

Finally, connector links are numbered starting at m + » + 1 on up to the total number of
links, both imaginary and real, contained in the manipulator.
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The resulting data structure for the example manipulator is illustrated in Figure 3. The
convention we use is that the items in the data structure associated with connector links are
drawn to the left of its predecessor and the items associated with successor links are drawn to

the right.

2.2 Manipulator Kinematics

iFrom Figure 3 one can see that the position of each link can be determined with respect
to base by starting at the base and successively computing each link position while moving
out from the base. Let ¢; denote the number of the immediate predecessor of link i. If the
homogeneous transform of link ¢; coordinates with respect to link 0 coordinates, Tg", is known
then the homogeneous transform of link i coordinates with respect to the base is T and can
be computing using the following equation.

=18,
where be.- is a function of the a;, d;, oy, 4;.

c(8;) —s(0:)c(a;) s(0:)s(cs)  aic(6s;)
i o= | 8(8)  e(B)e(as) —e(6i)s(ai) ais(8:)
&0 oa) ew)
0 0 0 1

where ¢() and s() stand for the sine and cosine functions. Note that the same equation applies
if link 4 is a connector link or a successor link.

This paper uses the spatial notation which was popularized by Featherstone, [12,13]. With
this notation transformation matrices are 6 X 6 matrices. The spatial transformation matrix
from link ¢ to link ¢; is:

4 o
K )4, 4,

where O is the 3 X 3 null matrix, Ai'. and p;‘. are the upper left 3 x 3 submatrix and upper

X:p;:

right 3 X 1 submatrix of the homogeneous transformation matrix T::s'. , respectively. The 3 X 3 -
matrix K () is a skew symmetric matrix such that K(a)b = a x b for any 3 X 1 vectors a and
b.

As with homogeneous transforms, the spatial transformation from link ¢ coordinates to link
0 coordinates can be computed given that of its immediate predecessor by multiplying the

transforms together. ‘ '
X§ = X5 X, (1)

Similarly, the spatial velocity and acceleration of link ¢ can be determined given those of its
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immediate predecessor, ¢;.

__ ) vg +8:q; iflinkiis a successor (2)
Y] v if link i is a connector

9 = vy, + 8i§; + v; X 8;¢; if link i is a successor
! vy, if link i is a connector

(3)

where 8; is the third column of X g"' if joint i is rotational or the sixth column of X% if joint 4
is translational.

Thus, one starts at the root of the binary tree data structure and works out along the
branches using the above equations to successively compute the spatial transformation matrix,
velocity and the acceleration of each link.

2.3 Kinematic Constraint Equations

Since, in general, the manipulator is graph structured, there exist constraints in the relative
position of each of the joints of the manipulator. These constraints can be represented by a set
of equations of the following form:

q=U(Q) (4)
where Q is an n X 1 vector containing the positions of the joints where the actuators are located.
That is, the manipulator has n degrees of freedom corresponding to the n actuators contained

in the manipulator and for each Q; there is a ¢; such that Q; = ¢;. Given U(Q), Q, and Q,
the velocity of all the joints can be determined.

a=E(Q)Q (5)
where oU(Q)
E(Q)= 30 (6)
The acceleration is given by: . . .
i=EQ)Q+EQ)Q (7)

For a given manipulator these equations are usually fairly simple. Often the matrix E(Q) is
constant. For example, it is simply the identity matrix for a serial link manipulator. However,
for some manipulators these equations can become complex. For these manipulators we have
found that the e-algebra is very convenient for evaluating the time derivatives of the joint
positions [14]. Using this algebra one only has to program to solution to Equation 4, change
the order of the algebra and automatically obtain the solution to equations 5 and 7.

The equations of constraint are obtained from the loop closure equations. For the manip-
ulator shown in Figure 1 there are two independent loops. The two loop closure equations
are:

To(q)T1* = ToT10T 11 (94)T4(as)T'5(gs) (8)
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and
To(01)T3(92)T3* = T T30(96)T5(a7)T (o) (9)

These two matrix equations consist a total of 32 scaler equations of which only six are indepen-
dent. Thus, we can determine ¢y, g2, 44, g6, g8, and ¢ as a function of the actuator positions
gs and g7. Using the above notation, g5 = Q1, g7 = @2 and g3 = Q3. These three equations
along with the six obtained from equations 8 and 9 give us the function U(Q) defined above.

2.4 Mass Parameters

There are two types of parameters of the manipulator model whose values are estimated by
the adaptive controller. One is the viscous friction coefficients of the joints and the other is the
parameters associated with the distribution of mass in each of the links.

There are ten quantities which specify the distribution of mass in each rigid link of the
manipulator. These are the six unique components of the moment of inertia matrix, J;, the
center of mass vector times the total mass, »; and the total mass, m;. These are all referred to
link ¢ coordinates and combined into a single 6 X 6 spatial moment of inertia matrix, I;.

I = [ _K(Ll) m;I ]
= L K(z)

It is the ten unique components of this matrix we need to estimate for the adaptive control.
The moment of inertia matrix,

-\Lzm' -‘Ltyi -lczi
= -\lyzs' -lyys -‘Lyzi
:lzm' lzyi -llzzs'

the center of mass vector times the mass,

T
L= [Toi Ty Ll
and the mass, m;.

For notational purposes the parameters are combined into a single 10 x 1 vector, m;.
m; = [my my miz My Mg Mg Mz Mg Mg mim]T
T
= [-\Zczt lgm lzzi JL':yi -‘lyzi lzzt' Lei Ly L mi]
In this way we can easily write J; as a linear function of these parameters.

10

L= Z Rymg,
k=1
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where the R, are 6 X 6 matrices with one’s where the associated parameter is located in I; and
zero’s elsewhere. For example,

Ry =

OO OO OO
OO O OO O
OO OO OO
O o OoCcCoOoOo =
OO O O == O
OO O - O O

In the development of the dynamic equations of motion in the following section all quantities
are referred to the base coordinate system. To refer I; to the base coordinates one premultiplies
and postmultiplies by the link i spatial transformation matrix.

I = X{LX}'

The following is an important property of the spatial moment of inertia matrices. If y is a
spatial vector and its derivative with respect to time exist then.

d .
1/2=(y 'Ly) = y'(Liy + vi x Ly) (10)

where v; is the spatial velocity of the ¢ — th link. This is easily shown using the definition of I;
and the fact that .

dX; i

_a?g =v; X XO

3 The Equations of Motion

The recursive Newton-Euler form of the equations of motion is used to model the manipulator.
This form of the equation is especially useful for solving the inverse dynamics problem. In
this problem the actuator torques/forces are computed given the joint positions, velocities and
accelerations.

The approach used here is similar to that proposed by Luh and Zheng [11] except that the
constraint forces are not needed. The method is different in that link inertial forces are used to
determine the actuator forces instead of the actual forces on each link. In fact, the approach
to modeling is more similar to Kane’s [15] formulation than the Newton-Euler formulation.

The algorithm is a three step process.

1. Given the desired positions, velocities, and accelerations of the independent variables, Q,
calculate the corresponding positions, velocities, and accelerations of the joints, g, using
equations, 4 through 7.

Adaptive Control 9
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2. For each link, determine p;, the sum of the friction force and the projection of the sum
of the inertial forces plus gravity loading on the axis of motion of joint j.

3. Determine the actuator forces, 7; using the constraint equations and the p; computed in
step 2.

r=E@Q)"p

where T is an n X 1 vector of the actuator forces, and p is an (m + 7) X 1 vector of the p;

Step 2 is exactly the same procedure which would be used if the manipulator was a serial
link or tree structure manipulator. In this case the p; would be identical to the actuator forces.
The only difference is in the first step, wherein joint positions, velocities, and accelerations are
determined which are consistent with the constraint equations, and the last step, wherein the
constraint equations are again used in determining the actuator forces.

Step 2 can be implemented in three steps. First, the position, velocity and acceleration of
each link is computed using equations 1 through 3. This is done by starting at the base and
working out along the branches of the tree. Next, for each link j we determine f;, the sum of
the gravitational and inertial forces of link j and all of its descendants. This is done by starting
at the tips of the branches of the tree and working back toward the base of the tree using the
following equations. Let F'; denote the inertial force on link j. Then:

F5=Mj=I,-i’j+v,-ijv,- (11)

where M ; = I;v; is the spatial momentum vector for the j—th link. Note that F'; for connector
and terminating links are zero since they have no mass. Let j be the index of the current link.
Let k and I be the index of the successor and connector links. The vector f; is used to denote
the sum of the inertial and gravitational forces for link j and all of it’s descendants. Then,

fi=Fi-Iig+ fi+ fi (12)
where g=[0 0 —9.8 0 0 0] is the spatial acceleration due to gravity vector.

The last step is to determine p;, the force due to friction, 7;, plus the projection of f; onto
the axis of motion of joint j.

pi = 85F; +1; (13)
where 7; is the component of joint force due to friction.

This recursive form of the dynamic equations of motion can be shown to be a valid formu-
lation by using the principle of virtual work. We begin by defining some sets which facilitate
the development. The set ®; is the set of all joint numbers encountered while traversing the
tree from link 7 to the base link. For the example manipulator in figure 1 &, = {4,10,11}. The
set ¥; = {i|j € ®;} is the set consisting of i plus all of the indices of link #’s descendants. For
the example manipulator ¥, = {1,2,3,12,13}.
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Now, let g be a vector of virtual joint velocities, i.e. any set of joint velocities which are
consistent with the constraint equations. The virtual velocity of link ¢, ;, is written using the

above notation as:
v; = Z 8;4; (14)
Jj€¥;

Also,

fi= Y (Fi-ILg) (15)

i€Y;

We wish to show that the work done by inertial, gravitational, and friction forces, is equal to
the work done by the active forces. That is:

mtr . LA
dty (52(1"',- - Lg) + q';n.-) =dty Qe
i=1 k=1

Dividing by dt and successively using Equations 14, 30, and 15 on the left side of the above
equation gives:

Ay . mir . o
> (BUF:-Lg)+dm) = 2 IY(§85(F: - Lg)) + G
i=1 i=1 jed;
m+r ’ . .
= Y [D_(4;85(F: - Lg)) + §;n;]
J=1 i€¥;
mir o .
= (485 f; + d;mi)
=1
m+r mir n
= D dipi= ) ) Queirps
j=1 j=1 k=1
= Eém
k=1

Therefore, the recursive set of equations given above constitute a valid representation of the
equations of motion of a manipulator.

4 Adaptive Controller

The basic approach used here is the same as presented by Slotine and Li. The differences
in the control law and adaptation law are primarily a result of the use of the Newton-Euler
formulation of the manipulator dynamics in the derivation.

We begin by defining a class of control laws and then discuss an important property of this
class. This class of control laws have the following two characteristics.
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1. The feedback control law is implemented through the use of a set of spatial feedback
control vectors, f'"j, and functions, 7);, which are defined for each link of the manipulator.
These can be any functions of the desired trajectory and the actual trajectory of the
manipulator.

2. The 7; are computed using the I",- and 7); as in the following recursive equations:
f j = Fi+ frt Fi
pi = 8if;+1;
r = E@Q)p
where k and ! are the immediate decendants of link j, p is an (m + r) X 1 vector of the
s

These controllers cover a fairly broad class which include classical PID controllers and inverse
dynamic controllers. In this paper we show how the F'; and 71; can be chosen to implement an
adaptive controller.

The following is an important property of this class of control systems.

m+r . m+r ) .
> (35(F; - Iig) + djmi) = 3 (85F; + d;;) (16)
Jj=1 j=1

where the 5:,- are any joint velocities which are consistent with the constraint equations and o;
is the resulting link velocity. Basically, this is simply a restatement of the principle of virtual
work. If the g'ij are the same as the actual joint velocities, ¢;, then the term on the left is the
rate at which energy is absorbed by the manipulator and the term on the right is the rate at
which energy is delivered to the arm by the actuators.

We now present the spatial feedback vectors and functions which implement the adaptive
controller. First a reference trajectory, denoted by Q(t) is defined. It is generated from the
desired trajectory and the actual trajectory by solving the following differential equation.

Q=0,-4Q,

where Qd is the preplanned desired trajectory; the tracking erroris @, = Q — Qg; and A is a
positive definite diagonal matrix. Rearranging the above equation gives:

Q.+4Q.=Q (17)
where Q =Q - Q
i From these we compute the corresponding joint velocities and accelerations:
q = UQ)
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4 = EQQ
a4 = EQQ
a4 =4a-9

4 = E(QQ+EQ)Q
Note that E is a function of Q and Q.

Next we compute the link velocities, v; and accelerations, v; using Equations 2 and 3. Then
we compute the link velocities and accelerations using g and § q as joint velocites.

8 = 94, + 8ig; if link i is a successor (18)
O b if link i is a connector

: 1:14,'. + 8:4; + v; X 8;g; if link i is a successor
v = 2 ep e .. (19)

by, if link i is a connector
v = v;—v; (20)

The spatial feedback vectors and functions are:

F; = f":’j + 5 x Ijbj — I;9 - 7;13%; (21)

where v; is a positive scaler and IQ and I are the initial and the current estimates of I,
respectively. The equations for updatmg the parameter estimates are:

':'fj = —(1/aj)w; (23)

di = —(1/8;)d;4; (24)
where w; is a 10 X 1 vector whose k¥ — th component is,
wik = 8;'(Rag; + B; X Rad; — Rag)) (25)

a.nng,_J,

B;,and g, are the vectors 9, ; j» 0j, and g referred to link j coordinates, respectively.

Global convergence of the tracking can be shown by first realizing that Equation 17 is a
linear differential equation in Q, and Q and that we have chosen the gain matrix A4 to be
symmetric and positive definite. Thinking of this as a system with Q as the input and Q, as

the output we know that this system is bibo stable. Therefore, if we can show that the input,
Q, is bounded and Q — 0 as ¢t — oo then we are assured that Q, — 0 and that global tracking
has been realized. To show that Q — 0 as t — co we use the following Lyapunov function:

m+r
V(t)=1/2 Y (8:1;8; + ajmTm; + §;d;) (26)
=1
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where the a; and §; are positive scalers, 1m; = m; — ri;, and d; = d; — d;. Since V() is
bounded from below, by showing that V(t) < 0 we have shown that V(t) — constant and
therefore, V(t) — 0.

First we consider the derivative of the first term on the right hand side of equation 26.
i From Equation 10 we get:

1/2dt( Ij‘ﬁj) = ﬁj(Iji.i,' + v; X ij)j)

= #(M; - I;(3; x vj))

where d(I;5;)
pa .v.

Mi==3"

However, since %; = v; — 9, then

= Iji")j +v; x I;jo; + I;(%; X vj)

M; = M;-M;
F;—- (I,'t:),' +v; x I;jo; + I;(9; X v;))

where d(I;5;)
M; = 829%)
7 dt
Therefore,
m+r m+r )
Z 1/2 H(851595) = 3 93(Fj — (Ij9; + v; x I;5;))
j=1
and since v; = 9; + ; then,
m+r m+r .
Z 1/2 S(931595) = Y 85(F; — (Ijd; + 95 x I;;))
=1
Using Equation 16 gives:
m+r m+r R .
> 1/2dt(5'1 ;) = Y oi(F;— (I +9; x Ijb; + Ig))
j=1 j=1
m+r

+ Z ‘}j(ﬁj - n5)
o

Substituting in the equations for ff'j, n; and 7); gives:

m+r m+r L. - -
> 1/2dt(v Iio;) = Y 93105+ 95 x Ijp; — Iig)
j=1 j=1
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m+r m+r

- Z ‘y:,vJIOvJ + E quJqJ
j=1 i=1
m+r m+r

- ST,
= D mhjw;- Z'YJ”JIO”J
i=1 i=1
m<+r

+ E Jj;ijdj (27)

i=1

The derivative of the second term on the right hand of Equation 26 is:

m+r d T m44r m+r
> 1/2a=(mj7h;) = Y aymim; =Y ajmlm;
j:l j=1 1_1

m+r

= - ) mjw; (28)

The derivative of the third term on the right hand of Equation 26 is:

m+r dd'z m+r o m+r ..
1/2 Z Z Bid;d; = — Y d;d;d; (29)
Jj=1 j=1

Therefore, adding Equations 27, 28, and 29 gives:

m+r
V(t)= -3 7i9;'I3%; <0
j=1
;From the above, we now know that V(t) — 0. It is easy to choose the 1‘; such that I? > 0.
Therefore, Q — 0 and hence, global stability of the tracking is assured. That is, Q, — 0.

5 Computational Algorithm

The purpose of this section is to present the exact steps used in the implementation of the
adaptive control algorithm. The controller is organized so that changing the control algorithm
only involves the changing a two procedures within the controller program.

As in most inverse dynamics type algorithms computational efficiency is improved by com-
puting all velocities and accelerations referred to their own link coordinates. This change of
coordinates will be denoted by underlining the variable in what follows. For example,

z; = ( 3)’”6
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The spatial vector s; is referred to link ¢; coordinates since they are constant in that coordinate
system. That is,

5= (Xy) s

Another method used to speed up the computations is to add the acceleration due to gravity
to the base coordinate acceleration at the beginning of the computation. This avoids having to
explicitly compute the gravity loading for each link as is implied by the previous equations.

The following three procedures traverse, forward, and backward are used in the imple-
mentation of the controller. The procedure traverse implements a traversal of the binary tree
data structure where all of the computed quantities are stored. This is a basic procedure which
is used in the laboratory regardless of the particular control algorithm being implemented. The
input to the procedure is a link number and the output is I; which is equal to }',- referred to link
¢; coordinates. This ordering of the traversal of the tree directly corresponds to the ordering of
the computations implied by the above equations. Each time a new node in the tree is visited
on the trip down through the data structure the procedure forward is called. This procedure
is used to update any state variable information associated with the control law. The input to
this procedure is the current link number and there is no output returned from the procedure.
Only data local to this procedure and the backward procedure is changed. On the trip back
up through the data structure procedure traverse calls the procedure backward. The input
to this procedure is the current link number and the output is the spatial feedback vector, F;,
and the scaler feedback function, 7j; for the current link.

The procedure traverse is initially called with ¢ = 0, the number of the base link.

PROCEDURE traverse(i,i,-)
begin

1. If 1 = 0 then set

g = U@Q)
q E(Q)Q
g = 0

else if link 7 is a successor link set
; = (X3, (2 + 8:4:)
else if link 4 is a connector link set
2 = (X5) 2y
2. Call forward(i).

3. If a connector link for link i exist and its number is k then call traverse(k,l;), else set
ik = 0.
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4. If a successor link for link 7 exist and its number is j then call traverse(j,ij), else set

Py

l=0.
5. Call backward(i,F;,;).

6. Set:
i‘. = F+0+ ij
L = Xxif,
5 = sili+y
7. If i = 0 then set:
T=E@Q)p
and output 7 to the manipulator.
end;
PROCEDURE forward(i)
begin
1. If = 0 then set
Q = Qd - AQe
Q = .Q'd - AQe
q§ = E@Q)Q
a = EQ)Q+EQ)Q
9 = q4-4
-':ZO = -':’-0 =0
B = -9
else if link ¢ is a successor link set
B o= (X5 (4 + &idi)
B; (X3, (Bg + vy X 8 + 2:4;)
9 = v-
and compute w; using Equation 25,
else if link 7 is a connector link set
B o= (X5
B = (X§) 2y
B, = Bi—
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end;

PROCEDURE backward(i,F,,7;)
begin

1. If link 7 is a successor link then set:

F, = L +9; x Ib; — v:I%%;
; dig;

m; = -1/o;w;
& = -1/Bidid;

and update the parameter estimates,
else if link i is a terminating link then set:

F;, =0
i = dig;
d = -1/B:ig;

and update the parameter estimates,
else set F; =0, 7; =0.

end;

6 Conclusion

An efficient algorithm for the adaptive control of a manipulator containing closed kinematic
loops has been presented. The issues that have been addressed are computational efficiency and
generality. Generality was obtained by formulating the algorithm for manipulators containing
closed kinematic loops. Computational efficiency was obtained with the use of a new inverse
dynamics model for manipulators with closed kinematic loops. This model achieves improved
computational efficiency by eliminating the need to compute the constraint forces. Only inertial
and gravitational forces are actually computed by the algorithm.

The algorithm used in the implementation of the adaptive controller directly follows from
the binary data structure used in modeling the manipulator. Three procedures were presented
for its implementation. The first is the procedure traverse which is used in the traversal of the
binary tree data structure. Each node in the data structure corresponds to a different link in the
manipulator. As each node is visited the controller calls a second procedure called forward.
This procedure is used to update any state information associated with the control law for
the particular node being visited. On return steps of the traversal algorithm the controller
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calls a third procedure called backward. The function of this procedure is to compute the
spatial feedback vectors and functions which define the control law being implemented. After
traversing the entire tree the computed torques are outputted to the manipulator to effect the
control. It is difficult to quantify the computational complexity of the algorithm since a general
closed form solution to the constraint equations does not exist. However, it is clear that for a
serial link manipulator the number of computations is linear in the number links contained in
the manipulator.

Manipulator controllers should be designed to perform a variety of different classes of com-
pliant motion task. An example of a class could be opening door. Every door is basically the
same. Only the size, friction, and mass properties change. It might seem that the adaptive
controller presented in this paper could be applied to the compliant motion control problem.
However, the model used by this controller is special in that the number of degrees of freedom
of the manipulator is the same as the number of actuators. This fact allows us to simplify
the model and the formmlation of the controller. However, there is little difference between the
models presented in this paper and the model for a manipulator preforming a compliant motion
task. The main difference is the number of degrees of freedom of the combined manipulator and
task are now less than the number of actuators. Thus, we have an infinite number of choices
of actuator forces which produce the same motion of the end-effector. As in the hybrid com-
pliant motion control scheme one would need to control both force and position. In addition,
compensating for modeling errors in the task kinematics is likely to play an important role in
future adaptive compliant motion controllers.

7 Appendix

The following identity is used: For any function, f(i, ) of the indices i and j:

m+-r m+r
> Y i)=Y £i,4) (30)
=1 je¥; j=1i€¥;
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