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Abstract

Formal, unambiguous mathematical structures are developed
for representing Markovian queueing networks and for systematically
constructing a description of a continuous-parameter Markov chain
model from a description of the network diagram. A formal queue-
ing diagram notation is developed as a pictorial language. An ap-
proach to the problem of decomposition and recomposition of Markovian
queueing networks is presented, and applied to realistic queueing

networks.

iii






Table of Contents

Preface
List of Figures

List of Tables

1. Introduction

2. A Syntax of the Pictorial Language

3. Semantics of the Pictorial Language

4, Defining-a Network Model

5. Flement Representation

6. The Network as a Markov Chain

7. The Translation of Networks to Equilibrium Equations
References

Page

vii

Xi

11
27
29
53
79

112






Preface

This report treats a general approach to the decomposition and
recomposition of Markovian queueing networks. This theory was de-
veloped in 1967 as part of a project aiming at providing a computer
program to produce transition intensity matrices from a description
of the network in block-diagram form automatically by use of a digi-
tal computer.

The system which has finally been implemented [6, 7] under
this project is based upon a gross simplification of the notions pre-
sented here, with an attendant reduction in the generality of the net-
works which may be so treated. Indeed, because of the considerable
difficulties which a direct implementation of this theory in such a
programming system entails, the simplified theory assumes a dis-
tinctly different form.

Nevertheless, this report should be of sufficient interest to its
audience both as a progenitor of the notions finally implemented, and
as a theoretical development on its own, capable of further theoretical

development as part of the long neglected field of queueing networks.

V. L. Wallace
Ann Arbor
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1. INTRODUCTION

The Markovian systems of the title are, by definition, systems whose
behavior is modeled by a continuous-- parameter Markov chain with station-
ary transition probabilities. 1 A network model, on the other hand, is a
model censisting of distinct elements, interconnected through well defined
interfaces. Such a model is often represented compactly in the form of a
network diagram, consisting of separate elementary symbols and lines be-
tween them. The three representations—network diagram, network model,
van_d Markov chain—can be used as three alternative descriptions of the same
object, the Markovian system. That is, they can be used as alternative
descriptions provided that the network diagram and the network model are
formally and unambiguously defined. If they are, then it should also be
possible to translate a description in any one of these forms into an equiva-
lent description in any other,

It is the purpose of this report to develop formal and unambiguous
mathematical structures for both the network diagrams and the network
models, and to show how a diagram can be translated into an equivalent
Markov chain through intermediate use of these structures. The network
model structure will be defined in a form specifically tailored to make this
translation convenient. It will represent an algebraic description of the
meaning behind the symbols used in the network diagram. The network dia-
gram structure will be defined so that the diagrams will most flexibly and

unambiguously approximate the crude, ambiguous (but natural) diagrammatic



forms used by systems analysts and theorists as visual aids. In this way,
the diagrams will offer maximum facility to these pecple as a means of com-
munication.

This work represents a first stage in development of the theoretical
machinery required for a graphic man-computer system for Markovian sys-
tems analysis. The areas of potential application of this system are potenti-
ally many, and include computer systems, communications switching systems,
traffic control systems, assembly lines, and reliability studies. (The class
of Markovian systems includes all those ordinarily called Markovian queue-
ing systems.) While analysis of a Markov chain can proceed by analytical,
numerical, or simulational means, this man-computer system will utilize
a numerical analysis procedure based on that of the Recursive Queue Anal-
yzer2 in order to achieve a good compromise between response time and
generality. This is an algorithm which requires only that the matrix of tran-
sition intensities cf the Markov chain (the coefficient matrix of the Kolmo-
gorov differential equatiorj be krown. Thus this matrix, togsther with infor-
mation identifying states, will be censidered the hasic form. descriptive of
the Markov chair,

This report has three principal parts, Sections 2 and 3 pose a legiti-
mate picture language fcrmat for Markov network diagrams, and abstract
a framework for the transfer of meaning from the network diagrams to the
algebraic network model. Secticns 4 through 6 develop the algebraic model

and treat its relationship to the Markov chain. Because the algebraic model



is relatively complicated and abstract, its development is carried through a
series of trial models showing, by counterexample, why each new complica-
tion is a necessary improvement. Section 7 treats an operation called con-

solidation and the procedure for translation from the primitive network

model to the transition intensity matrix describing the Markov chain.






2. A SYNTAX OF THE PICTORIAL LANGUAGE

2.1 PICTORIAL LANGUAGES
Formal representations of Markovian systems in diagram form are ac-
tually expressions in a graphical language. More precisely, it is two-

dimensional pictorial language, to use W. R. Sutherland's3 term. Itisa

means of conveying precise meaning through pictorial symbols and syntax.
Because the representations are descriptive of a problem to be solved rather
than of the means of solution, such a language is also called a problem-:
oriented pictorial language..w The chief utility of pictorial languages arises
from their compactness and from the high degree of instant recognition possi-

ble compared with textuai languages.

2.1.1 An Example

Consider, for example, the diagram of Figure 2. 1. With suitable defi-
nitions, the symbols and syntax of this diagram could have the following
meaning: Poisson arrivals of tasks, having mean rate of occurrence A, are
accepted into a queue, with up to a maximum of ry tasks present in the queue
at any one time. A server removes tasks from the queue and processes
them for independent, exponentially distributed intervals of time having
mean 1/ Hye Whenever the two other queues have less than a total of ng tasks
present at the time of a completion, the completed task is randomly as-
signed to the upper queue (with probability p) or the lower queue (with proba-

bility 1-p). Otherwise the service is restarted and the server held for
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another exponentially distributed interval of time. Tasks assigned to

the upper queue are removed from the queue and processed, one at

a time, by a server which is held for an independent exponentially distri-
buted period of time having mean 1/ Mo Upon completion of this holding,
the task exits from the system and a new task is immediately drawn from
the upper queue, if the queue is not empty. Tasks assigned to the lower
queue go to any of n 4 Servers whenever one of them is vacant. These ser-
vers are each held for independent exponentizlly distributed intervals with
mean 1/u3. Every completion produces an exit of a task from the system,
and a new task is immediately drawn from the lower queue into the vacated

server, if the queue is rot empty.

2.1.2 The Need for a New Language

That, briefly, is the meaning which can be assigned to the diagram of
Figure 2.1. In some senses, that description is incomplete because of the
difficulty of systematically conveying all possible conditions and actions in
English prose (i e., textually). It will be seen later than any questions a-
rising from the ambiguities of the description can be answered when the sym-
bols are adequately defined. The main issue here is that the diagram is
clearly a means of description which is superior to prose. It is compact
and easy to visualize.

At present, no generally accepted pictorial language for the purpose of
describing Markovian systems exists. As used by queueing theorists and

analysts, diagrams are used as discussion aids rather than as complete



symbolic representations. It is not uncommon, for example, for textbooks
to use the same diagram for two different systems—the difference being
drawn out in the discussion. Thus, these diagrams are usually ambiguous
and can't be formally used as prototypes for a picture language. The block-
diagram representations used by some simulator prOgrams4 are unambig-
uous, but lack both the conciseness and the flexibility desired. They also
are more general than necessary, since they can usually be used to des-
cribe many nonMarkovian systems.

It is necessary, therefore, to define a pictorial language here which
can be used for the purpose. However, rather than define a particular
language, a class of languages which differ from one another only in their
vocabulary will be defined. In other words, it will not be assumed that
fixed set of symbols will be used. Rather, only the means of defining the
symbols, and the form of the basic construction of expressions will be
prescribed. In this way a "living language' is constructed. Of more
practical significance, conciseness is preserved over wide ranges of ap-
plication when special purpose symbols and syntactic constructions can
be invented by a user as needed. This will obviate much of the awkward-
ness found in the simulation languages, and permit the abbreviation of

frequently used constructions.

2.2 A PROPOSED SYNTAX
A network diagram (which is an expression in the picture language)

will be characterized by a set of distinct symbols with lines between them.



Each symbol has a characteristic shape and a number of special connection
points physically located on it. Each connecting point is the end-point of at
most one connecting line, and has a specific orientation on the symbol,
which identifies it. (Points in Figure 2.1 which appear to have more than
one connecting line are actually small symbols with more than one connect-
ing point.) Each connecting line has a type (dotted, solid, etc.) and joins
exactly two connecting points.

The connecting points also have types, which determine what con-
nections can legally be made. There are four types in use in Figure 2. 1:

1) task transfer-input;

2) task transfer-output;

3) contents sensing; and

4) value collecting.
Others are possible, and this is one of the syntactic variables of the lang-
uage, In the language of Figure 2,1, connections are only permitted be-
tween a point of type (1) and a point of type (2), or between a point of type
(3) and a point of type (4). The former connection is shown solid, the lat-
ter dotted. For simplicity, only this connection syntax will be used in
this report.

Finally, each symbol has a set of locations for parameters. The
orientation of the parameter identifies it and its range (integer, real,
etc. ). The parameter may be supplied as any algebraic expression of ap-

propriate range.,
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It will be evident in the next section that the connection syntax is irre-
levant to the algebraic model or its translator., It provides only a protection
against unintended constructions. An algebraic meaning for the connecting
line will always exist, regardless of the point-types involved, but it may

represent nonsense if the connection syntax is invalid.



3. SEMANTICS OF THE PICTORIAL LANGUAGE

Having established a syntax, which defines the form which Markovian
network diagrams may legally take, the meaning which the diagram conveys
must be described. This meaning can be awkwardly conveyed in English,
as the description of Figure 2.1 testifies, However, our purpose is to des-
cribe this meaning in a formal algebraic form, to enable systematic trans-
fer of this meaning to the description of a Markov chain., In this sense, set

and function concepts are used as a meta-language with which to define the

picture language expressions. The English descriptions will be used to gain

insight into the forms which the algebraic descriptions must take.

3.1 AN ASSUMPTION—MEANING INDEPENDENT OF CONTEXT

One important property of the language which must be assumed is that
each symbol have a definable meaning independent of its position (or context)
in a network diagram. It will be seen in this section that each of the sym-
bols used in Figure 2.1, as well as many others which can be invented, can
be so described in English, Since this is the case, our plan to seek to do so
also in formal algebraic terms appears reasonable.

In order to distinguish between language elements and the things they
represent, it will be noticed that separate terms are used. Thus diagrams
represent networks, whereas symbols represent elements, connecting lines
represent connections, and connection points represent ports. (The phrase

"The meaning of a language element" is synonymous to the phrase '"a

11
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descripticn of the thing represented by the language element. ')

3.1.1 An Example

To give an example of a verbal, context-independent definition cf 2 sym-
bol, consider the following definition of a queue. The queue has an input
port, an cutput pert, and a contents sensing port. (For simplicity, the op-
eration of the contents-sensing port will not be treated here.) It has a
parameter, represented here by the symbel N, which indicates the maximuem
number of waiting tasks which can be allowed in the queue. Let the number
of waiting tasks be represented here by s. This queué is affected whenever
tasks are offered by the element connected at its input. If y, tasks are of-
fered at the input, and Xo tasks are acceptable to the element conn2cted at the
cutput, then SY4 tasks will be offared at the output. The number of tasks
actually sent te the cutput will be the smaller of S+Yy and Xg. The number
of waiting tasks is changed to N If 5+Y; ~Xq > N; to zero if $+Y 4 ~Ko < 0
and to S+Y, ~Kg © ctherwise, The rnamber of tasks acceptable to the gueue, at

its input, i3 N-g+X,.

&L

The number actually taken at the input is the smaller
of No-s4x, and vy, .
2 71
The gueue is also affected whenever tasks are requested by the sle-
ment connected at its output port, I Yo tasks are requested at the cutput,

and x #asks are available from the element connected at the input, then

gt
y2+N-s ta’sks will be requested by the queue from the element connected at
its input. The number of tasks sctually taken at the input will be the smai-

ler of v2+N-s and Xy The number of waiting tasks is changed to N if
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S+X, Y, > N; to zero if S+X =Yg < 0; and to s+x “Yq otherwise. The num-

. 1

ber of tasks sent to the output is S+X, if S+X =Y, §_ 0; and Vg if 5+X1-Vq > 0,

3.2 A FRAMEWORK FOR SEMANTIC DESCRIPTION OF SYMBOLS

The verbal definition of the queue is very wordy and somewhat repeti-
tious. The verbal description of the meaning of Figure 2.1 was also. The
key to reducing this wordiness, or at least putting it in some perspective,
lies in attempting to observe the entities which all elements have in com-
mon. Then, by naming these entities, the cumbersome phrases which des-
cribe them can be replaced by something more technical.

For example, the definition of the queue made frequent reference to
"the element connected to {(a port)." Such a reference is to be expected in
the definition of perhaps every element which has a port, unless the ele-
ments related by the connection are truly indepéndent of one another. Thus,

the term asscciate will be used to refer to an element connected to the ele-

ment under study. The term associate at (a port) can be used when speci-

fication of the port is necessary,

3.2.1 State Variables

Less trivially, the phrase ''the number of tasks waiting' describes the
status of the element at any particular time. It is to be expected that there
will be similar status variables for other elements, like 'the number of
tasks in service' for a multiple server element, or "the current phase of

service" for servers with Erlang distributed holding times. o Such
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variables, when they are present in an element, will be referred to as state

variables of the element, or sometimes as state components (for reasons

that will be clear in the next section). There may be more than one such
variable for a single element, for combinations of element should also be
legal elements of a system., To illustrate, Figure 3.1 demonstrates a pos-
sible equivalence, in diagram form, between a "holding server' and a queue
and server connected together. The state variables might well be jointly

the ""number waiting' and the "number in service. "

P P2 P, P2
SR = o)A

Figure 3.1 A "holding server."

The range of values which the state variable of an element can assume
is a set which is distinctive of the element. We call this set S the state set
of the element. It is also a property of the element, like the set P of ports
of the element. That is, an element e consists of a set P, a set S, and other
things., The members of S are either integers or integer vectors, depend-
ing on whether there is one, or more than one, state variable to the element.

Table I lists a set of useful symbols for a pictorial language for Mar-

kovian networks, along with their names, the semantics associated with
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their state variables, their state sets, and some other properties which will
be described in subsections 3.2.2and 3.2.3. A verbal description of the
meaning of some of these symbols will be given in section 3. 3 and in section

5.

3. 2.2 Parameters

The symbol N stood for "the maximum number of waiting tasks which
can be allowed in the queue' in the definition of the queue. This was an ex-
ample of a parameter. Parameters have many significances in elements.
Generally, they represent variables upon which the behavior of the element
depends, but which do not change with the status of the element. = As far as
this treatment is concefned, the parameters are constants. Other uses of
parameters are as mean values of probability distributions, probabilities
of branches, etc. Table I supplies the meanings of parameters, and the sets
from which their values must be taken, for some symbols.

Because they are constants, parameters will be ignored in the remain-
der of this report. Any property of an element can be treated, in general,

as a function of the parameters of the element without difficulty.

3.2.3 Epochs
Sometimes, when a symbol is being defined it is necessary to refer to
points in time when something occurs (according to a probabilistic rule).

Such a time is called an epoch.
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To illustrate, the definition of a server having exponentially distributed
holding times of mean 1/ will contain a statement to the effect "a service
completion occurs with probability intensity . whenever a task is present, ™
and other statements to the effect "whenever a service completion occurs. ...
The times of ""service completions' are epochs.

If epochs are points in time at which something occurs, ther. epoch
classes are sets of those points selected by some semantic identification.

If the probabilistic rule determining whether or not a particular time t is a
member of an epoch class is purely determined within an element, then that
epoch class will be termed an autogenous (self-generated) epoch class of

the element, and its members are autogenous epochs. The semantics of

autogenous epoch classes for the sample group of symbols are listed in a
column of Table I. They are all characterized by the fact that they can be
thought to occur spontaneously within the element, and are not "triggered"
from actions (or epochs) of the associates.

Such triggering epoch classes, which will be called exogenous epoch
classes, will be discussed in the section 3. 2. 4. Epochs and epoch classes

will be defined more abstractly, in stochastic terms, in Section 6.

3.2.4 Port Variables

A rereading of the definition of the queue will recall a whole group
of special phrases which refer to the influence of the associates of the
queue. These phrases, like '"the number of tasks acceptable to ..., " "the

number of tasks available from. .., " "'the number of tasks requested by..."
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TABLE I

SEMANTICS OF STATE VARIABLES, PARAMETERS, AND AUTO-EPOCHS

Symbol Name of Symbol Parameter State Variables State Set Auto-Epochs
"The maximum allowed number of - iy "
_-®—' Queue waiting tasks. " (integer) : N The number of waiting tasks. {0,1,...,N} None
y Exponential "The mean rate of service for "The numbeér of tasks in 0,1} " : o
Server the occupied server. ' (real):y service." [ Service Completions
"The mean rate of service per
Erl hase.' (real) :
.r\.l. — Serigg vI?The num(beer c))f p?;lases. " "The phase of current task." {0,1,...,N} ""Phase completions'
(integer) : N
""The mean rate of service per
I~ Multiple task.' (real) : vy "The numbgr of tasks " . N
2N Server "The number of servers." in service.|" fo.1,....N} Service Completions
Y (integer) : N
Poisson " . "
Y Arrival The rr‘lean rate of arrival. None {0} "Arrivals’
O Element (real) :y
—_— Exit None None {o} None
*_’ Merge None None {0} None
2 Overflow None None {o} None
"The mean rate of balk per
—-—< ; }—» . waiting task.' (real) : y " ‘ o
¥ QBi}::;g ""The maximum allowed num- tz;rsl;{es n'tlmbpr of waiting {0,1,...,N} "Balks"
ber of waiting tasks. " )
(integer) : N
] - " f
Random ""The a priori probability of
D: Distributor upward selection. ' (real):p None {o} None
-p |
Random "The a priori probability of
)‘* Collector upward selection. ' (real):p None {o} None
! T
""The number of sensed tasks to
N Blocker produce blocking.' (integer):N None fo} None
-1 .
Contents
é---» Adder None None {0} None
e | p
~”  Random "The a priori probability of an N (o}
D Switch upward setting. " (real): p one Sl
N
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or ''the number of tasks offered by' represent variables sufficiently gener-
alized that they continue to have meaning independently of the nature of the
associate. Indeed, it will be seen shortly that they will have a technical
meaning whenever the connection to the associate is syntactically allowable.

These phrases are used to describe what is '"seen' through a connec-
tion either when looking from the queue toward the associate or from the as-
sociate toward the queue. The first two, ''the number of tasks acceptable to

.'"and "the number of tasks available from...", appear to play a role sim-
ilar to that of the state variable when "...'" is replaced by ''the associate, "
Like state variables, they describe an observed condition of the element;
but in this case the condition is external to the element. Such a variable
will be called an exocondition (short for exogenous condition: a condition
having external origin) at the designated port.

An exocondition of an element e is determined by the nature of the as-
sociate (call it e') of e, as a function of properties or conditions observed
in the associate. This function, as yet not identified, is a property of e'.
Its value, for example, is "'the number of tasks acceptable to e'."" To e
it is external, to e' it is internal. We will call this function an endocondi-
tion (for endogenous condition: a condition proceeding from within) function
of e', and its values will be called endoconditions. Clearly, if e' is to
have exoconditions, then conversely e must also have an endocondition
function.

The fact that there is a single variable ""seen through the port" which,

in combination with those "seen through' the other ports, is all that needs
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to be known about the status of the rest of the network, is a very interesting
one. It is a property of networks which seems natural, but which is, in
fact, an assumption to be made about queueing networks. This assumption
will be made here. It implies that all influences between elements are ex-
plicitly shown by the connections between them, and that influences from
remote elements are achieved only through influences by them of the closer
elements, Networks having this property will be called explicit. It ap-
pears that explicitness of a network is a necessary condition for the exis-
tence of a context-independent definition of elements.

Earlier we referred to epoch classes whose probabilistic rule of oc-
currence was external to the element under study. An example of this is
the time-point represented by the phrase ""'whenever tasks are offered by
(the associate)" in the definition of a queue. Such an epoch class is asso-

ciated with a port and is called ar exogenous epoch class (or exo-epoch

class) at the port., Obviously, the associate must define this epoch, which

it does by an endogenous epoch class. In English descriptions, one sees

"'whenever (epoch) and if (condition) then tasks will be offered. "

Variables representing '"'the number of tasks offered by (the associ-

ate), " indicate an identifier of the specific interpretation -attached'to the
action resulting from the epoch and will be called exocontrols for the ele-

ment. The exocontrol of the element is determined by an endocontrol

for the associate, which is a value of an endocontrol function, The "con-

trols' always classify what is to happen when the corresponding epoch occurs.



20

It should be clearly noted that the two alternate phraseologies for each
of our types of variables are distinctly associated with input and output ports
(i. e., the "syntactic type' of the port), respectively. This is made clear in
Table II, which tabulates the semantics. It is also clear from Table II that
the endocondition of an input port of an element has the same meaning as
the exocondition of an output port of its associate, and vice versa; and that
this similarly holds true for -controls and -epochs. This indicates that when
inputs are connected to outputs, the corresponding variables always have
the same meaning, and that the eight variables (four for each port) in the
connection reduce to just four distinctions.

In the syntactic description of section 2. 2, two additional types of con-
nection points were described, known as contents sensing and value collect-
ing points. These connection point types were used in Figure 2.1 as part of
the mechanism for describing blocking. They conceivably have other uses
as well. Since contents sensing ports can only be connected to value collect-
ing ports, the semantics of their port variables are interrelated in the same
manner as the input and output ports: endoconditions of an element meaning
the same thing as the exoconditions of its associate, etc. The semantics of
these two port types are summarized in Table III. The controls were omit-
ted because only one action can result from the exo-epoch. Thus the endo-
control and exocontrol have no role and can be considered to be always zero.
Similarly the cases indicated by a blank in Table III have no role to play in

the sample vocabulary of the pictorial language, and are zero. Of course,
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TABLE II

SEMANTICS OF INPUT AND OUTPUT PORT VARIABLES

Port Type

Input Port

Output Port

Endocondition v

Exocondition x

Endoécontrol w

Exocontrol y

Endo-epoch

Exo-epoch

"The number of tasks accep-
table to (the element). "

""The number of tasks a-
vailable from (the asso-
ciate). "

"The number of tasks re-

quested by (the element. "

""The number of tasks of-
fered by (the associate). "

"When tasks are re-
quested by (the element). "

"When tasks are offered
by (the associate). "

""The number of tasks
available from (the
element), "

""The number of tasks
acceptable to (the
associate), "

"The number of tasks
offered by (the ele-
ment), "

""The number of tasks
requested by (the
associate), "

"When tasks are of-
fered by (the ele-
ment), "

"When tasks are re-
quested by (the
associate), "
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TABLE III

SEMANTICS OF CONTENTS SENSING AND VALUE COLLECTING PORTS

Port Type

Contents Sensing Port Value Collecting
Port

"The number of tasks repre-

Endocondition v sented by (the element). "

"The number of tasks
Exocondition x represented by (the
associate). "

"When the number of tasks
Endo-epoch represented by (the ele-
ment) changes. "

"When the number
of tasks represented
by (the associate)
changes. "

Exo-epoch
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an extension of the pictorial vocabulary to other symbols might display a

necessity for these variables to play a role.

The exocondition, endocondition, exocontrol, and endocontrol at a port

will be known as port variables. If we designate them by %, v, y, and w

respectively, their roles are suggested schematically by the arrows in Figure
3. 2, where their port is represented as a short horizontal line, and the ele-

ment as a box. This representation will be a handy aid in later discussion.

Figure 3. 2. Schematic of port variables

In general, there will be no mathematical need to associate meanings
like "number of tasks...' with these variables in order to define what we
mean by the word ""element." We assume only that one always connects
ports together whose variables have mufually compatible meanings. Never-
theless, in illustrating an element—writing out its detailed characteristics —
the semantics are helpful to the person who writes them out. Also, in de-
termining whether a certain connection should be allowed (i. e., in syntax
checking of the picture language), the consistency of these semantics is all-
important. But in combining elements, forming new ones, and in writing

out their formal mathematical descriptions the semantics are irrelevant.
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Even the question of whether a port is an input or output port can be ig-
nored. The ability to write algebraic descriptions of elements and to
combine them is the objective of this report, so that these semantic des-
criptions of the variables will assume a low importance. They will be

used only to illustrate, and sometimes to clarify.

3.2.5 Events

The verbal definition of the queue was expressed in two paragraphs.
The first paragraph described the action which resulted from an exo-
genous epoch at the input port, while the second paragraph described the
action which resulted from an exogenous epoch at the output port. The
totality of action in an element known to occur when an exogenous epoch

occurs will be called an exogenous event. Similarly, the action in an

element known to occur when an autogenous epoch occurs will be called

an autogenous event,

3.3 A DESCRIPTION OF SOME USEFUL ELEMENT TYPES

It will be useful now to define, verbally, several more of the ele-
ment types partially described in Table I. This will clarify some of the
fine points of behavior which might be confusing when these elements

are used as illustrations of the algebraic network model.

3.3.1 The Exponential Server
A service completion occurs with probability intensity u (the

parameter; see Table I) whenever the number of tasks in service is
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unity. When this occurs (an autogenous epoch), and the number of tasks
acceptable to the associate at the output is zero, the task simply resumes
service and no further action results from this epoch until it completes
again. If the number of tasks acceptable to the output associate is non-
zero, one task is offered to it. If, in this case, a task is available from
the input associate one task is requested and the state remains unchanged
(it was at unity). If a task is not available, the state is set to zero.,

Whenever tasks are offered at the input and the state is unity, the
number of tasks acceptable to the server is zero and no further action
results. If the state is zero, one task is acceptable to the server, and
the state is increased to unity.

When tasks are requested by the output associate, no tasks are
available from the server, and no action results. The state remains

unchanged.

3.3.2 The Poisson Arrival Element

An arrival occurs with probability intensity A. When this occurs,
one task is offered by the arrival element at the only port (which is an
output). The state is always the same. When tasks are requested by
the aksociate, no tasks are available from the element, and no action

results.

3.3.3 The Random Distributor

When tasks are offered by the input associate, they are offered
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at the outputs in a proportion determined as follows: A two-dimensional
random walk experiment is conducted, with the probability of moving up-
ward being p, and the probability of moving to the right being (1-p). When-
ever the vertical coordinate reaches the number of tasks acceptable to
the upper output associate, or the horizontal coordinate reaches the num-
ber of tasks acceptable to the lower output associate, or the sum of both
coordinates reaches the number of tasks offered by the input associate,
the experiment stops. The coordinates indicate the number of tasks to
be offered to the output associates. If the process is resumed until one
of the first two conditions are met, then the sum of the coordinates indi-
cates the number of tasks acceptable to the element at the input,

A similar strategy determines the result of a request for tasks

by one of the output associates.

3.3.4 The Exit
When tasks are offered at the input port, the number of tasks

acceptable by the element is infinite, No change in state occurs.



4. DEFINING A NETWORK MODEL

Since diagrams represent networks and symbols represent €lements,
and a diagram contains a collection of symbols, it is reasonable to suppose
a network contains a set of elements. The discussion of semantics in the
previous section has shown (or, at least, postulated) that it is meaningful
to r_efer to elements in the abstract, without concern for their context.

For this reason, one can indeed speak of a set 5 of elements.

Furthermore, if we denote by ¢’  the union of the ports of all the
elements of é , then a connection can be thought to consist of a pair of
distinct elements of @ . The connection syntax in the pictorial language
provided that each connection point would have at most one connecting line.
Thus, the set C of connections can be termed a function mapping f) onto
J) . Moreover, since "pl is connected to pz" implies also that "p‘2 is

connected to Py " the connection function C is obviously its own inverse.

We shall therefore postulate that a Markovian network N consists of
a set 5 of elements, and a self-inverse function C, called a connection
function. Or,

N =(5,0. (4.1)

Naturally, the task now is to find a suitable definition for an element
e in 5 It will be seen in the next section that an element consists of a
set of states, a set of ports, a set of autogenous events, and a set of exo-
genous events. The form which these latter two sets must take for the

meaning conveyed to be sufficiently general will also bé described.

27
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Section 6 will show that the meaning conveyed is the correct one by firmly
relating this model to the Kolmogorov equations of the underlying Markov

chain.



5. ELEMENT REPRESENTATION

In this section we heuristically construct a suitable algebraic defini-
tion for an element. By successive examination of examples of elements,
and of what we mean verbally by them, we will build up our model into a
fairly complicated mathematical object. This constructive approach is
taken in order to concretely explain the need for each feature of the model
which is included. The true justification of the model as a consistent
mathematical object will be treated in Section 6 where the definition will
be related to the underlying Markov chain, and in Section 7 where the
""connection" operation is defined. Thus, as far as mathematical develop-
ment is concerned all but the last subsection of this section could be omitted.
It is offered to improve credibility of the model, and to support the neces-
sity of its complexity. It also illustrates many of the definitions in more
practical terms.

Throughout this discussion, the semantics of Tables I and II will be

used for the port-variables and the epoch classes.

5.1 STATES AND PORTS

Associated with an element e of a queueing network are two sets:
a set of ""states'" S and a set of ports P. The set of states is the set of
possible values of the state variables of the element. Thus each member
of the set of states defines a possible condition of the element defined.

Each port identifies a possible source of influence upon the element by

29
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another element. A port p of the network is in the port set P of exactly
one element e ¢ é . Recall that a port was described as a point to
which exactly one ""connection' can be made.

The next order of business is to substitute a more precise defini-
tion for the relatively vague definition given for autogenous, endogenous,

and exogenous events.

5.2 AUTOGENOUS EVENTS
An autogenous event for an element e has been defined in Section
3. 2 as the action of an element which occurs when an autogenous epoch
is known to have occurred. Let Ae be the set of autogenous epoch tlasses
for-element e, which may be empty. Then for each Ae Ae’ there is an

autogenous event gA, and for the element e there is a set of these
= = {gMaen ) (5.1)
e ’ e

which is empty if Ae is empty.

The purpose of the autogenous event is to describe the kind of infor-
mation given in the verbal description of the action in the server when a
service completion occurs or in a Poisson arrival element when an arri-
val occurs. This includes a description of the endogenous epoch classes
generated, the endocontrols and endoconditions which play a role, the
change in the local state which occurs, and the probability law which
governs the epoch. These will in some way be dependent upon the iden-

tity of the epoch, the current local state, and the current exoconditions
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and exocontrols.
All this will become more evident with examples. Consider first the
element which presents the autogenous event in its purest form, the element

used to describe a Poisson arrival process having mean rate of arrival .

5.2.1 The Poisson Arrival Element

This element was used in Figure 3.1 at the far left of the diagram,
and was verbally described in Section 3. 3. The graphic symbol used to
describe it in network diagrams is shown in Figure 5.1. It has a single
port (which is an output port) and a single local state; so that we might

write

(5. 2)

Figure 5.1

Furthermore, there is a single class A of autogenous epochs, corres-
ponding to the times when an "arrival'" occurs.  These epochs occur
in any time interval of duration At with a probability yAt, when At is

sufficiently small. (This is a property of the Poisson process.) Thus
one says that epochs in A occur with a probability intensity . Each

epoch produces the effect of generating an endogenous epoch class
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(indicating an "offering of tasks') at the port p, with an endocontrol (indi-
cating ""the number of tasks offered') which is unity. There is, obviously,
no change in local state possible.

We can note this description symbolically by saying that the auto-
genous event g" is a quadruple

EA = (p,1,0,7) (2. 3)

indicating that the epoch causes an endogenous event at port p, with an
endocontrol 1, a final state 0, and it occurs with probability intensity y.
The picture presented here, however, is too simple. A more real-
istic idea of the form that an autogenous event should take can be seen by
examining the exponential server. (For now, we are only concerned with

its autogenous events.)

5.2.2 The Autogenous Events of the Exponential Server

It is evident from the symbol for this element (Figure 2. 2) that this
element has two ports, one input and one output. Let the state 0 repre-
sent the idle state, and 1 the busy state. Thus

+ S = {0,1} (5.4

Figure 5. 2
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The only autogenous epochs are the ''task completions;' which have a prob-
ability intensity y when the state is 1 and probability intensity 0 when the
state is 0. This illustrates that it is necessary to regard the probability
intensity of an event as a function of state. Further, each task comple-
tion can generate endogenous epochs at both ports 1) and Pgs since it may
cause either an offering of a task at its output, a request for a task at its
input, or both.

The endocontrol at these ports and the state resulting when this
epoch occurs will, in general, depend upon the exoconditions observed at
that time. If "the number of tasks acceptable to" the associate at Py is at
least one, then it is known that the completed task can be sent, and there-
fore that a task can be requested from the associate at p;- In other words

if the exocondition X is positive (x2 > 0), then the endocontrol w, (''the

1
number of tasks requested'") is unity. Otherwise it is zero. However, re-
gardless of ''the number of tasks acceptable to'" the associate at port Pgs
a task can be "offered" through Py- That is, Wo = 1. Clearly, the endo-
controls (Wl’ wz) must be treated as functions of the exoconditions (xl, Xz)a
A little consideration of the above discussion should bring the conclusion
that the resulting state must also depend upon the' exoconditions (xl, x2)a
Analogously to Eq. (5.3), the above discussion could be described

symbolically by saying that the autogenous event 57‘ of this element is a

quadruple

gl = ({pl’ pz}, B, g 1) (5. 5)
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where 8 is a vector valued function of (xl, X,) whose values are the values

9)
of the double (wy, W) = (B (x;,X,), By(Xy, X))

0 when x2 =0

Bl(xl, Xz) = (5 6)

1 when x2 >0

!82(X19 X2) =1
where g is also a function of (xl, xz):

0whenx1=0andX2>0

glx;) Xo) = (5.7)
1 otherwise
and where | is a function of state s ¢ S:
O whens =20
uis) = (5. 8)
v when s = 1.
This quadruple indicates that the autogenous epoch causes endogenous
epochs at P; and Py with endocondition given by Bl and ‘82’ a target

state given by g, and that it occurs with probability intensity given by .

5.2.3 A General Definition

The similarity between Eqs. (5.3) and (5. 5) was, of course, inten-
tional. Their mathematical form is identical if, in (5.3), we replace p
by { p}, 1 by the unity function, 0 by the zero function, andy by a con-

stant function (all of appropriate domain). The two examples are sufficient
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to motivate the general (abstract) definition of an autogenous event given
below. It should be noted, however, that neither example had more than
one autogenous event, even though such a situation is possible. Thus, in
addition to the sets S and P, a set = of autogenous events must take a
place in the definition of an element.

The definition below also takes cognizance of some other possibilities
in the forms of the functions which were not demonstrated in the examples.
For example, it is quite certainly true that endocontrols can take on values
greater than unity. How else would such things as bulk arrival or service
be described? The philosophy followed is to keep whatever usable general-
ity appears inherent in the examples and notation.

In general, every autogenous event g>‘ can be defined in a quite nat-

ural way as a function of s € S, whose values consist of quadruples

£ = @8, ) (5.9)

where the components are defined as follows:

1. The endogenous epoch set QA is a set of ports, QA C P at

which endogenous events are identified.

2. Let J*=1 xI x...xl ,Where{p,pz,.“,p}QQA, and
Py Py Py 1 n N
where Ip= {0, 1,2,.. } for all pe P. Then the endocontrol function S S

is a function on f A to Jx, for each s ¢ S. If we write this function out

as
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W sW_seee,W_ ) = B(X_ X y000,X_ ) (5.10)
" Py p,  "sTp P P,

then wp represents the endocontrol at port p, and xp represents the exo-
condition at port p, for all pe¢ QA‘,

3. The target state function g)ls is a function on JA to S, for each

s € S. It represents the target state as a function of the original state and
the exoconditions at the ports in QA‘, In other words gs(xpl, xpz, ceoy xpn)
is the value of the target state when the element is originally in state s and
sees exoconditions x 1, cooy xp at ports Pyseees Py respectively.

4. The probabilvity intenrslity uxs is a non-negative real number. It
represents the probability intensity of the occurrence of the epoch gener-
ating the autoger.cus event 52\, as a function of the original state.

It remains to be shown, in Section 6, that this definition is unam-
biguous. It also remains to be shown that it is sufficiently general to
suit all potential needs within specified assumptions. The latter, unfor-

tunately, appears to be only provable by experience. Nevertheless, the

question of gererality will also be explored in Section 6.

5.3 EXOGENOUS EVENTS

An exogenous event for an element e is that cbject which identifies
the effects ‘upom e observed when an exogenous epoch occurs at one of its
ports. A more detailed and precise definition for exogenous events is
now sought. |

The epochs which determine such events are defined by autogenous
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events in other elements in a network. They are observed in the element
e only by the occurrence of an endogenous epoch class in an associate of e.
The appearance of an exogenous event at a port of e obligates e to
define an endocondition at that port which serves as an exocondition to the
adjacent element. It also requires the specification of the observed effect
of the epoch upon e. The effect may be either the generation of endogenous
epoch classes at other ports, or a change in state, or both. A further ex-
amination of the exponential server element will help clarify these repre-

sentational needs.

5.3.1 The Exogenous Events of the Exponential Server

We observe that an exogenous epoch for this element is the "offer-
ing of tasks'" into port Py- The first necessity jis to define the endocon-
dition vy the "number of tasks which can be accepted by e, ' as it is ob-

served at one of these epochs:

vy = al(s) = 1-s, allseS (5.11)

where S = {0, 1} as before. This indicates that a task can be accepted
only if the server is idle. We further observe that no endogenous epoch
classes are generated by this epoch, and that the state will increase from
0 to 1 whenever the exocontrol Yy (""the number of tasks offered by the
associate') at port Py is not zero.

This description can be symbolically noted by saying that this exo-

genous event Cl is a triple
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Cl = ({p1}7a19gf1)? (5.12)

signifying that the epoch class is determined from port Py that the endo-
condition at p, is given by the function ay (Eq. (2.11)), and that the tar-
get state after the epoch occurs will be given by the function g
0 vy = Oands =0
g (s,y¢) = (5.13)

1 Yy > 0or s=1.

We can also observe that a second exogenous epoch class for this
element is the ""requesting of a task' by the associate at port Py- How-
ever, since a server can only transmit tasks at its output during '"job
completion' epochs, the consequences of the request are simple to des-
cribe: an endocondition of 0 is always shown and there are no endo-
genous epoch classes or changes in state. This exogenous event Cz

could be describad hy the trigle

tz = (({pz}s 0, gz) (5" 14)
where
gz(s) = 8

using the same notation as for Eq. (5.12).

The description used in Eqs. (5.12) and (5. 14) does not take ac-
count of the possibility that an exogenous epoch class may generate an
endogenous epoch class at a port other than the one defining the epoch.

This possibility gives rise to more complexity in the description of an
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exogenous event, and is well illustrated in the attempt to describe the be-

havior of the "queue' element.

5.3.2 The Queue

This element, whose symbol appears in Figure 5.3 must accept inputs
of groups of tasks and hold them until they are requested (in groups) from
other elements. It has two ports, an input (pl) and an output (pz). Its
state is described by the '""number of waiting tasks present, ' and is bounded
by a constant, N. The queue is entirely controlled from outside, having no

autogenous epoch classes and thus no autogenous events. Thus,

P = {p; Dy
s = {0,1,2,...,N} (2.15)
E o= ¢

Figure 5.3

The exogenous epoch at port Py is the "offering of tasks by the asso-
ciate." If an element connected at Py "can accept' any of these tasks,
they will be passed on. Thus, the exogenous epdch at p; causes an endo-
genous event to be generated at Py- The endocondition Vi (""the number of
tasks acceptable') at Py and the target state g1 ("the number of waiting

tasks'"), will depend upon the value of the exocondition Xq (""the number of
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tasks acceptable') at Py and the exocontrol A ("'the number of tasks of-

fered') at p;- In fact, then, we can write

vy = al(s9x2) = N-s+x (5.16)

2
signifying that the number of tasks acceptable at Py is the capacity of the
queue, less the number already present, plus the number which can be

passed on through Py We can also write
gl(s, X gy yl) = min (N, max(0, s+y1-x2)) (5.17)

signifying that the number in queue after the epoch occurs is the number
present before the epoch, plus the number offered by the associate at the
input, less the number acceptable by the associate at the output (but at

least zero and at most N). The endocontrol W, ("'the number of tasks of-

fered') associated with the endogenous epoch class at p, can be written
Wy = ’BZi(S’ yl) = 8 +y, (5.18)

signifying that the number offered to the output associate. is the number
in queue plus the number offered by the input associate.
This exogenous event is considerably more complicated than the

first (i.e., Eq. (5.12)), but it can be described by the quintuple

& = (Upgh{pghays By ) (5.19)

signifying that the epoch is determined from port Py» that this epoch gen-
erates an endogenous epoch class at Py with an endocontrol given by the

value of the function 3,, that the endocondition at p, is given by the value
2 1
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of the function @, and that the state immediately after this epoch is given by
the value of the function g The triple used in the previous example can be
expanded to a special case of this more general form.

The second exogenous event of the queue describes the effect of an

epoch determined at port Py representing 'a request for tasks by the asso
ciate at Py ."" The endocondition Vg endocontrol L2E and target state g9

for this event are analogously determined by the equations

Vo = az(s,xl) = 5 +X (5. 20)
gz(s, X{ yz) = min(N max(0, s - Vo +x1)) (5. 21)
Wy o= Bl(s,yz) = N-s+y2 (5. 22)

using an obvious notational convention for the subscripts. This event §2

is described by the quintuple

5.3.3 A General Form (Deterministic)

In the examples, there has been at most a single port identifying
the source of an exogenous epoch. If we assume that this will always be
the case, then the set of exogenous events are in one-to-one correspond-
ence with the set of ports. This suggests that a more efficient format for
the description of exogenous events would be as a quadruple which is a
function defined on the set of ports P, rather than as the quintuples used

in Eqs. (5.19) and (5. 23).
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If we adopt this convention, then there is a single exogenous event

function ¢° S defined on P. Attempting to provide enough generality in the
form which this function takes (general in the same sense as our previous
definition of the autogenous event function), this exogenous event function

would have to take the form of a quadruple

PP P D
.= @, 8, e%), pe P ses (5. 24)

whose components are defined as follows:

1. The endogenous epoch set Qp is a set of ports, Qp C P at which

endogenous events are generated by Cp g

2. Define an integer space Jp by Jp = Ip xIp Xa. ,xIp - where
1 2 n
{pl, ooy pn} 2 QP, and where Iq = {0,1,2,...} for all q ¢ P as before.

p

Then the endocondition function « S is a function on Jp to Ip for each

pe P, se S. If we write this function out as

v_=aP (X ,X_ ,..00,X_ ) (5. 25)
p sTp’p, D,

then vp represents the endocondition at port p, and xq, qe€ Qp represents
the exocondition at port q.

3. The endocontrol function 6P is a function on Jp xIp to Jp

for each pe¢ P. Writing the function out as

oow. ) = AP LK ..,y (5. 26)

(w_,w
n S pl Py Py P

IR PURE
then wq, qce€ Qp , represents the endocontrol at port q when the element is

in state s and "excited" by an exogenous event at port p, yp represents the
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exocontrol at port p, and x,y, Y € Qp, represents the exocondition at port y.

p

4. The target state function g S is a function on Jp xIp to S, for

each s ¢ S. Thus gp S(xpl, xpz, oo xpn, yp) is the value of the target state
when: (a) the element is in state s, (b) an exogenous event arrives at port
p, and (c) the element sees the exoconditions x_ , xpz, coes xpn at ports

Dy -+« P, Tespectively (where {pl, e, pn} = QP as before), and Yp is the
exocontrol at port p.

This rather formidable object Cps is, as we have seen, a natural re-
sult of attempting to find a description which fits the exogenous events of
the foregoing examples in some abstraction. It is evidently complex be-
cause our intuitive concept of an exogenous event is surprisingly complex.

Worse yet, as will be seen in the next section, even this is not quite gen-

eral enough.

5.3.4 Random Effects—The Random Switch

If a state and exogenous epoch is given, then the endoconditions re-
turned, the endogenous epoch classes generated, the endocontrols, and |
the target state may not all be deterministic. Rather, these variables
can be random variables not totally determined by the particular exogenous
epoch class which otherwise identifies them. This requires a further gen-
eralization of the mathematical model for an exogenous event.

A very simple example of this problem can be found in the random
switch symbolized in Figure 5.4. The operation of this switch is as fol-

lows:
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7
N

Figure 5. 4. The random switch.

Fach time a task or tasks are offered at its input, or requested from an
output, the switch is set. With probability r it is set between the input and
the upper oufput, and with probability 1-r it is set between the input and
the lower output. After the switch is set the tasks flow, to the extent pos-
sible, from the input to the selected output.

This element has three ports, a single state, and no autogenous

events:
P = {poy p13 pz}
s = {o} (5. 27)
= o= ¢

An exogenous epoch determined at port Py (the input) has two possible ef-
fects. With probability r it produces an endogenous epoch class at Py
returns an endocondition which is equal to the exocondition at Py sends
an endocontrol equal to the exocontrol at Py and remains at state 0. In

the notation of Eq. (5. 24)

Pop P Py Py
a B

B ) (5. 28)

b

S

where
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Q = {pl}
Py

Vo = @ (&) = x
Py

wy o= B (XY =y,
Py

(5. 29)

With probability 1-r, on the other hand, the roles of Py and P, are re-

versed so the exoevent

where

is

ApO /\po /\PO APO

< S = (Q y & S’B S

/\po
Q = {pz}
A /\PO

Vo = @ (X A Xy

N /\po
W2 = B S(XZ’YO) = yO

/\po
g S(XZ’yO) = 0.

/\po
» &

S

)

(5. 30)

(5. 31)

A handy notation would treat the exo-event set Z for the element

as a set valued function on P whose value consists qf .exo-events over.

an index set which is distinctive for each port.

Then the "exoevent" ¢

with the probability r,

Thus

z (p) = {¢%0e i} pe P

p

and written

(5. 32)

OS corresponding to Eq. (5. 28) would be coupled
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o

o o,
_ 1 1 1" "1
¢ g =@Q%a "B g ,T)
/\po
where Zp contains 0y- The "exoevent" € “(s) becomes
0
o g, O o o
2 2 "2 2 2
C s (Q s & S’B S;g S’(l'r))

and we can write Zpo = {01, 02}.

The exo-events for the other ports are similarly derived, as

e
—
n
~

|

= ({pgh a'ys 8'4, 0,7)

(¢y 0, 09 0? (l'r))

vE

—
wn

~—
I

where Ep = {0,, 04} , 0 represents the zero function, and where

1
a'y(xg) = xp

and

BYI(XO’ yl) = yl°

For port p, the roles of p, and p, above are interchanged.
POTL Py . 1 2 &

5.3.5 A General Form (Stochastic)

(5.33)

(5. 34)

(5. 35)

(5. 36)

As implied by the foregoing example, the exogenous events of an

element can be described by a set Z (p) = {Co: o€ Ep}, p € P with each

event Co being a function on S of the form

o o O 14 o o
g = Qa0 B g T ) SES

(5. 37)

where Qo, aos, BUS, and gos are defined exactly as they were in Section

5. 3.3, except that p is now defined as the port p such that o€ Ep. The
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symbol nas represents a function whose range is in the interval [0,1]. Its
domain may be quite complex and will be treated in full after some addi-
tional theory is presented in Section 6. A set-valued function Z, mapping
a set of ports onto a set of exogenous events, will be called an exo-event

set.

5.4 FULL DEFINITION OF AN ELEMENT

With the description of the state set S, the port set P, auto-event set
Z, and the exo-event set Z for an element e, we appear to have described
all of the technical meaning represented by the element. We now turn this
around and define the element e as the collection of four such sets as de-

fined. In other words, we let
e = (S,P,E,Z) (5. 38)

This completes our definition of element and network, except for the
tricky considerations regarding nas in the definition of the exoevent, which
will be clarified later.

To summarize,

(1) S is a set of cbjects called states

(2) P is a set of objects called ports

I

(3) = is a set of objects called autogenous events
(4) Z is a set valued function on P to sets of exogenous events

(5) An autogenous event ¢ is a quadruple, a function on S

£, = QBygHu) ses
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where

(a) Q is a set of ports, called an endo-epoch set.

(b) Bs, for all s € S, a function of as many integer variables

(c)

(d)

as there are ports in Q (representing the endoconditions

at these ports). Its range has an equal number of (integer)
components (representing the endocontrols at the ports).
g for all s ¢ S, is a function of as many integer variables
as there are ports in Q (also representing the endocondi-
tions), into the set S. It represents the target state of the
event,

My for all s € S, is a positive real number (representing

the probability intensity occurrence of the event).

(6) An exogenous event ¢ is a quintuple, a function on S

CS = (Q)as9 BSS gssﬂs), seS

where

(a)
(b)

(c)

Q is a set of ports, called an endo-epoch.

Qg for all s € S, is a function of as many integer variables
as there are ports in Q (representing exoconditions at these
ports), into the set of nonnegative integers (representing
the endocondition at the port p for which Cs e Z(p)).

BS, for all s € S, is a function of as many integer variables
as there are ports in Q, plus one (representing the endo-

conditions and an exocontrol at p defined above.) Its range
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has as many (integer) components as there are ports in
Q (representing the endocontrols at these ports).
(d) 8o for all s € S, is a function of the same variables as BS
(above) into S. It represents the target state of the event.
(e) L for all s € S, is a function of the same variables as BS
(above), as we shall see, and is onto the interval [0, 1].
It represents a probability.

Table III formally lists the defining sets and functions for some of the
more common elements. It should be, for the most part, self-explanatory,
except for a few notational conventions. The parameter symbols (y, r, N)
from Table I are used without further explanation. The subscript '"1" on
a port is always for an input port, while a "2" is for an output port. More
than one port of a type are distinguished by primes. The exoconditions and
exocontrols use the main symbols x and y as usual, with the subscripts and
primes borrowed frcm their respective ports. Endocontrols, as vectors,
are ordered in the same sequence as the elements of the corresponding
endoevent set. An asterisk (*) is used where a function is degenerate,
having null range and domain, as when an endocontrol vector has no com-
ponents. ’ For a set of numbers A, and any variable a, the symbol Ia((A)

represents the function which has unity value whenever a is in A, and is

%
An alternate notation is to use the symbol § to denote the function having
null range and null domain.
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1

ELEMENT DEFINITIONS

Autogenous Events 526 =

Exogenous Events Cg

%;;r:ent State Set 1I;ort Set Endoexent Efdocontrol Tgrget State Intensity q Endoevent Egdocondition Egdocontrol Tg.rget State Pgobability
o
set @ AAX) g (x) ux) Set Q a9(x) 8%, 3,) glx.v) w
N
[ g ! Py {pz} N-s+x, S+Y4 [s+y1—x2] o 1
Queue 0,1,...,N; P, P None N ) N
1’2 Py {pl} S+, N-s+y, [s y2+X1]o 1
+
P , 1- * 1-I. (0pI (10 1
Server {0,1} [pys by Py ix Z(J ) L (J+)IX i ) Py : X s ' : yl({ hifoh )
Py 1 2 "s Py
Arrival | {0} {p,} {pyt 1 0 y Py | ¢ 0 * 0 1
Exit {o} {pl} None ) o o * 0 1
ol {p'z} X'2 yl 0 r
1 {pn } x" yl 0 (1-1’)
Random | 11 - None pr iyt X vy 0 r
Switch 15252 2 s N 0 (1-1)
* 0
pvzl ¢ r
{pl} X1 y'Z' 0 (1-r)
p; | {pyt x v} 0 1
oy {py} X vy 0 1
e X]
P} [v,/2]0"
x‘1+x'1' X1 V] .5
) 1 volyy/2l,
Merge {o} {p},pY, ot None P Xy
1’7142 2 o! %! 4x"! yz_[y /2] .‘
171 2 "o ]
xy 0 .5
Py X +xy [yy/2l, ]

1For notation, see text.
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zero otherwise, That is, L (A) is the indicator function of the set A. The
symbol J* is used to represent the set of positive integers {1, 2, ... }, so
that Ia(J+) has unity value whenever a is an integer greater than zero, and
is zero otherwise. For any variables a, b, ¢, the symbol [a]z signifies

the integer part of a not exceeding c¢ or lying below b. In other words

[a]g = min{b, max{c, int(a)}}. (5. 39)






6. THE NETWORK AS A MARKOV CHAIN

The pictorial language describes not only Markovian systems, but
also Markov chains. At this point the network model will be related to
the Markov chains, and will thereby be given a more rigorous foundation.
So far, the chief justification for our constructs has been that they seem
to parrot what one does in ordinary verbal description. This is, of course,
not an adequate basis for constructing a network model.

In this section, new probabilistic definitions will be given for many
of the concepts more loosely used in the foregoing develdpment of the
model. These new definitions, and the mathematical system they evolve,
represent still another "translation;'" this being the last one. Because
they are more precise, these definitions are also somewhat more general.
Nevertheless, the same terms and symbols will be used for the new as
for the old. To have created a whole new symbology would have been
still more confusing.

One major difference in the viewpoint of this section from the pre-
vious one is that the network is viewed as a whole, and then gradually
broken down into its component parts, rather than the reverse. This is
a consequence of the fact that Markov chains are not naturally broken
up into things like elements and connections, and so our development
must proceed from the well known theory toward a more conventional

view of Markov chains. Thus, the starting point is the entire network.

03
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6.1 THE KOLMOGOROV AND EQUILIBRIUM EQUATIONS

The only concern of this report is with continuous-time, finite
Markov chains with stationary transition probabilities. This model
consists of a one parameter family of random variables { Zt’ t > 0}

having the preperty that, for any real t t, such that 0 < tl < tz

vty s
< t3, and for any Zys Zgr Zg in the range of Zt’

pr{Z, =212, =2, Z, =2z,} = pr{Z, =12z,lZ, =z.}, (6.1)
t3 3 tz 2 tl 1 t3 3 t2 2

the latter being a function of Zgs Zgs and (t3—t2)° The range of the ran-
dom variable Z, is called the state set, will be denoted by g{ and will
always be finite here.

It is a well-known {cf. theorem II.18.3 and corollary IL.19. 2 of
Ref. 1) property of finite-state continuous-time Markov chains with
stationary transition probabilities that the process is completely deter-

mined by the transition intensities, defined as

A d T
L 5 priz, = iz, = l}ltzo (6.2)

foralli je @{ . The transient state probabilities for this process
Piim where by definition pij(t) = pr{zt = jlzo = i}, are found from the

Kolmogoerov differential equations

The equilibrium state probabilities, s ie ¢é, are found from a solution
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of the system of algebraic equations

)

u.,.m. =
iex Nt

for all je d . It is these latter equations, known as the equilibrium

0 (6. 4)

equations, which the Recursive Queue Analyzer2 or similar algorithms
are capable of efficiently solving.

If the state set ¢< consists of a sequence consecutive integers
12,..., ns), then Eq. (6. 4) takes the familiar matrix form of a homd-
geneous set of equations

7U = 0. (6. 5)
However, the state can, in general, be regarded as an abstract ob-

ject and ¢£ an abstract set.

6.2 A VECTOR VALUED MARKOV CHAIN

For networks as treated here, the state will be described by a
vector consisting of a number of components (the state-variables of
all the elements). Thus, if Zt(l) is a queue length in the network,
and Zt(2) is the number of servers of a particular multiple server

which are occupied, and Zt(3) is some other queue length, etc., then

1) (@ (
Z, = (zt( ),zt( ),.“,zt n) t >0 (6. 6)

is a vector-valued Markov chain, which will be denoted by Z. Letting

S, be the set of possible values of Z,(k), then 4 C S xSpx...xS is

k 1772

the state set for Z. The " " symbol is used instead of the "="" symbol
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because certain combinations of the components may rnot be possible or
necessary. The components Zt(k), treated as random processes, will

be called process components, while Z P the vector, will be callad

simply the process. Each process component is a continuous para-
~meter, discrete state random process, but in general only the process
as a whole has the Markovian property.

The components Z«ék) correspond to the variables we called state
variables in the earlier sections, and are therefore identified with the
elements. Each component will be associated with exactly one element,
although an element may be associated with more than one component.
In general, samples of these components are defined only as elements

of their respective sets S, , and need not be assumed to be integers.

k?
(The example has been given that a state component may designate the
current pattern of paths established through an element representing a
switching network, these patterns having no direct correspondence to

numbers. ) Nevertheless, each compenent state set S, must he finite,

k
so it will always be possible to put the states in correspordence to in-

tegers.

6.3 EPOCHS
The role played by epochs is a vital one to the treatment of Mar-

kov chains as networks.
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6.3.1 A Definition

Each nonzero value of uij for i#j signifies that at any time when

Zt is in state i (i.e., when Zt has value i) there is a chance that Zt may
jump to state j. This chance is measured by the probability
pr{zt-:-At = llzt = i} = uijAt (6.7)

for At sufficiently small and i#j. (The value of uij for i=j is given by
1-pr{zZ .= i|Z, =i} = -u,At (6. 8)

for At sufficiently small. Since
Yuy = 0 allie A, 6.9)
] .
we will not be concerned with Uy~ it is readily found when all other uij
are known.) The value in time at which this jump occurs is an epoch of
the process. Thus uijAt represents the probability, given that Zt is in
state i at time t, that an epoch which takes i to j occurs in the interval
[t, t+At].

This object represents an abstraction of the concept of epoch
described in section 3. Let the sample space for the Markov chain
Z, be the set Q. Then, for each we Q there is a set T{w) of epochs
marking the times of all jumps in Zt(w)., Thus 7 is a set-valued ran-
dom variable. When one refers to the object ""completions of service
in server 3" or "arrivals at the input to queue 1,'" as was done in sec-

tion 3, one is referring to a subset of 7(w) for eachwe Q . An
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individual "completion of service'" refers to a member of this subset,

which is also a member of 7(w), and hence is also an epoch.

6.3.2 Epoch Classes

Let an arbitrary subset of 7(w) be represented as v{w) for all
we . Then v is a set valued random variable which is called an
epoch class. This, also, represehts an abstraction of the concept
of epoch class described in section 3. Phrases like ""completions of
service. ..'" identify epoch classes, in this more precise sense.

Epoch classes are not necessarily disjoint subsets of 7. For
example, a ''service completion of server 3 when switch 1 is in its
left position' identifies an epoch class, but so do a "'service comple-
tion of server 3" and "any occurrence when switch 1 is in its left
position.'" The first is, in fact, the intersection of the second and

third.

6.3.3 Partitions of the Epoch Set
Suppose, however, that the set r of epochs of {Z t} is parti-
tioned by a set ¥ = {v, OYRREE Vm} of (disjoint) epoch classes,

where

m
U Vk(w) = 7(w) (6.10)
k=1 :

and

Y (w) n Ue (W = ¢ (6.11)
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for all k; and k, in {1,2,...,m}, and for all we Q. Such a parti-
tioning allows Egs. (6.3) and (6. 4) to be rewritten in a very useful
form.

Let ¢ be a function representing the probability intensity of oc-
currence of an arbitrary epoch class y, given only that the process
is in state i. Thus

pr{ v N[0, Atlel .Zo??}

N A .
(AV, 1) = llm At K

At—-0

(6.12)

for all epoch classes v and all i ¢ eﬁ . Recall that, because of the
stationarity of { Z t}’ we are free to observe these probability inten-
sities merely at t = 0. To avoid the unsightly expression

"y n [0, At] = ¢," we shall henceforth (where vis any epoch class)
use the more graphic phrase '""voccurs in At'" to mean the same thing.
Thus

pr{voccurs in At| Zozi}

At

o) 2 lim
At=0

. (6.12a)

for all epoch classes v and allie¢ J . Furthermore, let h be a func-
tion representing the probability that the epoch, having just occurred,

results in a transition to j. That is,

h(s,i,j) £ lim pr{Z ,, = jlvoccurs in At and Z =1}, (6.13)
At—0

for all i and j in g/ We note, from Eq. (6.2), that
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A d e
u; = gz =ilzg =it -
Also,
pr{ZAt = j and voccurs in At| Zozi}
oy Dh(n 1,j) = lim AT (6.14)
At=0
and,

pr{ZAt = j and T occurs in AtlZO = i}
At

), ¢ ih(yi,j) = lim
VeEN ' At=0

(6.15)

since 7V is a finite partitioning of 7. We observe that for i#j it is im-
possible for ZAt to be equal to j when Zozi if some epoch did not occur

in the interval [0, At]. Consequently
pr{ZAt = j and T occurs At/ zZ, = i} = pr{ZAt = J|20 = i} (6.16)

for all At > 0 and all i#j. From this it is readily concluded that
Z oy Dhiyi,j) = u (6.17)
vVeEN J

foralli,je & , ifj.

What this means is that, for an arbitrary finite partitioning of

7, if the probability intensity ¢ of each epoch class in the partitioning

is known, and if the conditional transition probability (given the epoch

class) h is also known, the transition intensities uij are readily de-

termined. The next step is to relate the element properties rigor-

ously to a partitioning of 7, and known functions ¢ and h.
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6.3.4 The Autogenous Epoch Classes

The "autogenous epoch classes" of the network, first described
in section 3, are seen to constitute a partitioning of 7. That is, if each
autogenous epoch class for each element is represented by an epoch
class A ¢ A, then A is a finite set of disjoint subsets of 7 whose union
is 7. While this is taken axiomatically, it is reasonable to suggest
that because an autogenous epoch class represents occﬁrrences which
arise spontaneously, (1) every epoch must somewhere have a "spen-
taneous source, ' and (2) no epoch can have more than one "spontaneous
source.' The consistency between viewing autogenous epoch classes
as members of a partitioning A, and viewing them as representing
times whose identity is spontaneously determined within an element
becomes more acceptable when it is observed that each of the autogen-
ous epoch classes described in Table I has a probability intensity of
occurrence which is well known a priori. In other words, if X is an
autogenous epoch class of e, ¢}, i) is determined immediately when
the definition of the element is given.

From Eq. (6.17), uij is determined by

0 = D@, Dh(), 1, §) (6.18)
re A
where
h(\,i,j) = lim pr{ZAt = jIX occurs in At and Z, = i}.

At 0
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This function can be broken down further through the use of the exo-
genous epoch classes (and subclasses), and the epoch-trees, which

will be described below.

6.3.5 Exogenous Epoch Classes

Each port defines an epoch class representing, under the con-
ventions of Table II (section 3. 2. 4), either 'the times when tasks are
offered by (the associate)" or 'the times when tasks are requested by
(the associate).' These were called exogenous epoch classes. Let
pp denote the exogenous epoch class at port p. (It should be noted
that every epoch in an exogenous epoch class must also be in an auto-
gerous epoch class. That is, a ''task' may not be "offered'" unless
action was initiated elsewhere in the network.)

It has been observed (section 5. 3. 4) that an exogenous epoch
may not always produce the same effect as another exogenous epoch
in the same class. In different words, the exogenous epoch class pp
can be further partitioned to represent distinctions in the action which
results from its occurrence. Thus, a finer epoch class for the ran-
dom switch is "times when tasks are offered by the associate at the

input port of a rardom switch and the switch is set to its upward posi-

tion, ' and ""times when ... downward position." If pp is the exogen-

ous epoch class at that (input) port, then these two epoch classes

represent partitioning subsets of pp.



63

In general an exogenous epoch class pp at a port p will be par-

titioned into a set Zp of epoch classes. That is

U o=p (6. 20)
oe 2 P
p
and
01 N 02 = ¢

for all 01 and 02

in Zp.
6.3.6 Endogenous Epoch classes

To see how more detailed epoch classes are defined for a net-
work, let X be an autogendus epoch class of an element e. This epoch
class is known to ''generate" endogenous epoch classes at a number

of the ports of e, which are designated by the endo-event set Q}‘o If

QA = {pl, Doy v+ e pk}, then these endogenous epoch classes are syn-

onymous to exogenous epoch classes at the ports connected to Pys Py

cowsp—li.e., at ports p_ = C(pl), Py, = C(p2), ey D, = C(pk)° (The

significance of this ""generating' of exogenous epoch classes ppa, ppb,
oo ,ppz is that X is contained in each of these classes.) These
epoch classes are partitioned into the sets of epoch classes Zpa, Z'pb,

ooy Z)pz° Consequently there are a number of new epoch classes
generated by

v()x,oa,ob,“o,oz)zx ﬂoa ﬂob Neoo ﬂo*z

(6. 21)
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foreacho ¢ 2, 0,¢ 2 , ..., 0_€ Z_ . Inshort, there are as
@ a b Py z P,

many separately distinguishable epoch classes as there are combina-
tions of the partitioning subsets of the exogenous epoch classes.
Furthermore, each of these epoch classes generate endogenous epoch
classes at other ports of the elements of which they are a part. These

o. O o
are the elements of the endogenous epoch sets Q a, Q b, R A) Z in

their respective exogenous events. Intersections of the partitioning
subsets continue until no further endogenous epoch classes are gen-

erated.

6.4 Epoch Trees and Tree Structured Networks

This process of tracing out the endogenous epoch classes can
be made clearer with the aid of Figure 6.1. What is shown are boxes
representing the elements, solid lines representing connections, dots
representing epoch classes (located at the ports that give rise to
them, in the case of exogenous epoch classes), and dotted arrows
showing the ports in the endo-event sets of the epochs at their tails.
The epoch classes o, Uq) Og, 04 ATE members of the partitionings
Zpag Zpb9 ch, Zpd respectively. Thus, the diagram represents a
"smallest'" epoch class of the network. Others would result from
other combinations, but since the Qg sets would be different, the
"shape' of the diagram would be different for each. Each such epoch

class will be called primitive , and to each there will correspond an

epoch graph such as Figure 6. 2.
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Figure 6.2

An epoch graph fragment corresponding to figure €. 1
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It will be assumed that no graph linking the epoch classes in this
manner closes. Hence the epoch graphs are trees, and the networks

meeting this restriction will be called tree-structured. This restric-

tion can be relaxed at the expense of further complication of the models.
However, such a ger zralization is beyond our present scope.

A tree-structured network can have a closed diagram. The
epoch graph for each primitive epoch class may be open, even though

the graph for all of the primitive epoch classes superimposed is closed.

6.6 THE PROBABILITY INTENSITY OF A PRIMITIVE EPOCH CLASS
The set of all primitive epoch classes is itself a partitioning of

the epoch set 7. Thus, if we let v now represent (generically) a prim-

itive epoch class, and let?Z now represent the set of all primitive

epoch classes, then from Eq. (6.17)

= L el Dh(v, i), (6.17)
Ve
where
A pr{v occurs in At| Z, = i}
ov,i) £ lim 7 (6.12a)
At-0

represents the (conditional) probability intensity of the occurrence of

v, and where

h(v,1,j) £ lim pr{Z,, = ilv occurs in Atand Z_=1i}. (6.13)
At=0

If Eq. (6.17) is to be used constructively, ¢(v, i) must be determined

for all ve andallie J , and it must specifically be determined
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in terms of probabilities and properties of individual elements in the
network. The event "voccurs in At" is equivalent to an event readipg

A 0’19 0’25, e O all occur in At,'" where A, 0 oy @J’m are the

17 0o+ °

‘epochs of the tree describing ». Consequently, ¢ can be treated like a
joint probability, and broken up by use of a conditional chain of the type
pr{voccurs in At| Zozi} = pr{X occurs in At| Zozi}pr{ol occurs in At|a
occurs in At, Zoa:i}
. pr{o'm occurs in At/ O qrener O
all occur in At; Zozi} (6. 22)
Let the ordering 01 Ogy e oer O used in Eq. (6.22) be any brdering

such that every epoch class (A, o om) is conditioned only by epoch

l,oao’

classes which they do not lead to in the epoch graph. For example, Fig-

ure 6.1 has just such ar. ordering for o, g Og; ! (Since the epoch

4 -

graph is a tree, such an ordering always exists.) Let (Z,), represent

t)k

the projection of Zt on the components of Zt for the element possessing

port Py and let ik represent the projection of i upon the corresponding

state variables of the element possessing port Py k=1,...,m. Finally,
let Py represent the exogenous epoch class at port Py and let @Vk be
the immediate predecessor of 0} On the epoch graph. Then we postu-

late the following property for the network:

. b
pr{ok occurs in Atioy 4,

= prio, oceurs in At, o'

.+, 0y, Aall oceur in At; Zo=i}

, (k) _.
 oceurs in At, Z “]fk}

. . . (k)_.
pr{o*k occurs in Atﬂpk occurs in At, ZO 'lk} (6.23)
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for k=2,...,m, and
pr{o1 occurs in At|x occurs in At; Zo=i}
= pr{o1 occurs in Atlp1 occurs in At, ZO(1)=11} (6.24)

1

Crudely, what this means is that:

(hoting that the predecessor of o, must be }).

(1) If we know the exogenous epoch class Py of which O is a part,

then a knowledge of the epoch classes which generated the exogenous

epoch class Py is not useful in determining the probability of 0 -

(2) If we know the state of the element of which 0, is a part, then

a knowledge of the state of the rest of the network is similarly useless.
In a similar vein, we also postulate that
pr{x occurs in At| Zo=i} = pr{) occurs in At/ Z0(0)=10} (6. 25)
(0)
where Zt t

associated with the element defining A, and io is the projection of i upon

is the projection of Z ¢ on the process components of Z

the corresponding state variables.

The conditions of these postulates were met by every element
proposed in Table I, and are a direct consequence of the so-called
"explicitness' of the network. Without this condition, the action of
an element would depend upon the character of other elements in the
network. It is interesting to note that this property is very similar to
the Markovian property, with the (partially ordered) epoch classes of

the epoch tree playing the role of the (totally ordered);timé axis.
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The probabilities of Eq. (6.23) and (6. 24) are functions only of

O and 1., sincep, can be directly found from O+ Thus, let w‘"k’ 1k)
represent this probability for all O in the epoch graph. Also let

@'(r, 10) represent the probability defined by Eq. (6.25). Then Eq.

(6. 22) becomes

QD(I/) 1) = 90'(7" iO)’//)(Ul’ 11)9 o0 °W)(Gmy im)) (b°26)

and each term is associated with a single element of the network.

6.6 THE CONDITIONAL TRANSITION PROBABILITY
In order to use Eq. (6.17) for the evaluation of the transition in-

tensities uij’ a formulation for determining

hiyi, ) £ lim pr{z A = ilvoceurs in at, Z =i} (6. 13)
At~0

foralli,je 4 and all primitive epoch classes ve 90 , must be
found.

This-precess is assisted by the creation of a new stochastic
process, for which the original Markov chain, { Zt} , is a projection.

A
Let {Z pt> 0} be this new chain, having components

bx W

(1) ()
Z,) 20X ;

t , where ( is the number of ports in the

t
(

network. The component X‘k) corresponds to the endocondition at the

port Py k=1,...,{, and is a random variable associated with each

port.

There are several additional graphs which it is useful to define,
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each having the same form as an epoch-graph but with different
labeling. If we relabel the nodes of Figure 6.2 with the ports to
which the endogenous epochs belong (i.e., the port p such that ge Zp
for each node o in the epoch graph) we obtain what will be called the

remote-port graph. If we relabel the nodes p of the remote-port

graph by the ports to which p is connected, the result is what will be

called the near-port graph. (The justification of the terminology s

should be clear from inspection of Figure 6.1.) Relabeling the nodes
with the endocondition at the remote-ports gives an endocondition
graph, and the endocontrols at the near-ports gives an endocontrol
graph. Finally, labeling the nodes with sets of process components

gives a state component graph. The significance attached to each of

these graphs, which are illustrated in Figure 6.3 for the example of
Figures 6.1 and 6. 2, will be explained shortly. The endocontrol W,
at port P, is a variable which identifies a set of epoch classes
{GW. ; W€ {09 1,2,.. }} which is another partitioning of the exo-
epo;h pp,{, where p’i is the (remote) port connected to the (near)
port p;- _

There is a special series of properties of networks which were
evident in the examples of Section 5. These have to do with the
necessity_for information about the state, events, or conditions of

elements remote from a particular element. It was clear that one

could take a fairly myopic view of each element while defining it.



(a) Remote-port
Graph

(b) Near-port Graph

(¢c) Endocondition
Graph

(d) Endocontrol
Graph

(e) State Component {Z(l)}
Graph <[4 Tee-

Figure 6.3 Graphs reiat:d to the epoci: grapa.
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This shows up as postulated properties for some of the conditional

probabilities analogous to those found for epoch classes. The post-

ulated properties are itemized below for a fixed v ¢ 7{ and a fixed

current state ZO:
Postulate 1

Postulate 2

Postulate 3

Postulate 4

The network is tree-structured.
The endoconditions not in the endocondition graph

A
are independent of all other components of Z

¢
The dependence of each endocondition in the ende-
condition graph upon endoconditions which are

not its predecessors in the graph is tofally deter-
mined by its immediate successors and its state
components. Thus, from Figure 6.3

pr{x(a) - Xalx(b) - Xb’ X(d) =X X(f) =X X(g) - Xg’

—od S
X(h) = Xp» Zﬂ=z, voccurs in At}
. (a) _ (b) _ (d) _ 3).
-pr{X mxaIX =Xy X "Xd’ Z0 = Zg,
yoccurs in At}. (6.27)

This property is similar to the Markovian property
with a partially-ordered set playing the role of the
time-axis.

The dependence of each endocontrol upon endo-
controls which are not its successors in the endo-
control graph is similarly totally determined by

its immediate predecessor, the state components,
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and the corresponding endoconditions. I.e.,
for Figure 6.3

pr{@w occurs in Atl@w ) GW ) 9W , occur in At,

2 1 4 3
A

Z =2, voccurs in At}

= pr{g_ occurs in At|g_ occurs in At,
Ya ¥

X(f) = Xg Zo(z) = Zg, VOcCCurs in At} (6.28)

Postulate 5 Each state component appears at most once
in the state component graph.
Postulate 6 The target state component:: Zg,)[ , 1=1,2,...,n

is determined by the corresponding initial state

components, endocondition, and endocontrols :

(3) .
pr{z**! =z'.l0 , 6 , ... all occur in At,
At 3 Wi Wy
A A
Zy=2; z(i)t =z'; all i#3}

= pr{Z(3): z'y |9 occurs in At,

1
29 -, X(b

Xb’ (d = X } (6. 29)

By appropriately chaining all these conditional probabilities,

N
joint probabilities on Z and (w w g) (conditional on Z

At 19""9 O;ZO>
can be found. An appropriate marginal distribution provides h from
Eq. (6.13), as required. The conditional transition probability func-
tion h is thus one long product of many, many conditional probabilities,

each of which, by postulate, was found to depend upon properties ob-

servable at a single element or its ports. A collection of all those
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for the element possessing the autogenous epoch class represents
as a product, the true value of the intensity function st used in sec-
tion 5. The examples were all simple enough so that this complexity
did not show itself. (Most of the conditional probabilities were unity. )
Some inconsistencies would surely show up if many of the stranger ele-
ments had been described.

This is best illustrated by a simple example. Consider the
epoch graph of Figure 6.4. We must represent the probability that

(6) (2) _
(A, Oy @ all occur in At, that X'/ = 6(86)" that X**/ = a2(sz, a6(36)),

0.)
2 %
that X(4) = 014(84))9 that (9(1) ) (1) 9(5)) all occur in At, that
w W
(1) 1 3 5 2) L)
Z 1(817 2(823 6(8 ))J 4(5 )) that ZAt gz ( 25 Wl! a6(s6))9

i< o
3 (539“’3)9 and that Z4) = ¢ 6

(4) _ 4)
Z0 = s3, and ZO

. 1
At = 84 (549 w4); given Zf) ) = 8y

A
= S4 ; where W10= B l(sl’ az(szy (16(86))9 (14(84)),

that z( 9 =g,

(2) _
ZO = SZ’

A 0 .
wg = 8 3(51, az(sz, aﬁ(sﬁ)), a4(S4)), and wg = B, (sz, Wy a6(56)). This
probability is the product of the following conditional probabilities,
because of the postulates:

[el] (1) pr{roccurs in At Zo(l) = sl}
[e2 (2) pr{crz occurs in Atlp2 occurs in At, ZO(Z) = sz}

]
e3] (3) pr{04 occurs in At|p4 occurs in At, 20(3) = 53}
o , (4) _
] (4) pr{o6 occurs in Atlp occurs in At, Z ' = s4}
]

(5) pr{X(ﬁ) = a6(s6)| o, occurs in At, 20(4) = s4}

6
ez] (6) pr{X(z) = az(sz, a6(s6))|02 occurs in At, X(G)

(2) _
Z0 = sz}

= a6(86),
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[e3] (7) pr{X(4) = a ,(s,) Io occurs in At, Z (3) . s'3}

(1) (3) (1) A
[el] (8) pr{ew1 and 9w3 both occur in At, Z,/=g",(...)

| X occurs in At, X(z) = az(. o)y

X(4)=a4(s ), Z (1)

Oy
[ez] (9) pr{e‘(:; occurs in At, Z(z) g9 ( .)
|02 and 68) both occur in At,
1
(6) _
X7 = agls), = sz}

Y
[e ] (10) Pr{ZAt = g34( 3,w3)|o4 occurs in At, Zg?’) = SB}

o
[e, (11) pr{Z(4 g4 (s4, 4)[06 occurs in At, Zg4) =s,}

The left-most margin indicates which element totally determines the
given probability.

From this we see that the intensity function UAS used in section
5 represents all those terms associated with the element having the
autogenous event. Thus, reverting to the previous, more general,
notation

”As = lim pr{x occurs in AtIZ () _ so}.

At=0
x pr{6_ all occur in At, Z( ) g (x )
- w
Q
|x occurs in At, XQ = XQ}/At (6.30)
where GWQ is a shorthand for ewl, Gwz, ..., where Py> Py« -+ are in
Q:; and Wwhere xQ is shorthand for Xl’ xz, ... the exoconditions at

the ports in Q.
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o
We also see that the prdbability function -nsk represents all

those terms associated with the element having O for an exogenous

epoch at port Py Thus
o,

r X = lim pr{o, occurs in At|p_occurs in At, Z (k) _ o }
S k p 0 k
At—0
. ®_ %k . Q _ (k) _
pr{X*" =a " (x )Iok occurs in At, X = x0, Z M = sk}

S) Q
%k
. pr{@w all occur in At, (Z, ), =g (%

V)
Q kapk

: Q_ (k) _
|ork and 9 both occur in At, X~ = x Z."= sk} (6.31)

Py @

It should be carefully noted that neither LLAS nor 7708 represent
meaningful conditional probability intensities or probabilities, because
the conditions are not '"chained.'" However, they do represent a
product of legitimate conditional probabilities, and the product of all
such probabilities for the primitive epoch class v(as shown in an
epoch graph) is very meanmgful. It is a large joint probability whose
sums are over appropriate variables results in the determination of

oy D)h{y 1, j).



7. THE TRANSLATION OF NETWORKS TO EQUILIBRIUM EQUATIONS

The objective of this report has been to provide the capabilities
needed to specify a Markovian system in pictorial language form, and
then to systematically translate the specification (we called it a dia-
gram) into a straightforward description of the equilibrium equations
for the Markov chain which models it. It was agreed that the matrix
of transition intensities (uij) would suffice, provided its index set was
suitably identified with the states of the system.

The problem has, up to now, been almost entirely representa-
tional. However, with the background provided, we can finally take
an operational view, and develop the procedure. An operation-called

consolidation will be central to the procedure for translation, and

the major part of this section will be devoted to its description,

Finally, its use for the task of translation will be presented.

7.1 CONSOLIDATION OF NETWORKS
The operation of network consolidation consists of forming a
new network which is-equ.ivalemt* to the old, but for which one con-
nection (and its meaning) has been absorbed into the elements. There

are two cases, illustrated in Figure 7.1. Either the connection to be

* -
We will say the two networks, N and N, are equivalent if they des-
cribe the same Markov chain (in the same state space).

79
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absorbed joins ports of two different elements, or it joins two
ports of the same element. Symbolically, if the new network is N
and the old is N, and if one of the ports involved is Py the consolie -

dation operation ¢ can be written

N = C(Np) (7.1)

The other port (p2) involved is obviously found from the connection

function C:

Py = C(py)- (7.2)
As a result of the absorption of the connection, new elements

must be formed. In the first case, the elements € and € will be

"consolidated" into a single element e having two less ports than the

two elements had together. In the second case e, will be replaced

1

by a new element e which has two less ports than e,. All elements

1
except these remain unchanged, as well as all connections other than
the one between p1 and Py .

Figure 7.2 illustrates the consolidated networks. Symbolically,

if we let N = (& , C) then
é = (6 —{el,ez}) Ue. (17.3)

(We adopt the convention of defining €y 2 € for case 2.) Every con-

nection other than the one being absorbed remains the same, so that

the new connection function is simply a restriction of C to the set

e = ¢ -{pl,p2}. (7. 4)
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I.e.,

C(p) = C(p) forallpe ¢ - {pys Pyt (7.5)

Thus, the principal operation in network consolidation is the
operation which determines the element e. This operation is called

element consolidation. In case 1 we write that e = U '(el, ez, pl, pz),

and in case 2 we write that e = % ”(el, Py pz), where the operations ('
and L' represent the element consolidation. To define these operations
it is clearly necessary, and sufficient, to define a port set P, a state

set S, an auto-event set E , and an exo-event set Z such that
A

D1

(B S, Z, 2) and the network N defines the same Markov chain as
N. Only case 1 will be considered here. Case 2 follows trivially
from this procedure for tree-structured networks.

The port set P is the easiest to derive. Since every port which
was a port of either e, or e, must be a port of e, with the exception
of p; and p,, P is obviously

B = (P, UP,) - {p;;py}, (7.6)
where P1 and P2 are the port sets of e and € respectively. This
permits every connection other than the one being absorbed to remain
unchanged.

More will be said about the state set S later. However, it is

clear that if the "condition' of the new element is to be described, the

values of the state variables of both elements must be known. Therefore
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%
S is at most the set S1 X S2 of pairs , or

S C S, x5,. (7.7)

This is sufficient knowledge of S to proceed with the descriptions of

= and Z .

7.2 CONSOLIDATED AUTOGENOUS EVENTS

While the consolidation of the auto-events is a highly detailed
operation, in principle it is quite straightforward. Each port of an
element identifies, under appropriate circumstances, an endocondition
function and an endocontrol function. In Section 3 we had used the
schematic reproduced in Figure 7.3 to illustrate this state of affairs,
where v represents an endocondition, and w represents an endocon-
trol. Under other circumstances, we have said that the behavior of
the element is frequently dependent upon exoconditions and exocon-
trols, which are schematically shown as x and y in Figure 7.3. The
endocontrols and the endoconditions were determined, as required,
by the endocontrol and endocondition functions which defined the ele-

ment. The exocontrols and exoconditions were treated as variables

*Unless otherwise stated, the Cartesian product operator will be
taken in an associative form so that (AxB)xC = AXBXC. Thus, if
S, =8 xS _andS, =8 xS , then (a,b,c,d)eS, xS, if (a,b)e S, and

1 b .2 dc i | 1
(c,d)e Sy Strictly, one otherwise means ((a, b), (c, d))e SIXS2
under these circumstances.
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Figure 7.3 Schematic of port variables.

upon which these functions depended, and were to be determined by
the network external to the element—in particular, by the endocon-
trol and endocondition of the associate at the port. This situation is
indicated schematically in Figure 7.4. Evidently a simple substitu-

tion, representing x, instead by the function defining v by the

1’2
¥ by the function defining Vo and A by the

function defining w2. The variables Xl’ x2, yl, y2 would then cease

2

function defining w

to exist, and everything which depended upon them would depend in-

stead upon the variables upon which v Vo) Wy, W depended. Fur-

1’ 1’

thermore, the functions defining LB Vo Wy and Wo could now be ab-

sorbed by defining new functions which were compositions of the

Figure 7.4 Relationships of port variables in connected elements.
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functions defining Vi Vo Wy and Wo with the functions which originally
depended upon Xy5Xgs ¥y and Yg- Thus all variables or functions iden-
tified with the two ports would disappear from view.

The application of this simple principle is practically all that
is needed to consolidate the elements, and, in particular, the auto-
events. However, considerable detail ensues from the detailed struc-
ture of the element and the auto-event definitions, and the ways in
i;;zhich the endocondition and endocontrol functions are buried in this

structure.

The auto-event sets of elements e1 and e2 are the sets

Il
t

1 {gkzke Al}

Ey = {€:ne Az} - (7.8)
respectively, while that of e is

= {EM e &) (7.9)

Il

where A1 and A2 are disjoint, and A is a new set of epoch classes as-
sociated with the consolidated element. Clearly, since the underlying
Markov chain for the network must not change under this operation,

each epoch in A, and A

1 o must have a counterpart in the epoch set A.
Put in other words, each auto-event of the elements € and e, repre-
sent "actions' of the consolidated element. At first blush, one might

expect that the epochs in A would correspond one-for-one to the

epochs in the union of A1 and Azo This is, however, not the case.
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As it happens some of these epochs may split into several new ones,

so that A is not necessarily the union of Al and Az. To see why this

is so, consider an epoch class 7\1 € Al which produces an endogenous

epoch class of € at port Py Since this is an exogenous epoch class
at Py (because of the connection between Py and pz), we must look to

the exogenous events of €y to fully explore what happens. Here

Zyp) = {£:0¢ Zp}, pe Py, (7.10)

and if Zp contains more than one member, there will be several
2
consequences within €y resulting from the same auto-epoch in e

To be more concrete, suppose e, is a server and e, is a random switch

1 2

(see Figure 7.5). Then, when a service completion occurs in ey

Figure 7.5 Illustrating epoch-splitting.

either an endo-event occurs at port pg OT it occurs at Py For the
consolidated element, there would be two auto-epoch classes: one

which offered a task out port Pg and one which offered a task out port
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Dy This illustration also shows that, in general, the exo-events at
ports Py and Py will also be involved in the operation of deriving the
consolidated auto-events.

Recall that every auto-event gh of an element e is defined by

A A A A A
s = @ B g i), Ae A, se S,

3

and every exo-event CG ,

¢op) = QB g0, wg); oce2, pe P, seS
and that Q}\ represents the set of ports having endo-epoch ciasses
generated by the epoch class A. The role of the endo-epoch sets Q)t
and Qo is more clearly seen with the aid of the epoch-graphs of Fig-
ure 7.6, which illustrates two possible situations, In case (a) ele-
ment e, possesses an auto-event whose endo-epoch set contains the
ports Py Py and Py, while ey possesses an exo-event at port Py con-
taining p_ and p,. In other words QA = {pl, P, pb} and Q7 - {pc9 pd}o
Clearly, the consolidated auto-event corresponding to this is one
which has an endo-event set consisting of Pys Py P and p q On the
other hand, in case (b) the endo-epoch set for A in ‘el does not contain
P> 8O that the exo-event at port Py will not be excited. The con-
solidated auto-event must have an endo-epoch set consisting of only
P, and Py In this latter case, the consolidated auto-event must, in
some sense, be simply an extension of the auto-event of el, since no

exo-events at p, are involved.
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Iilustrating epochs and their influence.



90

From these examples, we can distinguish the following two useful

subsets of the epoch set Alz

(1) Those epochs X for which Py € Qho Call the set of these A',:

1
Ay = {ne App, ¢ QM (7.11)
(2) Those epochs A for which P € QA. Call the set of these A 1
A
A"y = {xne A Py €Q }. (7.12)

Notice that A°’, and A“1 together form a partition of A,. A similar par-

1

tition {A'z, A"z} car be found for A,.

1

Case (1)
Let

Y= @) (7.13)

for all sAS and x¢ A. For case (1), above, each of the auto-events of €
in A'1 does not involve any of the exo-events of €y Consequently, the
consolidated element e will have one auto-event for each X ¢ A’l, and

these events will have precisely the same influence on the ports of e as

did e,. Therefore, let Ay be contained in A, and write

1
Q" - Q4 (7.14)
forallre A"y A. Further, recall that if Qx - {pa, Dy o pz}, then
BAS is a function on Ip xIp X. .,.XIp to Ip xIp X. . oxIp , representing
1 a b zZ a b zZ

the endo-controls at the ports of Q", as functions of the exoconditions

at the same ports. These are all unchaged by the consolidation so that
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we write

» o
A (505, ° 8 : (7.15)

; € A. still further,

éAS is the target state function, which is a function of the exoconditions

for all S| € Sl’ (sl, sz) eSC SIXSZ’ and A e A

at the ports of Q}\, to the set S c S1 X S2° The second state variable
will be uninfluenced by the event so that

-\ A
g = (g ) (7.16)
(Sl’sz) 519 Sz

for all S € Sl’ ..., etc. Finally, the probability intensity of the epoch
is also unchanged, so we write

Y A
u = U (7.17)
(sl, s2) S

1

for all s1 € Sl, .o

An interchange of the roles of e and € will define the auto-events £

., etc. This defines the auto-events for all X € A'la

for all A € A'lo

Case (2)

For case (2), things are a little more complicated. Besides the
situation illustrated in Figure 7.6, one can encounter the situation (the
"random exo-event") illustrated schematically in Figure 7.7. In this
case Epz (see Eq. (7.10)) consists of two elements o, and O}y and as

a result the epoch X is split into two epochs in the consolidated element

(with a probability intensity which is that of A split between the two new
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epochs). One of these has endo-event set { Pys Py P d} and the other
has endo-event set { Py Pyy pc}. In general each epoch class in Af'l
will result in as many epoch classes in A as there are elements in

Z._ . We can thus name these new epochs by the double (A, 0)e A x =

Py 17 py
andlet A O A" X z:p . Similarly, each epoch in A", will result in
2
epachs corresponding to the elements of A"2 X Zp . Furthermore,
1

there can be no epochs of e other than those mentioned so that we say

A = A, UA U)A"XZp

| UATy U)AY ) uAgxZ ). (T.18)

2 1
We now define the EA for X € (A"1 X Zp ). Observing Figure
2
7.7, the endo-epoch set is easily defined as

=(A, A (1}

Q™9 - Q" uQ-{p} (7.19)
for all A e A"l, and o ¢ Zp . Then, for the example illustrated,

2
o)
Q = {p,, by Pyl
(x, o)
A o)
Q = {pas pb’ pC}‘ (7" 20)
The consolidated endo-control function Bg’ o)s ) must be a func-

. (X, 0) (X, @) =(x, 0) I
tionon 7" to %7/, where ("’ r:Ip X...XxI xI,x”.,XIp,s

a Z a Z

. R 1 1 P o o
{paw“ypz}“’Q ”{pl}’ {pa7°°°ypz)“"Q ’ andlp—{0’1’2’°°°}

for all pe P. Let us define the components of B(;" o)s ) by
1’72

0 -

1752) = (B )’ (7"21)

2,
B(S
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the components of BAS by
1

g

i
—~
o
w
W
:u-/

-5 By (7. 22)
1 Py z p1

the components of ,BAS by
2

g
S

i

B ), (7. 23)

(Bp! ’°°‘7Bp'

» B
2 a Py

V4

and the endocondition function at port Py by aop , for all x ¢ A", and

1
2
all oe Ep . Then the first group of components of Bg’ o)s ) is found
2 1’72
from BA by replacing x_ by o’ (x,,...,x_, ) as follows
°1 1 Py Pa Py

(7. 24)

forall pe {paj e ,pz} and all (s, s,) € §, xe A"}, and T Z:pzo

(2, 0) is found from 60 by re-
(sl, s2) 5o

o
X ye003X_ ,0Q X | 50005X so that
1( pa pz’ pz( P ’ pv ))9

The second group of components of 3

placing the exocontroly by 8
Py p

9 0 e 09

X ,a (x, ,m,Xp.z))) (7. 25)

for all p e {p‘a, oo, p'z} and all (s, S,) € S, ne A" andoe sz
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The formation of the target state function ég’ O)S ) proceeds sim-
1’72
ilarly. Let the components of ég’ o)s ) be defined by
1’72
'(}"0) > o
g = (g, 8,) (7.26)
(sl,sz) 1’ =2
for all x e A"l, andalloe Z_ . Then
Py
él(x peeesyX 3X | eeayX, ) = g;‘ (X ey X 0T (X, yene,
Py P, Py Py 1 Pa P, Py Py
X, ) (7.21)
b, :
and
Bo(X seeesX SX L ei X )= g0 (K ee, X GB (X .,
2¥'p, P, Py Py TSy Py P, PPy
o
X ,a (X ,, > S8))
P, Py Py Py

for all (sl, sz) €S, etc. .
The probability intensity of the epoch (2, 0) is found by multiplying

e : . A
the probability intensity function y S of the autogenous event 57‘ by the
1
conditional probability function n"s of ¢7 given that the epoch (in this
2
case \) occurs. Thus

- A (14
BgA; 0) = U T s. (7.28)
: 1 72

This completes the construction of the auto-events —‘g‘g, AE A"1 X Zp .
2

The remaining elements of = —those EAS for X € A"2 X Zp -—are
» 1

found by repeating the procedure with the roles of P and Py reversed.






1.3 CONSOLIDATED EXOGENOUS EVENTS

The exo-event sets of elements e, and e2 are the sets

1
Z,(p) = {e%0¢ zp} pe P (7. 29)
Z ,(p) = {e% oe zp} pe Py (7. 30)
respectively, while that of e is
Zp) = {Eoﬁoe Z)p} pe P. (7.31)

Since the event sets Z1 and Z2 represent the consequences of epochs
determined externally to their respective elements but identified with a
port, they must continue to be described in Z. We have already seen

how the exo-events corresponding to Zp and Zp are accounted for—
1 2
they are absorbed into auto-events. On the other hand, if an exo-event

produces an endo-epoch class on Py it is clear that Ca, o€ Z)p , must
2
influence the exo-event in much the same manner as for auto-events.

In fact, the consolidation of exo-events follows that of auto-events al-
most exactly.
Figure 7.8 illustrates some typical situations for epochs cb-

served at a particular port, say P, In. case (a), the epoch oy € Zp
a
generates an endo-event at Py which in turn excites the external
epoch 0, € Ep . However, as seen in case (b), it is possible that an
2

external epoch o, can fail to involve ¢,. It is also possible that more

1 2
than one external epoch can be randomly excited by 0, as suggested

by (a) and (c).

97
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We recall that every exo-event of an element e is of the form

(1) g O ) (1)
€ = (Q,a SaBS’gS,W

S 0)

S b
and that Qo represents the ports excited when the external epoch o is
excited (at port p). We again distinguish two useful subsets of every
2 for every pe (P, - {pl}):

(1) Those exo-epochs o for which Py ¢ Q7. call these Ei;

v - . o
', = {o:0 ¢ Ep, p; ¢ Q }. (7.

(2) Those exo-epochs ¢ for which p € Qo. Call these Z"p.

p
A similar partitioning for pe P2 can be found by replacing P1 by P2’

P by Py> and S1 by 82 in the above

Case (1)

Let

0 =0 -0 0 =0 -0
g = QLa B8 1) (7.

forallse Sand o e i)p, pe P. Letz 'p be contained in i)p, and let

Q7 = Q@ (7.
&251’52) ) 0051 ¥
Bz’sl’sz) ) Bosl -
é?SySQ = <g;’1,82) (7.

1" e ° 0
=" = {owoe Zp, p; € Q ' (7.

o€ Zp, pe Pe’ S € Se, (7.32)

33)

34)

35)

36)

.317)

38)

39)
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and

- o
m, =7 (7. 40)
(bl, 82) 5;

_ 7 -0
for all (s,,8,) ¢ §, o¢ Z p PEPy- {pl}. Then {_ are the exo-
events of e corresponding to the o ¢ Z‘i), pe P, - {pl}. The EUS for

ge T p Pe P, - { pz} can be found analogously.

Case (2)
In this case, there will be an exo-event of e for each element

=X 2, PEP - {pl}; snd analogously for each element of E'p xXT_,

& ) pl
~ - A :
€ P, - 1pss- Consequently, weletX = 2Z' UZ" X2 for
pe Py - {p,} quently, w p= U@ Pz)
] = A ¥ 1
pe Py - {pl} and Ep— )2 " u( p¥ Zpl) forpe P, - {p2}. The
exo-avent set
7 o, .o . D _
Z{p) = {t":0e LP}, pe P= P, UP, {pl,pg}, (7.41)

will be a compiete set of exo-events for e.
The fo for ge¢ Z’p X Zp ;s PE P1 - {pl}, are defined very anal-
2
ogously to the way the EA were defined. For example, the endo-epoch

set Q” is given by

{775 09) o G

¢V =@ -{nhue? (7.47

The basic sequence for the formation of the endocondition functions,
endocontrol functions, target state functions, and conditicnal proba-
bilities for this and the "reversed roles'" case will not be detailed here.

It is notationally tedious, and will add little to understanding which the
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previous cases have not already provided.

7.4 AN EXAMPLE OF CONSOLIDATION

Element consolidation [ '(el, €qs P> p2) will be performed to
illustrate the technique. In this case e will be a queue, and €y 2
server. The output of the former is connected to the input of the lat-

ter, and it is this connection which is to be absorbed (see Figure 7. 9).

P P, P P
o()nzy 3

Figure 7.9 Queue-and-server consolidation.

From Table III we take the following data, with a slight change in
notation. (Every equation in this section is assumed to be valid for

all se S, 51 € Sl’ Sy € Sz).

The Queue
(1) Ports: P, = {po,pl}
(2) States:s; = f0,1,...,N}
(3) Auto-event set: E’l = 0

%10
(4) Exo-event set: Z.(p.) = {¢ "}
10 8

o
Z,(p) = {Csil}
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(5) Exoevents:

g g (4] (4] g ag
10 10 %10 %10 %10 %0
@) & =@ e B8 .8, »m ), where
1 1 51 %1 5
g
10
(4}
10
asl (xl) = N-s;+x
(4}
10
le (x,¥g) = 814,
10 g ) = (s ey, N
gs1 1Yo = 519 %o
g
7TS10 _
1
g o g g g (4)
11 11 %11 %11 %11 %n
(b) ¢ = (Q ,a_ ,B.7,g., ), where
51 St 81 781§
(0}
11
Q = {po}
g
11
%8, (xg) = N-sy+x,
o
11
le (XO’yl) - N-Sl+y1
()



The Server

(1) Ports: P, = {pz,p3}

(2) States: Sy = {0, 1}
(3) Auto-event set: 32 =

Zo(pg)

(5) Auto-events: gh = (QA, BA , g
s Sy

2
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{e* }

2

%52
(4) Exo-event set: Z ,(p,) = {CS }

2

%23
= {qsz h

Q)t = {pZ’ p3}

B§2<x2,x3> - (@ 0,

A
gsz(xz’ X3)

1)

a

I
X

2 ’“2 ), where
2 "2

(8) (g %), B3(Xg X))

2

(J+HX3({0})

ugz = 7182({0})
(6) Exo-events
@) szz ) (Qozz,a‘;zz, 6222, g‘s’zz’n:22)’ where
2 2 S2 %2 S
Q2 - g
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Y99
as =1 - s2
2
(0]
22
8.2 = p
2

g
.22 _
] o o o o o
0 ¢ - @?% a823, 6823, gszs,w823), where
2 "2 "2 2
o
23
¢ =8
2
.
aszs -0
2
o
23
By =8
2
o
23
gsz (Y3) = Sz
g
”s23 -
2

The Consolidation

(1) Ports: The port set is P, U P, - {pl - pz}, hence

B = {py by} (7.43)

(2) States: The state set S is contained in S, ¥ 8, hence

S ¢ {o,1,...,N} x{0,1} (7. 44)
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(3) Auto-events: Let ZAS, s € S, be the consolidated auto-event

resulting from the autoevent £AS of the server. Let
2

&= @B

. (7. 45)

s)'
A 1
Then, since Q" = { Py p3}, the epoch X gives rise to an exoevent ¢

1
at Py (which is connected to pz), and by Eq. (7.19) (with roles of Py

and p,) reversed).

o

=\ A 11

Q =Q UQ - {pz} = {po: p3}' (7"46)
To obtain the endocontrol function BAS(XO’ x3) which has two

components which will be called BAO(XO, x3) and BA3(XO, x3), we ad-
11 11 A A

join B (from § ") and B, (from ¢’ ), leaving
84 8 3 S

B (kg xg) = (B} g Bhlgs Kg)) = (8. (xo,y1> Bylxyy X)) = (n-5,+7;, 1)

Then we replace ¥y by the endocontrol 82 (from gs ) to get
2

B (xg%g) = (N-s,+_(3%),1) (7.47)

17%4

Since this does not involve x,, the exocondition at port 2, no further

2’

substitutions are necessary, and BAS is described for all s = (s;, $o) €5

To obtain the target state éxs(xo, x3) which has two components

-2 -\ . . 11 A

(g 1(xo, x3), g 2(xO, x3)) we adjoin gs2 (xO, yl) and gsz(xz, x3), pro-
ducing

- - Y % A

g S(XO’ X3) = (g I(XO’ X3)9 g Z(XO’ )) = (g ( 0’ yl) g 2(X27 X3))



106

o
: A 11 :
Replacing Y1 by B 2(xz, x3) and X, by asl (xo), and noting that
I + + + ierd
n-s, +X (J) =1 (JHI. (J') because of the non-negativity of N-s
n-s; X 1
and Xy We obtain
-\ + N + +
g5 (Xgr X3) = ([s;-L (I)+xglg » Iy o (L ()L ({0}), (7. 49)
3 1 0 3
which is the final form for g" .
Y A 1
Finally, to obtain y g we take the product of yu S and T to
2 1
get
-\
g = vl ({0}) (7. 50)
2
(4) Auto-event set: = = {EAS} (7. 51)
=00
(5) Exo-event set: Z(po) = {CS }
- 93
Z(py) = {€.°} (7. 52)

(6) Exo-events:

(a) Let the exo-event at port 0 of the consolidated network be

o % 0_[_00 BOO % 1;00
) s b4 s )gs ) s

e’ = @ ) (7. 53)
o

Then, since QS10 = {pl}, an exo-epoch class at port 0 produces, in
1

turn, an endo-epoch class at port 1 and an exo-event at port 2. Thus
%10 %22 '
Cs and Cs are involved in this exo-event. We have

1 2

o o o

=0 10 22
Q =Q uQ™-{p} = 8

o

For the endocondition function a SO at port 0 we have

(7. 54)
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07:0 = a:io(xl) = N-s+%;. (7.55)
. %2 . .
Replacing Xy by as2 , which is 1-82, we get finally
-%
a = N+l - (sl+s2)., (7. 56)
o o

Because Q 0 is empty, the endocontrol function BSO specifies the endo-
control at no ports, and hence is a null function @ (has null range and

domain). This would also be found through systematic procedure since

g
B 22 _ p. also. Thus
S .
2
_00
By =18. (7. 57)
%

The target state és (v,) has two components, and we let
K _9, _9,
g (yO) = (g1 (yo), g9 (yo))o These are found through the substi-

tutions

g (1) g g
2,200 = &0 5, - (gsi"(xl,yo),gszzwzn

= (sywoxgly » 141, (b, (o). (7.58)

10 %92
Then replacing Yy by ‘Bs (xl, yo) and Xy by a ", we get
1 2
o

g, 7o) = (ygHs,+sy)-11g, 1-I L, iy {ODEg (D)

i

(yg#tey ssg)-tly 141, ({01, (DI (foh). (7.59)
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o, O
Finally, TT-SO = 4 10, 22, or

= 1 (7.60)

o Ky
= 3 3 - 3 3
t = @ ; M ) (7.61)
%23
Then, since QS = f, an exo-event at port 3 produces no endo-events
2 o,
at any other ports, and only §s23 is involved in this event (i. e. this

3
is a case (1) consolidation; see Eqs. 7.36 through 7.41). Consequently

3
Q=29 (7.62)
g g

d3=a2 - 0 (7.63)
S S

2

_03

B™ =9 (7.64)
g g

-3 23

g, (V3) = g4 (v3) = sy (7.85)
g (04

I (7. 66)
S S

This completes the consolidation. A careful examination of
each of the properties of this element reveals that its description is
exactly the description that would be expected. This definition is the
representation of a new element, which could be added to our list of

primitive elements (Table I).
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7.5 CONSOLIDATED STATE SET
The set S has not been defined, except to say that it is contained

in the Cartesian product of S, and S,, S

1 2’ 1

representing target states, endoconditions, and endocontrols were

X 82° The various functions

said to be functions on this set. As a matter of fact, however, they
have all been well defined over the larger state S1 X Sz. Neverthe-

less, S1 X 82 is generally much larger than necessary, since there
are many states in it which the process would never return to once
leaving. In fact, a great many states are left as soon as any epoch
occurs within their element.

A state s is said to be essential if a return is possible from
every state to which s leads (see Ref. 1). Since the equilibrium prob-
ability of an inessential state is zero, little is lost in omitting it from
the model. However, unrecogrized inessential states can waste
memory in a computation. Moreover, in typical RQA-1 models,
the ratio of inessential to essential states when a Cartesian product
space is used is often ten to one, and could be considerably greater.

A foolproof scheme to eliminate all inessential states with rea-
sonable computation is very desirable, but difficult to produce. How-
ever, techniques which are very effective, but not perfect, can be

devised. Mostly they involve deriving constraint equations from the

target state functions. This problem will be treated in a later work.
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7.6 REDUCTION OF A NETWORK TO A TRANSITION INTENSITY MATRIX
With the establishment of a well-defined consolidation operator,
the problem of deriving the transition intensity matrix from a given
finite network has been solved. For, by successively applying the con-
solidation operator to each connection in the network, one can ultimately
reduce it to an equivalent network which has no ports and only a single
element. If it has no ports, then this element also has no exogenous
events, and the autogenous events are extremely simple. There are
no endocontrols, endoconditions, or endo-events.
We observe that N* = ({e*}, #) is the limit network, where @ repre-

sents the null (connection) function. The element e* must have the

form

e = (8,0, Z,0) (7.87)
where

— )

E = {& e A} (7. 68)
and

A A A

£, = (0,0,¢ ) (7. 69)

Notice that “: is simply the probability intensity of a primitive epoch

and that g}\ is simply a transition function

g S —8. (7.170)

(]

Thus = can be looked upon as a collection of matrix elements, so that if
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we map S onto a set of integers, and let j = g)\i, then ;j; is a prob-
ability intensity that a jump will occur from state i to state j.
This is clearly just another form for the transition intensity

matrix.

7.7 NOTES

We have succeeded in obtaining what amounts to a definition of a
queueing network. That this is a useful definition, one which ade-
quately models real-world queueing systems, can be argued from
experience and the rather intuitive way the model has been built up
from the "kinds of things we want to talk about." This report has
attempted to be formal in its notation and definitions, but not in its
arguments. To have attempted to pose formal arguments at this
point in the development would have significantly delayed publication
(perhaps indefinitely), and thus delayed the progress that inevitably
comes from the interchange of ideas with others.

Nevertheless, it is believed that an axiomatic structure, and
an orderly theory can eventually be built around the arguments and
results presented here. It is further believed that the notions de-
veloped can be readily extended to networks which are not tree-
structured, and to networks which must be modeled by semi-Markov

processes rather than Markov chains.
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