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ABSTRACT

The Recursive Queue Analyzer, RQA-1, is a computer program designed to
evaluate the equilibrium Jjoint probability distributions of queue lengths and
system conditions in very large, finite Markovian queueing systems. It will
rapidly treat discrete-time and continuous-time systems having as many as
5000 states through numerical solution of equations of balance. The algorithm
is generally very much faster and more accurate than equivalent Monte-Carlo
simulation. This report is both a description of the organization of the
program and a manual for program use.
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1. INTRODUCTION

The Recursive Queue Analyzer, RQA-1, is a computer program designed to
evaluate the equilibrium Jjoint probability distributions of queue lengths and
system conditions in very large, finite Markovian queueing systems. This re-
port is both a description of the organization of the program and a menual for
program use.

In the study of networks of queues and servers, the Markovian models represent
an exceedingly important class of models. This program has been designed to
facilitate the analysis of both discrete-time and continuous-time Markov chains
having as many as 5,000 states. The primary design goal has been to provide a
computation fast enough to encourage experimentation with the models in the study
of system design. This has been achieved through efficient use of available
(32K) high-speed storage in the computer and through careful program design.

The program was written in the MAD languagel with selective use of the UMAP as-
sembly language. Although this work has been motivated by the need for it in
the design of large computer systems, the potential area of application is quite
broad.

For a continuous-time Markov chain with a finite state space, one can al-
ways write the Kolmogoroff differential equation

By = Py Q (1)

where p, is a vector whose i-th element is the probability that the system is
in the i-th state at time t, D represents the time derivative of p, and Q is

a matrix of constants called the transition intensity matrix of the chain. The
matrix Q is assumed to have the properties that

}: Q5 = 0 (2a)

for all states i, and

34 > O (2v)

for all 1 # j. An equilibrium probability distribution is, by definition, a
solution to the equation



pQ = 0. (%)
However, any solution to Eq. (3) is also a solution to
p = p(oQ + I) (4)
where A is a scalar constant and I is the identity matrix. The purpose of

RQA-1 is to solve Eq. (k).

For a discrete-time Markov chain with a finite state space, one can al-
vays write the Chapman-Kolmogoroff equation

Pps1 = DA (5)

where p, is the vector whose i1-th element is the probability that the system
is in the i-th state at time n, and A is a matrix of constants called the
transition matrix of the chain. The matrix A is assumed to have the properties

that
}: 85 = 1 (6a)

for all states i, and

1>a;:>0 (6b)

for all i and j. A real matrix satisfying these properties is called a sto-
chastic matrix. An equilibrium probability distribution in this case is a
gsolution to the equation

p = pA. (7)

Because of the obvious similarity between Egs. (4) and (7), RQA-1 can con-
veniently golve elther equation through a suitable specification of the input.
The most common application, however, 1s expected to be the continuous-time
case, and, hence, a major part of the theoretical discussion and examples is
devoted to that case.



The state space will usually originate as a multidimensional vector space
with components corresponding to lengths of queuves, numbers of occupied servers
of a particular type, and similar quantities. However, since the number of such
states 1s assumed finite, it i1s always possible to represent the state as a single
variable 1 whose values are in correspondence to distinct values of the vector.
The variable i is the state variable described in the preceding paragraphs. Never-
theless, the elements p; of the solution to Egs. (L) and (7) can be interpreted
as joint probabilities of the variables represented in the originel multidimen-
sional state space, and appropriate marginal and conditional distributions can be
calculated from them as desired.

This report will first treat, in Section 2, the numerical methods which are
applied to the solution of Eqs. (3) and (7). This will be followed in Section 3,
by a treatment of the technique used for the storage of the transition (intensity)
matrix information in the form of what we call a "transition table" and several
1llustrations of the technique needed for the modeling of systems and the deter-
mination of transition tables. Section 4 and Appendix A constitute a description
of the structure of the program and the function of its component routines, while
Section 5 explains in detail how the program is applied. A person whose only
purpose in using RQA-1 is to obtain a set of equilibrium joint probability distri-
butions should be able to skip Sections 2 and 4 without major loss, while a person
desiring to alter or to transliterate the program for other computers or purposes
will, of course, be most interested in those sections. '

The conclusion, Section 6, will discuss the performance of the program and
gsome of the problems associated with its use.



2. NUMERICAL ANALYSIS FOR RQA-1

The RQA-1 employs an iterative procedure to determine the equilibrium
probabilities for homogéneous continuous-time and discrete-time Markov chains.
An equilibrium probability is found even when the chain is cyclic or when the
chain does not have a unique equilibrium probability distribution.

This section is concerned with the conditions for convergence and for unique-
ness of solutions. It details the mathematical Jjustification for the procedures
used.

2.1 CONDITIONS FOR CONVERGENCE

If G is an arbitrary m-th degree complex matrix, we will say that the itera-
tion process

) (8)

where p(n) is an m-dimensional row vector, converges if a nonzero vector

(n)

Lim p
n-o

-7 (9)

exists. We will say that the iteration process converges uniquely if it con-
verges and 1f the vector, =, is unique (ioe«, independent of the choice of p 0 s
the initial iterate). Clearly, convergence of the process to n implies that

n = nG.

A set of sufficient conditions for the iteration process (Eq. (8)) to con-
verge ig that there be an eigenvalue of G at unity, that all other eigenvalues
of G which are not equal to unity have modulus less than unity, and that all the
unity eigenvalues of G have elementary divisors2 of first degree.. For, from
Eq. (8) we may clearly write that

p(n) = H(0) gn (10)

5

Then from the confluent form of Sylvester's Theorem,” we may also write (making

use of the above conditions) that



n n
+ + ... + a +
>\'l(al yl a2 y2 ar yr ) O( >\'r+l) (ll)

where Ay represents the i-th eigenvalue (assumed ordered so that

M =Ap = coo = Ap > |Aps1| > o0 > |Apl), r is the multiplicity of the dominant
eigenvalue Ay, the aj are scalar constants, and the y; are m-dimensional row-
vectors. If A} = 1, Eq. (11) evidently converges to (al Y1 t oo t Ay yr),

a row-vector. Note also that the rate of convergence 1s determined by A,.4+7; the
subdominant elgenvalue.

2.2 CONVERGENCE FOR CONTINUOUS-TIME MARKOV CHAINS

For the continuous-time Markov chains, we -are concerned with the convergence
of the process

plotl) ) (1g + 1) (12)

where Q is a transition intensity matrix.

. Then, if A < 1/R, the matrix (AQ + I) is found to be

L that every elementary divisor
corresponding to a unity eigenvalue is of the first degree. Since the degree
of these elementary divisors is not dependent upon the value of A, this implies
that they are of first degree regardless of A as long as A < R °

let R = max Iqii
1

a stochastic matrix, and, hence, it can be shown

Moreover, it is a direct consequence of a theorem of Gershgorin5 that the
elgenvalues of a transition intensity matrix Q will lie on the disc of complex
values 7 such that

17 - rRI <R (13)

where R = max |qii . The eigenvalues of AQ + I must, therefore,.lie on a

disc of complex values such that
A~ (AR+1) | <AR. (14)

Thus, if A is chosen so that A < l/R, then there can be no eigenvalues of
(AQ + I) having unit modulus which are not of unity value, and the iteration
process (Eq. (12)) is convergent to a solution of Eq. (4).



On the other hand, while a choice of A < 1/R is sufficient for convergence,
it is not always necessary. Indeed, a choice of A slightly greater than l/R
can often lead to faster convergence than one slightly less, but one cannot know
by any simple test when this is so. Hence, in RQA-1, A is chosen equal to .99/R
to guarantee convergence for continuous-time models.

2.3 CONVERGENCE FOR DISCRETE-TIME MARKOV CHAINS

For discrete-time Markov chains, we are concerned with the convergence of
{n+ n
plml) o pln) g (15)

where A is a stochastic matrix. As a result of the theorems cited above, A is
known to have only elementary divisors of first degree associated with its unity
eigenvalues and to have eigenvalues lying on the unit disc. In order to guarante
convergence, one may transform Eq. (15) into the iteration process

o(0*1) = o(8) (goa + .011) , (16)
noting that

p = p(.994 + .O1I) (17)

has the same set of solutions as Eq. (7). As a result, the eigenvalues of
(.99A + .01I) lie on the disc of complex walues A' such that

N - L01] < .99 (18)

which does not admit values of unit modulus not equal to unity. The iteration
process (Eq. (16)) is used in RQA-1 for discrete-time models.

2.4 UNIQUE CONVERGENCE

Under certain circumstances, a Markov chain may not have a unique equilibri-
um probability distribution. These are the cases in which the 1limiting proba-
bility distribution (lim py or lim pn) is dependent upon the initial distribu-
tion, py. It 1s in +H3%e circuli¥ances that the RQA-1 algorithm will not con-



verge uniquely. It converges, rather, to an equilibrium distribution which is
consistent with the initial iterate chosen.

This should cause no difficulty since such cases are rare in practice, and
the user of RQA-1 will wusually be aware of the dependence upon initial conditions
through knowledge of his model. In general, a sufficient condition for the con-
vergent iteration processes above to converge uniquely is that it be possible
(with nonzero probability) to reach each state from every other state in a finite
‘time. A transition matrix having this property (known as irreducibility) is called
a primitive matrix. Necessary conditlons for uniqueness are somewhat stronger.

If nonuniqueness of a solution is suspected, a simple technique can be used
to test the model. The solution can be found by starting with an initial iterate
having unit value for some (arbitrary) state and zero for all others. If the 4
resulting solution has no states with a calculated zero probability, the solution
is unique. If it has states with a calculated zero probability, then the solution
- process should be repeated using as an initial iterate a probability distribution
which is nonzero wherever the previous solution was zero (within computational
error) and zero wherever the previous solution was nonzero. If the new solution
is within the calculational error of the previous solution, it is the unique
solution. If not, there is no unique solution.

Fof more getail on the conditions leading to nonunique equilibrium distribu-
tions, Parzen,  Gantmacher,” or Chung' are useful references.

. 2,5 ESTIMATION OF ERROR

It can be shown that, if the elementary divisors of the subdominant eigen-
values An47 Of & stochastic matrix G are of a degree m which is small compared
to n, and if n 1s sufficiently large, then the n-th iterate can be approximated
roughly by

n n m-1 '
B N (19)

where x i1s a constant vector and n is the convergent solution. Also, it can be
shown that the difference between successive iterates can be approximated roughly
by '

p(n+l) (n) n )nm_]_

o~

- P -~ >\r+l(>\r+l -1 X o (20)

A
A fairly crude, but useful, estimate xr+l of [xr+l| can be obtained from



S|
=
]
fa

1
A n

\ A lp(n+1)

O I Ly I W R EO (21)

- D

since, for n sufficiently large, all but the first multiplicative term (kr+l>
approach unity. Using this estimate, it can be argued from Eq. (20) that

(n+1)  (n)
k £ ~ Ny nt oy (22)

A
1= Arn1

which is an approximation to the error term in Eq. (19).

Provided that the Qr+l calculated is less than unity and greater than about
5, (xr+l - l)l R can be assumed to be near enough to unity, and the estimate
so provided is,at the very least, a more realistic estimate of error than

(p(n+1) - pln),

2.6 REPRESENTATION OF MATRICES

In order to store information completely describing matrices A or Q, with
A or Q having the requisite high degree, a special approach is required. More-
over, because it is desirable to have the matrix elements expressed as algebraic
functions of a set of parameters which may assume different values at different
executions of the program, this approach must allow expression.of the matrix
elements in a literal form in the program. More will be said about the latter
requirement in Section 3. For now, we will consider the problem of compressing
the information needed to describe A or Q in such a way that computations are
not appreciably slowed by the decoding required.

Clearly, a 5,000-degree matrix, when stored as a two-index array, requires
25,000,000 locations of storage which is unreasonable for a "fast" program.
However, both A and Q are generally sparse matrices (have mostly zero-valued
elements) and will usually have a high degree of repetition of equal element
values. Hence, a scheme of storage which lists location information along with
value information is a plausible starting point.

We construct a set of four vectors, together called a transition table,
which implicitly define the matrix. ILet us call them @, B, 7, and B*¥ and denote
their i-th elements by a4, Bi, 7i, and Bi’ respectively. The quadruple
(ai, ﬁi, Yis Bi) specifies one or more elements of a matrix in the following
manner.

*In the program listing, these correspond to the variables named "TRANS,"
"FIRST," "DEST," and "LAST," respectively.

8



The value of the element is @y, and its matrix co-ordinates are (Bj, 7).
Due to the repetitive nature of these matrices, the element Q4 may occur in
other locations of the matrix with co-ordinates (B4 + rd®, 73 + rd®) where d is
a constant (fixed throughout the transition table) and r takes values
0, 1, 2,000,(Bi - B1)/5. In other words, the quadruple (04, Bi, 7i, Bi)
specifies the occurrence in the matrix of an element with value 4 at co-ordi-
nates (Biy 71)) (Bl +8, 71 t 5))°°°)(Bi) 7i ot (Bi - Bi))° This set of co-
ordinates will be called the range of the quadruple. The set
{Bis By * 8500y Bi] will be called the B-range of the quadruple. The constant
5 will be called the period of the table.

The choice of a value for d will be discussed in detail in Section 3., Also
in Section 3, we will carry out the construction of transition tables for three
systems of varying degrees of complexity. These systems will be characterized
as consisting of a single dominant queveing facility and a complex service facility.
The degree of the Q-matrix for such a system will depend on the maximum number of
Jjobs allowed in the queue. This number will be a parameter in the transition
table, and, in this way, a transition table of fixed size can represent a'Q
matrix of arbitrary order.

2,7 TIMING
Each iteration (Egs. (12) or (16)) is carried out in the following sequence:

+
(1) The vector to contain pn 1 is initially zeroed.

; (n) . (n+1)
(2) Qy is multiplied by pﬁl and accumulated into py o
; : 71

(n+1)

: - ~_(n)
(3) 07 is multiplied by p51+5 and accumulated into p7l+8

if By + 5 < By,
(4) step (3) is repeated until the range of the quadruple is exhausted,
(5) steps (2) through (L) are repeated using ay, By 7y, B for
i=2,3,:.. until all quadruples have been treated.

As a result of this procedure, the number of multiplications per iteration is
equal to the number of nonzero elements in the transition matrix. In general,
if the average number of different events which can occur at any time is E and
the number of states is S, then the:number of multiplications per iteration is
ES. The convergence error after n iterates is O(A?+l)o Thus, if e is the
desired error, the number of iterations needed will be T = loge/loglxr+ll, and
the total number of multiplications required in the main loop is



M = ES loge/log|hpsy] - (23)

In contrast, a rule of thumb estimate for the standard deviation of a
measurement of a probability p in a continuous-time Markov chain using simula-
tion is

R (24)
ly[T
where T is the length of the simulation (in system-time) and y is the nonzero

eigenvalue of the matrix Q having smallest modulus. For € to be equal to two
standard deviations, thig means.that T should be

o= OB (25)

and the number of random numbers generated would need to be

K = %‘f‘% (26)
vak3

where v is the mean rate of occurrence of events.

It can be shown that |7I/v is usually of the order of -loglxr+ll which,
in turn, is normelly much smaller than unity. Hence, a relatively crude measure
of the computation time of simulation and RQA-1 calculation is obtained from
Egs. (23) and (26) by approximating the ratio K/M by

K - o _Er§£__ . L . (27)
Mo ¢© loge ES

Since 62 loge i1s very small for e < .01,

1
© ezldg €
1 43 .5
.01 2,170
.001 145,000 s



we conclude that RQA-1 has a large advantage over simulation if desired accuracy
is moderately high. This conclusion is strengthened considerably by the fact
that a much greater amount of "overhead” calculation is required in simulations
than with the RQA-1 algorithm.

11



5, EXAMPLES OF TRANSITION TABLES

The preparation of the transition table is the most technical aspect of
RQA-1 use. As stated in the previous section, the aim is to code a representa-
tion for a transition matrix which has the flexibility to include a wide class
of problems and which makes efficient use of storage. The general format of
the transition table has already been dilscussed. The purpose of this section
is to illustrate the procedure by which the set of quadruples can be developed
when a statement of the control rules and the structure of a Markovian queueing
system is given. The examples are obviously not exhaustive, but it is hoped
that they are sufficlently representative and that a user of RQA-1 familiar
with them will have a minimum of trouble deriving transition tables for a wide
variety of problems. Future reports will expand upon the process of modeling
general, large queueing systems by Markov chains and by RQA-1 transition tables,

The procedure illustrated here 1s capable of being mechanized by computer
progrems to some degree once the principles are understood. In general, however,
each queueing model represents a distinct programming problem, and 1t appears
difficult to generalize to automatic techniques. For this reason, the present
report will limit itself to essentials. More sophisticated general methods
are the object of current research by the Laboratory.

All three examples discussed in this section represent continuous-time
Markov chains containing one mein queue of Jobs to be served by a service
facility. In each succeeding example, the service facility has an increasingly
complex structure. The derived transition table in each case represents a
transition intensity matrix Q.

The pattern to be followed in transcribing a Markovian model for RQA-1
is:

(1) Determine the state space and a suitable mapping of the states
(which are almost always vectors) to a set of integers.

(2) Determine the most useful value of &. This will generally be the
value of ® which allows the trangitions to be described with the least number
of quadruples. The choice of state-space mapping strongly influences what
ig possible here, and steps (1) and (2) may have to be attempted several
times for a complex model. Computation time does not depend upon the number
of quadruples used. Thus, the primary necessity here is to remain within
avallable storage where space for only 2,000 quadruples is allotted. A
secondary necessity is to keep the transition table preparation from becom-
ing unnecessarily unwiedly. '

(%) Choose a seguence for generating the guadruples. This sequence
must insure that every possible event oI the model is considered for every

12



possible state of the model and that no'event is considered more than once for
any state. It must also insure that, when an event-state pair is consldered,
it is incorporated by extending the range of an already prepared gquadruple
whenever possible rather than creating a new quadruple.

3,1 SIMPLE SERVER SYSTEM

The first and simplest example is illustrated in the diagram below:

Server

Jobs arrive as a Poisson process with mean rate A: The duration of job process-
ing time is independent of arrival and is exponentially distributed with mean
time 1/u. Jobs are executed on a first-come first-served basis. If more than
N jobs are present in the queue, arrivals are simply rejected.

The first step is to define the state space for the system. Because of
the simplicity of the example, the definition of state is artificial in this
instance but provides a pattern for future use. The system state is defined
by the number of Jjobs in the waiting line and by whether or not the service
facility is occupied. Thus, a state is designated by the ordered pair (i,j)
where 1 takes values in the set I = {0;1,2,...,N} and j takes values in the
set J = {0,1}. In this case, the cardinality C of the set J is 2.

It is apparent that not all ordered pairs (i,j) in the Cartesian product
I x J represent states. In fact, the set [(i,O)[ i > O is not a set of states,
since, physically, a queue can exist only when there is a job in service: In
general, the Cartesian product I x J can be partitioned into two setegs the
get of states of the system, and the set of ordered pairs which are not states
which we will call points. Thus, for this example, the set of states of the
system 1s {(0,0), (0,1), (1,1), (2,1),400,(N,1)}, and the eet of points is
{(1,0), (2,0),000,(N,0)},

- As stated previously, the state description within the program is one-
dimensional. A naturel mapping, T, from the two-dimensional description
(4,J) to the single dimension, k, is

k = T(i,J) = CiLi+ 3+ 1, (28)

13



Thus, the one-dimensiona. state description k runs from k = 1 cor-
responding to (i,J) = (0,0) to k = C(N + 1) corresponding to (i,3) = (N,C - 1)
which is equal to (N,1), in this case. In this example, the set of states is
{1,2,4,6,...,2N + 2).

At any time, the system can change state due to a job arrival or a service
completion or can remain in the same state if neither of these occurs. The
transition table can be partitioned into three classes of quadruples: those
associated with Jjob arrivals, those associated with 'service completions, and
those associated with no change, i.e.,

(1) Job arrivals,
(2) service completions, and

(3) no change.

We can subdivide each of the above classes by the first dimension

(a) 1 =0;
(b) 1=1;
(c) = 2, etc.,

and further subdivide them by the second dimension

(1) §=0
i1) §=1.

(

A subclass is interpreted as a collection of trsnsitions from a particular state
caused by a particular event. For example, subclass (1) (b) (1i) represents
the transitions from state (1,1) caused by Jjob arrivals.

One can then create quadruples of the form (a,B,y,B) by sequencing through
each subclass, making certain that the transition rate associated with each
subclass corresponds to the o of a quadruple, and that the state associated
with the subclass is in the P-range of the same quadruple (see Section 2.4).
The state corresponding to the destination of the transition must be the ¥
corresponding to that B. The following detailed construction should clarify
the above discussion.

In this example, ®, the period of the transition table, is chosen to be
equal to 2, since, as will be seen, the states to which equal rates apply differ
most often by 2. It will usually be the case, when the model contains a main
queue, that & is most conveniently chosen to be egual to C, the cardinality of
the set J of all possible combinations of values of.all state variables other
than the queue length. However, in general, ® may be any other value (constant
throughout the transition table) which allows the matrix to be described with
a smaller number of quadruples.

14



Beginning with the subclass (1) (a) (i), the first two parts of a quadruple
can immediately be written,

a = A
B = 1.,
The fact that @ = A is obvious since class (1) is concerned with arrivals and
jobs arrive at the system with a rate N p = 1 is the result of applying the
mapping T to the state designated by (a) (i), namely (0,0), To determine 7,
we note that an arrival in state (0,0) produces a transition to state (O,l)
and, therefore, y = T(0,1) = 2, To determine B, assume B = rd + B for r % 0;
then if N applies for the transition
1>2,
it should next apply for the transition
L+d+2+353
iueo, 5“*’"‘ o
But in the listing of states, 3 does not occur and hence B = 8 = 1, Thus, the
first quadruple (A,1,2,1) applies only for the transition from state 1 to state
2 and, therefore, refers only to state 1, or subclass (1) (a) (1),
The next subclass is (1) (a) (ii). We can immediately write

a = A

T(0,1) = 2,

1]

B

An arrival in state (0,1) produces a transition to state (1,1) and, therefore,
y = T(1,1) = 4, Again, assume B = r® + B for r # O; then A will apply for the
transition

2+8d >4 +5
l.e., L +6 ,

To determine B, it is necessary to find the maximum r such that

rd+y <N +1)

and such that the corresponding transition is a correct description of an errival,
l.e., in this case, r = N+ 1 - 4/2 = N - 1, In general, the maximum r is

15



desired for which the transition intensity «a for states B + rd to 7y + rd is
still valid. For all the examples to be treated, this will correspond to the
maximum r for which y + r® is in the state space. Therefore, B = 2(N-1)+2 = 2N,
Thus, the second quadruple (A\,2,4,2N) has the range. ((2,4),(4,6),...,(2N,2N+2)}
and, therefore, refers to the subclasses (1) (a) (ii), (1) (b) (ii), (1) (e) (ii)
etc. Since (b) (1), (c¢) (i), etc., are not states, all the subclasses of class
(1) have been referred to. A similar procedure now begins for class (2).

The B for the quadruple associated with subdivision (2) (a) (i) would be 1,
but, since there can be no service completions in the 1 state, the corresponding
o is zero and requires no quadruple. We next turn to (2) (a) (ii) for which
B =2 and @ = u, the service rate. A service completion in state 2 produces
a transition to state 1, i.e., y = 1. Assuming B = rd + B, for r # O, the next
transition should be

L »3%

But this is impossible since a completion does not take state 4 into state 3
(which in fact, is not a state). Hence,the resulting quadruple is (u,2,1,2)
and refers only to subclass (2) (a) (ii).

Since (b) (i), (c) (i), etc., are not states, the next subclass is (2)
(b) (ii) for which o = w and B = 4. The corresponding y is 2. B will be de-
termined from the maximum r such that

rd +y <% (N + 1)
ie., v = N+1-2/2 = N,
Therefore, B = r® + B = 2N + 2, The quadruple (u,4,2,2N + 2) has the range
((4,2),(6,4),...,(2N + 2, 2N)) which refers to subclasses (2) (b) (ii), (2)
(¢) (ii), etc., and thereby completes class (2).
The quadruples for class (%) can easily be constructed by using the pro-

perty of @ that the row sums are zero. For all these quadruples, it is also
the case that B = y. For class (3) (a) (i), it can be readily determined that

a = -\
p = 1
y = 1

since the only way to leave state 1 is through an arrival with transition in-
tensity N. Thus, the practical rule for determing the a's of quadruples for

16



class (3) is that @ equals minus the sum of all transition intensities associated
with leaving that particular state. For the above quadruple, it is apparent

that B = 1 since state 1 is the only state for which there will be no «change

if there are no arrivals. ‘

The next subclass is (3) (a) (ii) for which we write

a = -(A+p)
B = 2
Yy = 2 .
The fact that o = -(A + u) is an illustration of the above rule where the sum

of the transition intensities is A + p. This quadruple will refer to all states
which have the same properties as state 2, i.e., states 4,6,...,2N, Hence, B
is 2N, and the quadruple is (-(A + p), 2,2,2N),

For the final state, 2N + 2, the only transition intensity associlated with
leaving is W; therefore, the necessary quadruple is (-u,2N + 2, 2N + 2, 2N + 2).

This completes class (5), thereby completing references to all subclasses,
The transition table is listed in its entirety in Table I. We will now go on to
consider a more complex problem in considerably less detail.

TABIE T

TRANSITION TABLE —"SIMPLE SERVER' MODEL

a B Y B
Job A 1 2 1
Arrivals A 2 i 2N
Service o 2 1 2
Completions W L 2 oN + 2
No -\ 1 1 1
Changes A=l 2 2 2N
-l 2N + 2 2N + 2 2N+ 2
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3.2 FIXED-SIZE MEMORY-SHARED COMPUTER MODEL ("FIXMEM' MODEL)

This model was discussed in the paper by Fife and Rosenbergo8 It is de-
picted in Fig. 1.

Jobs arrive at the loading queue as a Poisson process with mean rate A.
Each Jjob finds some number n of jobs in queue ahead of it. The queue is
cleared on a first-come first-served basis, and the job enters the first stage
of "service" where the mean rate of loading of jobs is W, and the number of
jobs being loaded is nl(nl =0 or 1). If more than N jobs are in queue, the
arriving job is rejected.

After loading is completed, a job enters the second state of service, the
processing phase. There are 5 "channels" in this stage, and n, is the number
which are occupied. The mean rate at which jobs are processed in a single block
or channel is Moo A job leaves the system when its processing time ends.

The principal complexity of the model is introduced by the following
constraint:

nl+n2_<_5o

This implies that loading for no job can be begin while all five blocks are
processing Jjobs.

The state description consists of the ordered triple (n,nl,nz) where n
takes values O,1,...,N, n; takes values zero or 1, and n, takes values
0,1,2,3,4,5, with the restriction that ny + no <5. Table II lists all the
11 possible occupancy configurations (nl,ng) and assoclates & value j to each,

TABLE II

INTERNAL-STATE DESIGNATION—"FIXMEM' MODEL

Internal
State J

=]
[
=
Mo
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Fig. 1. Fixed-size memory-shared computer model.
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The values of j are here called "internal states." Thus, for this example, we
have the set I = {1,2,...,N) and the set J = {1,2,...,11} and, again, we take
© =C = 11 where C 1s the cardinality of J. The mapping T for this example
reduces to

k = T(i,j) =11 1i + J .

The set of "points" is {(1,J)|1i >0, j = 1,2,3,4,5) .

Table III lists the 47 quadruples which are necessary to refer to all the sub-
classes of this system. There are more subclasses for the example than for the
simple server system since there are 11 internal states rather than 2. We will
not carry out the complete derivation of this table but, rather, we will consider
a few illustrative cases.

We will derive the quadruples which refer to state (0,6) for all three classes.
For class (1), we can write

a = N

B = 6
An arrival at state 6 will remein in the queue resulting in state (1,6), i.e., state
17. Thus 7y = 17. It is obvious that later arrivals will also remain in the queue.

Thus, we are looking for a B = wd + B such that wd + 7y < 5(N+1) where w is the
largest integer for which this inequality holds. The above yields

w<N+1-17/11 .

Therefore,

w = N -1

This results in B = 11(N-1) + 6. The quadruple (A,6,17,11(N-1) + 6), which is
number (6) in the listing, has the range {(6,17),(17,28),...,(11(N-1) + 6,11N + 6)}.

For class (2), we write

]

a 5“2
B = 6

gince state 6 represents the configuration in which all 5 processing blocks are
occupied, and jobs are processed at a mean rate of u, per block, the rate for
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TABLE III

"FIXMEM' MODEL QUADRUPIES

No. o B Y B
(a) Job Arrivals

1 A 1 7 1

2 Py 2 8 2

3 N 3 9 3

i A b 10 4

5 A 5 11 5

6 A 6 17 11(N-1) + 6
7 A 7 18 11(N-1) + 7
8 A 8 19 11(N-1) + 8
9 A 9 20 11(N-1) + 9
10 N 10 21 11(N-1) + 10
11 A 11 22 11(N-1) + 11

(b) Service Completions

12 Mo 2 1 2

13 2p, 3 2 3

1k Sz i 3 4

15 by, 5 L 5

16 5t 6 5 6

17 Suo 17 11 1IN + 6

18 B1 7 2 7

19 Ky 18 8 1IN + 7

20 Ko 8 7 11N + 8
21 By 8 3 8

22 By 19 9 11N + 8

23 2u, 9 8 1IN + 9

2l My 9 L 9

25 H1 20 10 11N + 9

26 3o 10 9 11N + 10
27 By 10 5 10

28 By 21 11 11N + 10
29 hpg 11 10 1IN + 11
30 By 11 6 1IN + 11

(c¢) No Changes

31 -A 1 1 1
32 A-py 2 2 2

33 -A-2uo 3 3 3

3k -3l L L L

35 Nl 5 5 5

36 A-5hp 6 6 11(N-1) + 6
37 Sk 11N + 6 1IN + 6 1IN + 6

38 -A-ly 7 7 11(N-1) + 7
39 _ 11N + 7 11N + 7 11N + 7

Lo -N-H] ~Hp 8 8 11(N-1) + 8
b1 ~H Hy 11N + 8 11N + 8 11N + 8

Lo -A-py -2py 9 9 11(N-1) + 9
43 -H; -2U, 11N + 9 1IN + 9 11N + 9

Lk -A-pp -3Hs 10 10 11(N-1) + 10
ks -Hy 3R, 11N + 10 11N + 10 11N + 10
L6 T -Ep2 11 11 11(N-1) + 11
L -ul-llmg 11N + 11 11N + 11 11N + 11
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I blocks in use, where I <5 is Zpl. In this instance, [ = 5, and, therefore,

o = 5u2. A single service completion will result in a state in which { = M,

and, therefore, y = 5. If there is a queue, then a service completion in the
processing block will result in the job at the head of the queue moving into

the loading phase. Thus, two quadruples, namely (5p2,6,5,6) and (5u,,17,11,11N46),
will be necessary to form the range {(6,5),(17,11),(28,22),...,(11N + 6, 11N)}.

Class (3) will require two quadruples for the same range: for the first
a = (A + 5u,), and for the second & = -5p,. These quadruples are numbered (36)
and (37), respectively. For the states 6,17,28,...,11(N-1) + 6, transitions
are possible in two ways: an arrival with transition intensity A, and a service
completion with transition intensity Su,. For state 11N + 6, a transition is
only possible through a service completion.

For a final case, we will derive the quadruples which refer to state (0,9)
for all three classes. State 9 is the service configuration consisting of 2
jobs being processed and 1 job being loaded. Thus, there are two ways for
service completions to occur.

The quadruple associated with class (1) is number (9) in the listing, and,
at this point, its derivation should be straightforward.

For class (2), the relevant quadruples are numbered (23),(24k) and (25).
The o for quadruple (23) is 2p2 which is the transition intensity associated
with a service completion in the processing blocks. The range of this quadruple
is {(9,8),(20,19),...,(11N + 9, 11N + 8)). The service configuration for state
8 is shown in Table II. There are two quadruples necessary t0 describe service
completions in the loading block. When there are no jobs in the queue, a service
completion in the loading block results in an additional processing block being
employed, i.e., state 4 results. When there are jobs in the queue, the Job at
the head of the queue moves into the recently vacated loading block and state
10 results.

The class (%) quadruples are numbered (L42) and (43). The range of quadruple
(42) is {(9,9), (20,20),...,(12(N-1) + 9, 11(N-1) + 9)}, and its a is
(N + Wy t 2up), as expected. Quadruple (L2) refers to state 11N + 9 with an
a of -(up + 2un).

These few cases should be sufficient to indicate the structure of the en-
tire transition table. The next example will introduce an additional complexity
in that service completions will depend more closely upon the nature of Job
arrivals.
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3.3 RANDOM-SIZE MEMORY-SHARED COMPUTER MODEL (' RANMEM' MODEL)*

The model depicted in Fig. 2 bears a resemblance to the previous model
discussed, but it is only a superficial one. As before, the queue will be
cleared on a first-come first-served basis. There will be three types of
jobs arriving, distinguishable by the number of service blocks or storage
units they require. The Jobs will arrive as a Poisson process with mean ar-
rival rates Ay, Ao, x5 for one, two, and three storage unit jobs, respectively.
These rates are independent of time and state of the system. For convenience,
we set A = A + Ao t A3

We assume that the system is nonpreemptive, i.e., a job once begun is
completed. BEach type of job will have a basic mean service rate when it is
being processed alone. These service rates are pj, o, Hz for one, two, and
three storage unit Jjobs, respectively. However, when two Jjobs are being
processed simultaneously, the mean service rate at which each Jjob is completed
is assumed to be one-half the basic mean service rate. For example, if a one-
unit and a two-unit Jjob are being processed, the mean service rate for the
one-unit job is (l/2)ul and for the two-unit job (l/2)p2. Similarly, for three
one-unit Jjobs, each will have a mean service rate of (l/5>“l' Upon completion
of any type of Jjob, all blocks being used for that job become free simultaneously.

This model is particularly interesting because it requires the evaluation
of conditional probabilities (conditional upon the state of the system) in order
to determine the correct transition intensities. This is true because jobs hav-
ing different properties are allowed to be mixed in the queue, and the nature
of the first job in the queuve is dependent statistically upon the condition of
the system.

The state description consists of the ordered gquadruple (n,nl,ng,nB) where
n is the number of jobs in the waiting line, and nj,np,nz are the numbers of
one-, two-, and three-unit jobs in service, respectively. Table IV lists all

TABIE IV

INTERNAL STATE DESIGNATION-—'"RANMEM' MODEL

n n Internal
" 2 > State, j
0 0 0 1
0 0 1 2
0 1 0 3
1 1 0 L
1 0 0 5
2 0 0 6
3 0 0 7

*This model corresponds to one suggested by Dr. R. V. Evans, now of UCLA, for
multiprogrammed time-shared computer operation.
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Fig. 2, Random-size memory-shared computer model (RANMEM)
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the possible occupancy configurations of which there are 7. For this example,

the set J is {1,2,...,7) with ® =C = 7, and the set I is {0,1,...,N). The
mapping T reduces to k = T(i,3j) = 7.1 + j. We will again call the value of

J the "internal state" of the system. The set of "points" is {(i,3j)[i > 0,5 = 1}.

Table V lists the 60 quadruples which are necessary to refer to all the
subclasses of the state space. We will consider only one illustrative case.

We will derive the quadruples which refer to state (n,3),n = 0,1, ...,N,
for all three classes. State 5 represents a two-unit Jjob in service. The
arrival of a one-unit job with transition intensity Aj] produces a transition
to state 4. The arrivals of either a two-unit or a three-unit job with in-
tensity Ao + Az do not change the internal state but do increase the queue
length. Both these quadruples (5) and (6) refer only to the single state 3,
since for state 10, the arrival of any type of job (with intensity
A = A1 + Ap + A3) produces a transition to state 17. Then quadruple (1L) will
have the range {(10,17),(17,24),...,(7(N-1) + 3, 7N + 3)}. Thus, three qua-
druples are necessary for the class (1), subclasses (n,3), n = 0,1,...,(N).

In state 3, a service completion will produce a transition to state 1
with intensity po. Quadruple (18) will have only the single element (3,1) in
the range, because the transitions resulting from service completion of a two-
unit job are quite different for state 10. In state 10, the single job in
queue can only be a two-unit or a three-unit job (a one-unit job cannot re-
main in the queue when there is space for it in service. If, for example,
only a two-unit job in service, the one-unit job cannot remain in the queue).

We have here the situation in which the identity of the first job in the
queue depends partially on the type of Jjob in service. For example, if there
is a two-unit job in service, the first job in the gqueue cannot be a one-unit
Job. If there is a one-unit job in service, the first in queue cannot be a
one-unit or a two-unit job but must be a three-unit job. This dependency will
introduce complexities into the form of the transition intensities. If there
is a two-unit job in the queuve, a service completion will result in a transi-
tion with intensity pgkg/(kg + k3); similarly, for a three-unit Jjob in the
queue, the transition intensity will be ugx5/(Kg + k5). In the first case,
the kg/(xg + x5) factor is the probability of a two-unit job being in queue
given that there is a two-unit or a three-unit Jjob in queue.

Quadruples (27) and (28) account for these cases. Quadruple (2) has a
complete range because, given a three-unit. job at the head of the queue, the
remaining composition of the gueue is unimportant. But quadruple (27) has
only the single element (10,3) in its range, since transitions from state
17 depend on the nature of the first two jobs in the queue if the first in
queue is a two-unit job.

The only two cases to consider for state 17 are that the first in queue
is a two-unit job and the second in queue is not a one-unit job, and that the
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TABIE V

"RANMEN" MODEL QUADRUPLES

No. o B Y B
(a) Job Arrivels

1 M 1 5 1

2 Ao 1 3 1

3 A3 1 2 1

L4 A 2 9 7(N-1) + 2
5 M 3 b 3

6 Mg+ Ay 3 10 3

7 I 4 11 7(N-1) + k4
8 N 5 6 5

9 Ao 5 L 5

10 Az 5 12 5

11 M 6 7 6

12 Ao + 7\5 6 13 6

13 N 7 14 T(w-1) + 7
14 A 10 17 T(W-1) + 3
15 A 12 19 7(N-1) +5
16 A 13 20 7(N-1) + 6

(b) Service Completions

17 U.3 2 1 2

18 M2 3 1 3

19 M /2 4 3 4

20 ho/2 b 5 b

21 M1 5 1 5

22 By 6 5 6

23 M1 7 6 7

2k bsh3 /N 9 2 ™+ 2
2 bzhp/N 9 3 9

26 usN1 /A 9 5 9

27 ugxg/(xz + x5) 10 3 10

28 uonz /(N + N 10 2 ™ + 3
29 uy(As + xg)/Zx 11 10 ™+ b
30 Hohs /2A 1 12 ™+ L
31 (ulkl + uphp) /oA 11 4 T + 4
32 o /2N 11 6 11

33 uns /(N + N5) 13 12 ™+ 6
3k ulxg/(xe + AB) 13 L ™+ 6
35 12 2 ™+ 5
36 pl(Xg +A3) /A 14 13 ™+ 7
37 BNy /™ h 7 ™ + 7
38 Hzho(hg + x5)/x 16 10 N+ 2
39 Buzhoh / 16 L ™ + 2
Lo p5x125 \2 16 12 ™+ 2
41 H3h Z/N 16 16 16

ko poho /N 17 10 TN + %

3 uexgxl/(x(xgﬂ» )) 17 L ™ +3

i uQxlgxg +A3) 202 18 13 TN+ k4

L5 /2)\ 18 7 ™+ b
46 p5x15(x§ +N5) N3 23 13 ™+ 2
L7 HzAy 23 7 ™ + 2

(c) No Changes

48 A 1 1 1

L9 -i3 ™+2 ™+ 2 ™+ 2
50 Ay 2 2 7(N-1) + 2
51 by ™+ 3 ™+ 3 ™+ 3

52 “A-pp 5 3 7(w-1) +3
53 -p1/2-up/2 ™ + b TN + b4 TN + b
5k “A-hy [2-pp/2 4 L 7(N-1) + b
55 -H1 ™+ 5 ™+5 ™+5

56 N-py 5 5 w-1) +5
3T - ™+ 6 ™+ 6 ™+ 6
58 M-k 6 6 7(N-1) + 6
29 H ™+ 7 ™+ 7 ™+ T

€0 “Aepy 7 T 7(N-1) + 7
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second in queue is a one-unit job. In the first case, the transition in-
tensity will be

Kg No + Az
Yo, + s x

ngg/x

i.e., po multiplied by the probability that the first job in queue is a two-
unit Job and the second i1s either a two-unit or a three-unit job. The transi-
tion will be made to state 10. The complete quadruple is number (42). 1In

the second case, the transition intensity will be

N M

Ho > ;
Expt g A

i.e., Mo multiplied by the probability that the first job in queue is a two-
unit job and the second is a one-unit job. Thus, after the service completion
two jobs move into service resulting in state 4. Number (43) in Table Vb is
the complete quadruple.

For this problem, it will be advisable to determine the class (3) qua-
druples by examiniation of those classes (1) and (2). The sum of the transi-
tion intensities referring to state 3 1s Ho ¥ A1 + Ao + k5 resulting in the
transition intensity -(n + H2)~ To determine the range of the quadruple with
this o, we will consider a's for states 10 and 17. For state 10, the follow-
ing is the sum of the transition intensities.

+ + A + MIn. A
MOy )y 5( > )

5 5

This also reduces to A + po. For state 17, the following 1s the sum of the
transition intensities:

A+ p2x5/(x2 + xB) + pgxg/x + pgxgxl/(x(xg + xB) .

This again reduces to N + po, Thus, quadruple (52) will refer to all states
except the final state. For the final state, the o will be simply -uo since
quadruple (lh) with o = N does not refer to the final state.

A few additional observations may be useful. In quadruples (19) and
(20), the transition intensities pj and pp, are each divided by 2. This is
a result of an assumption made earlier in which it was stated that, if two
Jobs were run simultaneously, the mean rate at which each would be completed
would be 1/2 the basic mean rate. When two like jobs (i.e., one-unit jobs)
are being run, the mean rate for each is (l/2)pl but the mean rate for a
service completion will be the sum, namely pj. Quadruple (39) has a factor
2 associated with the transition intensity. This arises from the fact that
two like transition intensities have been added in order to arrive at this
result.
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3.4  SUMMARY

It should be noted that all three transition tables have a common feature.
Each represents a system with the size of the state space limited by the maxi-
mum number of allowed jobs in the queve. As we stated previously, this is only one
kind of system for which a transition table may be usefully employed. Additicnal
complexities can be introduced by having elements of the quadruples expressed
as functions of some or all of the parameters of the queueing model.

As i1llustrated, the method for deriving a transition table provides an
orderly procedure for determining a complete set of quadruples. What is actually
done 1s to enumerate all events which can occur for each state. The division of
events between arrivals and service completions in the examples is artificial
and done only for convenience in ordering tasks. For problems in which some
events cannot be identified as eilther an arrival or a service completion, some
other division will be suitable. In any case, one will continue to enumerate
the transitions for each event and each state. Of course, sequences other
than those suggested in the examples could be followed in systematic evaluation
of the quadruples.

In some instances, the construction of a partial state diagram will greatly
aid the process of determining the transition table.- For complex systems,
the state dilagram mey prove very difficult to draw and may not provide much
insight into the regularities of the state space.

Once again, we stress the point that examples have been presented to sug-
gest possible forms for transition tables. For most problems, it will be the
user's responsibility to devise transition tables with those properties most
ugeful to his special purposes.
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4. PROGRAM DESCRIPTION

The purpose of this section is to discuss programming details of the
RQA—l‘program. For the most part, the block diagram (Fig. %) and the MAD
listings (Appendix A) of the program provide full documentation of the pro-
gram. However, a few remarks will be made here to aid in their interpreta-
tion. We shall begin these remarks by discussing the roles of the major sub-
routines.

More detall of the procedures to be followed by a user, of definitions
of user specified parameters, and of diagnostic printouts i1s provided in
Section 5 which acts as a sort of "user's manual” for RQA-1.

4.1 THE DISCIPLINE SUBROUTINE (DISCPL)

The function of the Discipline Subroutine is to prepare the transition
table which describes the transition probabilities or intensities of the
problem to be solved. This subroutine is unique to each application or
model solved by RQA-1, and hence, must be written by the user.

The form of the transition table internal to RQA-1 is a set of four
vectors called TRANS, FIRST, DEST, and LAST corresponding to the «, B, 7,
and B respectively, of the quadruples discussed in Section 3. The i-th
element of each of the four vectors together form the i-th quadruple. The
DISCPL subroutine is basically a program for the evaluation ofthese vectors
in terms of parameters which may be altered at execution time. These para-
meters are the counterparts of the A, p, N, etc., of the examples in Section
3 and appear only in DISCPL.

In addition to preparing the transition table, DISCPL has the responsi-
bility of reading all parameters supplied by the user at execution and of
providing essential control information descriptive of the queueing model
being analyzed.

Sample DISCPL routines for the three models used as examples in Section
3 can be found in Section 5 (Table VI, VII, and VIII).
4.2 STOCHASTIC CONVERSION SUBROUTINE (STOCAL)

The role of this subroutine is to determine whether the transition table

in memory represents a transition intensity matrix Q (hence, a continuous-
time model) or a stochastic matrix A (hence, a discrete-time model). If it
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Fig. 3. Flow diagram for RQA-1.
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is the former, STOCAL converts the transition table to represent the stochastic
matrix((.99/R)Q + I), where R = - max lqii]. If it is the latter, STOCAL con-
verts the transition table to represent the new stochastic matrix (.99A + .01I).
These conversions assure the convergence of the resulting iteration processes

to an equilibrium distribution of the specified model (cf., Sections 2.2 and 2.3).

The determination of the type of matrix represented is accomplished by
determination of the element of the TRANS vector having least value. If it
is equal to or greater than zerc, the transition table represents a stochastic
matrix. If, on the other hand, it is negative, the transition table represents
a transition intensity matrix, and the value of the element having least value
is equal to -R.

4.3 THE TEST SUBROUTINES TEST AND TOUT

The purpose of TEST is to determine whether the current transition‘table
does indeed represent a stochastic matrix, and whether it adheres to the neces-
sary properties of a valid transition table.

Using the transition table, the elements corresponding to each row of the
matrix are summed and successively stored in a prezeroed vector. If the matrix
is stochastic, the rows corresponding to states will have a one in the associated
position of the vector and these corresponding to points will have a zero, In
addition, all elements in columns corresponding tc points must be zero. In the
TEST subroutine, it is determined whether or not the above conditions exists.

If they do not exist, the subroutine TOUT is called, and various diagnostics
are printed to help determine the error(s) in the transition table.

For each quadruple in a valid transition table, the following equation
must hold:

B-B = 1d for r e {0,1,2,...}) . (29)

If this condition is not met for all the quadruples of the transition taeble, the
subroutine TOUT is called, and appropriate diagnostics are printed.

4.4 THE ESTIMATION SUBROUTINE ESTIM

Before beginning the iterations, an initial iterate must be selected.
The RQA-1 main program allows this iterate to be selected in four different
ways by the user: it can be read in as input data either in binary or float-
ing point form, it can be taken to be the final iterate of the previous run

(which has remained in storage), or it can be calculated by the subroutine
called ESTIM.
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As its name suggests, ESTIM is a subroutine for estimating a satisfactory
initial iterate and is based on a generalization of the simple server system
discussed in detail in Section 3.1. For a simple server model, the probability
of queue length 1 is proportional to pi, where p = k/p (e.g., ref. 10). ESTIM
prepares an initial iterate so that the k-th element of the iterate is propor-
tional to (p*)k, where p* is a constant. If G = {gij} is the matrix represented
by the transition table, then p* is calculated as

1

ey Y
¥ = (=) (30)
p* '

where
¥ = :

o= ) ey, (31)

1,5:1>3

Zli-jl

i,Js
gi3# 0
y =—1—J——-n———— (33)

and n is the total number of nonzero, cff-diagonal elements of the matrix.

For the simple queue, these. expreéssions reduce to p¥ = x/p, The only real
Justification for applying this calculation to more complex models is that it
has been found to be quite effective, particularly whern the model being solved
originally had a multivariate state space and the mapping to the linear state
space had a major queue of the system as the most significant veriable in a
Cartesian mapping .

ESTIM calls the iteration subroutine once before returning to the call-
ing program, producing a vector having nonzero values only in states. The
vector supplied to the calling program will not have a unit sum. Henece, sub-
sequent normalization by the calling program 1s required.
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L.5 THE ITERATION SUBROUTINE, ITER

Whereas the main program and all the other subroutines are written in
the procedure-oriented language, MAD, the ITER subroutine is written in the
machine-oriented language, UMAP.* The purpose of this is to make this sub-
routine as efficient as possible.

The only argument of this subroutine is the number of iterations to be
carried out. Thus, a typical call of the subroutine would be EXECUTE ITER.(N)
where N is the number of iterations. One iteration consits of the multi-
plication of the current iterate by the matrix. The subroutine requires two
vectors in erasable store: one for the last iterate, and one for the iterate
being formed. A switch is set which indicates which is the current iterate,
thus removing the necessity for continually transposing newly computed iterates.

Because of the importance of this subroutine, we would like to discuss
its operation in more detail. The two vectors mentioned above are actually
stored in one vector which is represented in the program by the symbol V.
This vector has 10,000 locations, thereby allotting 5,000 to each vector.

To indicate which half of V contains the current iterate and which half will
be used to store the newly computed iterate, two symbols, VFLAG and CVFLAG,
are defined in the program. These symbols can only assume the values O or

1 and are constrained to have complementary values, i.e., when VFLAG = 1,
CVFLAG = 0.

The current iterate is always referred to by calling V(VFLAG,I). When
VFLAG = O, the first half of V contains the current iterate. When VFIAG = 1,
the second half of V contains the current iterate. To illustrate how a
typical iteration would proceed, assume that VFLAG = 1. This means that the
current iterate occupiles the second half of V. During the process of multiply-
ing this vector by the matrix, values of the newly calculated iterate are
stored in the first half of V which had been zeroed previously. When this
single iteration is complete, VFLAG is set equal to O, and the second half
of V is zeroed. Thus, the current iterate occupies the first half of V
and will be correctly referenced by calling V(VFIAG,I).

As mentioned above, the multiplication process is carried out by sequenc-
ing through the transition table. For a parficular quadruple (ai,Bi,yi,Bi),
04 is multiplied by the value of the current iterate at location Bi, and the
result 1s added to the value at location y; of the iterate being formed.
This process is continued for the range of the gquadruple, i.e., until ay
is multiplied by the value of the current iterate at location By with the

result being added to the value at location yj + By - B; of the iterate being

*
For users who do not have a UMAP assembler available, a MAD version of ITER

is also included in the listings of Appendix A. Its use in place of the UMAP
version will approximately quadruple the execution time of RQA-1.
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formed. The program then proceeds to (ai+l’Bi+l’7i+l’Bi+l) and repeats the
process until all quadruples are exhausted.

This type of vector-matrix multiplication is quite efficient because
only nonzero elements of the matrix are referenced. Also, no significant
penalty in computing time results from the manner of describing the matrix.

4.6 THE ITERATION STRATEGY (MAIN AND CVGTST)

Upon completion of the calculation and normalization of the initiael iterate,
the main program produces a first call to the convergence testing subroutine
CVGIST. This first call of CVGIST simply sets the underflow traps so that
underflows produce normal zeros, and returns to the calling program (MAIN)
with an index corresponding to a nonzero element of the initial iterate.

The main program continues to iterate until successive values of the
specified element have an absolute difference which is less than the con-
vergence criterion ¢, or until the specified maximum number of iterations
has been taken. At that point CVGIST is called again.

If we define p(n) to be the n-th iterate and pi(n) to be the value of
the i-th element of the n-th iterate, the meximum difference between suc-
cessive iterates e\%/ is given by

(n) (n) (n-1) |

e = mex | by - py

The iteration process is said to have converged after n iterations for error
criterion € jf e n) < €. For every call of CVGIST after the first, CVGTST
calculates '™ and tests for convergence. If the process has not converged,
this subroutine returns to the main progrem with the integer iy corresponding
to the state for which the absolute value between successive iterates is larg-
est. The idea is not to calculate iy for each iteration but to use an initially
calculated iy as a coarse test and to recalculate only when this coarse test

is satisfied. Then the main program iterates until the absolute difference

of the ipM-th element is less than € or the specified number of iterations has
been taken. Another call of CVGIST then results, and the process is repeated.

On the other hand, whenever the tests within CVGIST are satisfied, CVGTST
prints appropriate comments and error estimates, resets the underflow error
trap, calls the output subroutine OUT2, and transfers out (via an "error
return") to the beginning of the main program for a calculation of another
model (if data are available).
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The purpose of this two-level testing procedure is to avoild the expense
of calculating iy for each iteration by using a value of iy in a coarse test
for convergence and recalculating iy (using CVGIST) only when the coarse test
has been satisfied.

4,7 MISCELLANEOUS SYSTEM ROUTINES

For the sake of completeness, the library routines explicitly called by
RQA-1 will be listed here with a brief mention of their function.

(a) BNBCD.(X) converts its argument X from binary to binary coded
decimal (Hollerith) form suitable for punching or printing chavacters.

(b) BPU'NCH.(g{,.) punches the values of the list f in column binary format.*

z
(¢) BREAD.(A ) reads the values of the list s/ from column binary cards.
(d) ELOG.(X) computes the natural logarithm of X.

(e) ERROR. produces a call to the monitor system with a dump of
memory if requested.

(f) FIRAP. sets the underflow trapping procedure so that underflows
are replaced by normal zeros until NTRAP is executed.

(g) NSDBCD.(X,Y) provides for punching the BCD values X,Y in columns
72-80 of the next card punched. (Sequencing of the last characters of this
field is accomplished by The University of Michigan Executive System.)

(h) NTRAP. resets the underflow trapping procedure to its normal
condition so that an underflow produces an exit to the monitor system (as
in ERROR).

(i) SYSTEM. produces a call to the monitor system.

(j) TODAY.(DATE,YEAR) gives to DATE.and YEAR BCD values corresponding
to the day, month, and year that the program is executed.

(k) ZERO.(éC) sprays normal zeros into all locations specified by the

list X .

*
Actually, in The University of Michigan system, it writes binary card images
on the "punch output" tape, for offline punching.
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4,8 CONCLUSION

We would like to make some remarks on the program as a whole. Except
for the two subroutines DISCPL and PROUT,* the program operates on a state
space which is one-dimensional. Thus part of the program needs no informa-
tion with respect to the structure of the states, i.e., thelr multidimen-
sional nature. The transition table created by DISCPL describes a one-
dimensional process, but DISCPL also contains some informetion about the
structure of the states which is passed on to PROUT. For example, if the
state designation were two-dimensional, DISCPL would contain values for the
upper bounds of each dimension. In the examples of Section 3, the upper
bound for the internal state variable is C which 1s fixed, and the upper
bound for the queuve state variable is N which is put in as data. The
upper bounds are needed only in the subroutine PROUT to prepare a suitable
output format. PROUT was written specifically for a two-dimensional state
description and presents the final iterate in terms of such a state de-
scription.

Thus, the two subroutines DISCPL and PROUT can be considered user-
controlled. DISCPL must be supplied by the user, while PROUT may be re-
placed by the user if he degires output formats other than those built into
RQA-1 or if he wishes to perform some additional caculation before print-
ing results.

¥PROUT is the program,called by OUTZ, which prepares and prints the printed state
probebilities and marginal probabilities.
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5. "PROCEDURES FOR THE USE OF THE PROGRAM

This section describes procedures for the use of RQA-1. It is ‘concerned
primarily with the data which must be supplied by the user and with the in-
terpretation of the output produced by the program. It is assumed here that
the program is used with The University of Michigan Executive System.,

In normal use, the object deck of RQA-1 is followed by the DISCPL sub-
routine, a "$DATA" card, and the input data. Since the DISCPL subroutine
must be prepared by the user, we will give a detailed discussion of its pre-
paration. The data are in five classes, divided into two distinct groups
of cards. In order Of their appearance following the $DATA card, these are

GROUP 1

Program control parameters
Structural parameters
Discipline parameters
Transition table parameter

TN AN N N

E A VI
S N N

GROUP 2
(1) Initial Iterate.

Following the description of the programming of a DISCPL subroulilhe will
be a discussion of the input data, the form of both normal and abnormal out-
put, the structure of the program card deck, and the format of binary cards
occurring as punched output.

5.1 THE DISCIPLINE SUBROUTINE, DISCPL

The chief input to RQA-1 provided by the user is the discipline sub-
routine. This user-generated program provides RQA-1 with a complete de-
scription of the model to be solved in the form of code which generates the
transition table. In addition to correctly describing his model; the user
must insure, while writing this subroutine, that the number of quadruples
generated does not exceed 2,000 and that the linear index of every state
does not exceed 5,000.%

The discipline subroutines must carry out certain necessary functions
for RQA-1:

*Failure to do the fovmer will usually result in a violation of low-core
storage protection in the University of Michigan system and probably worse
difficulties in other systems. Failure to do the latter will simply result
in an error return to system with sultable diagnostics printed out.
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(1) Specifying the complete transition table
(2) Reading or specifying the Group 1 parameters
()i Specifying a name for the model.

The transition table consists of four vectors called TRANS, FIRST, DEST, and
LAST corresponding respectively to the <, B, 7, and B of Section 3. The

values of elements of these vectors will usually be dependent upon the values

of discipline parameters which are supplied at execution time and, hence, can-
not be treated as simple numerical vectors to be read as data. Rather, they

are computed by the execution of program segments contained in the discipline
gsubroutine. This facilitates examination of the behavior of a model as para-
meters are varied, since the program may be simply rerun with different numerica
values of the parameters supplied.

Normally, the discipline subroutine must contain all the statements with-
in the dashed blocks in Fig. 4. The first block contains the instruction to
read the Group 1 data, and in this section, it will be assumed that this isg
done by the simplified input/output statements in MAD., The second block defines
the model name ('"name" should be replaced by any desired twelve characters,
including spaces) and sets up necessary communication to the remainder of
RQA-1 through PROGRAM COMMON.

Group 1 parameters which are not read as data may be declared or calculated
in DISCPL. The Group 1 parameters will be defined later.

The vectors TRANS, FIRST, DEST, and IAST of the transition table can be
set up in several ways, only one of which is exhibited in the listings of the
DISCPL subroutines shown in Tables VI, VII, and VIIT for the examples of
Section ». This method involves the use of two list-manipulating statements
in MAD, namely: SET LIST TO and SAVE DATA.l SET LIST TO TRANS sets up a
vector named TRANS, and SAVE DATA oy, Qg,...,0p causes Q1, Op,...,0, to be the
n entries of this vector where the a's can be any arithmetic expression ac-
ceptable to MAD.,

While the illustrated technique is quite mseful, other methods will also
be found suitable to particular problems. For example, the quadruples may be
generated in a series of THROUGH loops when some systematic evaluation tech-
nique is available or the number of quadruples to be generated depends on
data. Appendix B contains & discussion of a group of subroutines, contributed
by J. H. Jackson, which have been found to be useful in the generation of
gquadruples under quite general circumstances. On the whole, the degree of
innovation which is possible is limited chiefly by the user's desires and
needs.

In determining the quadruples of the transition table, the period DELTA
(8) can be treated as a constant or a parameter. If it is a constant, as is
the case in the examples of Section 3, it is set in DISCPL, but, if it is to
be treated as a parameter, it can be defined in DISCPL or reed in as data.
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EXTERNAL FUNCTION

| ENTRY TO DISCPL '

PRINT COMMENT $8 INPUT PARAMETERS ¢
READ AND PRINT DATA

9 000 QDb o0 GC 50060000 0Q Ce &0 82 C00 O

Portion of program defining Group 1 parameters which are not read as data

Portion of program defining transition table in’ terms of
DELTA, TRANS, FIRST, DEST, LAST

G 0009009900000 CY0TCeRSOO0QCDO OCD OO

VECTOR VALUES NAME = ¢ "Name"$

INTEGER FIRST, DEST, LAST, INIT, PCH, PRSW, DELTA, MAXJ, MXITER

PROGRAM COMMON TRANS(£001), FIRST(2000), DEST(2000), LAST(2000), PCH, PRSW,
MXITER, EBSI, DELTA, INIT, RUN, TSW, NAME(1), MAXJ

FUNCTION RETURN

END OF FUNCTION

Fig. 4 DISCPL subroutine.
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We will complete this discussion with a brief reference to the three DISCPL
subroutines listed in Tables VI, VII, and VIII. In all these cages, the SET
LIST TO and SAVE DATA statements have been used. All these examples have
been formulated in terms of a single queue and a complex server. The parameter
NQ is used in the transition tables to represent the maximum queue length. Of
course, any integer-valued variables introduced by the user must be declared.
For these examples, DELTA was chosen equal to C (the cardinality of the set J)
and so the following pair of statements is used:

DELTA X
MAXJ = X

where x is 2,7,11 for the SIMPLE QUEUE, RANMEM MODEL and FIXMEM MODEL respectively.
(MAXJ is a structural parameter (Group 1) which, in these cases, is also equal
to the cardinality of J.)

Group 1 parameters are defined in the next three subsections.

5.2 PROGRAM CONTROL PARAMETERS

The program control parameters are named PCH, PRSW, MXITER, EPSI, INIT,
and TSW. The mode, preset value, and range of permitted values of each of these
variables are given in Table IX. If these parameters are not specified on any
particular run, they have, for that frun, the value last supplied on a previous
run, If no previous run has specified their value, they have the "preset”" value
shown.

TABIE IX

PROGRAM CONTROL DATA

Preset Other

Name Mode Value Values
PCH INTEGER 1 0,1
PRSW INTEGER 1 0,1

MXITER INTEGER 100 >0, < 10°

EPSI FLOATING 10-4 >0, < 1.
POINT I

INIT INTEGER 0 0,1,2,3
TSW INTEGER 1 0,1




EPSI is the value of the convergence test criterion. Thus, when the
maximum absolute difference between corresponding elements of successive
iterates is less than or equal to EPSI, the convergence test is satisfied.
MXITER is the maximum number of iterations to be allowed in the calculation.
If this number of iterations has not been satisfied, the calculation is
terminated and output supplied.

Table X lists the significance of each of the values of the variables
PCH, PRSW, INIT, and TSW.

TABLIE X

THE FUNCTIONS OF PCH, PRSW, INIT, and TSW

Name Value Function _
PCH 1 - Final lterate 1s punched in binary format.
0 - Final iterate is not punched.
PRSW 1 - Final iterate is printed by execution of PROUT.,
0 - Final iterate is not printed. PROUT is not called.
INIT 0 - The initial iterate 1s calculated by the subroutine ESTIM.
1 - The library subroutine BREAD is called and an initial
iterate in binary format is read in. This input 1s the
punched oubput of a previous run.
2 - The initial iterate is read in by READ DATA statement and
is in floating point format.
3 - The final iterate from the previous run is used as the
initial iterate for the present nun.,
TSW 1 - The transition table 1s tested to assure its stochastic
character and other properties. (TEST is called).
0 - The transition table is not tested.

5.3 STRUCTURAL PARAMETER

Structural parameters convey dimensionality information to be output print-
ing subroutines. For the output printing subroutine provided (PROUT), there is
only one such parameter, MAXJ. This parameter indicates the maximum extent of
the least significant coordinate J of the two-dimensional output array of proba-
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bilities. In PROUT, a state with index K will be treated a&s a state with vector
value (I,J) as determined by the mapping

K = MXJ*I+J+1
corresponding to Eq. (28). Thus, MAXJ corresponds to the cardinality of the
set {J)} described in Section 3.
The preset value and the range of MAXJ are given in Table XI. If the pre-
set value is used (by not specifying MAXJ) or if a value greater than 2500 is

specified, the printed output will supply the results ten-to-a-row and fifty-
to-a-block.

TABLE XTI

STRUCTURAL PARAMETER

Preset
Name Mode Value Restriction
MAXJ INTEGER 10 MAXJ < 2500

5.4 DISCIPLINE PARAMETERS

These data consist of the required parameters for the particular queue
discipline being run. They are defined by DISCPL only. If they are not float-
ing point constants, their mode must be declared. For the examples discussed
in Section 3, such parameters are the L's and NU's. For the FIXMEM model
(Table VII), a data card with discipline parameters would be

L = 1.0, NU1 = 1.5, W02 = .25,

In general, these parameters are the independent variables involved in the qua-
druples of the transition table.
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5.5 TRANSITION TABLE PARAMETER

This parameter is DELTA, which is an integer. Its use was discussed in
Section 5.1. It is treated essentially like a structural parameter, but, while
structural parameters refer to the state-space structure, DELTA is actually a
part of the description of the transition table. It has a preset value of 1.

5.6 INITIAL ITERATE

Ag seen in Table X, when INIT is 1 or 2, the initial iterate is read in
as data. For INIT = 1, the initial iterate must be presented in column binary
format. It is usually the set of cards containing a final iterate which was
punched in binary mode in a previous run as the result of setting PCH = 1,

The form of this iterate is described in Section 5.11. The entire set of
output cards as described there must be used as input for the initial iterate,
i.e., the header card followed by the binary data.

For INIT = 2, the initial iterate must be supplied in floating point form
to be read by a READ DATA type statement. Unspecified values are automatically
zero. Before being used, the initial iterate will be normalized to a proba-
bility vector. Therefore, at least one element must be specified. Typical
data cards would be

v(1) = .25, V(3) = .50, V(10) = .25*
or
V(1) = .20, .15, .10, .05, V(50) = .20, .15, .10, .05% .
Values can be given for any V(I) where I runs from 1 to the largest integer
denoting a state.

These data are Group 2 data and must appear after the Group 1 data of the

run.
5.7 FORMAT OF INPUT DATA
There is no specified order for the Group 1 data. These data are in the

format of cards to be read by a READ DATA.statement in MAD and must be followed
(according to that format) by "*".
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Following the Group 1 data will be the Group 2 data, if required (i.e.,
if INIT = 1 or INIT = 2). Following this will be the data for the next run,
if further runs of the model with different data values are desired. Any
number of sets of data may be stacked in this way.

The run number sequence which identifies all output of RQA-1 can be
started (restarted) at a user-specified value on any run by insertion of a
card just ahead of the Group 1 data for the run with the format

THE INITIAL RUN NUMBER IS XXX

This statement must start in the first column of the card, and :words must be
separated by a single space. The XXX may be any non-negative integer of three
or less digits. If this is not done, runs will be numbered starting with 1
for the first run after loading.

The following may be a typical set of data cards for one run:

EPSI = .0005, MKITER = 200, INIT = 2
L = 1, ,

MUl = 1.5, MU2 = ,25%

V(1) = .5, .3, .1, .1¥

Alternatively, another set may be:

THE INITIAL RUN NUMBER IS 75

INIT = 1

L 1, MXITER = 50, MUl = 1.5, MU2 = ,25%
(Binary card deck as described in Section 5.11)

@ ua 9o

]

Note that, in this case, EPSI will be the same value as it was on the previous
run (or it will be .0001 if this is the first set of data) and that, in both
cases, PCH, PRSW, and TSW are the same as they were in previous runs (or their
preset values if this is the first set of data).

5.8 NORMAL OUTPUT

The normal output of RQA-1, illustrated in Table XII, should be self-
explanatory.

However, it should be noted that the probabilities gre printed in terms
of a two-dimensional state designation where PROB(I,J) is the limiting state
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probability of state (I,J). The marginal probabilities PROB(I) and PROB(J),
which are the sums of PROB(I,J) over J and I respectively, are also listed.
Thus, for a fixed value of I, PROB(I) is printed and followed on the same

line by the values of PROB(I,J) as J runs over its allowed values. CHECKSUM,
the sum of all the elements of the probability vector, may not be exactly equal
to 1 due to roundoff.

5.9 DIAGNOSTICS OF ABNORMAL OUTPUT

A run can terminate without supplying answers to the given problem for
several reasons; there may be no input data, the number of allowab.e states
or entries in the transition table may be exceeded, or there may be an error
in the transition table. In each of these instances, appropriate statements
an diagnostic aids are printed. This termination is caused by execution of
the MAD instruction

EXECUTE ERROR.

which causes a return to the operating system proceded by a dump of storage
if requested.

The following is a further explanation of a few of these diagnostics which
may not be self-explanatory:

(1) THE FOLLOWING QUADRUPLES HAVE AN ERROR IN FIRST OR ILAST.

This is printed if IAST(I)-FIRST(I) is not an integer
multiple of DELTA. This is inconsistent with the rules
for forming a transition table.

(2) THE FOLLOWING QUADRUPLES HAVE AN ERROR IN DEST.

This is printed if there is a transition specified into
a point, and there is no other transition with that point
as a source.

(3) THE FOLLOWING ROW SUMS, SUM(I), OF THE STOCHASTIC MATRIX ARE INCORRECT.

The appearance of this statement indicates that the matrix
represented by the transition table (at this point, it
should be stochastic) is not stochastic. If a row sum cor-
responding to a point is nonzero, then a transition is being
defined for something other than a state. If a row sum cor-
responding to a state is less than one, then a possible
transition is being overlooked. If it is greater than one,
an extraneous transition has been included.
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5.10 FORMAT OF PROGRAM DECK

Two formats will be described; one for which the DISCPL subroutine is to
be compiled, and the other for which it has been compiled and, similar to the
rest of the program, is now on binary cards. TFor the first case, the follow-
ing is the deck format:

2 yellow ID cards

"$ COMPIIE MAD, EXECUTE, (etc.)" card
DISCPL MAD deck

"$ BINARY" card

RQA-1 binary deck

"$DATA" card

DATA

For the second case, the following is the deck format:

2 yellow ID cards

"$ BINARY, EXECUTE (etc.)" card

RQA-1 binary deck including DISCPL binary deck
"$DATA" card

Data

5.11 FORMAT OF THE PUNCHED FINAL ITERATE

As discussed in Section 5.2, when PCH = 1, the final iterate will be punched
on binary cards. To 1llustrate the form of this output, we will assume that the
name of the model is SIMPLE QUEUE, the date is MAY 25, 1965, and this is the 15th
run.

The first card punched, called the header card, will have the following
form:

SIMPIE QUEUE RUN 15 25 MAY 1965 SIMPIE Q.

Since,in the University of Michigan system, binary cards have only columns T73-
80 interpreted (printed on the top of card), this card will be identified by
the first 8 characters in the model name appearing in columns 73-80. The next
card will contain the linear index corresponding to the maximum state, called
SCOPE, punched in binary mode. Columns 73-80 of this card will contain

25 MAY 01
i.e., the day, the month, and the number Ol. The succeeding cards will contain

the values of the final iterate in binary mode. The number of such walues will
be SCOPE. Columns T5-75 of these cards will contain

53



015

(i.e., the run number). Columns 78-80 will contain the numbers 001, 002, etc.
(i.e., a sequential numbering of the cards).

Each final iterate punched by RQA-1 will automatically have this output
card format.
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6. CONCLUSION

The purpose of the RQA-1 program is to evaluate equilibrium joint-proba-
bility distributions of queue lengths and system conditions for very large,
finite Markov queueing systems. Although only these probabilities are obtained
by the program, it is possible to estimate from them a wide variety of other
performance statistics. The expected waiting and throughput times are easily
determined as well as the probability distributions of any of the state vari-
ables (e.g., queue lengths, channel occupancies) by taking appropriate sums
of state probabilities. ©Special programs can be written to determine the
above statistics which will have as their input the probability distribution
calculated by the RQA-1 program.

As part of this section, we will present some timing data for computer
runs of the gqueueing models discussed previously.

6.1 TIMING EXPERIENCE

Results are shown in Table XIII(a) for the FIXMEM model withik‘and?pl'fixed
and po varied. Table XIII(b) gives the results for one run of the model with
611 states. It is interesting to note that for each model the number of itera-
tions per second varies inversely as the number of states. Table XIV presents
some results for the RANMEM model for which the discipline parameters are
fixed but EPST and the number of states are wvaried. For the problem with 77
states and EPSI = 10‘“, the number of iterations per second is 48.3. For the
problem with 357 states and EPSI = lO'u, this number is 10. The ratio of
states is 357/77 = 4.6, and the ratio of iterations per second is 48.3/10 = L.8.

It should be noted that these results have been achieved for very sparse
matrices. In fact, for the FIXMEM model, there is an average of four non-
zero elements per row. Thus, for a 611 state model, the ratio of the number
of nonzero elements to the total number of elements is (L x 611)/(611 x 611) =
0065 .

Using the equation developed in Section 2, we can compare the number of
multiplications required for a solution of a typical FIXMEM model by simulation
with the number of multiplications required by the numerical methods employed
in RQA-1. Eor the FIXMEM model with po = .33533, the EPSI satisfied was
4058 x 1077 which corresponds to an €, in the equation, of about 10°2. A
simulation for a model with these parameters would require at least 100 times
ag many multiplications as the numerical procedure or about one minute as
compared to one-half second. For the FIXMEM model with pp, = .5 and
EPSI = .6429 x lO'u, a simulation would require about 150 times as many multi-
plications or about M-l/Q minutes as campared with 2 seconds for an € = 1072,
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6.2 FINAL REMARKS

This work represents the first stage in exploiting numerical solution of
stochastic models for the analysis of large systems. The major disadvantage
of the technique 1is currently the relatively great difficulty of preparing
correct discipline subroutines for complex models. It 1s hoped that this dis-
advantage can be overcome by the development of automatic programs to do this
work from a very formalized description of the model to be solved (i.e., a
translator for a problem-oriented language). With that accomplished, we
believe the RQA-1 and its successors represent a very powerful tool indeed
for system'analysisu

The programs listed have used the May 1, 1965, version of MAD and the
May 5, 1965, version of UMAP. These programs are known as the September 1,
1965, version of RQA-1. They are designed to operate with The University of
Michigan Executive System, although an effort was made to make the program
as independent as possible. We believe that with the information presented
here a potential user could adapt the program to any comparable system,

6.3 AQKNOWLEDGMENT

The authors are particularly indebted to Professor R. V. Evans whose
original suggestions prompted this work, to Mr. D. W. Fife who made many
valuable suggestions on its application, to Dr. K. B. Irani for his critical
examination of this manuscript, to J. H. Jackson for contributing the work
in Appendix B, and to E. S. Walter and D. L. Mason for help to prepare por-
tions of the final RQA-1 program.



10.

REFERENCES

Arden, B., B. Galler, and R. Graham, MAD—The Michigan Algorithmic Decoder,
University of Michigan Press, Ann Arbor, 196L.

Gantmacher, F. R., Matrix Theory, Vol. 1, Chelsea, New York, 1959, p. 1hi2.

Frazer, R. A., W. J. Duncan, and A. R. Collar, Elementary Matrices, Cam-
bridge, University Press, New York, 1960, p. 83. (It follows from the defini-
tion in 7 and 2 that a root of multiplicity r has degeneracy r if its ele-
mentary divisors are of first degree,)

Gantmacher, R. F., Applications of the Theory of Matrices, Interscience
Publishers, New York, 1959, Theorem 10, p. 102.

Varga, R. S., Matrix Iterative Analysis, Prentice-Hall, New York, 1963,
pp. 16-17.

Parzen, E., Stochastic Processes, Holden-Day, San Francisco, 1964,

pp. 248-258.

Chung, K. L., Markov Chains with Stationary Transition Probebilities,
Springer-Verlag, Hamburg, 1960.

Fife, D., and R. Rosenberg, "Queueing in a Memory-Shared Computer,"
Proceedings of the 19th National Conference of the ACM, Philadelphia,
1964,

Evans, R. V., "Several Queueing Systems Suggested by Computer Organization
Problems," Internal Memo.

Saaty, T. L., Elements of Queueing Theory, McGraw-Hill, New York, 1961,
pp. 38-L0.




APPENDIX A

LISTING OF RQA-1

This program was written in the MAD and UMAP languages and processed in
The University of Michigan Executive System. The listings are complete for
the September 1, 1965, version of the RQA-1 program. The listings for the
DISCPL subroutines of the examples of Section 3 are given in Section 5. Two
versions of ITER are supplied, one in UMAP and the other in MAD,
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APPENDIX B

SOME SUBROUTINES FOR USE IN GENERATING QUADRUPLES IN RQA-1
James H. Jackson

B.1 PURPOSE

A three-entry subroutine has been written in an attempt to simplify the
programming of discipline subroutines for use with RQA-1. The entries and
their functions are as follows:

SETUP - Initializes parameters internal to the subroutine

QUAD - Produces the quadruples which represent transitions between states
(the off-diagonal elements of the Q matrix)

DIAG - Produces the quadruples which represent the diagonal elements of
the Q matrix.
B.2 CALLING SEQUENCES (MAD)
SETUP. (STATE.)
STATE is the name of an integer-valued internal function whose value is
the state number represented by the current values of the state variables.
Its values may range from 1 through 5,000.

QUAD. (RATE, CHANGE, REPEAT)

RATE is a floating point expression whose value is the transition rate for
the generated quadruple.

CHANGE is an integer expression whose value 1s the amount by which the
state number is changed when a transition indicated by the generated qua-

druple occurs.

REPEAT is an integer expression chosen such that the generated gquadruple
will apply to STATE., STATE. +DELTA,..., STATE.+REPEAT*DELTA.

DIAG.

This entry has no arguments.
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B.5 RESTRICTIONS

SETUP must be called before either QUAD or DIAG is called, otherwise an
error comment will be printed and control will be returned to the system.

MAXJ must be initialized before SETUP i1s called.

QUAD must be called as many times as needed to produce all of the quadruples
which represent transitions between states. The last call to QUAD must occur
before DIAG is called.

After DIAG is called, no more calls should be made to the subroutine until
RQA-1 has processed the generated data.

B.4L DISCIPLINE PROGRAM STRUCTURE

The discipline program which calls SETUP, QUAD, and DIAG may have the follow-
ing structure:

EXTERNAL FUNCTION

ENTRY TO DISCPL.

READ AND PRINT DATA

MAXJ = -=--

DELTA = --w-

SETUP.(STATE.)

THROUGH S, FOR ----

THROUGH 8, FOR ----
WHENEVER ----, TRANSFER TO S

WHENEVER ----, QUAD.(=--=,---=,===-)

WHENEVER ----, QUAD.(-=nn,==uc,~==-)
- CONTINVE

DIAG.

FUNCTION RETURN

FLOATING POINT EPSI, ----

NORMAL MODE IS INTEGER

PROGRAM COMMON DUMMY (8004), PCH, PRSW, MXITER, EPSI,
1DELTA, INIT, RUN, TSW, NAME(1), MAXJ

VECTOR VALUES NAME = ----

INTERNAL FUNCTION STATE. (X) = ===-=

END OF FUNCTION

When the discipline subroutine is called, it reads a set of data. This
data should include values of the parameters which describe the model as well
- as the values of PCH, PRSW, MXITER, EPSI, INIT, RUN, and TSW which are to be
different from the preset values determined by RQA~k.
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After the data is read, MAXJ and DEITA are initialized. Then SETUP is called
to initialize internal parameters to the subroutine.

A set of nested interations is then begun. Each iteration varisble is a
state variable. Hence, within the innermost loop, all possible combinations
of state variables will be produced.

Since impossible combinations of state variables may not always be elimi-
nated by constralning the set of values each varisble may assume, the first
condltional statement shown specifies a transfer to the end of the loop when
any constraint of the model is violated.

The remaining conditional statements generate quadruples which represent
transitions between states whenever transitions may occur from the state re-
presented by the current values of the state varisbles. When all of these qua-
druples have been generated, the diagonal elements of the Q matrix are gener-
ated, and control is returned to RRA-1.

B.5 EXAMPLE

As an illustration of the programming of a discipline routine using SETUP,
QUAD, and DIAG, one might consider a second-order Erlang channel with a finite
gueue:

N = Maximum length of queue
N = Arrival rate
g = Processing rate

He may choose to define the state variables as follows:

A = Number of Erlang channels busy
B = Number of Erlang channels in second phage
C = Queue lLength

The ranges of these state variables are the following:

0<Ac<1
0<B<A
0<C<N.

Since RQA-1 will print a two-dimensional probebility array, the state space
must be described in terms of two state variables to facilitate interpretation
of the results. One may choose one of these two variables toc be the state of
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the service and the other to be the queue length. Since the state of the service
is completely defined by A and B, it will be denoted by S(A,B), whereas the queue
length is simply C.

S(A,B) may be defined by the following table:

A B S(A,B)
0 0 0
1 0 1
1 1 2

from this table, one may derive the following algebraic expression for S(A,B):

S(A,B) = A+B

Since S(A,B) has three possible values, and since the minimum values of
the function STATE must be at least one, the value of STATE , S(A,B,C), may
be expressed as follows:

s(4,B,C) S(A,B) +3C + 1,

]

or

s(4,B,C)

]

A+B+3 +1.

We may now define all possible transitions for the model by the following
table:

Condition Event Change Rate
0<C<N B+t 1 2u
A =1

B =0

1<C<N Cv - 2u
B = 1 B+

C = 0 Ay -2 2u
B = 1 B+

C = 0 At 1 A
A = 0

0<C<N-1 C+ 3 A
A = 1
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From this table, one can infer that many of the transitions are repeated
for the various values of the queue length C. Consequently, C should be chosen
to be the first index for the probability array, and DEILTA should be chosen to
be the number of values of S(A,B), or 3.  MAXJ is then 3.

By applying the above table of possible transitions and the program form
of Section 4, one may obtain the following discipline program for the model:

EXTERNAL FUNCTION
ENTRY TO DISCPL.
READ AND PRINT DATA
MAXJ = %

DELTA =3

SETUP.( STATE. )
THROUGH S, FOR A = 0, 1, A.
THROUGH S, FOR B = 0, 1, B.
THROUGH S, FOR C = 0, 1, C

I
(@]
e

G. 1
G. A.
» G. N. OR. C. G. 1
. O, TRANSFER TO 8

o

WHENEVER C. G. O. AND. A. E
WHENEVER C. E. O. AND. A. E. 1. AND. B. E. O, QUAD.(2.*MU,1,N)
WHENEVER C. E. 1. AND. B. E. 1, QUAD.(2.*¥MU,-4,N-1)
WHENEVER C. E. O. AND. B. E. 1, QUAD.(2.*MU,-2,0)
WHENEVER C. E. O. AND. A. E. O, QUAD.(LAMBDA,1,0)
WHENEVER C. E. O. AND. A, E. 1, QUAD.(LAMBDA,3,N-1)
S CONTINUE '
DIAG.

FUNCTION RETURN

FLOATING POINT EPSI, MU, LAMBDA

NORMAL MODE IS INTEGER

PROGRAM COMMON DUMMY (8004), PCH, PRSW, MXITER, EPSI,
1DELTA, INIT, RUN, TSW, NAME(1l),MAXJ

VECTOR VALUES NAME = $EXAMPLES$ ,

INTERNAL FUNCTION STATE.(X) = A + B + 3% C + 1

END OF FUNCTION
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