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ABSTRACT

A circulant is a square matrix which is completely determined by its first
row in the following manner: The second row is obtained by shifting ("circulat-
ing") the first row one position to the right and placing the last entry of the
first row in the first position of the second row. FEach succeeding row is de-
termined from the row above it in like manner. Circulants occur in various
practical problems. This paper presents certain properties of circulants
(Some already published and some new) which render such operations as matrix
inversion, the determination of eigenvalues and eigenvectors, and even matrix
multiplication considerably simpler than the corresponding operations with
general matrices.

Bagic to the simplified procedures is the fact that all circulants of a
given size (N x N) have the same eigenvector matrix, which is easily determined
from the N Nth roots of unity. Further simplifications result when the circulant
is real or symmetric. In fact, if the circulant is both real and symmetric,
the eigenvector matrix applicable to general circulants can be replaced by a
real eigenvector matrix, and all the operations become even simpler. It then
becomes possible to invert an arbitrary N x N real symmetric circulant on a
digital computer using at most N+2 variable storage locations.

Singular-value decompositions of circulants are also discussed, as are
many of the properties of "left-circulants"; i.e., matrices in which each suc-
ceeding row is obtained by circulating the row above to the left, rather than

to the right.






I. INTRODUCTION

.Square matrices A of the form

o) 8y ay.-2 aN-1
&N-1 % &y-3 8y-2
A = (1)
a5 a5 ao al
al 82 « o o aN_l ao

are called circulants. Note that each row is equal to the preceding row shifted
one place to the right, with the last element moved to the beginning of the row.
Circulants have a number of practical applications in diverse fields (see Refs.

1 and 2 and the references listed therein).v Computations of eigenvalues, inverses,
and singular values of circulants are much simpler than corresponding computa-
tions for general matrices of £he same size, and for this reason circulants are
profitably studied as a special class.

The aim of this report is to bring together in one place various useful
properties of circulants. The results are presented as a series of lemmas and
theorems. ©Some of these proofs repeat or parallel results given in the references,
but are included here for the sake of continuity. The specialized resuits given
here for real symmetric circulants, the simplified computational procedures, the
singular value decompositions, and all of the material on left circulants are

believed by the author to be original contributions.



IT. GENERAL CIRCULANTS

We first study circulants in which the elements ags; 81,...,8y-1 Oof A are
allowed to be complex numbers, and begin by making the following definitions.
Let a denote the N-component column vector which characterizes the cir-
culant A; that is, let a be the column vector with elements equal to the ele-

ments of the first row of A:

Let X be the N x N matrix whose columns are the column vectors

where Ty is one of the k-th roots of unity, namely

.2 ,
re = exp (jk 2 (1)

Thus



1 1 . 1
1 ry . rN-1
1 r® r2
1 N-1
X = (5)
N-1 N-1
_} ry rN'L

[mo 7] M 0
ny 1
n = . and H = . (6)
| -1 |0 -1,

lemma 1: X is symmetric; i.e.,

where the superscripted T denotes transposition.

Proof: This follows from the fact that x ,, the element of X in the (m + 1)-th

mk

row and (k + 1)-th column, satisfies

k k
]:r = X

Xge = T = [exp (jk@)]m = exp (jkm®) = [exp (jmO) 0 = X

for k,m = 0,1,...,N-1 where Xem is the element of X in the (k+1)-th row and
(m+1)-th column, anc where here, as henceforth, © denotes the quantity 2n/N. There-

fore X is symmetric. Q.E.D.



Because of the symmetry of X, no distinction will be made henceforth
T
between X and X .
A fundamental property of circulants, which underlies all other results
given below, can now be stated, as follows:

Theorem 1l: The eigenvalues of A are given by

N-1
2
Mg =8p tapr targt. . . tag 1, k=0,1,...,N-1 (7)

The vectors Xgr Xps e erXy_q 8T the corresponding eigenvectors. In vector-

matrix notation, these statements can be summarized as

Proof: For each X k=0,1,..,,N-1,

pu— —— F ——
aO al » . . aN_l 1
ayn_1 ag e ay_o Iy
A X =
N-1
Lal 82 ao _j L_ I’k
[ N-2 N-1 ]
+ + +
% T8 Ty °y-2 Tk T %N Ty
N-2 N-1
- + +
= aN_l ao I'k + aN_B I'k + aN_2 I'k
N-2 N-1
+ + +
8.1 32 I'k aN_l I‘k + ao I'k _




— . + N-17]

ag + a; rp . e ay_1 rk 1

N-1 N-1, |’k
¢ + - = + +...+ & -

rk(ao + a, T + Byl T, ) (&g ayr, ay 17Tk )

N-1 N-1

v ~(an + a; r_ + . +a r) N-1
Lk 0 L7k N-1 "k | f};_

N
The next-to-last step above follows from the fact that r

K = 1 or, equivalently,

+N
ri = rﬁ , k, m = 0,£1,%#2,... . From the last step we see that x 1s an eigen-

. . . N-1
vector of A and that the corresponding eigenvalue is (ao +ag Ty +.o.t ay_1Tk )

as claimed. Equations 8 and 9 then follow at once from the definition of matrix
multiplication, and from the symmetry of X. Q.E.D.
Next we note certain other properties of the eigenvector matrix X.

Lemma 2: The columhs LSRR of X are orthogonal to each other and

XN

have normN[N in terms of the Hermitian inner product*

m=0

and the norm generated by this inner product, where X is the (m+l)-th element
of the vector‘gh,

Hence

Ll

(11)

=R

*A line over a scalar quantity denotes the complex conjugate of that quantity.
A line over a vector or matrix quantity signifies that each element of the vector
or matrix is to be replaced by its complex conjugate.



Proof: Consider any two of the vectors x. and X and form their inner

h
product:
N-1 N-1
(%0 %) = }Z exp (Jmh®) exp (juk®) = }; exp [jm(h-k)8 ]
m=0 m=0

(Here, as before, the quantity 2% has been denoted by ©. ) We recognize this
N

as a geometric series with common ratio exp[j(h-k)@] and initial term unity.

Therefore, for h % k

N
(2 %) = 1 - [exp j(h-k)8] _ 1 - exp j(h-k)N& _ 1 -1 -0
1 - exp j(h-k)o 1 - exp j(h-k)® 1 = exp j(h-k)®
For h = k, each term of the summation is equal to unity, so that
2 J
(5o ) = Il = ®© and (gl = Wu
From this and from the symmetry of X, it follows that XX = XX = NI or
1= 1 . . . . -1 1=
X(ﬁ X) = (E-X)Xiz I, where I is the identity matrix. Hence X = = 3 X, as
claimed. Q.E.D.
Substitution of this result into Eq. 9 shows that every circulant can be
decomposed into a product of matrices of the form
1 = ,
A = FXEX (12)

Theorem 1 states that every circulant can be decomposed in a certain form. The
following theorem states the converse.
Theorem 2: An N x N matrix A is a circulant if it can be decomposed as

follows:



A = XHX & = %XHX (13)

where X 1s as defined above and H is a diagonal matrix with the eigenvalues of A
as diagonal elements.

Proof. Assume that A can be decomposed in the form % XHE, and let n be the
N-component column vector of eigenvalues of A (i.e., n consists of the diagonal
entries of H, as always). Let b = % X n, and let B be the circulant characterized

T
by b (i.e., the circulant having b as its first row). Then, from Eq. 8 and

Lemma 2, the eigenvalues of B are given by

Since B is by definition a circulant, it follows from Eq. 12 that B can be written

as

Therefore B = A, and therefore A is a circulant. The equivalence of the two
expressions XHX_l and % XHX given for the decomposition of A follows from
lemma 2, of course. Q.E.D.

Involved in the proof of Theorem 2 was the construction of a circulant hav-
ing given eligenvalues. This is a useful result in its own right, and will there-
fore be presented as a lemma.

Lemma 3: A circulant B having specified eigenvalues* n can be constructed

T
by choosing b as the first row of B, where

*Note, of course, that a different circulant B results if the same eigenvalues are
arranged in different order in the vector 7.

T



(14)

jo
1
ol |
=

=

Proof: = See proof of Theorem 2.

We have shown that every circulant of a given order N (i.e., every N x N cir-
culant) has the same eigenvector matrix X (Theorem 1), and that every matrix hav-
ing X as its eigenvector matrix is a circulant (Theorem 2). Manj simple and con-
venient properties of circulants follow from these facts. Some of these are given
below.

Lemma 4: Sums and differences of circulants of the same order are circulants,
and the eigenvalues of the result are the corresponding sums or differences of the
corresponding eigenvalues of the original circulants.

Proof: ILet A and B be circulants of order N. Write A = XHAX-l and

B = XHBX'lo Then A £ B = [XHAX'l] s [XHBX'l} = X[H ActHB]X' . Hp and Hp are
diagonal matrices, and therefore [HA * HB] is also. Therefore A £ B has the form
required by Theorem 2, and consequently is a circulant. The generalization tc
more than two matrices is cbvious. Q.E.D.
Lemma 5: Products of circulants of the same order are circulants. The
resulting circulant is not affected by the order in which the factors are taken.
Proof: Let A and B be circulants of the same order N. Since A and B are
circulants, they can be decomposed as A = XHAX‘l and B = XHBX'l. Thus
AB = XHAHBX_I and BA = XHBHAX_le But since Hy and Hp are diagonal matrices,
they commute, so that AB = BA. Furthermore, Hy HB = HB Hy is alsc a diagonal
matrix, so that AB = BA is of the form required by Theorem 2, and hence is a
circulant.

Note ease with which the inverse of a circulant can be obtained:

8



Lemma 6: If a circulant A has an inverse, then the inverse At s @

circulant, and is characterized by

X [X a] (15)

o
1]
= |

where [X g] denotes the vector obtained by replacing each component of the
vector X a by its reciprocal. This inverse exists if every component of X a

is different from zero.

-1
Proof: Since A is a circulant, it can be expressed in the form A = XHX .
Its inverse, if it exists, is thus given by
-1 -1,-1 -1 - 1 -1z
R e S xt = ¢ xnX (16)

and is therefore a circulant, by Theorem 2. Also by Theorem 2, the diagonal elements
Ngs N1s+++» Ny-1 of H are given by X a, so that H_l exists if every component of
X a is nonzero. Equation 15 then follows from Egs. 8 and 1. Q.E.D.

Lemma 7: The pseudo-inverse* A+ of a circulant A (obtained by replacing all
nonzero eigenvalues of A by their reciprocals and leaving zero eigenvalues un-
changed in the decomposition A = XHX_l) is a circulant.

Proof: By the definition of the pseudo-inverse, A+ is expressible in the
form required by Theorem 2, and hence is a circulant. Q.E.D.

On the basis of these lemmes and of various properties of associativity,

commutivity, distributivity, etc., inherited from matrix addition and multi-

plication, it is easily shown that circulants of a given order

*This pseudo-inverse is a special case of the Penrose pseudo-inverse applicable
to square matrices. See Ref. 5.



1) form a commutative group with respect to matrix addition, with the
zero matrix (itself a circulant) acting as the unit element;
2) form a commutative semi-group with respect to matrix multiplication
having a unit element (the identity matrix, itself a circulant);
Circulants of a given order therefore form a commutative ring having a unit ele-
ment with respect to multiplication. They fail to form a field because some cir-
culants have no multiplicative inverse.
The following two lemmas allow the evaluation of “ﬁ” without actual compu-
tation of 17, and give an upper bcund on the maximum modulus of any component of
1, which is alsc an upper bound* on HAH.

Lemma 8:

Il = ~w s (17)

where the norm is as defined in Lemma 1.

Prcof: From the definition of the norm and from Eq. 8,

L L, L
2 T_.2 . _72
[all = (n,n)” = [nnl” = [2aXXa]
From Lemmas 1 and 2,
FX o= W o= (X)) = NI
T X L
Therefore 1| = [Naa]? = JNla&l° = vN a] Q.E.D.
|Ax]|

*HA” is here defined as max I

X0 |||
s - I

10



Lemma 9: !qk! < z !aml , k=0,1,...,N-1 (18)

m
Proof: From Eq. 7, M = }Z T am ; 8o that

m=0
N-1 N-1 N-1 . N-1
\ m m m
g = 1) Mgl < ) BRal =) I al =) la]
m=0 m=0 m=0 m=
since lr%{ = 1 for all k and m. Q.E.D.

Other properties of circulants can be derived Just as easily. For instance,
it can be shown that, if they exist, rational or irrational powers of circulants
are circulants; that, if they exist, general functions of circulants are cir-
culants; that polynomials of the form Zk= + Ak—l Zk_l + ... F Al Z + AO’ where
k;ﬂ_l,u“,.Ao are N x N circulants and Z is an unknown N x N matrix, have easily
determined families of zeroes, each member of which is a circulant; etc.

Other convenient properties possessed by special classes of circulants are
developed in the following sections. In discussing these special classes it will
prove enlightening to investigate the number of degrees of freedom of circulants
of variocus types; that 1s, the number of independent choices that must be made
in order to specify the circulant completely. As a reference point for these
later discussions, we note that the circulants so far considered have 2N degrees
of freedom—the N real parts and N imaginary parts of the elements e&n,a;, ... ay_q
of a. The circulant property then determines the remaining elements of A. Further-
more, because each choice of a uniquely determines an 3 (Theorem 1) and vice

versa (Lemma 3), it is not surprising that there are 2N degrees of freedom in-

volved in the choice of an n—the N real parts and the N imaginary parts of the

11



elements fg, N1 conyTiyo]e There are no additional degrees of freedom, since X
must be as specified by Eq. 5. Thus there is a 1:1 correspondence between N x N
circulants and points in N-dimensional complex Euclidean space, so that circulants

can be regarded as elements of an N-dimensional complex vector space.

12



ITI. REAL CIRCULANTS

If the elements 8yy 815 cey BN of A are required to be real, as they are

in many of the practical applications of circulants, then clearly only N degrees

of

as

of

freedom remain in the choice of A. Similarly, if we wish to choose an 7 so

to generate a real circulant by means by Lemma 3, there can be only N degrees

freedom.

We

realness of a.

Theorem 3:

pairs, with the

paired and must

now investigate the restrictions on n which are implied by the

The eigenvlaues of real circulants occur in complex conjugate
exceptions of 15 and, if N is even, nN/z, which are not necessarily

be real. Thus,

(-1
—é— N odd
ek Ty k=1,2,..., d (19)
N-2 N even
\_ 2
Proof:
N-1 N-1
m m
=/, %m Tk My T ®m TNk
m=C m=0
m m m m .
But 1y, =T, , since Ty, = {exp [§(N-k)8]} = exp [jm(N-k)6] =
[exp( jmNe)] [exp(-jmk®)] = exp(-jmkd) = exp(jmk) = r? . Thus
N-1
Nk = m,rﬁ" which, because of the realness of a, is clearly the complex

=0

N-1

conjugate of the expression given above for nko Since no = j{: &, Mo is real.

=0

15



N-1
For N even, r%, = (-l)“1 so that = (-l)m a., which is also real. Q.E.D
) N/2 ) T]N/Q m, . . ol
m=0
Lemma 10: The converse of Theorem 5 is true. That is, the circulant which
corresponds to any 1 of the form given by Theorem 3 is real.
Proof: Let 7 have the stated form. Such an n corresponds to a circulant B
characterized by b = % X n , from Lemma 3. Assume that N is odd. Then, for

k = 0,1, ..., N-1,

o’
.
[[]
-
s
=
e )
=]

1]
=
=

S
+
7~
-
=
=1
+
]
=
=
=
=
S\_/

k L

m=1

=

which is always real. This last step follows from the assumed form of 7 and from

the fact that

k

. . k
ry.p = exp [Jk(N-m)6] = exp(-jkmo®) = r

k
A similar argument, in which both Mo and (-1) nN/2 are taken outside the sum-
mation sign, leads to the stated conclusion for even N. Q.E.D.

There are therefore N degrees of freedom associated with n—if N is odd, the

real part of Mo and the real and imaginary parts of ny» Moy sees n(N—l)/Q; if N is
even, the real parts of Mo and nN/g,‘plus the real and imaginary parts of

Mys n2,...,n(N_2)/2. This reduces the amount of computation required to determine

N+1
7, since only > or H%E eigenvalues need be computed by Eq. 7, the remaining

eigenvalues being obtained by taking complex conjugates, as indicated by Eq. 15.

14



The fellowing result has some practical application in determining the
maximum or minimum eigenvalue of A, and hence the norm of A, in special cases.

Lemma 11: If every element of a 1s real and has the same sign, i.e., if

or if

then an eigenvalue of A having maximum absoluteNvalue is o °
N-1 -1

Proof: For case a), |nk[ < Iam| = E: a, = Ng» from Lemma 9 and Eq.
N-1 m=0 .1 m=0
7. For case b), ]nkl < ;z Iaml = - }: am = - no = lnol, by the same argu-
m=0 m=0

ments. Q.E.D.

15



IV. SYMMETRIC CIRCULANTS

In this section we again allow the elements of A to be complex, but require

T
that A be symmetric, i.e., that A = A, or, equivalently, that

(N-1
- N odd
2

k=1,2,..., < (20)

.

L_yég N even

In this case N+1 degrees of freedom remain if N is odd—namely, the real and
iméginary parts of 8y, 281, 32""’8(N-l)/2' If N is even, there are N + 2 degrees
of freedom—the real and imeginary parts of ag, al""’aN/Q' These restrictions
on A impose restrictions on 7n as follows:

Theorem 4: The eigenvalues of a symmetric (not necessarily real) circulant
occur in pairs, with the exceptions of ngy and, 1f N is even, nN/E’ which are not

necessarily paired. Thus

Fh
N-1 N ooda
2
TNk = Mg k=1,2,...,< (21)
N-2 N even
L. 2
. N-1
Proof: Assume that N is odd. Then for k = 1,2,..., -Ej-,
N-1 (N-1)/2 (N-1)/2 _
m m N-m m m
= = + + = + +
N E: a T, =8, }: am(rk r ) a, E: am(rk T )
m=0 m=1 m=1
(v-1)/2
m m
- = + + . .
Similarly, ny_, = &g }: am(rN_k rN—k) But since
=1



m
"Nk

m N-1
= exp[Jm(N-k)6] = exp(-jmkd = r, , it follows that ny = ny_,k=0,1,..., -

as claimed. A similar argument establishes the stated result for N even. Q.E.D.
Lemma 12: The converse of Theorem 4 is true. That is, the circulant which
corresponds to any 1 of the form given by Theorem 4 is symmetric.
Proof: Let n have the stated form. Such an 1 corresponds to a circulant B

l_
characterized by b = N-X N, from Lemma 3. Assume that N is odd. Then, for

N-1
k=1,..., —'2—'
N-1 (N-1)/2
1 k 1 X k
= I = + + =
b = N }2 T nh\ W (o }: (rm "m T TNem T]N-m)]
m=0 m=1
(§-1)/2
1 k
= +
5 [ng My (r+ oy )]
m=1
Similarly,
(N-1)/2
1 N-k N-k
Pyx T WMot }Z Ty * TN )]
m=1
But, as is easily shown, rg'k = rﬁ_m and rg:i = ri , 80 that bk = by_x» @s

claimed. A similar argument holds for N even. Q.E.D.
There are thus the required number of degrees of freedom in n: if N is odd,
+ da i i f th ML
the N + 1 real and imaginary parts of the 5 elgenvalues Mos» Mpseees n(N-l)/E;
N
if N is even, the N + 2 real and imaginary parts of the >t 1 eigenvalues

, yeeey . Therefore, in this special case too the use of circulants
o> Ty I /2

simplifies the computation of the eigenvalues of A,

17



V. REAL SYMMETRIC CIRCULANTS

A class of circulants having important practical applications (see Ref. 2,
for example) is the class of real symmetric circulants. The conditions on 1
which correspond to imposing these conditions on A are easily obtained by combin-
ing the requirements for real circulants and symmetric circulants. We put this
in the form of a theorem.,

Theorem 5: The eigenvalues of a real symmetric circulant are real and satisfy

(N-1)/2 N odd
Iy = 0N k=1,2,...,

(N-2)/2 N even

Proocf: As noted above, the proof follows at once from Theorems 3 and 4.
For real symmétric circulants, the procedure for computing the eigenvalues
can be even further reduced, for the following reasons:
1) Because both a and 1 are known to be real, the imaginary part of the
matrix X can be discarded in applying Eg. 8.
2) Because of the pairing of the eigenvalues M and Mk ? only
n(N-l)/Q N oda
Nor Myseees
nN/Q N even
need be computed.
3) Symmetries in the real parts of the elements of X allow further reduc-

tion in the number of computations required.

18



To illustrate these points, let us define

where M =

1 1
1 cos O
1 cos 20
Y =
1 cos Me
(N-1)/2 N odd
N/2 N even

and, as always, 6 = En/N.

cos 2M6 {

cos MO

cos 2M@

2
cos M 6

‘We can then prove the following theorem:

Theorem 6:

W(n-2)/2

n/2

19

N-1)/2

(22)

If A is a real symmetric circulant, its eigenvalues are given by

N odd

(2k)

N even



The remaining eigenvalues can be evaluated by using the pairing relationships
of Theorem 5.

Proof: Write X and X = Xg + JX1, where Xp and X1 are real. Thenn =X a =
XR a+ jXI a . DBecause XI and a are real, jX7 a is pure imaginary. But, from
Theorem 5, n must be real, so that XI a must be zero and n = Xg a

-

Therefore, the first M + 1 eigenvalues are given by

I 1
Mo 1 1 1 . e 1 ag
1 cos O cos 20 c .. cos (N-1)6
ul = 1 cos 20 cos Lo R cos 2(N-1)8|]| &y
nM_j |1 cos MO cos 2MO C e cos (N-1)M8J | ay 1 |

since Re [exp(Jkm®)] = cos km®. Now consider the case where N is odd, and re-

write this equation as

e 1 1 1 R
1 cos © .. cos MO cos(M+1)@ . . . cos(N-1)6
Ny 1 cos 20 .. cos 2M0 cos 2(M+1)® . . . cos 2(N-1)8| | ay
BM+1
2
. e + « e e -
|y |1 cos M© cos M@ .cos M(M+1)0 cos M(N-1)6] KR

Note(from the definition of the cosine) that cos k(N-m)® = cos km® and (from
the symmetry assumption) that aN_g = a,, for k, m = 1,2,...,M. Thus, the expres-

sion for ny,

20




Mg =8y * @8] cos k® + a,cos 2k® + . . . +ay.p cos k(N-1)8
can be rearranged as

N =8y * [al cos kO + ay-1 cos k(N-1)8] + ... + [ay cos kMO + ay,; cos k(M+1)6]

ap *+ 2a; cos k& + ... + 2ay cos kMO .

This establishes the validity of Eq. 24 for N odd. The proof for N even is
similar, and is omitted here. Q.E.D.

The practical significance of this theorem becomes clear when we note that
the already greatly simplified problem of finding the eigenvalues of a real
circulant A by carrying out the multiplication of an N x N complex matrix and
a real N-vector has been reduced to the multiplication of an (M+l)x(M+l) real
matrix by a real (M+l) vector—a reduction from approximately 2N multiplications
and 2(N-1) additions, for each of N eigenvalues, to M+l multiplications and
M additions for each of M+l eigenvalues. This amounts to a reduction of almost
8 to 1 in the number of computations.

An even further reduction is possible. It turns out that every cosine
appearing anywhere in the matrix Y also appears somewhere in the second row
of Y, so that only M cosines must be computed in order to compute Y. The
pattern is as follows: Let yyx = cos k6 , k=0,1,...,M. Imagine these M+l
values arranged in a cyclic pattern of the form
M IR ARREREEN VIR RRSTERSVER ISR RREPM SRR IR SRERRENS ' SRR S VERNSVER VIR ERERFR SRR IR AR
for N odd and

yo)le ¢ ,yM-l’yM’yM-l, e ’yl’yO’yl’ e }yM_l}yM)yM_l} e Jyl)yoiyl) ... for N even.

21



The first row of Y is then obtained by starting with Yo and indexing none at
a time (i.e., ¥5,¥9,¥0s¥gs+--); the second row is obtained by starting with
Yo and indexingaggi at a time (i.e., yo,yl,yg,...); the third row is obtained
by starting with Yo and indexing two at a time (i.e., yo,yg,yu,y6,...); and so

on. Alternatively, the j-th element of the i-th row of Y is given by Yij = yp

m m<M . .
where p = = and where m is computed as the remainder, mod N, of
N-m m>M

the expression (i-1)-(j-1).

Taking advantage of these simplifications and symmetries, one can find
the eigenvalues of or invert an N x N real symmetric circulant by using only

‘{é+l N Odd’:} memory locations* for storage of the matrix A, then its
N+2 N even

eigenvalues, and then its inverse. (Because A and its inverse are symmetric and
circulant, we of course need store only part of the vectors which characterize
A and its inverse).

Some of the results derived for general circulant matrices in the previous
sections take on an even simpler form for real symmetric circulants. For
instance,

lemma 1%: The real symmetric N x N circulant having the eigenvalues

NosNys+++sNy 18 characterized by the vector b = [bo,bl,...,bN_l], where

*Not including the accumulator, two storage locations for indices, one storage
location for N, and storage for the program itself. If the information about
the original matrix is not to be destroyed in the process, M additional loca-
tions are needed.
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— — — o — ~—— -
Po o | %o o
= 5 X . (N odd) or R - . |(N even)
: N
_ Ty

and the remaining elements of b are obtained by use of the symmetry conditions.

Proof: ©Since for real symmetric circulants a and n possess the same sym-
metries, the arguments used in the proof of Theorem 6 can be used here to obtain
the étated result from Lemma 3. Q.E,D.

Also of interest is the fact that Lemmas 4, 5, 6, and 7 can be proven with
the word "circulant" replaced by "real symmetric circulant” throughout, and
hence that real symmetric circulants of a given order also form a commutative
ring having a unit element with respect to multiplication.

One other point is worthy of mention here. Whereas in the case of general
real circulants, the eigenvectors occur in complex conjugate pairs, it is pos-
sible to write an eigenvector matrix for real symmetric circulants (call it W)
which i1s real. This results from the fact that for real symmetric circulants
the eigenvalues occur in pairs, so that the two (complex conjugate) eigenvectors
§% and Nk spanning the subspaces corresponding to a given pair of eilgenvalues
My and Ny C8n be replaced by any other orthogonal pair spanning the same sub-
pace. It turns out that there 1s a convenient pair of real orthonormal eigen-

vectors W, and ﬂN-k’ spanning each such two-dimensional subspace, namely,

1-J 1+ _
5 XNk < Re(zk) + Im(gk)

and
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17 1-J « = Re(

_— - Im(x
N-k o —%k ) —N-k ) (—k)

X
e
The eigenvectors corresponding to ng and, if N is even, nN/E’ are real in any

case, of course. Then, by using the definition of X, and various trigonometric

identities, W can be written as

(1 1 C 1 ]
1 cos ©+ sin 6 . « . cos(N-1)8 + sin(N-1)6
1 cos 20 + sin 20 . . . cos 2(N-1)6 + sin 2(N-1)e
Wos
° e e 2. . . \2
- + - . e - + g -
|1 cos(N-1)6 + sin(N-1)6 cos(N-1)“0 + sin(N-1) 6‘_J

Lemma 1b4: If, in all the above theorems and lemmas applicable to the
matrix X and/or to general circulants, the word "circulant" is replaced by
"real symmetric circulant" and the matrices X and X are replaced by W, and if,
in Theorem 2 and Lemma 3 the restriction is added that 7 be of the form ap-
propriate tc real symmetric circulants (see Theorem 5), then all remain valid.

Proof: The proof is omitted here., It is straightforward, and depends
on the fact that the eigenvalues of a real symmetric circulant cccur ih pairs,
so that pairs of x-vectors spanning two-dimensional subspaces can be replaced

by pairs of w-vectors spanning the same subspaces.
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VI. SOME OTHER SPEICAL CIASSES

The main results of the previous three sections are summarizéd"in Table T.
along with the corresponding results for four additional special classes of cir-

culants: '

'anti-symmetric,” Hermitian (self-adjoint), skew-symmetric, and skew-
Hermitian. Prcofs of these results either follow from properties of matrices

in general (e.g., those for skew-Hermitian circulants) or else are similar to

proofs already given, and are omitted here.
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VII. SIMPLIFIED COMPUTATIONS FOR GENERAL REAL CIRCULANTS

We have seen that the process of computing the eigenvalues of real sym-
metric circulants can be greatly simplified by taking advantage of the sym-
etries of X and a. A significant reduction (approximately 4 to 1) cén also
be achieved for general real circulants, based on these results. The key idea
here is the breaking up of the circulant into a symmetric part and a skew-sym-
metric part (a process that can always be carried out uniquely).

We begin by making some additional definitions: Let b be the symmetric

part of a, and let ¢ be the skew-symmetric part; i.e.,

1
o =& by = 5 ey *oayy)
k=1,2,...,N-1 (25)
1
Co =0 ; c, = > (ak - aN-k)

Let B and C denote the circulants characterized by b and.c, respectively. Note
that, since a is real, b and c are also. Note also that B is symmetric and C

is skew-symmetric (See Table I). Thus

A = B +C §=E+E
Finally, let
o 0 0 o |
0 sin 6 sin 20 e e . sin MO
Z = (26)
. K R N
__O sin MO sin 2MO e sin M Q__
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where, as always, M = N-1

for N odd and g for N even.

We note that jZ is simply the imaginary part of the upper left-hand quarter
of X, Jjust as the matrix Y defined above was the real part of this same sub-
matrix.

We can now state

Theorem 7: The eigenvalues Ngs N1se«+sMy of the real circulant A are given

by
- - - 1 - -
no Yo 0
2b2 202
-= Y + JZ N odd
Ry
L Y
(27)
EN -5 7 FE N
ny 2bl 2cl
=Y . +3Z | - N even
M |
— ebM-l ECM_l
1w ) Lo
The remaining eigenvalues are given by
(N-1)/2 N odd
nN_k = T]k - }kﬁl,g, s ooy

(N-2)/2 N even

Also, o and, if N is even nN/2, are real.

28



Proof: Write the equation 1 = X a (from Theorem 1) as

n o= (Xg+ Xp) (b +¢)

where, as before, XR 1s the real part of X and jX; is the imaginary part. From
Theorem 5, X b is real, since it is the eigenvalue vector corresponding to the
real symmetric circulant B. Hence jX1 b = 0. Now, note that C is real and
skew-symmetric. From Table I, this means that the eigenvalues X c of C must
satisfy the conditions given there for both cases. Thig implies that the
eigenvalues of C, which are expressible as XRE + JXic, are pure imaginary, and

hence that

XRS = 0

Thus n = XRE + jX;c; in other words, the symmetric part of A gives rise to the
real part of n and the skew-symmetric part of A gives rise to the imaginary

part of n. The replacement of the term X;{c by the term

- e —
¢ c
o o)
2cl 201
Z or Z
2c 2c
| “°M | “M-1

is then easily carried out along the same lines used in replacing XR by Y in

the proof of Theorem 6. The rest of this theorem is a repetition of parts of
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of Theorem 5. Q.E.D.
One other slight simplification might be noted here: For N even, the

constant c is always zero and hence need not be computed.

N/2

A simplified procedure for inverting a general real circulant based on
these results, 1s also possible.

Theorem 8: Let A be a real circulant and let n be its eigenvalue vector.
Let A be invertible (i.e., let n be such that ny # 0, k =0,1,...,N-1), and

let the inverse be denoted by D. Let

1 . k = 0,1,...,N-1
@ = 6k+lek

where BK and Yy are real. Then D is a real circulant characterized by

d =D + c, where

B 5 F‘C F‘W
0 o o] 0
bl 251 ¢y 2¢l
_ 1 _ 1
gl Y o =3 Z ,
; . . N o0dd
b 28 c 2y
M M M M
— —- = - " - - (28)
Po 6o ‘o Yo
'b1 1 261 ¢y L 2¢l
=Y ) . == Z . N even
N. N
Py 2oM-1 M ] M1
| Ou |V
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(N-1)/2 N odd

bl\l-k = bk CN-k. = -CK k:l)e, v, @ |
L (N-2)/2 N even
- N-1 N
and where, as always, M = —— for N odd and = for N even.
2 2

Proof: Since A is a real circulant, its eigenvalues occur in complex con-
Jugate pairs my and N -k (except for Mo and nN/Q’ which are unpaired and real).
Thus the reciprocals of these n's satisfy the same conditions, so that D, the

inverse of A, is also a real circulant, by Lemma 10. By Lemma 6,

jo
t
= e
>
=,
I
=
>
eZ
+
[
=

it
= |
%
=
1
[}
4

Since d is real (as noted above), the imaginary part of this expression must

be zero, so that

The reduction of this expression to the form given in the statement of the
theorem then follows by the same steps used in the proofs of Theorems 6 and 7,
since ® and ¥y have the same symmetries as b and c¢ of Theorem 7, respectively.

Q.E.D.
The following lemma is needed in the next section.

Lemma 15: Let A be a real circulant characterized by a. Then the eigen-

T

T
value vector .X[a al] of A" is the complex conjugate of the

0’ ®w-1’ B2t

eigenvalue vector Xa of A.
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Prcof: The vector [aO!aN-lf“°"al]T is of course the vector characteriz-
ing AT,and AT is a circulant, so that the above product does indeed give the
T
eigenvalues of A . The symmetric part of A gives rise to the real part of
n =X a , and the skew-symmetric part of A gives rise to the imaginary part
of 1, as noted above. The symmetric parts of A and AT are the same, and the
skew-symmetric parts of A and AT are negatives of each other. Thus the imagi-

nary part of the eigenvalue vector of AT is the negative of that of A, and the

real parts are the same. Q.E.D.
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VIII. SINGUIAR VALUE DECOMPOSITIONS OF CIRCULANTS

Singular value decompositions (see Ref. 3) play a key role in Naylor's
transform technique for time-varying systems (Ref. 3 and L), and also offer
considerable insight into the properties of matrices as transformations (see
Ref. 3). The computation of the singular value decomposition of a real cir-
culant is much simpler than that for a general matrix, and turns out to be
closely related to the eigenvalue decomposition. These points are explored
in the lemmas and theorems to follow.

Let us first mention two procedures which can be used to obtain singular
value decompositions of a general real N x N matrix A: Form the real, sym-
metric, positive semi-definite matrix A A, and find its eigenvalues and any
set of real orthogonal eigenvectors. (Such a set of real orthogonal eigen-

. T . .

vectors always exists because A A" is a normal matrix. See Bellman, Ref. 1,

. T . .
p. 197.) The eigenvalues of A A" are real and non-negative, and the singular
values of A are the positive square roots of these eigenvalues. Form a dia-
gonal matrix A with the singular values as diagonal elements, and form a
matrix U having the above-noted eigenvectors (normalized to ~fN and taken in
the same order as the corresponding singular values in A) as columns. Finally,

let V be any orthonormal matrix (with columns having norm ~fN) for which

1 T
SUAV = A (29)
N

1 T
This expression, ﬁ UAV, is called a singular value decomposition of A, and

always exists under the conditions given here for A (and, in fact, for much more
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general conditions, alsc; see Ref. 3). It turns out that the matrix V can be
obtained by replacing all the zero columns* of ATUAf by any set of orthonormal

vectors (normﬂJﬁ) which are also orthogonal to all the nonzero columns of

T -1

+ + +
A"UA . Of course, if A is invertible, so that A = A ~, then ATUA has no
. , T +
zero columns and V is completely determined by A UA". Even here, of course,
the decomposition is not necessarily unique, since U may not be unique.*¥
T
That is, when two or more of the eigenvalues of A A are equal, there is some
freedom in choosing the eigenvectors to span the corresponding subspace.
An alternative procedure for finding a singular value decomposition for
A is to form the diagonal matrix¥** A having the positive square roots of the
elgenvalues of AT A as its diagonal elements, and the matrix V having any cor-
responding set of real orthonormal eigenvectors (normJJN) of ATA as 1ts columns.
Then U is obtained from A V AT by a procedure analogous to that given above
for V, and the singular value decomposition is again given by Eq. 29.
These decompositions may differ from each other in more than order and
sign changes on corresponding columns of U and V unless the singular values
are distinct, in which case the two decompositions are equivalent.

Iemma 16: The singular values XO, A cony xN-l of a real circulant A

l)

can be expressed in terms of the eigenvalues Mg’ nl"”"nN—l as follows:

*AT is the pseudo-inverse of A. See Lemma 7 and Ref. 5.

**This lack of uniqueness may involve more than changes in the order of the
singular values and eigenvectors, or changes in the signs of corresponding
columns cof U and V. Such order and sign variaticons are regarded here as
giving rise to equivalent decomposition.

*¥*¥Tt will be the same as the A defined above, except for possible differences
in the order of the diagonal elements.
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>
|

o = Inyl

. lnN-kl k=1,2,...,N-1

Since, from Theorem %, the eigenvalues of a real circulant occur in complex

conjugate pairs, (i.e., nN-k = ﬁk, k=1,2,...,N-1), this can be rewritten as
>\‘o = lﬂo|
>\. = )‘u = =
e = Mok In, | L

(N-1)/2 N odd

I

k=1,2,...,
(N-2)/2 N even

A N even
Proof: The singular values of a real circulant A characterized by a are
the positive square roots of the elements of the column vector XA a, since
rI\
A a is the vector which characterizes the real symmetric circulant A A, and

T
XA a is the eigenvalue vector of A A , by Theorem 1. Application of Eq. 12

gives

1
XHK) a = ﬁX H (Xa)

where, as always, H is the eigenvalue matrix of A; i;e., its diagonal elements

are the corresponding elements of n = Xa. Now, since a is real,ié = _g = i 5
_ _ 2 2 2T

so that HXa is simply Hn = [Ino| s lnll ,,.°,|nN l| ] + From Lemma 2 and

from the fact that x . = = gk, k=1,2,...,N-1, if follows that
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1 0 O . 0 O
0O 0 O© 0O 1
o o o0 o . . 1 O
-X = .
0 O 1 . 0O O
0 1 © 0 0 _|
It then follows that the singular values of A are Ino],lnN_lI,.,,,lnlln Q.E.D,

Lemma 17: Let A be a real N x N circulant, let A be the diagonal matrix

with the singular values Ny, M of A (as defined in Lemma 16) as its

l, o e o,}\N_l

diagonal elements, and let U and V (not to be identified as yet with the U and

V matrices defined above) be defined as

+ +
AWA + W(I - M)

(e
]

T + +
A'WA + W(I =AA)

<
I

where W 1s the eigenvector matrix for real symmetric circulants, defined in
Section V. Then U and V are orthonormal matrices, and their columns have
norm\/_l\h

Proof: Consider V first. V will have been shown to be orthonormal with

T T

column norms NN if it satisfies V—l = V, or VV =NI. We now show that

= |-

V does indeed satisfy this equation:

T T +
)

o+ + + +
Vvl o= atw A AT + AT wn (I =AA)W+WI-A)AWA

i

+
FWI -AA) (T -mn"

T + 2 + 2
AWA ) WA+WI-AA) W

)W

]

36



+
since A (I - A A") is always zero for any A. (Since W is symmetric, we have

+ +
written W instead of WX here). Now, we note that (A )2 and (I - A A )2
' 2
+
)

+
satisfy the symmetry requirements of Theorem 5, so that W(A )2W and W(I - AA") W

-+ o
are real symmetric circulants. Hence they can be rewritten as X(A )2X and

2z 1

+ —
X(I - M) X. Noting also, from Eq. 12 and Lemma 15, that A = = XHX and

T 1 _ —
A = ﬁ XHX, we have that

Tl

VY= (F XEX) X(A+)2 X (% XHK) + X(I - AAT)P X

+ 2 2
= XAA)T +x(1 -aaHX

where the second line follows from the first by Lemma 2, the third follows
from the second because diagonal matrices commute, and the fourth fcllows from

_ 0 ,
the third because H H = A", by Lemma 16. Now, A A" and (I - A A7) are diagonal

2
o+
matrices having only ones and zeroes on the main diagonal, so that A A = (AA+)

+y +,2
and (I ~AA) =(I -AA) . Hence

+. = +, =
vV o= x(AAT)y X +x(I-aY) X
= X(I)X
= NI
The procf for the orthonormality of U follows similar lines. Q.E.D,

Theorem 9: ILet A be a real N x N circulant, let W be the orthonormal

matrix defined in Section V, let A be the diagonal matrix with the singular
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values xo,kl,uaa,kN_l of A (as defined in lLemma 16) as its diagonal elements,

and let U and V be as defined in Lemma 17. Then

T
A = Zwav
N
and
A o= fTyuaw
N

are singular value decompositions of A.
T T, . .

Proof: Note that AA™ and A"A are real symmetric circulants (real because
A is real; obviously symmetric; circulants by Lemma 5), so that, from Lemma 1L,
W may be used as the orthonormal eigenvector matrix called for in each of the
above-mentioned procedures for finding singular value decompositions. The
theorem then follows at once from these procedures and from Lemma 17. Q.E.D.

Let us now examine the significance of these results. The singular value

+

decomposition procedures call for replacing the zero columns of A WA and
T + '
A'WA by any set of orthonormal column vectors normal to all nonzero column
of A W A" ana AT w A+, respectively. Lemma 17 shows that the columns of W
corresponding to the zero columns of these matrices will always suffice,

regardless of the other singular values. This somewhat surprising result

follows from the fact (to be shown below) that the very same partitioning of
the whole N-dimensional space into one- and two-dimensional subspaces observed
in the eigenvalue dec¢omposition of real symmetric circulants occurs here also.
This result is expressed in the following lemmas, which also give simple

: s ) + T .
expressions for finding the nonzerc columns of A WA and A~ WA from W and

H without matrix multiplication.
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Lemma 18: The columns XO’ AAERERFN '] of the matrix V appearing in Lemma

17 and Theorem 9 can be obtained from the expreésions

Yo = senng ¥, g # O
R.M I 1 [
ek m'k
Y = W T Wy N, # 0
|| [ |
(] (w-1)/
N-1)/2 N odd
Ren 1N
zN—k = ekEN-k-l- mkl}k k=l’2)uoo} (N 2)/2N
I, md ] L 2)/2 ¥ even
XN/2 = sgn nN/2 EN/E N even, nN/2 # 0
When o = 0, vy = Vo - When Me = Mok = O’Xk = W and ok = EN—k” When

0 . +1L..n >0
= V- = W. ° ere sgn =
nje = On/2 = Yfo R R
Proof: Iet us look at a particular column Vi of V (0<k < N/Q), If M = 0o,
T
then the first term of the expression V = A™ W AT+ W(I - A A%) makes no con-

tribution to this column, since the corresponding column of A% is then zero.

The second term contributes w. .

If My = O, then the second term contributes nothing and the first term

yields

by Iemmas 16 and 15. From the definitions of W and ok given in Secticn V,

it follows that

~ 1-3 1+j T
Xw. = [0,...,0, N Py oo > e
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where, as in the steps to follow, the two nonzero entries are in the (k + 1)-th

and (N-k+1)-th positions. Then

T

— — 1-j 143

Hw = [0,...,0,8 7 23,0,000,0, N7, -Ei,o,ou,,o]

1 = M 1- Mk 1
L P Pt S
Nin, ”kl > “k l”kl 2 “N-k
But, by inverting the equations of Section V which define W and w in terms
- N-k

of X and Xy_ps, We obtain

1+3

1-j
X = w
=k > Xk

+ =2 I-J o+ 1y
2

¥N-k and Xy , = —= W, YNk
N-k o —X 5

which, upon substitution into the above expression for vy, yileld the results
stated in the lemma. The other results follow in similar fashion. Q.E.D,
Iemma 19: The columns Uy, gl,oo.,EN_l of the matrix U appearing in

Lemma 17 and Theorem 9 can be obtained from the expressions

Uy = sen Ny ¥y N £ O
R.q In n ™
i - ¥k e # O
EM In, |
X k |
U, = 5235 Vi - Ik W k integer, 0 < k < g
[ | ||
EN/E = sgn nN/E EN/E N even, nN/E # 0]

When Ny = 0, Uy = oo When ny = My = 0, Wy = W and dy o = My . When

o = O Yyjo = Byyp
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Proof: The proof parallels that of Lemma 18 exactly except that the de-
. 1.~ . . o 1 = T

composition - XHX of A is used in place of the decomposition X XH of A . Q.E.D.

We have seen that the matrix W can always be taken (at will) as either the
input basis or the output basis for a singular value decomposition of a real
circulant. It is easily shown that there are special cases where it is both
the input basis and the output basis, or where one basis or the other differs
from W only in the signs of some of its basis vectors.

Lemma 20: ILet A be a real symmetric circulant. Then the matrices U and

L . s 1 T 1

V appearing in the singular wvalue decompositions A = I WAV and A = ﬁ UAW
(as given by Lemma 17) are equal, and differ from W only in the signs of some

of their columns, as follows:
U = V = Wsgn H]

where [sgn H] is by definition a diagonal matrix with diagonal elements sgn no>
t1n >0

sgn nl, ooy Sg0 My_q and where, in this case, sgn n = Ln<o
=L 0

Proof: We note from Theorem 5 that for real symmetric circulants the
eigenvalues are real, so that Lemmas 18 and 19 reduce to the stated result.
Q.BE.D.
Lemma 21: Iet A be a real, symmetric, positive semidefinite circulant.
That is, let A be a real symmetric circulant with non-negative eigenvalues.

Then the singular value decompositions given by Theorem 9 both reduce to

A=LWAW = ZwHW
N N

This 1s, the eigenvalue and singular value decompcositions given above are the

same .
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Proof: The first part of the result follows from Lemma 20, since in this
case [sgn H] = I. The second part follows from Lemma 16 and from the real non-
negative nature of the eigenvalues Mo?» N1see+sNN-1-

The results of this section can easily be generalized to singular value
decompositions of complex matrices, by starting from the eigenvalue decomposi-
tion. The singular values must still be real and nonnegative, but the input

and output basis vectors may be complex. Let us define "phase" functions of

the form.
n/lal a £ 0
phase 1 =
1 n = 0
and
phase Mo
0
phase nl
[phase H] =
O .
phase y-1
L —

We can then state

Theorem 10: Let A be a general circulant with eigenvalue matrix H. Then

1 _ T
A = XA (X [phase H])

is a singular value decomposition, where the diagonal elements of the diagonal

matrix A are Inol, lnll,...,lnN_ll.
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T
Proof: The equation is valid, since A[phase H] = H, X =X, and

1 = -
A = § XHX, by Eq. 12. Also, the columns of (X[phase H]) form a valid (i.e.,
orthonormal) input basis, since X is orthonormal, and:ﬁultiplying a column of
X by a constant of unit modulus changes neither the norm of the column nor the

subspace spanned by it. Finally, A has the required form, so that this is in-

deed a singular value decomposition. Q.E.D.
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IX. IEFT CIRCUILANTS

The rather extensive results derived above for circulants might lead one
to ask if there are other classes of matrices for which comparable results can
be obtained. Bellman (Ref. 1,p. 235, Exercises 1 and 2) suggests that there
are other such classes, based on the roots of general N-th order polyncomials
(rather than on the roots of the polynomial rN = 1, from which the circﬁlant
eigenvector matrix X is derived). Another class of matrices which, to the
knowledge of this author, has not been investigated in detail, is the class

of left circulants; that is, square matrices of the form

— ——
2y B, 8y ... 8., &y
a; By B a1 8
8, 85 &, - .. 8 ay
A =
ay.y 8 8 o 8y3  aN-2 (29)

which can be seen to resemble circulants except that each row is equal to the
row above, circulated to the left rather than to the right—thus the name.

The name "circulant,"without modifier, will be reserved for circulants as
originally defined, but in the following discussion, to add emphasis and avoid
confusion, circulants, as originally defined, will be referred to as "right

circulants."”
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Like right circulants, left circulants can be profitably studied as a
special class because of simplifications that can be made in the procedures
for manipulating them—although the author is not aware of there being any
applications in which they arise. They are discussed here because the results
obtained above for right circulants offer an excellent basis for deriving and
evaluating the sometimes similar and sometimes contrasting properties of left
circulants.

Iet us note first that left circulants of a given order (greater than two)
do not all have the same set of eigenvectors. In fact, the eigenvectors depend
on the elements of the matrix, in general. For example, consider the general
third-order left circulant A characterized by [ao, ay, ag]T. Its eigenvalues

> o 1/2
are (ay + a1 + ag), n =+ [ao +a] +ag - aga) - 8pE, * aja,]  , and -m,

T
and the corresponding eigenvectors are [l,l,l]T, [1,£(n), - 1 - £f(n)]", and

T
(1, 2(-n), -1 - £()], where 2(n) = (ney - of + &) 8,)/(na, - o2 + aga)-

These eigenvectors clearly depend on the values of ap, ap, and 85- Thus, the
extensive results obtained above for right circulants (which followed from
their all having the same eigenvector matrix X) should not be expected to have
analogs in the case of left circulants.

Surprisingly, however, there is a decomposition for left circulants which,
although not an eigenvalue-type decomposition, has many of the same advantages.
Many of the results presented here, including eigenvalue and singular value
decompositions will be based on or derived from this decomposition.

We begin with the following decomposition theorem. Note that here the

quantities Ngs Myseeely_g appearing in this theorem are in general not the
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eigenvalues of the left circulant A. We reserve these symbols for the eigen-

values of the right circulant characterized by the same vector a. That is,

N is as defined by Eq. 7 or 8. In this section we shall often discuss the

properties of left circulants in terms of these ggggﬁn's for convenience.
Theorem 11: Let A be an N x N left circulant characterized by the vector.a.

Then

A = % XGX (%0)

where X is the same matrix defined above (Eq. 5) for right circulants, where

G is a matrix of the form

N 0...0 o
0 0 0 . 0 o1
S e (31)
0 0 ﬁz, 0 0
K 1, 0...0 o

and where the components Nor Myzeves are given by Eq. 7 or 8.

o1

Proof: Iet us operate on any one of the basis vectors x, of X with the

matrix 1 XGX. Because these vectors are orthonormal with normﬁJN (see Lemma 2),
N

and because of the particular form of G, the result is

= |
e
2
>
<
1]

k= 1,2,...,N-1
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Now operate on this same X with the matrix A. The result is
ra +ajr ta r2 + + a -1 ]
0 1%k 2 "k N-1 "k
N-1 N-2
8y Ty + 8y + 85 rk + e oo tay g T
_ N-2 N-1 N-3
A x = ag T, t ey Yy Teapt ..ty T
a. r. ta r +a r5.+ . + a
0k "1 2 'k N-1 |
B 1
T
k
=2
. . N N-1 Tk —
= (ao a) T, ay_ 1 Tk ) = 0%
= N-1
k]
Mo %o k=0
e Xk k=1,2,...,N-1

This is true for each of the vectors x

Xy k =0,1,...,N-1. Since these vectors

span the whole N-dimensional space, it then follows that A = %-XG? over this

whole space. Q.E.D.
Thus, as with right circulants, the partitioning of the N-dimensional space

into the two-dimensional subspaces spanned by (X1, EN-l):(ig’ EN—Q)’ etc., plus

the one-dimensional subspaces spanned by and, if N is even, EN/E)’ crops

X
%4 (
up again. Here, however, a "rotation" is involved, in that an input x colinear

with one of the vectors X spanning a particular subspace produces an output A x

LT



colinear with the other vector spanning the subspace.

We now note various properties of left circulants, in a series of lemmas.
The first lemma follows obviously from the definition of a left circulant, and
the rest are easily established by using the decomposition given by Theorem 11
or by following steps similar to those used in establishing the corresponding
lemma for right circulants.

lemma 22: All left circulants are symmetric.

Lemma 2%: Every matrix which can be decomposed in the form given by
Theorem 11 is a left circulant.

Lemma 24: Sums and differences of left circulants are left circulants.

lemma 25: The product of two left circulants is a right circulant.

Iemma 26: Iet L be a left circulant and R a right circulant. Then IR and
RL are left circulants, and LR = RL if and only if R is symmetric.

T
Lemma 27: lLet Ll and L, be left circulants. The L L = (LL] . A

172 21
sufficient (but not necessary) condition that Ly L2 = Lo Ll is that the
vectors characterizing Ll and L2 both satisfy conditions of the form given
by Eq. 20.

+
Lemma 28: Iet L be a left circulant characterized by a. Then L , the

pseudo-inverse of L (which becomes the inverse if the inverse exists), is

X ¥, where the elements of the column

=R

a left circulant characterized by b =

vector ¥ satisfy the conditions

wk = O whenever M = 0
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1/n, k = 0 -1
Ve = for n, £ 0
/Mg k = 1,2,...,N-1
and where, as always, 1 =X a.

lemma 29: ILet L and R be left and right circulants, respectively, charac-
terized by the same vector a, and let R be symmetric (i.e., 8.k = 8k
k=1, 2, ..., N-1). Then their pseudo-inverses L+ and R+ are left and right
circulants, respectively, and are characterized by the same vector b, as given
by Lemma 28.

Lemma 30: ILet L and R be left and right circulants, respectively, charac-
terized by the same vector a. Then L2 =L LT = 'L = R ﬁT = ﬁTRn

Lemma 31: The only left circulants which are also right circulants are

characterized by vectors of the form

v T
N odd: a = [ao, 845 ao,enu,ao]

o
|

T
]

N even: a = [ a

802 812 Bpr o8y By

Thus, odd-order right-and-left circulants have at most one nonzero eigenvalue,
Ny = N 8y, and even-order right-and-left circulants have at most two nonzero
eigenvalues, 7, = N(ay + a;)/2 and /2 = N(ao —al)/2o Furthermore, for
N = 2 every right circulant is also a left circulant, and vice versa.

The decomposition given by Theorem 11, along with the definitions of the
vectors W and EN-k given in Section V, allow the direct verification of the
following eigenvalue decomposition theorem. For simplicity, we limit the

theorem to real left circulants.
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Theorem 12: ILet L be a real left circulant characterized by a, let
Ngs Nip++-sNy-1 be the eigenvalues of the right circulant characterized by
the same vector a (see Eq. 7), and let the vectors Moy Wps.ee,Wy_ be as

defined in Section V. Then the eigenvalues 75, 77,...,7y.1 of L are

Yo = Tp 7] —
(N-1)/2 N odd
k =1,2,..., T
7N_k = - lflkl
- | (N-2)/2 N even
7N/2 = nN/2 N even

and a corresponding orthonormal eigenvector matrix P with columns_go, RyseeesByy

(having noru~N) is

By = X
[(n-1)/2  for N odd
p, = aw *Buyy
k k k =1,2, 5
Pyx T -p N ta ¥N-k
k _SN-2)/2 for N even
BN/2 = EN/E N even

where @ = 1, p = O when n,_ = O and

k —
|
Iﬂkl + Imony
a =
N 2Ink| i
> when e #0
- I
lﬂk! - Im
" TN 2l
k .

Thus, L may be decomposed as

50



1 T
L = =PT
N PIrP

where I' is the diagonal matrix of eigenvalues Yoy Yoo Tyo1e

Proof: This theorem can be verified directly by showing that each of the
vectors pj is an eigenvector with the stated eigenvalue, using Theorem 11 to
simplify the computations. The proof i1s omitted here.

Note that, in genefal, the eigenvectors depend on the values of Mys eee 5 NN-1s
and hence are not independent of a. However, as an aside we note also that if
all the eigenvalues except ny and nN/2 are pure imaginary, then the eigenvector
matrix P differs from W by no more than the interchanging of certain pairs of
columns N and Py_k* Thus, for these cases the eigenvalue decomposition can
be written in terms of W simply by interchanging pairs of eigenvalues in I'.

We can therefore identify, if we wish, a special class of real left circulants
which, in common with real symmetric right circulants, has the matrix W as its
eigenvector matrix. This class turns out to be easily specified in terms of
the elements of the characterizing vector a.

Let us discuss this in terms of the right circulant A characterized by
the same vector a. From Table I, we see that a real skew-symmetric right
circulant has eigenvalues meeting all these requirements, except that 7,
and nN/2 are zero for such a circulant. Thus, 1f we can find a class c¢f
right circulants which have all zero eigenvalues except for these two, which
are real, we can add any one of these to any real skew-symmetric right circulant
and (by Lemma L) the resulting right circulant will have the desired eigen=

value pattern.
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Upon noting that all the real right-and-left circulants discussed in Lemma 31,
have zero eigenvalues, except M and nN/Q’ which are real, the following lemma
follows at once:

Lemma 32: Any real left circulant L for which the corresponding right
circulant A has a symmetric part which is a right-and-left circulant—that
is, which has a symmetric part characterized by a vector b of the form
[bg, bo, bgy«+.,bpl for N odd or [bg, by, bg, by, bgy...,b1) for N even—
has W as an eigenvector matrix. Such real left circulants have (N + 1)/2
degrees of freedom for N odd and (N + 2)/2 for N even.

If one wishes, one can use Theorem 12 to identify other special classes of
left circulants sharing a common eigenvector matrix (other than W). For instance,
the class of real left circulants for which Im my = O for all k =0, 1, ..., N-1
share a common eigenvector matrix, and left circulants of this class can be identified
as those for which the corresponding right circulant is symmetric. And so on.

We can also derive simplified procedures for finding singular value
decompositions of left circulants. The proofs can be based either on Theorem
11 or Theorem 12, and are omitted here.

Theorem 13: 1

N

1

T
L = 3 WAV and L = VAW

are singular value decompositions of the real left circulant L, where A is

a diagonal matrix with diagonal entries lnol, lnll,...,lnN_ll and

+
V = LWA + WI -anth

52



lemma 3%: The columns of the matrix V appearing in Lemma 31 can be

obtained from n and W as follows:

Vo = senng ¥y ng F O
Im 7 Re n ] B
= k k
e T 0° 5T -k m F O
| I | J
> - "
Im ny Re 1, (N-1)/2 for N odd
Iy T Uk T e =l
Iyl || (N-2}/2 for N even
: —J —
= /
Yy/p = sen nN/E EN/Q for N even, HN/E F C
When 74 = 0, Ty = My When U o, v, = M and Yk © Mk

When Ty o = Or Yy/o = ¥y/o

The results derived in this section can readily be used in studying many
other properties of real left circulants. For instance, cne can easily show
from Theorem 12 and Lemma 31 that there are no positive definite cr negative
definite left circulants for N > 2, and that a left circulant can te positive
semidefinite or negative semidefinite only if 1t is a right-and-left circulant.
Extentions of the eigenvalue and singular value decomposition to complex-valued

left circulants is also straightforward, and the results exhibit many more parallels

to the corresponding results for right circulants.
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X. CONCLUSIONS

This report has derived and tabulated many properties of circulants. When
circulants do arise in practical applications, the results presented here have
allowed and will allow great simplifications in certain matrix operations such

as inversion.

Although it has no known practical applications, the material on left
circulants has been included both for its own sake and so that it will be

available should such practical applications arise
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