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ABSTRACT

The following report is concerned with a hybrid analog computer
study of an impacting two degree of freedom system. Such systems play
an important role in many types of industrial machines, e.g., impact dampers,
shakers, rock drills, etc.. To optimize a given behavior of these machines,
it is imperative that analytical models and tools be available.

The analysis of such systems is complicated by the non-linearity
introduced in the impact process. Where analysis of such systems does
exist it generally assumes certain steady-state behavior and then:indi-
cates the parameter ranges for which the assumed form of solution both
exists and is stable. It will be the purpose of the report to provide
a stability check on the existing solutions.

It is found that although the response predicted by the existing
solutions is quite good, the stability behavior is considerably more
sensitive than experimental evidence indicates. Thus, an alternate model
is suggested and studied in the report which has a relatively small
effect on response but much improves the stability of the system. A
limited parameter study is done to indicate the two distinct types of
periodic, stable solutions encountered, i.e., periodicity with énd without

a beat, and to show the approximate trends of the stability regions.
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I. Introduction

An interesting class of dynamic systems exists which involves
impact between masses within the system or impact with an exter-
nal system. Some examples of such systems are the following.

In the case of an impact damper [1] a single mass or a number
of masses is constrained to move linearly colliding with the
other masses or the system wall. The energy loss in the col-
lision is utilized as a damping mechanism. This technique has
been suggested as a possible wing flutter damper [2]. Impact
vibrators have been used [3] extensively to insure the flow of
material in troughs, bins, etc. 1In this case a mass is made
to impact against the bin wall and the resultant vibration
prevents any flow stoppage, etc. A third class of machines
utilizing the phenomena might be called impact tools. In this
case the impact is used as a means of driving, removing, pene-
trating another system. Pile drivers, scale removers, rock
drills are all examples of this class.

The problem which, in fact, provided the orginal motivation
for the study was a "jack hammer" or "paving breaker". The
model for this system is shown in fig. 1. The mass M, corres-

1

ponds to the mass of the case, the mass M2 the piston. mass,

k is the piston return spring constant, H is the operator "hold

down" force, and P(t) is the actuating force. The piston in this



case impacts against a bit or moil shown schematically as sim-
ply a base. The energy loss in the impact is accounted for
through an effective coefficient of restitution e. Although
this was the specific motivation for the problem the general
mathematical model representing fig. 1 might well apply to
other systems. Hence, a general study of this system is of
interest,

The mathematical study of such systems is quite difficult.
The impact process introduces a non-linearity in the system or
put another way, the system is piecewise linear between impacts.
Of major interest here are the steady-state solutions. Two
problems exist; first finding the steady-state solution and
then showing that it is, in fact, a stable solution. It will
be the main purpose of the present paper to provide an analog
computer program for the general dynamic system. Analytic
solutions including stability analysis exist for special sub-
cases. It will also be the purpose of the paper to check these
solutions. 1In addition, the effects of damping, variation of
hold down force, initial condition perturbation, and variation
of spring constants, will be investigated for both the general
and special systems. It should be noted, however, that it is
not the purpose of this paper to provide a systematic parameter

variation but rather to demonstrate the various types of stable,



periodic solutions possible plus other interesting features for
various choices of the parameters.

In the next section of the report the available analytic
steady-state solutions including stability analysis are outlined.
In addition, improvements in the model are discussed and the
corresponding governing equations of motion derived. 1In
section III the analog computer program is presented and dis-
cussed. Section IV contains the numerical results of the study
while the discussionrof results, and some tentative conclusions

are outlined in section V.



II. Governing Equations and Solutions

A. Existing Solutions

The idealized two degree of freedom system for which
analytic solutions are available [4] is shown in fig. (1-A)". ‘The
differential equationsof motion, valid between impacts of M,

for this system are:

d2X1
dt2

M; + k(x1-%X5) Po + P; cos w(t+a) - H

(II-1)

1l

2
Mo d7xz + k(xXs-X31)

qce —(PO + P; cos w(t+a))-(M; + Mo)g

It is assumed for convenience here that the force H is constant
and the driving force P(t) is sinusoidal. It should be noted
that gravity effects play an important role here, i.e., note
the second of equations (II-1l). Physically the system here is
"floating", or is unattached to the base. M, strikes the base,
rebounds, and at some later time, due to gravity, the system
falls and M, again strikes the base. The height of rebound,
time between impacts, etc., all depend on the system parameters.
The essential purpose of the present study is to provide
analog simulation of the above and several closely related
systems. In particular this will include checking the stability
of predicfed steady state solutions of the above system [5],
investigating the effects of damping on the system behavior,
and looking for other types of steady state behavior than that

predicted by the analysis.



The solution presented in [4] and the subsequent stability
analysis presented in [5] are for the undamped,-”floating”
system shown in fig. (1-A). Equationsd{II-l)are the governing
equations of motion. Since steady-state behavior is desired
the analytical approach in [4] assumes that the response of the
masses M; and M, have the same period as that of the driving force
P(t) (this is based on experimental observation). This assump-
tion is shown schematically in fig. 2. It can be seen from the
figure that mass M, rebounds from the surface with a velocity
ev, where e is the coefficient of restitution and v is the
velocity of M, immediately before impact.

Several interesting features emerge from the solution of
reference [4]. First, it is shown that not all values of the co-
efficient of restitution permit the assumed solution. It is
shown that as e decreases the one bounce per forcing period
solution breaks down. The possible one bounce solution region
is shown in fig. 3. It should be noted that fig. 3 is a di-
mensionless plot. The dimensionless variables are defined
later. Second, two distinct single bounce solutions, which
satisfy the equations of motion between impacts and all condi-
tions at the beginning and end of the impact cycle, are possible.
It is shown in [5] that one of these branches always leads to

an unstable solution and further that the stability region for



for the other branch is very limited, see fig. 3 again. It

is also shown in [5] that this branch is stable only for very
small perturbations of the motion. This stability will be checked
using the analog solution.

Since experimental results indicate a much more insensitive
stability behavior, it was felt that the choice of model shown
in fig. (1-A)was, in fact, poor. Several modifications to fig,
(1-A) which hopefully increase stability but do not radically
change the response suggest themselves. In fig. (1-B) a dis-
placement limited model is shown. In this case, large deviations
from the mean steady state position are prevented by providing
an upper bound on the displacement of Mp. It should be noted
that this does not necessarily insure a stable solution, however.
A second possibility is shown. in fig. (1-C) essentially
a force limited model. Large changes from the mean steady-
state position here are resisted by large forces due to the
added spring k;. It is felt that the force limited model is
somewhat closer to reality in the present case. For example,
in the case of a "jack hammer" an operator would apply force
much in the manner éf this spring, k;, i.e., if the system
tended to go unstable with increasing amplitude, the operator
would apply increasing force to bring it back. The equations

of motion for this model will be derived and non-dimensionalized.



B. Force Limited Model

Derivation of the equations of motion for the force limited
model presents one additional problem, namely, the choice of
coordinate system. We can either stay with the present coor-
dinate system, i.e., X, i1s measured positive upward from the
base and Xx; = 0 is the equilibrium position of M; for P(t) = 0
and k; = 0, or we can consider a second, somewhat more commonly
used coordinate system. Here the entire system hangs suspended
under its own weight from the upper support. vy; and y, are
measured positive upward from the positions of static equili-
brium (for P(t) = H(t) = 0) of M; and M, respectively. This
eliminates the gravity term. Also, in general, there will be
some "gap" distance, &, between the equilibrium position of
M, and the base. The problem could be formulated in either
coordinate system, the systems being related by a linear trans-
formation of the type,

Y1 = X3 + a
(I1-2)

YZ=X2+b
It was decided that the original coordinate system is the more
realistic one for this particular problem since the unstretched
spring position k; (this spring is modeling the operator) is

also a function of system paramters.



The equations of motion for this system are:

d®x dx dx
M1 dté + c(aEl - a;a) + k(x1-%X5) + kyix; =
PO + P; cos w(t+a) + ks - H
(II-3)
d2x dx ax
Mo FYe c at at ) k(x1-%X5) Po Py cos w(t+a)
- (M3+M3) g
where k;s is the spring force in k; when x; = 0. Thus, s
fixes the unstretched position of the spring k;. Note that
for no damping (c = 0) and no upper spring (k; = 0) the equa-
tions reduce to equations (II-1).
The following dimensionless variables are chosen:
T = pt F o= PO/Pl
£1 = x1/(P1/k) F, = H/P;
£ = X5/ (P1/k) W = (M3+Mp)g/Py
(I1-4)
O = w/p K = k;/k
® = pa Y = ¢/
b= M;/Mp S = s/(P1/k)

where p? = k[M;4Mp/Mi1Ms]. It should be noted that this is not
the natural frequency for the two spring system of equations (II-3).
However, for k; << k, the shift in natural frequency is small.
Moreover, using the old natural frequency is considerably more

convenient numerically. It should also be noted that there are



two frequencies in the latter case, one of which is very close

to zero.

v in equations (II-4) is the dimensionless damping constant

where B = 2k/p and represents critical damping in the one

spring system. Substituting these dimensionless variables

into equations (II-3), the following dimensionless differential

equations of motion are obtained.

dzéy ¥ (GEs  dEg =
azz * 2 Ty (l+u) dr d'r l+u (E1-E2) l+u 3
L (F_+ cos Q(t+yp) + S - Fp) (II-5)
1+ o T 1
d2¢ ., 2uy dE o dé¢ v — . ) ,
dr2 l-I-u( ar d'r) * l+u(g’2_k‘l) T ].-|-|.,L{bo + cos Qlrig)+ W)

In the following section these equations are programmed for the

Applied Dynamics (2-64PB) hybrid analog computer.
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III. Analog Computer Program

The analog computer lends itself to rapid solutions of
differential equations. Furthermore two advantages which make
this computer useful for the impact problem are 1) any variable
in the system can be continuously monitored and 2) various
parameters can be changed in the system and their effects
immediately obtained. This is especially useful for studying
system responses and in partdcular, checking stability. However,
there are disadvantages too. The error introduced by the com~-
puter is directly proportional to the number of components
used in the program, i.e., the more amplifiers and potentiometers
the greater the error. Furthermore, the computer has only two
place accuracy. Therefore, if the solution was sensitive to
small disturbances, it would be entirely possible that the above
disadvantages could introduce inaccuracies great enough to
influence the solution.

The analog program representing the equations (II-5) is of the
standard type for two second-order coupled differential equations
and is shown in fig. 4. Because of the characteristics of
impact, there is need for external control over the integrating
amplifiers. A pure analog computer has no such capability which

necessitated the use of the hybrid computer.
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The computer used for this impact study was Applied Dynamics’
Model 2-64PB) hybrid analog computer. This machine, with logic
control, has the additional capability of temporarily storing
computer variables and/or the automatic switching and sequencing
of computer components. The usefulness of the logic control
is especially apparent in simulation of non-linear problems,
i.e., the impact phenomenon.

In this problem, impact occurs when £, = 0 and is characterized
by a velocity before impact of ég and a velocity after impact
of —eéz where e is the coefficient of restitution. The computer
routine takes the following form. Between impacts, the tracking
amplifier continuously tracks the velocity ée. When impact is
sensed by the comparators (52 S 0), a logic signal is triggered
placing the main system and tracking amplifier into a hold mode,
i.e., storing éz just before impact. After an increment of time,
a pulser of the logic system places the velocity integrator
(ég) into a mode to receive the new initial conditions. Then
the output of the storage amplifier (tracking amplifier in hold)
is first passed through an inverting amplifier and then through
a potentiometer set at the coefficient of restitution. The out-
put of the potentiometer is placed on the éz velocity integrator
as the new initial condition. Again after a short time delay

the main program is again placed into the operate mode until
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the comparator signals the next impact.
The entire logic sequence, fig. 5, takes about three seconds.

The advantages of the hybrid computer can readily be seen when
compared with the pure analog computer. Without the use of a
hybrid, the impact phenomena would have to be simulated by the
operator who would place the computer in hold, determine the
velocity éz before impact, multiply by coefficient of restitu-
tion, re-initialize the éz integrator, and finally turning the
computer back on to await the next impact. To say the least,

this would be a very time consumingand inaccurate method.
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IV. Numerical Results

It will be the purpose of this section to present analog

computer solutions to the governing differential equations
of motion of both the force limited and floating systems, i.e.,
equations (II-5). The equations of motion of the floating system
are obtained by setting K= S = 0 in eguations II-5. A steady-
state analytic solution [4] and stability analysis [5] exists for
equations (II-5) for K= S = ¢y = 0. These solutions will be
checked and the floating system studied for ¢ # 0. In addition,
the full set of equations (force limited model, see fig. (1-C)
will be studied to see what changes exist in both stability and
response. Since no analytic solution exists for this latter
case, the purpose of this study is mainly to indicate the various
possible types of steady-state behavior plus the effects of
damping, spring constants, "hold down" force, coefficient of
restitution and initial conditions on the response and stability
of the system.

A. Steady-State Response of the Floating System

The steady-state solution of [4] assumes that the system
response follows the forcing frequency; i.e., is periodic with
period equal to the forcing period. Since the analytic solution
is obtained in one period only, it further assumes that system

response is identical for all periods. This will henceforth
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be referred to as a non-beat periodic solution. Under this
assumption two such steady-state solutions are found, both of
which satisfy the equations of motion and the "boundary" con-
ditions or conditions at the beginning and end of the period.
The stability analysis of [5] shows that only one of these two
steady~-state solutions is asymtotically stable. The results

of this stability analysis are summarized in fig. 3. The choice

of parameters in fig. 3 is:

F = 1.160
O
F, = 0.453
(Iv-1)
W = 0.362
W = 10.83

To show how instability developes, consider the following values
of e and ()

e = .6
(IV-2)

O = 1.44
These values correspond to actual operating conditions of a
particular machine, see [4]. The two predicted steady-state

branches of [4] yield the following conditions at the beginning

of the period for the masses M; and M,.

Branch I Branch IT
£1(0) = 1.71 £1(0) = 3.46
dé, (0) d¢, (0) (IV-3)

0.0375

= 0.0375
ar ar 0.03
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£2(0) =0 £2(0) =0

dt,(0) _ dt , (0) (1V=3)

dt : dt

If these two solutions were stable, then using these conditions

as initial conditions, steady-state motion would be present from
time T = 0. The motion for this set of parameters is shown in
figs. 6 and 7. It is interesting to note that the solution

has the assumed periodicity in both branches for approximately
five cycles and then begins to deviate markedly. As predicted

in fig. 3 the motion is indeed unstable for this set of parameters.

To check the stability analysis of [5] consider the following

parameters:
e = 0.7
(IV-4)
0= 3.0
It can be verified from fig. 3 that this is a stable point.
The analysis of [5] predicts stability for the second branch
only and only for very small perturbations. The steady-state
initial conditions for the second branch are;
£1(0) = 1.11
26000 _ o127
dt
(IV-5)
£-(0) =0
d€200)  _ 44
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Substituting these into the analog program the response shown
in fig. 8 results. The results here are somewhat inconclusive
in that results show some deviation after a large number of cycles.
The analog computer itself introduces a perturbation in the
system, however, which may be sufficient to introduce the
deviation shown. In any event, fig. 8 indicates that the solu-
tion stability is indeed sensitive to small perturbations as
indicated in [5].

The inclusion of damping in the system provides some particu-
larly interesting results. Considering the parameters of
equations (IV-1, IV-4, IV-5) plus a damping coefficient of
v = 0.2 we find a new type of periodic (stable) solution entering,
see fig. 9.* Here we have a beat phenomena present which re-
peats every ten cycles. This clearly violates the assumed form
of the steady-state solution of [4]. If the damping is now
increased to v = 0.3, the non-beat periodic solution again exists,
{see fig. 10). Of particular interest here is the behavior of
£1(t). The motion of £;(t) dies out almost completely. Thus,
we have, in effect, a single degree of freedom system which is
quite similar to the "vibration absorber" [8]; i.e., a two mass

system is "tuned" until the motion of the upper mass goes to zero.

*This will be referred to, henceforth, as a beat periodic

solution.
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If the damping factor is further increased, e.g. to vy = 0.4-0.5,
the solution periodicity breaks down completely within several
cycles. It should be noted that over the periodic portion, the
response of £5 is not strongly dependent on the damping factor.
Also, it should be noted that the behavior of the upper (larger)
mass M; is the best indicator of stability in the system; i.e.
trends in €3 (t) provide the best insight as regards stability.

It can also be shown that the inclusion of damping increases
the stability region. If we consider

e = 0.8
(IV-6)
Q= 3.0,
a point clearly outside the stable region of fig. 3, we find
approximately the same behavior as for e = 0.7. In fig. 11,
E1(t), Es(t) are plotted for = 0.30 and 0.35.

The initial conditions for the parameters of equations
(IV-6) were the same as those for equations (IV-4), i.e.,
equations (IV-5), which, in effect, provides a perturbation
of the initial conditions. This can be seen in the beginning
of motion on fig. 11. With damping the stability seems less

sensitive to initial condition perturbation.
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B. Steady-State Response of the "Force Limited" System

As was previously mentioned in section II, the reason for
studying the "force limited" model is to provide a better
approximation to the physical system. In this model a second
spring is added (see fig.l=C) to provide a mechanism for
correcting any large deviations of the motion which might arise,
and, hopefully thereby increase stability. The governing equa-
tions of motion for this case are equations (II-5). To simplify
matters S will be set equal to zero. It should be noted that
from the point of view of the computer, however, S and F;

(hold down force) are identical.

It was shown above that e = 0.6, O = 1.44 leads to unstable
solutions (both branches). 1In this study both e and () will be
fixed at these values and the effects of K, vy, F; will be considered.

The periodic behavior of the solution seems to be markedly
improved by the addition of the spring k;. Fig. 12 shows the
system behavior for y = 0, K= .06 and F; = .045. Although
the oscillations are large there is a definite "beat" periodicity.
This compares with the system response of fig. 7, and in this
case for less hold down  force, i.e., F; and K are small.

It will be shown later that increasing hold down force  tends to
increase stability. If the damping factor is increased very

slightly, v = 0.0l, and the spring constant ratio is increased
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to K = .154 we have the periodic behavior shown in fig. 13.

We still have the beat phenomena present, but much less violently.
If we increase the spring constant still further K = .21 and
increase damping to v = 0.1, we tend to the non-beat periodicity
of [4], (see fig. 14). Figs. 14-A and 14-B also show that the
solution converges to the steady state value for a fairly

large range of initial conditions. 1In fig. 14-A we have ¢, (0) =

1.7 and in fig. 14-B we have ¢, (0) 5.0. The other initial
conditions remain the same. Both converge to the same steady-
state solution indicating that stability of the "force limited
system" is less sensitive to initial disturbance than .the

floating system . These two sets of initial conditions correspond
roughly to the two solution branches of [4], indicating only one
stable solution in the real system.

Comparing the response shown in fig. 14 with the steady-state
solution predicted in [4] it is interesting to.note a close
correlation. [4] predicts the maximum of £,(t) to be approxi-
mately 4.4 while fig. 14 indicates a maximum displacement of
£-(t) of 4.0. Although, the parameters in the two cases are
slightly different they are close enough’ to warrant comparison.
It also should be noted that the period in the force limited

system is equal to the forcing period. This would seem to in-

dicate that the steady state solution of [4] is correct wherever
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periodicity of the type assumed is found.

It should be clear from the above discussion that stable
periodic solutions exist for the force limited system. It is
now of interest to consider the effects of K, v and F; on the
system response. Fig. 15 considers a variation of K, all other
parameters fixed. Only £5(t) is shown here. For K = .05 results
are somewhat inconclusive. A steady-state stability was not
reached, but this could, however, possibly be due to initial
condition sensitivity. For K = .10, stability was finally
achieved; however, it contains a strong beat. As K increases
through K = .15, .20 we tend toward the non-beat periodic be-
havior of [4]. As K is increased beyond this the results again
tend to be inconclusive., No solution of the non-beat type
seems to exist. Thus K seems to have a stabilizing influence
on the system but only for limited ranges.

To consider the effects of damping we again show only
£E.(t), see fig. 16. 1In general, damping shows the same effects
on the system as K. For small values of damping, results are
inconclusive (strong beat effects). As ¢ is increased, y = .125,
.15, the beat phenomena tends to die out and at vy = .175 the
non-beat periodic behavior is again evident. For larger values
of damping, results again tend to be inconclusive. No solution

of the non-beat type seems possible.
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Fig. 17 shows the effects of the hold down force F;. Again,

the variation of F; causes approximately the same effects as

K and y. For low values of F;, F; = .09, results are inconclu-
sive. The beat phenomena begins to show up at F; = .23. At
F; = .32 the non-beat periodic behavior is found. This holds
through F; = .41. For larger values of F; results again tend

to be inconclusive. It is of interest to note that the non-beat
periodic solution holds over a fairly wide range of hold down
forces, We also note that as the hold down force increases,

the amplitude of £,(v) decreases as expected.
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V. Results and Conclusions

The purpose of this report has been to utilize the analog
computer in the solution of dynamic impact problems. Of particular
interest here has been the generation of periodic, stable, steady-
state solutions. Since very little analytical work is available
to direct the computer studies, the main objective has been to
simply identify the various types of response and to provide some
indication of what effects damping, spring constants, hold down
force, and initial condition perturbations have on the response
and stability of the system.

A class of hammer impact machines has been idealized as a
floating two mass system. Stability analysis of this system in-
dicates that it has very poor stability characteristics. This
does not seem to be the case in real machines of this type. It
has, thus, been proposed in this report that another system,
namely a force limited model, would provide a more realistic model.
The response and stability of this system seem to indicate that
this is so, i.e., stability characteristics are better, while the
response 1is largely unchanged.

Due to the limited and somewhat random character of the pre-
sent study, trends in the system response is perhaps a better term

than conclusions. The observed trends are listed below.
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Stability in the undamped floating system, of the non-
beat type is very limited and sensitive to perturbations

of the system.

Damping in the floating system has the following effects.
For small damping a beat type of periodic solution exists
(for the parameters studied). As damping is increased
the periodic solution tends to the non-beat type. For
large damping no periodic solutions were observed. In-
clusion of damping in general seems to enlarge the

stability region.

For the non-~beat type of periodic solution, the motion
of the large mass, £1 , goes to zero in a manner similar

to the "vibration absorber".

The inclusion of damping in the floating system tends to

reduce the sensitivity of stability.

The stability characteristics of the force limited system
seems to be much improved. Moreover a comparison of re-
sponse with the floating system seems to indicate that
the added spring tends to effect only the stability and

not the response, indicating that the solutions of [4]

°
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are acceptable wherever stability of the type

assumed exists.

6. The effects of Fy,¥, K on the force limited model are all
approximately the same. Stability increases as each
parameter increases, going first through a beat type
stability, and finally to a non-beat type. As the para-
meters are increased beyond some critical point, the

periodic behavior seems to break down.
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