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THE HEAT TRANSPORT BETWEEN TWO PARALLEL. PLATES

AS FUNCTIONS OF THE KNUDSEN NUMBER

I. INTRODUCTION

The method of the previous report! for treating transport phenom-
ena by starting immediately from the Boltzmann equation (instead of using
the equations of motions of the fluid) has been applied to the problem of
heat conduction between two parallel plates. We assume, as in the previous
report, that the "Mach number", which in this case is measured by the ratio
of the temperature difference, 2AT, between the plates and the average tem-
perature T is small, so that only terms of the first order in AT/T are kept.
The Knudsen number, d/A, where d is the distance between the plates and A
is some sort of mean free path is, however, arbitrary. In this way the
transition from the Clausius to the Knudsen regime can be described more
completely than in an earlier report.2

Formal expressions for the heat flux and the temperature distri-
bution between the plates can be derived for arbitrary values ef‘d/h. The
limiting cases for the Knudsen gas (d/A <<'1) and for the Clausius gas (d/A
>> 1) can be deduced from the general expressions. .All observable quanti-
ties like the heat flux and the temperature distribution are functions of
the Knudsen number K = d/x. It is to be noted at the outset that only for
small values of K can a power-series development in K be obtained. It is
not possible to find a series expansion in inverse powers of K, since K =
w-is an essential singularity. The approach to the Clausius regime is
therefore more complicated than previously assumed, due to the development
of successive types of boundary layers, as will be explained in Sec. VI,
This insight is the main result of this report.

1C. 8. Wang Chang and G. E. Uhlenbeck, "On the Propagation of Sound in Mon-
atomic Gases", Univ, of Mich., Eng. Res. Inst., Proj. M999, Oct. 1952.

2C. S, Wang Chang and G. E. Uhlenbeck, "Transport Phenomena in Very Dilute
Gases", CM 579, UMH-3-F, Univ, of Mich., Eng. Res. Inst., Proj. M604-6,
Nov, 15, 1949,
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mann equation becomes a linear integral differential equation for the dis-

plete distribution function f, we distinguish between the molecules going
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II. FORMULATION OF THE, PROBLEM

As in Ref. 2, we take the (y-z) plane halfway between the plates.
at x = -d/é is kept at T + AT. We make the assumptions that
1) AT T, and
2) the accommodation coefficient is @3 i.e., & is the frac-
tion of the molecules that is re-emitted by the wall with
the temperature of the wall.
We will use the notation of Ref. 1; the distribution function is

f=f (14 R(ER),

where ¢ is the dimensionless velocity (unit (m/QkT)llz)and fo is the com-
plete equilibrium distribution. Because of the first assumption the Boltz=

turbance h, of the form

Cx-z—)é— = 'nT(ﬁ)) (1)

where n is the number density and J is the collision operstor
| Y ct /, p/
— -4

T =+ | R [aasIqo(R+hi-F-), @)
which has the dimension of an area and has the order of magnitude of a col=-
lision cross section.

The boundary conditions are formulated as follows: In the com-

up and those going down. Calling these distribution functions f+'and il

respectively, where the plus and minus signs are the signs of the x-compo=-
nent of the velocity, we write:

f=fef

The boundary conditions are then:
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1162) = af. U+ & (BN +0-0 (o, 1) ¢x>0 (3a)

Fedaf D FEE] 0ty s

where
) 3/2 _pZ
fo=m (1‘?ET) g,

Eq (3a) expresses the fact that the distribution function of the molecules
going up at the lower plate consists of two parts: a fraction (1 - @) of
the total molecules specularly reflected by the plate so that this portion
has the distribution function of the molecules going down at d/2 with the
velocity component ¢, reversed, and a fraction & of the total molecules re-
emitted by the plate with the temperature T + AT, Eq (3b) is a similar
-statement for the molecules leaving the upper plate. B+:and'B' are two con-
.stants which take care of the different densities at the two plates. They
are to be determined by the following two conditions:

‘a) the total nunber of molecules per unit area between the
plates is nd, and

b) there is no streaming velocity in the x-direction.

In terms of the disturbance h, Egs (3a) and (3b) are:

RED=2E (B r O-x) B (-e,m %) &vo (i)
D)= - AL (E B+ (-0 R (o, v E) <o "
and the conditions for the determination of B+ and B are:
4 .
S =C _
S_g_ ijdc e "h= (5a)
A
“and
2
ja‘ée_c fo\ =0 ,
(5b)
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There is, furthermore, one symmetry property of the functions hi, namelys

Ri (cx)x) = - ﬁT-(‘Cx)‘x) . (6)

This symmetry property is a consequence of'the first assumption and can eas<
i}y be seen by reversing the x<axis while keeping the temperatures unchanged.
From Eq (6), it follows that

ﬁ(cx,x) == ﬁ(‘cx) -x) . (7)

Thus Egs (4a) and (4b) are equivalent to each other provided

BY = B

2

and Eq (5a) is then automatically satisfied.

- To summarize, our problem is to solve the linear integral equation,
Eq (1) with the boundary condition Eq (4a), namely:

RMer,~2) = 24T (Sv ) + (-0 R (-en,- D) cx>0,

where b have the symmetry property Eq (6) and where B is to be determined
by Eq (5b). The heat flux and the temperature distribution are then read-
ily calculated.

Til\)—-rj&ce c cxﬂ

(8)
Te=T [-3 i e ® (3-9%].

,Iﬁ follows from Eq (1) and the conservation of energy that the heat flux g
is a constant.

III. DERIVATION OF THE LIMITING RESULTS: THE KNUDSEN .LIMIT

Before turning to the formal solution of*the problem stated above,
it is instructive first to derive the limiting results, valid for small and
large values of the Knudsen number X.

When the Knudsen number is very small, in the zeroth approximstion
the collision term on the right-hand side of Eq (1) can be neglected. Writ-
ing:
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A (98)
and -

B2 W8 (99)
we have: -

1) Zeroth approximation:

abs _
X

ﬂo = Ko (CL) Cx).

'The boundary condition now becomes:
BT () o) = 240 (e ) S + (1-) By (-6
S +
= 9_<:réf_(¢’-+ Bo)‘—t%}ﬁ‘ - -k, (258

by use of the symmetry property. Thus

(3= B (5 &) = S (4B ) AP

and

(-2 B2 (& &) = - ¥E- (v p)A=bpte
or together:
INCENER A cx)=—i’-‘—-— T(c+B)A~\g Zx (108)

B, as determined from Eq (5b) has the value -2, The complete distribution
function to the Knudsen approximation is therefore:;

p ho_e
3}0__,,,(_51‘_0.&) < { 2°< T = (&~ l)mrcx}' (10b)

from which it follows that the temperature between the’ plates is constant
and is equgl to T and the heat flux q(o) is
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(o ::.__US_, . T A

>

independent of the molecular model as is to be expected. For perfect accom-
modation & = 1, Eq (11) is the well=known Knudsen expression. -For & = O,
4(9) = 0; in fact it will be found that for & = 0, g = O to all approxima-
tions as is to be expected.

2) First approximstion: In this approximation

a% = 3(g).jE£Q1~__

the solutions of which are:

+ \am C t
ﬁ. = lé'; TCRO)*@-'—%KL‘& + K\ (c)cx)) (12)

+ -
where K, and Kl_are+integration constants like Ky. Because of the symmetry
property, Eq (6), K, and K, are related by the equation

KE(ex) = - KT (-2x),

Substituting Eq (12) into the boundary condition Eq (4a), one finds:

Ki ()= £ 25 (58, + £ T(Ra)) 4=

and therefore:
R (ex,%) =52 2 ATB Ma"\ Cx“’“‘.\(ﬁ)()ﬂ-—i- iﬂ‘@n Cx)

B, as determined by Eq (5b) is found to be:

Be- T [a2 & o ex TCh)

AT 2T
= -—_&(.—.—A_. Y Z > \ (g
% 2T LMZM x , (& Z)ALBM XJ ,
using the bracket symbol:

(A, BT = [ A] = | a2 <AT(B),

Hence the firste-order disturbance function h, is:
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R e, x) = = (3%5) —lwwzfncxb«j(w, (e l)“\a“tx]"'

-5 T U
N (13)
+ 5 TR+ & b )
The first-order correction to the heat flux, q(l), is
u) T A =" 2
3= %@Jm SR
(14)

- 40 g [ s, ouped],

Since the square bracket [A, A] is always negative, the ratio q(l)/q(o) is
always negative. For O = 1. this reduces to the expression given in Ref, 2.,%
For elastic spheres and Maxwell molecules, the square bracket has been eval~
uated in Ref., 2, The results are:

For elastic spheres (diameter ¢):

2
® =~ \r‘;\jmr« Gbre-) (15)

For Maxwell molecules (force law k/r>):¥¥*

Y — v .

. {wr- z(dr-ame)m"_———ﬁ-""f - A(+3end)an’ 208, (16)

a(z—m&)(\ eV 1+ end 1(1+co&)(wcm€r)‘i l-end }
(3- en) ¥z (B+ew §)3A

For Maxwell nmolecules, one can also make use (as in Ref, 1) of the eigen-
values snd eigenfunctions of the collision operator J. ‘The h's are expanded
in terms of the eigenfunctions V,, with coefficlents a,.,. In this way one
finds: | |

¥The results given on p. 35 of Ref..2 for o # 1 are. not correct.
**¥The function F(@, k, 5) used in Ref, 2 is (21@/1:1)’L /2 F(8), where F(O) 1s the
dimensionless function used in Ref. 1,
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O o md] aed  @poa @D
w";i%ffi;qu“‘“*'gxwié)! L

where

5
r+f Rt N
>\Y-Q= ;u'rJo aB2mb F(6) [006]— " '% ?Q(w'g')fwfm —f_’?g(gmg’)‘(” Svo S‘QO)]

are the eigenvalues of J. The sums in Eq (17) can be carried‘out and this
leads again to Eq (16) for q (1) /q ). This serves as a check of the result
given in Ref. 2.

3) Second approximation. The calculation goes as before. The
function hy is found to Dbe:

fo= 5 (% )75 3R) +

* 3% 2 {")(“327_3(&'9) TICim 59 [igmac, R, 1}
(18)
) %/"Z“ x 13’ (5253 (R) - - TCip ) Loign o o]
S i o, U 0R) ]+ 5 [bir s s 6 Do S, o] I,

The second-order correction to the heat flux is again found to be indepen-
dent of x, as 1t should be, It is given by the following expression:

%(;)) =(_f<:‘(‘)z~,%}{.‘r[(c’:z)mzq &, L’-‘%gj‘((&.z)p%m cx)‘]..
- [(&7_)&5“ CX’MX“ CxJZ} .

(19)

The ratio q(e)/q(o) is positive, which can be seen as follows: Replacing
% in the curly brackets by the integral

NS A
T= ldc e c,go«‘afv\cx)




[o——

ENGINEERING RESEARCH INSTITUTE - UNIVERSITY OF MICHIGAN —

then

{}-(uese sney ) o & S apase [3(cgaipna)]
- [Jdée"clmzncx I<(°1;L)MEMCX)]Z

which is seen to be positive by use of the Schwarz inequality.

IV. DERIVATION OF THE LIMITING RESULTS: THE CLAUSIUS GAS LIMIT

Even though the approach to the Clausius gas regime is more com-
plicated, so that a development in inverse powers of the Kaudsen number K
(or of the density n) is not possible, we will, in this section, attempt
to obtain a solution for the Clausius gas limit directly by making such a
series development; i.e., we will write

C<

The procedure adopted will be slightly different from that used in the pre-
vious section. We first solve the integral equations for hyiy making use of
the symmetry condition Eqs (6) and (7) and of the fact that T, must be zero,
but without teking into account the boundary conditions Eq (4a). The solu=
tion will contain & number of arbitrary constants, and at the end of the
section we will try to determine these constants from the boundary conditions.
It will be seen that the integral equations for the successive aepproximations
can be solved without any difficulty. The fact that these solutions cannot
be the true solutions of the problem will be reflected by the fact that the
boundary conditions cannot be satisfied exactly. Up to which approximation
the calculation can be trusted will then also become clear.

Substituting the series expansion for h'into the Boltzmann equa-
tion and equating terms of equal powers of n, we have:

1) Zeroth approximation:

T(R) =0,

the general solution of which is:

) ()] (o 2
Polrex)=a"+ &, ex + &g (c-—g—)) (20)
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where the a's are independent of c? and cy but are in genersl still func-
tions of x. The symmetry property, Eq (7), requires that a§9) be even in
x and that agp) and ax”/ be odd in x. The fact that T, = O reguires that
ay"’ be zero, while alO) and as;o may be arbitrary.

2) First approximation:

y aﬁo - ('ﬁ) (21)

This inhomogeneous integral equation will have a solution only if the left-
hand side of the equation is orthogon%l to thg solutions of the hgmogeneous
equation. Multiplying Eq (21) by e, c,e™¢", and (c2 - 3/2)e~¢" respec-
tively, one sees that Eq (21) will have a solution if

4al?  4d9 _
PralLr T (22)

Equation (21) becomes therefore:

A_s (c-u—)cx T(ﬁ (23)

the complete solution of which is:

Fi= dV+aP e o) (-4) + 0 4D ey (2k)

The form of the particular solution, i.e., the fourth term, follows from the
isotropy progerty of the linear operator J. By symmetry we have again that

a]} and ay~/ must be odd in x, and az} and a}; 1) mist be even in x. In or-
der to make the particular solution completely definite, we may and will re-
quire that this term be orthogonal to the solution of the homogeneous equa-

tion. This imposes one condition on g(c®), namely:

42 << eqten=o0 . (25)

Then €y = O again requires that agl) = 0, Putting

0]

u) do
-_— 3
% J&x (26)

the equation for g(c?) becomes:

T(gede) = (£-3) &x . (27)

10
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Together with the condition Eq (25), this equation is identical (except for
notation; g(c?) has the dimension of a reciprocal area) with the equation
solved in the book of Chapman and Cowling. The method is to develop g(c?)
in Sonine polynomials of degree r and order 5/2:

2y S Sy 2
%(C" =72 oSy, (€9
Y=

Omitting‘the term with r = O takes care of the condition Eq (25). For the
development coefficients O, one gets from Eq (27) an infinite set of lin-

ear equations, which can be solved by convergent infinite determinants. For

further details we refer to Chap. VII of the book of Chapman and Cowling,
and we will note enly that in our notation the heat conductivity coefficient
v of the gas is given by:

e kA —-._ -“}/z
g, po] = - 3 (29)

and that in terms of v:

A= 'ﬁ[\[:% . (30)

From Eg (8) for the heat flux and Eq (24) it follows that for the
heat flux in the first approximastion:

0 U) (o)
3 =-ay T’>=’?T%« (31)

The constancy of‘dagq)/dx follows from the second approximation.

3) Second approximation:
> [ .W, , . 3 OPPRY ] = '
Cx})—('[q\ + qS (C 'i) + Q* 2(‘1) Cx I(ﬁl)
The solubility conditions lead to:

da . dag®
ax T I T°

~and

() et N
N T ek

11
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from which it follows that a(4l_.) must be a constant so that a.(lo) and a(sq)
are proportional to x. The complete second«order solution is:

G ( G x S
fo= o rae + ag? (= 2) + a:)z(c") e, .

By the same argument, a.(22 ) must be zero., The function g(c2) is the same
function as in the first approximation. It satisfies the same integral equa-
tion and the same auxiliary condition 1f one puts again:

QPJ= dqéﬁ
4 ax

The coefficient ag?) will again have to be & constant if one goes to the
next approximation. Thus we see that the complete solution of the distur-
bance h will be:

% = G.‘l’ Q3<(‘,L..g_)+ q*_?(cz)c)()

where
[~7] ©0 \ [~ o) 3 \
-v (v - - ) _ -t
oﬂ‘Z'nal R 0.3-—;7)@3 0’1'-\2“7)14
V=0 Vo ) v
and
) ) [3))
f?..\_ + _A_L‘.i., = au) - _d___sﬂ
X dx ) 4 dv

Therefore a3 = -8, % nasx so that:
- * & z
h=magx (€=3) + 0 ex g, (%)
The agi_) are the constants to be determined from the boundary conditions.

Boundary Condition: The complete solution of the problem depends
on the boundary condition Eq (4a), namely:

o D RIS 108 o4,

where the ht (cys x) must fulfill the symmetry conditions Eq (6),

(33)

85 (e, )= -R¥ (e, -x),

and the Boltzmann equation, which we write in the form

12
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Bﬁ T(ﬁ) \im%l\cx 5

'Since we know that J(h) =ag (c2 - 5/2) cy, we can conclude from Eq (34):

?\t (tx)X) :"-'V\Q.q_X(C,L—‘)E_.)_\_i_%\%ﬂS-X— + 3*-((:‘: Cx).

From the symmetry condition it follows that gi (c2, cx)
while from Eq (32) it follows that:

-gt (c?, 'cx) ’

%Jr (S &) + Z‘Lc’j ex) = By €y 3(8’) _

cy/c, one can

i

Developing gi (c2,. Cx) in Legendre polynomials in cos ©
conclude that g= (c¢?, ¢y) must be of the form:

G (S 0)= bo'(c‘)’rf%c"%(c’jt% ban () Pan (228) - (31)

where by (cZ) and Dop (c®) are still undetermined functions. Turning to the
boundary conditions Eq (33), it follows from the fact that in the develop-
ment of(l/e)(l +-sign cy) in Legendre polynomials the polynomials Pn, (cos

8), n # O do not appear, that in Eg (37) allthe coefficients by, (c?) must

be zero. Eq (33) can therefore be written as:

2 N Ly fgm &
_g(,:lA_I_(”B) \ﬂ%nicx z__m;\w_t;c\ (cz_s)_Lt%ﬁm_L_
~ (2= [by+ § ag G §(]

(38)

It is clear that this equation cannot be fulfilled identically in cy and c2,

so that some compromise must be made. Multiplying* Eq (38) by cye “C2 and
2. 5/2)0 e*c% and integrating, one obtains:
AT (148 )= naed
TV 2 'S
(39)
AT (1-B)o_9ntd | a-x 4 4 SVT
T T 3 % %% g

Solved for B:and a4, these equations give:

*It is to be noted that 1 and c2 - 5/2 are the zero- and first-order Sonine
polynomial én;/? (c?) used in the development of g(c¢2).

13
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a, = 22l / (-md+ BLET )
__s - L=« (ko)
5"_:«0—1« )/(‘ A 4.w£;iL

With these values of a, and B, one then obtains from Eq (38) by integrating
‘over all angles of'?

bs = a‘mtc[ akT ‘r’/<| °< ‘nko\ T)

Using Eq (30) for @;, one obtains for the heat flux:

) . 9 24T
%-_’hbq*— | + 1‘°( Ti"m_. E
ﬂe\‘ kT

and for the temperature distribution

T = T(na) =T\ S 5

[T
L wkaVakT
g0 that the temperature slip is approximstely:

- - 4>
T(H - (rem) = 3L FIm T,

which agrees with Maxwell's results.>

It should be emphasized that these results cannot be the exact so-
lution of the problem, since only two of the moments of the boundary condition
Eq (38) have been fulfilled. It is still of interest to remark that Eg (L0)
can be developed in inverse powers of n, according to:

Ny 'L) oL, G
=) tal B2 wie”

i=o ’ L=

and one gets:

SMaxwell callected papers.

14
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0 _ 5 W_ 24
R =-< A, = ar.

and for 1 > O:

8-+ (- {RE)

G+ - P b
a = - +55(- kaa@%)

Since bo(cz) developed in powers of 1/n begins with a term ~ 1/n, one sees
that with the Eqs (40) values for a4 and B, the boundary condition Eq (38)
1s in the zeroth approximation identically fulfilled in c, and ¢2, so that
up to this order at least the development in powers of A/d is consistent.

-V, 'GENERAL SOLUTION

In this section the general solution of the Boltzmann equation,
Eq (1), subjected to the boundary condition Eq (ka) and the condition T, =
0, will be obtained. For this purpose we expand the function h in the set
of normalized eigenfunctions Vyy belonging to the collision operator J for
the Maxwell molecules:

h= Zi g (O P (55 00) (43)

where

‘1\(\'{ = Nyp\ CQ ?&(’%—) 5;?_;: (C}j .

Nyg is the normelization constant, Py is the Legendre polynomial of order £,
and Szﬁl/g is the Sonine polynomial of degree r and order £ + 1/2. The
Boltzmann equation becomes then a doubly infinite set of linear differential
equations for the expansion coefficients ayy:

éac'%‘k =m), Xug [‘cl:"x "\’r);, qu-’JL’] . (1)

As a8 consequence of the symmetry property of h and the evenness and oddness
property of V.., for even and odd L respectively, and arz's have the symmetry
property:

even
QYQ@(,) = F 'am(—x) -according to ! | (45)

15
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The requirement that Eg = 0 means that
a,= 0

o\

and the boundary condition Eq (l4a) becomes the following -equations;

+ 4 T s -, I+ MM g, -
qvﬂ&\(- Z) = i%’jdc € © (c+ B)“)anH HRgnEe (1-¥) AR - éf)' (46)

The choice of the functions wfi has the additional advantage that the physi-
‘cal quantities we are interested in are then all expressible in terms of the
first few development coefficients 8.

For instance:

mx)=mn [HMJ

T3/L NOG J

_ Qo (%,

Te=T[1- 3% ] (7)
- d [ Gz _ %0 _ 3 G

?xx —"n*:T [H T2 Noz;_ Nioe R N-oa)])

and

_ kT 3T o

‘(,x -|r3/».\l ) |

The conservation theorems lead to simple results for some of the first arz’s,

.One obtains:

1) From the conservation of number

Go1 - .
=0
80 any; = constant, which can be taken to be zero:
Qo = 0 (48)

2) From the conservation of linear momentum:

d [ G _ Qi _ 3 O ) . 0
— - ———— -— o

d\X ND?_ i:ho A Noa / ’

SO Pyy = nkT (1 + const.), and the constant must be zero since the a,., with

even { are odd in x.

16
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3) From the conservation of energy:

day, _ o
ax - P
S0

(49)

The set of equations, Egs (4k4), has constant coefficients and a
formal solution can therefore be easily obtained. However, for the actual

solution, we will simplify the problem slightly by separating the equations
for even and odd £'s. Because of the property that:

[}\')g,%,ﬁ(r"[“]# 0o .only vhen £ - £" = odd

Egs (44) can be written as two sets, for odd and even £ respectively. With
the. following matrix notations:

K= (@vag)
\Aoo = (o’-‘rlQ-l-\)

R = ( L%;"Pnt, Vel ])
&I_ = ( [_'tl‘.}wnhl, "P\-’zk']))

these are:

N (50)
a = Kk

(51)
Eq (51) gives an infinite set of linear‘homogeneoué equations for all the
&y og+1's. The even appy's are then obtained from apppy) by Eq (50a).

Making the Ansatz:.

17
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J\ - &5 ermx.

where By = (bpogyy) is & colum metrix with elements which are constants,
and substituting into Eq (51), one finds:

?z&so = 8g(R~&50

This infinite set of linear ‘homogeneous equations will have a solution if
the determinant

a=|pPI-KR|=0, (52)

where I is the unit matrix. We see that the roots p; always appear in pairs
with opposite signs. ‘It can also be shown that the p;'s are all real.* From
the conservative theorems and the property of the square bracket, it follows
that

~J

Roi, vt = Ru)r& =0

so that among the roots of Eq (52) there are four having the value zero.
Hence the general solution of Eq (51) is

_ / o x* " x3 y pmx
ho= B +Bix + B T+ B g T2 B e, (53)

where the sum goes over all the nonzero roots pj.

The symmetry condition Eq (45) requires that:

~and

CORINC u)
B, 7= 8,
where the i;'refer to the two roots +py.
'Of the elements b( gt+1 of the matrix B(+i) one set for fixed

r and I can be taken as arbitrary. We will choose for this set the béé)
Then:

*For proof, see Appendix I.
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\ th ‘

b( D Av |

20+ ASU% Do3,
0.

(

i
where Arl)-designates the first minor of the (rf, rf) element of the deter-
minant A in which p is replaced by the ith root p;. It is easily seen that:

w €
\Do\) = b,.) =0 for all i

The constant matrices B, and B} satisfy the following equations:
0="RRE"
=M | (54)

B =mRRB, . (55)

Since ﬁbl,rl = ﬁil,rl = 0, the rank of the determinant IRRI is less than the
number of variables by two. Therefore, so far as the set of linear homogen-
eous equations Eq (54%) is concerned, two of the elements of B are arbitrary.
To satisfy Egs (48) and (49) we must have:

(B), = (8B, =0 ;

hence BY must be identically zero. Egs (55) now become linear homogeneous
equations like Egs (54). By the same reasoning, two of the elements of B,
are arbitrary. These must be assigned the values

(&Jolzo) (@LL\: bn

in order that Egs (54) and (55) be satisfied. The rest of the B's must then
all be proportional to b,;. The solution of the set of equations, Eq (50)
can thus be written as:

W W
Ao = Bby+ 2 & by esRpimx (56)

The matrices B and B(i) are known constants independent of b,; and béé), the
determination of which depends on the boundary conditions. The coefficients
apny are given by:

WL o
Ho=mb REBx+ R Z —E———b& bk prox

P

Before making use of the boundary conditions Eq (46), we first
have to find expressions for a%él+l’ The differential equation for these

quantities is

(57)
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+
da"”* = 'ng_ Q-»'JUSQC-Q mj(’\{@y} ~—61——-im &

m { Z Ly K&é Q_C l'h’c_i—)!;:LL ‘T(Wv'zl’) .\.i;A;\ Cx
L \,
IR Sc\é ¢ i_\f_é.iﬂ_ O TR \:t/»ang5 }

3
1 T
2 % SR RUPAL WATY v+, YRk | ,

where

t

Traw, vage = [ Yot ARG 0 T

In matrix notation we have: :
t . '
ddk N +
—-a—o—x = —3): "X)ZQ + M T \A.o
with
+
= (TnQﬂ,v'zQ’ﬂ) .

Substituting Eq (56) into the above equation and integrating, one obtains:

:(Ji+.'nﬂ’ix)65b,,+2_( w%enx-i- Twpmx)&” N

(58)

There is no integration constant. The symmetry property requires that any
integration constant cr2 1+1 be equal to °r21+l' On the other hand, since

anQ»f\ t Oy T Byalyy
+ LA , . et T : - .
cr2 141 + cr2 141 mist be zero. Hence both Cropil and cr2 1+1 mist be zero.

Putting Eq (58) into Eq (46) and calling

p= (e e, Hagnse)
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Q "( Eo\é é_g-,\\}nm L+'M§ = ) ,

one is led to the following equation:

‘ + * Gy
- p=4-Q8+ [—f}’f%ﬂ?ﬁhﬁé[‘%we‘ Pm%%i”’\v’c”%—]&’ (59
(1)

Eq (59) 1is an infinite set of ‘inhomogeneous equations for B, b,,;, and bgs’.
It can easily be :seen that this set of equations determines the unknown con-
stants in the following sense. Suppose the basic infinite determinsnt A is
broken off at some value of r and £; then with this finite set of values
for r and f, the number of equations, Eq (59) will be just equal to the num-
ber of unknowns.

We have not been able to discuss the convergence of this procedure.
It is possible to deduce the limiting results for the Knudsen and Clausius
gas from the general expression. The zeroth order for the Knudsen gas is es-
pecially simple, since in this case all the hyperbolic sine and cosine func-
tions can be replaced by zero and one respectively and since n can be ne-
glected compared to unity, Eq (59) gives two equations for B and b,,, namely:

o

By solving for b,, one obtains the Knudsen limit, Eq (11), for the heat flux.

We will discuss the Clausius gas limit in detail in the next sec-
tion for the case of Maxwell molecules. The complex nature of this limit
is clearly due tothe fact that the density (or the Knudsen number) occurs
in the argument of the hyperbolic functions.

VI. MAXWELL MOLECULES

For - Maxwell molecules:!

S(“'ﬂl) = XY’L"\)Y’L )

where according tothe definition of J used here Apy has the dimension of an
area; it is Vn/kT times the M., in Ref. 1, where k is the force constant.
Thus
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RYQ,Y'&' = >\\-’L’ Lrl)*r'l'

where we define:

-e*
L\»Q)\-'Q' = & d‘é e ‘é; '\Prp\ I\)‘JQ/

which is symmetric in the two pairs of indices. Furthermore, for Maxwell
molecules Rr pg;11 8re 2ero except RlO 11 and ROO 11- Yrom the conservation
theorems, Rr 24+1,00 and Rr21+l 11 are zero, so that all the coefficients of
byy in the system of equations, Eq (55), are zero. As a result, all the ele-
ments of the matrix B except b)) must be zero. The solutions of Eq (44) are
slightly simplified, and can be written in the expanded form:

A, = o
Ay, = bn
Aw w
Qv 2041 =Z AES)"H‘ l703 C,O:Sg ‘”Pix
‘u 0,
(") 60
29, (60)
1—:.0\ Z W, va'h \-zSZ,x-’zQ'ﬂZ.: F;’ A“’z+ b b«w)n'n,)x

b
»‘hbnxul—lonX*\’Z X ks \OHQHZ— P A*l M"\F X

A
<I°o=“n£n>\” Loo,'lx'*y%,)\r'zQ‘rle,\r'LQ?\Zl,:— + Au/l) bos M/{\"’l’v’c

The p's are the positive nonzero roots of the basic infinite determinant

A= ‘PLSW" S(Q’/ - XTI/ZQ'Q"%’ )\.\;/29\/ Li"l(') Yl LY';Q/) ey | = 0.

The set of infinite inhomogeneous equations for the determination of B, byj,

and bo3 becomes
. _ S + -
- 'j]-;?rz‘l*l = 'A-',"-_"Qera—\B + (T'%)\\\L\—&\-I) - 3{;;.& S 220) nt (61)
. 1 + A w
'\‘Z.‘ {FZQM “EA—ZA\-'JQ-ILH?H,\*'IQ HAY"l W 1°( —%)gil C\QL\ } dg .
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Where
T

N et \+Man &
b rager, Dot = 5 It < = "vhﬂﬂ ")(Y’z—';’ﬂ—iaﬂ_é .

We will use the same successive approximation method as in Ref. 1.
In the zeroth approximation ("ideal fluid"), only the eigenfunctions VYqg,V10s
and Vo, are used. In the first approximation ("Stokes Navier"), V¥ and Voo
are added; in the second approximation ("Burnett") three more functions (Voas,
Vop, V1) are used; and so on.

It is easily seen that in the zeroth approximation one does not
get a heat flux, and so we pass to the higher approximations.

1) First approximation: For this approximation we take Vgo,Vi0,
Yo1, V11 and ¥oo. The solutions for the development coefficients are:

G, = O
@, = by
0y, = ©
Ao = “L’n X Loo,l\ x

Ao = ""E\\ >\\\ L—\o)\\ X ;

~whiere b,, and the constant B are to be determined by Egs (61) which reduce
to the two linear equations,

AT b - & | *
- _._T-._‘:.'Pm = —-_—r-I—-Q,,l B+ ""‘5\4' A Loy bn

¥ -
- ‘é-,];‘?n = %‘Qu B+ CD;%')\\\LN,\\' %ﬁg‘) by .

All the coefficients can easily be evalusted.* Solving for b;,, we find:

l

_*Taibles f‘or some of the elements of the matrices P, Q, L, and Lt will be
found in Appendix II.

- D T
b,\——AfTo\ -
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where AN is a measure of the free path defined by:
Xz (A IR/ATY

Substituting into Eqs (474) and (47b), the heat flux is found to be

Fx= smkaT{EL 3 (10 S (62)

and the temperature distribution is given by

_ =l
T =T [ 1= M5 (10 25 S| )

Thus there is a temperature slip at the wall equal to:

o= T(4) - (ram) = ZESPT (e 2 TR (g,

These results are the same as those obtained in Sect. IV if these are spec-
ialized to Maxwell molecules.

2) Second approximation: For this approximation, one stops with

~eight ¥'st ¥ s Vo1, Vigs V115 Vozs Ves, Viz, 8nd ¥po. It 'is in this approx-
imation that the hyperbolic sine and cosine functions begin to enter. The

determinant A is simply:
» 2
A= P~z 2 Ay (L) es) =0
~ R/ !
Making use of the values of Apy, and Lpj p+j' one finds
= 4 XE N
P=+7 Ay )
where
. e

The linear equations for the determination of the constants are:
A - +
TR = LGB+, Gy b, + 23de Lc.oswmgi

”é:rt?n‘ = %®\\6+@2’%>‘ngr)n )bn* b¢3>\a.3 Liyes push —g—
_ATQbsB_‘_WJ\X”LaS“b”.F(AﬂQ},J_M-@ crs? ‘§A>503)
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so that
__i_ z—o( -
by, = - AT 4{”1-0(5‘%& \ohr M Jl‘

where we have written s and ¢ for sinh (ndp/z) and cosh (ndp/2) respectively.

The heat flux is therefore given by

34 23— -
I —s-ml:A\\S__IX{wl“s";)\ lm\;“s"' z{c }l
Ar\LTS+ 2 :

The coefficient a,g is in this approximation:

-\[—f’—o;—j% b, + —Q@%‘ﬁ— Lo, 03 sk mpx

L by - 2= bos P "X

I

a|o

which gives for the temperature distribution

4T - 2 s
0= 7] 1- 2 e s+ 3e) + Ry 4k T -

[+\l_~s+1°‘c+1°<——‘23{'0\__.5+1°‘ )J }

q (66) leads to the following expression for the temperature slip:

l—
s 22
é—h‘zﬂ’-“‘“_laﬂ' i
T(E)- ) 4 {'5:—5+3-—°-<—¢+’£(°‘ W—)\(\o\hsw +3-z'{.-<°-‘-c) .

3) Third approximation: In this approximation three additional
functions are taken. They are Yo4, Vo;, and V,3. The basic determinant A
becomes:

SR VS CXLI76 V2 412
ST ° TR 2
o r ?— - 4x \égé\b—’\ Af— =0
s 2
e W gy

(1) (1)

Table I gives the roots p and the coefficients br2£+l in terms of boz

25
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Table I
i 1 2 3
Py 0.4798 A} 0.834h A} 1.29%3 AL
bé%)/b 1 1 1
b 1 /b 03 5.700 -0.4787 0.4036
1) a (i
bc(ts)/b(()B) -1.519 -0.524k 1.593

The setf, of linear inhomogeneous equations, ]E: (61), now consists of five
members, so that the coefficients b,, and bo;) are ratios of two 5 x 5
determinants. By straightforward calculation, using Table I and the ‘tables
in Appendix II, one findsthat the heat flux can be written as:

- smkT{EL 4T
%-Sm\f\"\s:‘g\__r

|
+ T
z

S
where
-0.5000 - 1.0937 t, =0.5000 - 0.5722 t, =0.5000 - 0.5749 t3
D, =| 2.850 =- 3.828 t;  0.2394% + 0.2018 t, -0.2018 - 0.2430 tg
0.7595 + 0.8938 t;  0.2622 + 0.2540 t, -0.7965 - 0.7953 t3
-0.5000 - 0.6898 t; -0.5000 - 0,5520 t, - 0.5000 - 0.5696 tg
D, =] 2.850 - 3.076 t, 0.2394 + 0.2393 t, -0.2018 -(0.2335 13
0.7595 + 0.6083 t; 0.2622 + 0.2397 t5 -0.7965 = 0.7991 ts

and we have written t; for tanh (npi d/2). The temperature distribution
turns out to be:

. - .
*éI_)L(HSW%\Pl 5 E p2sih B (44 lj’g_it) —z%ﬂ“i“fo )}
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with ¢y = cosh (np; 4/2) and
E, = -(1.27h + 1.342 t5 + 1.325 t5 + 1.392 t, tg)
Eé = -(1.917 + 1.986 t; + 1.976 tg + 2.068 t, tg)
Egs = -(0.2973 - 0.0245 t, + 0.2225 t, - 0.1196 t, t5).

The corresponding temperature Slip is

L 2,
N él'(%ﬁ%?%) (3.46StE, t0.2055t,E, + 0 18] &F; ) |

In this way one can go on to higher approximations. However,
since, contrary to the case of the sound propagation, the successive-approx-
imation method changes, at each stage, the results of the previous stage,
and the calculations grow more and more involved, we have not gone any
further.

For the discussion of the results obtained so far, we have made
some numerical computations and plotted three sets of curves. To simplify
matters we have assumed that @ = 1, Figure I is a family of curves for
o/ax against the Knudsen number K = d/A. The straight line gives the ini-
tial slope for such a curve expected from an exact theory. The value is
taken from Ref. 2, with adjustment for the change of the definition of A.
The initial slopes for the successive approximation results can also be
evaluated easily. For comparison they are listed below:

Initial Slope

Exact theory: -0.907
First approximation: -0.226
Second approximation: -0.23%6
Third approximation: -0.306

The convergence is therefore quite slow, as is to be eXpected’for small K.
The differences between the successive approximations are quite small, so
that Fig. I may already give a good idea of the dependence of the heat flux
on the Knudsen number.
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Figure II is a family of curves for the temperature slip measured
in AT as a function of d/h. They have the same general feature as the curves
in Fig. I, except that the difference between successive approximations is
larger. The initial slopes of these curves have also been computed. They
are:

Initial Slope

First approximation: -0.226
Second approximation: -0.282
Third approximation: ~0.390

We have not computed the initial slope for the exact result.

Figure III presents plots of the temperature distribution. -On ac-
count of the small differences between successive approximations, we have
plotted instead the difference T,(x) - Tj(x) measured in AT against 2x/d,
where Ti(x) is the temperature distribution for the ith approximation and
T,(x) is the linear temperature distribution, as follows from the first ap-
proximation. -The rapid rise of the curves near 2x/d = 1 can be taken as an
indication of the so-called boundary-layer phenomena. This rise is a conse-
quence of the appearance of the hyperbolic sine and cosine functions, which
is also responsible for making development in h/d impossible.
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APPENDIX I. PROOF THAT ALL THE ROOTS p;

OF THE BASIC DETERMINANT ARE REAL

For the proof it is easier to start from Eq (44), namely

day
30 = m 7 ave [ 54, o]

lQI

Expanding the function l/eX Vg in terms of the eigenfunctions,

Q/ —C

Cx q)\'l %(.” \P ngu Su\t e Y \Pr{ "h.ual/ ;

so that

day =2, 2 Gy [“‘Pr"&“) '\\’r'&'J J"\é Q'—Czl; l‘)fkmy"" !

X ! K’ \,I/{ll

In matrix notations, letting
A= ()
Ro= ([fa, trwr])
L= (J L yatuy),

where both R, and L are symmetric, the above equation becomes

The Ansatz A = Be ™% 1eads to
@8 = &oct & .

Since & is not singular, one can define B = £ 1 B 5o that we have

pd B = R. B
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Both £-1 and (RO being symmetric, the determinant for p is symmetric and thus
all the roots of the secular determinant must be real.
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APPENDIX IE. COLLECTION OF TABLES USED FOR NUMERICAL CALCULATION

UNIVERSITY OF MICHIGAN

1) Table of eigenvalues A, (Aé = A, Nk /KT, A, = 0.636 Aé)
\’l 0 2 3 b
r
- BA! - . TAL | 35A;
0 0 385/4 9AL/8 2 + 7‘%
- ' _'.1.1A'. }5A'>:____:»_ 1
1 0 7A2/8 i 1.176A}
2 -Ale - 3L/
2) Tables for P., and Q.
01 0% 21 13
P Jé-:rlj/‘& il [4 -2 ni/s -1 omfe Ll /e
N30 35 15
4y Lamfs  Loajp -l 3 afs - lofe
2 V30 W35 a15
3) Table for LI'Z, rt g
\\r’l 00 10 02 20 ob
r'l
n 2 /E 0 0 0
J5 5
03 2 [3 3 V10 0 0
15 5\[5 3
/E
V35 35
8 2 JE 2 1 N
1 - e /2 2 i W2
’ i 545 5V 54D 5 °

31



ENGINEERING RESEARCH INSTITUTE - UNIVERSITY OF MICHIGAN —

L) Teble for Lyy pryp:

YJ 01 11 03 21 13
r'ft
oL 1 1 1 3 o1
Nx V10 « V15 « 2 \70 = N30 «
11 1 9 1 19 3
N10 x 10 N 56w  20NT 1043 =«
03 .1 1 1h 1 1h
V15 « 56 = 15 Vx 10 V12 x 45 N2
21 3 19 1 233 9
270 x 20 N7 x 1042« 280Wx 2021 x
13 1 3 1 9 119
V30 « 1043 « w5 N2w  eoNEL 135 Vx
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