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All holders of 'Studies in Radar Cross Sections X - Scattering of
Electromagnetic Waves by Spheres {2255-20-T)'"" UNCLASSIFIED

Corrections

On page 40 the line should not appear in the legends
in Figures 4 or 5. In Figure 4 the Cornell Aeronautical Laboratory's
curve coincides with the National Physical Laboratory's curve as

far as NPL computed, to P, > 10 and is as shown for A > 10.
Figure 5 is poorly drawa in comparison with the curves o% the same
data on Figure 4 which was fairly accurately drawn. It is useful for
its purpose of showing the general trends and periodicities in the
various solutions but should not be used for accurate numerical
values.

In Figure 6, page 45, the curve for £ = 12.8 is incorrectly attributed
to Hamren (exact theory, Univ of Calif). However, it was actually
obtained at The University of Michigan, Hamren's curve is really
for £==14.9, and was inaivertently omitted from Figure 6. We
give his results below, converted to o(8)/xa® versus 0 as variables.

The third and eleventh lines of page 34 exhibit a typographical error,
resulting in a misrepresentation of Franz's words. They should read
"running from P; or P, respectively'' rather than 'running from P; to
Py''. The validity of the subsequent criticism is still a point of
contention between Dr. Kaplan and Dr. Franz, concerning which we
reserve judgement.

There are errors in Equations 5 - 20, page 67. These should read

2nt3 x o+ By -8y =g
)(n+2) L om0 p nR

2n+3 n n+3
e + — - nve = 0
(n+1)(n+2) n+l n+l Xn n+2 Xn+2

The stated conclusions now follow properly from the equations.

M. L. Barasch

A4

H. Weil
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PREFACE

This paper is the tenth in a series of reports growing out
of Studies in Radar Cross-Sections at the Engineering Research Institute
of The University of Michigan. The primary aims of this program are:

1, To show that radar cross-sections can be determined
analytically.

2. To elaborate means for computing cross-sections of
objects of military interest.

3. To demonstrate that these theoretical cross-sections
are in agreement with experimentally determined values.

Intermediate objectives are:

1. To compute the exact theoretical cross-sections of
various simple bodies by solution of the appropriate
boundary-value problems arising from Maxwell's equations.

2. To examine the various approximations possible in
this problem, and determine the limits of their
validity and utility.

3. To find means of combining the simple body solutions
in order to determine the cross-sections of composite
bodies.

L. To tabulate various formulas and functions necessary
to enable such computations to be done quickly for
arbitrary objects.

5. To collect, summarize, and evaluate existing experimental
data.

Titles of the papers already published or presently in process of
publication are listed on the preceding pages.

K. M. Siegel

iv
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ABSTRACT

A survey is presented of the theoretical, computational, and
experimental results in the extensive literature dealing with the
scattering of electromagnetic energy by spheres. Some of the main
theoretical results are discussed critically and interrelated,

New theoretical and numerical results obtained at The University

of Michigan supplement the surveyf*

* This report was prepared by the Engineering Research Institute

of The University of Michigan under Air Force Contract No. AF30(602)-1070.
Work called for under this contract was performed for the Electronic
Warfare Laboratory of Rome Air Development Center.
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I
INTRODUCT ION

The most intensiveiy studied electromagnetic scattering problem is
that of scattering from a spherical obstacle. The reasons for this in-
terest are several, From a theoretical standpoint, the sphere is one
of the few bodies for which an exact analytic solution to Maxwell's
equations is available., In fact an exact solution for a perfectly con-
ducting sphere and a plane incident wave was given as far back as 1893
by J. J. Thomson (Ref. 63). For an arbitrary sphere material the so-
lution was given in 1908 by Mie (Ref. 41l). However, the series ob-
tained by relatively straightforward methods are very slowly convergent
for spheres whose radii greatly exceed the wavelength of the incident
radiation. The same remark holds for the case where the incident field
is caused by a source at a finite distance from the sphere. The
problem of obtaining a rapidly convergent series solution has interested
many workers, as have the search for methods for obtaining approximate
answers, investigations of the validity of the approximate results,
and the search for physical understanding of the solutions. While
much progress has been made on these interrelated problems, there are
still many unanswered questions, particularly in the physical inter-
pretgtion of the mathematical results.

Considerable attention has also been given to applying the theory
to scattering by large numbers of spherical scatterers, thought of as

representing both the individual molecules and larger scatterers
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(such as dust or raindrops) in the atmosphere, or as representing the
particles in colloidal solutions. Although the shapes of these
scatterers are not necessarily spherical, very useful results have been
obtained. Because of these important applications of the theory ex-
tensive numerical computations based on the Mie series have been
carried out without waiting for the theoreticians to derive more rapid-
ly converging series useful for computations in the range of sphere-
radius-to-wavelength-ratios of interest.

For the case of a radial dipole near the sphere's surface, com-
putationally useful rapidly converging series are available and have
been used for computations of the field of a transmitter near the earth.

The principal purposes of this report are to summarize and discuss
some of the main results along the above lines, interrelating and
supplementing the theoretical analyses, and to discuss experimental
scattering work involving spheres., Some unpublished numerical results
obtained by The University of Michigan are also included.

The literature is so extensive that, as regards much of it, this
report will be no more than a guide bringing various papers to the
attention of the reader, and much of it will simply not be mentioned.*
Detail generally will be given only in connection with a perfectly con-
ducting sphere irradiated by a tangential dipole or a plane wave, and

in particular for results which are not in the literature.

# See, for example, a survey article on diffraction theory by Bouwkamp

(Ref. 8) which gives many references not mentioned in this report.

2
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II

THEORETICAL RESULTS AND PHYSICAL DISCUSSIONS

2.1 INTRODUCTION

In this section the analytical results are collected, their dis-
coverers acknowledged and their use discussed. Various methods of deri-
vation and related theoretical questions are described and discussed in
some detail in Section V.

As in all electromagnetic scattering problems the quantities com-
puted are often the electrémagnétic fields, E and ﬁ, or the ‘parts of the
fields scattered by the object, ;S and-;ls. Very commonly it is not the
scattered fields themselves but measures of their intensities and polari-
zation or measures of the total amount of power scattered in all directions
which are deterniined. These quantities are the various cross-sections.

The cross-sections of most common interest are the radar and total
cross-sections. These assume that the incident radiation takes the form
of a plane wave. The radar cross-section is defined as

2 -E?'ecj 2

G = Ln by s
r—=00 I Eil

i

S
where r is the distance from the scatterer to receiver, and E.gc 18 the
scattered field at the receiver., The total cross-section is the integral

of G over the surface of a unit sphere,
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The form given above has direct application when the receiver
polarization is identical with that of the scattered field, When this
is not the case the component of the scattered field in the direction
of receiver polarization must be used for an effective cross-section.

For a more general treatment of polarization there is a 2 x 2
matrix of cross-sections corresponding to transmitting each of two
orthogonal polarizations and receiving with a receiver of the same
polarization as the transmitier or the orthogonal polariszation., It is
to be noted that whenever the incident polarization is not specified in
the literature & linearly polarized wave is assumed. For more details
on the treatment of polarization one can see,for example,Reference 52 or

Reference 3k

2.2 THE MIE SOLUTION

Mie's (Ref. 41) widely lkmown solution to the problem of scattering
of incident plane waves by a sphere of arbitrary material is derived
and discussed by Stratton (Ref. 60) and Kerr (Ref, 36). The results
are also derived and alternate derivations discussed in Section V. To
express the results, introduce a spherical coordinate system (r,0,@) with
origin located at the center of the sphere. The system is oriented so that
the incident periodic plane wave is directed along the line © = O in the
direction of decreasing r with the electric vectar in the plane § = 0. Let
the sphere radius be a, the amplitude of the incident wave be E, and its

frequency be W/27,
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Direction of
incident plane wave‘/}/“* | P(r,0,)
B
|
| '
¢_> N p /
N
\\ | J/
X g
7
FIG., 1 COORDINATE SYSTEM
Then the components of the scattered electric field in the direction
of inoreasing © and @ are respectively
8 ~iut Pl (cose)
B = E, cos B 1§(1)“2%_+_§ 0 (L) 2—= (P
(2-1)

dPy(cos®) d £, (P)

de ap |’

+ 11}1({03)
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A N~ RUAES A

n=1

1 [ (2-1)
Pp(cose) d n(f)
v b“(/o“ sing df

Here k = the propagation constant in free space = 27h, 'Ik = propaga-
tion constant in the sphere, /A, = ka, = kr and /4 and /Yo the mag-

netic permeabilities for the sphere and free space, respectively.

_ ALY L (P) Y. (P )- 7/{#(,054,(7?)
/“1 YalJP) Lol P -1 falP) ¥ 7¢)

1

fa

AR AY el R YRR
DAL KIPT £ 400) £

le=¢,

For spheres of conductivity or dielectric constant so large that,\?& I»l

Yol €2) Vo (P

b =« .

n (ol £) T 7 (Pa)

LRd
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Here prime denotes differentiation with respect to the argument.

Yo and [y are given by Y(x) = |-”;§ Jv_'_%_ (x), {(x) = ‘_1%:_:'3(1) (x),

v+ 4
and Pg;(coae) is an associated Legendre function:

P%(coas) = - sin@ dP,(cos8)/d(cos0).

It will be shown in Section V that these series can be very closely
approximated by finite series consisting of the first N terms of
Equation (2-1) where N is independent of ﬂ and somewhat greater than
(as> 38 shown on Figure 10.* To get a “far zone" result it is then
permissible in the finite series to replace the functions ( (/) by
the asymptotic form valid for @>> n?s

it
{a(e)~ (-0 20, (2-2)

These substitutions result in the following expressions for E: and s;:

* Figure 10 shows N vs /Oa where N is large enough to insure at least
L% accuracy in evaluating the series when using only N terms.,

¥ The justification of the use of Equation (2-2) in Equation (2-1) is
gensrally not considered specifically in the sphere literature, although
Debye (Ref., k16) states that the justification is given in his thesis

(on which Reference 16 is based).,
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- (cose)
P (cose
s =iEg cos ff -i(wt-(o) 2n+l n
J P ) é:gn n(n+1) ) sin ©
1
d P,(cose)
- bn(Fa ) 40
(2-3)
1
s iEq Sin ¢ l((.\) t-lo ) n 2n+l a ( ) dPn(COSO)
g P 2—'( n(n+1) nlfa do
1
- bn((oa ) P (cos@)
sin @

Before the advent of these series solutions for spheres of arbi-
trary size Lord Rayleigh developed expressions for the radiation
scattered by spheres small compared to wavelength. The resulting cross-
sections may be obtained from the Mie series (2-3) by employing the
power series expansion of the Bessel functions involved. One then sees
that for spheres of finite l’?l for which /‘(2 »v/‘i and Pa and 7/0 << 1
the electric dipole radlatlon dominates., Computing the cross-section

from the resulting expression for the scattered field, one finally obtains

*i.e., the term with coefficient by; the term with coefficient a; will be
referred to as magnetic dipole radiation,
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. 2
6u1r5a6 "la -1

[coszﬁ c0320 + sinaﬁ}

the Rayleigh scattering cross-section for very small dielectric spheres
of finite dielectric constant.

If, however, the dielectric constant, conductivity, or both, be
taken as infinite, the magnetic dipole coefficient becomes half as
large as that for the electric dipole, and must be included. Inter-

ference terms are now present, and the result is

1% n'Saé

5 l}l + 2 cosQ)2 cosz¢ + (2 + cose)zsinzfﬂ
N .

Tt may be noted that for backscattering (0=0), the latter result is

9/l the limit of the former one.

2.3 SOURCE AT A FINITE DISTANCE

The situation where the source is at a finite distance from the
sphere is commonly used as a model for an antenna near the earth's sur-
face., Furthermore, the situation where a plane wave is incident on the
sphere is a special case of the situation where the source of the in-
cident wave is a horizontal electric dipole, that is, a dipole oriented
normal to a radial line from the sphere's center. As such # dipole

recedes toward infinity the incident wave approximates a plane wave so
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that the solution to this problem can be used to estimate the effect
of lack of planeness in the incident wave.

An exact expression for the field arising fram a horiszontal dipole
is obtained by Tai (Ref. 61), using relations derived by him relating
radial and linear Hertzian potentials (see Section 5,1), and again by
Tai (Ref. 62) and by Felsen (Ref. 17) using the general theory of tensor
Green's functions,

3
The incident field for a dipole moment p at r=b, 6 = 0 is

iy
'ﬁi = curl curl B2 pX , or in components,
L7e T,
i_pcos g k3 2
E = L e 73-3- (-1(3 +1-(3 )oos ©
+31(3 +3 -(32)(ain0 cos@ - 0ose - ’-0(-}) . £2ﬁ-s 3100 (2-4)

3
i _psing ¥k _f2

where (3/k is the distance from the dipole to the point of observation.

R A
*i, f', and Z are unit vectors along the X, Y, and Z axes,

10
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The incident field (Eq. 2-4) may be expressed as

E(inc) Ji ip_cos g = on+l Pi(cos Q)
© b EfPy Z nme) ) sme  Yalf ()
n=l
REACEN Lol PYA(P) 2
ao n b ‘Ijn ( "'5)
3 00
gine) _-11’p sin g 2n+1
g hmep Py n(n+1)
n=1

1 1
JPp(cos Q) P,(cos 8) /' '
X { e VGV e A /’bwnw)i

and the scattered field is

3 L(cos ©)
s - ik cos¢ i on+ P (COS
EQ h'n'é (Of)b n=1 n(n,..l) { Zin 0 Zn( Iab) Zn((o) an( fa)

aPi(cos @) (2-6)

*""’;‘6‘"‘"" (;(lob) Zl;((o) bn( lpa)z ’
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3 &© 1
~ik’ p sin on+l JP,(cos 0)
Avorrami el R R Y SR A

1
. Pn(cos 0)

sin O

VA KSR TAL Y

where
(= kb

In the above it is assumed that é>ﬁ; for/?b<[a, /and (0b are inter-

changed.

The solution for an arbitrarily oriented dipole is the super-
position of the results for a horizontal dipole and one directed radially,
a so-called vertical dipole. The latter solution was obtained in 1918

by Watson (Ref.69). It can be given in the following form for {0< (Ob

and dipole moment pgz

o0
3 [(f) '
= . ikp (2n+1) n(n+l) P_(cos @) 2B b (£a) { )
Ep hrre(ozlﬂg : n n(n+ n(coS m)— ‘//n a n({a
nﬂ

(2-7)

AV

12
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00
- i z ; pl ¢ n(Pb)
E - + n

n=0

(2-7)

x [%( L) - i) )

2.5y ALTERNATE FORMS

The early terms in the previous series are oscillatory and as pre-
viously pointed out it is necessary to use more than f: terms in
evaluating the sum. This slow convergence for large f; and the fairly
complicated forms of the individual terms have prompted many attempts
to replace these series by forms more suitable for computation and to
understand the physical situation., Results of two alternative methods

are summarized below,

2.1.1 WATSON TRANSFORMS

Most attempts along the above lines use variations of a contour
integration method by Watson (Ref. 69) to convert series (2-7) to a
much more rapidly converging series of terms involving functions of
complex order. Results of this type for the horizontal dipole case are
given here. To illustrate the general procedure, the detailed derivation
is given in Section V. This example is chosen since the derivation does

not appear explicitly in the literature. The results are, however,

13
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implicitly contained in Felsen (Ref. 17) who derives these rapidly
converging series by direct methods. Also, a neat asymptotic form for
the backscattering radar cross-section obtained by Scott, (Ref. 51),
using a variation of Watson's method, is presented.

The functions which appear in the results below are not tabulated.
One must resort to asymptotic forms for their evaluation. As a result
they are not preferable to the Mie type series for computational
purposes unless f; is very large, as in problem$ of diffraction of
radio waves along the earth. They are of interest, however, in aiding
the physical insight into the problem as will be discussed in Section 2.6,
2.1.1 (a) Total Field, Horizontal Dipole

For a horizontal dipole, the expression for the total field is

o
) -ik3p cosf (2n, +1) Prl1 (=cosP) Zné /Ob) l//n! (Fa) (n,(’ (P )
%) . .
L é/ofob L=1 |1, (n! +1)sm(nf") sin® 3 [n ((Oa)
an nen,
(2-8)
(5 4 1) 3% (-cos0) (g (Po)¥5, (L) s (p)
5 (5 +1)si.n(sf1r) 20 '
J [s( Pa)
ds =8,

where an ((Da) = 0 and Z;{ ((aa) = Q,

i
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1
aPnX(-cosw (l& ( /)b) %1 (Pa)é.j ((0)

(8.2)
ikp sin @ E xn, +1
By 'Ee"ppb G by @ )sin@e,m) Je
=] £ _Q.I:Z (Fq
[P #]

n=s£

1 ' '
, 2 g, (~cos ©) Z;j(/,))”aﬁ(”,)[sé,”)

5p(8,41) sinfa,7) [—g—; B s (£ aﬂ] o

£

For large ’oa Franz (Ref. 20) gives the following

_ (f’a Vaup o [N A
nI = ,a&+ ...g.. e . qR _(_0_‘.

and -
L _e Y
1 1.L469354 3.37213Y
2 L.684712 5.895843
3 6.951786 7.962025
L 8.889027 9.788127
5 10.632519 11.457423

15



TH U IVERSITY OF MICHIGAN_____T
’ ) S2255:201'

It is shown in Section 5.3 that there is rapid convergence only in
a region which lies entirely in the geometric shadow. An expression
useful in the irradiated region may be obtained from (2-8) as shown in

Section 5., . The result for Eg is:

_ ik p_c_ofg 2n+1)e ing™ Pl (COSO) an(/b) Wnp(/a)(n!(F)
LEPPy “ga1 JQ(n +1)s:.n(n ) sin e [a{n( (pa)/an]
n=n

is.T 1 1 ' 1
, @5t 3% (c0s0) [ (o) Yoy (Fa) Lo (L)
+ w a ’
sj(s/(, l)sin(sp ) 0 l}é( /”a)/gn J
n=s,

' Fy)
; zﬂ-‘b

L (P l}“ﬂ 1(f’)$",m a{fa)- [/,L BUNL N 3 dec,
C 4 P

G/( = %I;,]" (cos Q) + i,r Q/]; (cos 9),

and the contour C is shown in Figure 2.
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/ N\ /«- plane

FIG, 2 THE CONTOUR C

The series here converges rapidly and the integrals can be approximated
by a saddle point evaluation. In Section V the first term of such an
evaluation is shown to be the geometric optics total field.

The individual terms in the series presented in this section have
been given physical interpretations. The wvalidity of these interpre-
tations is a controversial topic and is one of the chief topics discussed

in Section 2.6

2.44s1 (b) Backscattered Field; Incident Plane Wave

An asymptotic series for the backscattering cross-section of a
conducting sphere has been obtained by J. M. C. Scott (Ref. 51). It is
intended to be useful for spheres for which a>2A. Scott uses the series
(2-3) evaluated for @ = O and instead of employing the contour used by
Watson for his transformation method (See Section V) Scott uses a contour
which passes over a saddle point near the origin. In the course of the
investigation the approximate expressions for Bessel functions of large,
nearly equal, order and argument are extended to higher order terms than

those given by Watson and Nicholson,
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Scottl!s result is for

2y Eg
S(f) " X cosd LWt =7)

=0

2my o
A sing ei(Wt-fJ)

He obtains
2if u/3 1/3
S(AR)=-41ie a@+%+2.71517/0a exp [-2.20000/3/
(2-10)

-i(2+7) p - i(O.u0h3087r/al/3) +2i7/3 ]}

2,442 Series in Legendre Polynomials

There are computational advantages to expressing the series (2-3)

(or derived functions such as cross-sections or Stokes parameters) as

18
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series of Legendre Polynomials Pn(cos Q). The P, are more extensively

1 ,
tabulated than the P% or 4f0 functions, interpolation is simpler and

-
there is only one angular function involved. The expansions in the Py
form also aid greatly in handling scattering by clouds of scatterers of
mixed sizes.

For these reasons Sekera (Ref. 52) has expressed the series (2-3)
and the related bistatic cross-sections for matched as well as crossed

polarizations (the elements in the general scattering matrix) as series

of the form

®
% Ck (/%37) Py (cos 9)

k=0

and compubed short tables of the coefficients.

Independently, Chu and Churchill (Ref. 13) have obtained the series
for the bistatic radar cross-section and have programmed the result for
computations on the Michigan Digital Automatic-Computer (MIDAC). Some

computations have been completed but are not published as yet.

2.5 PHYSICAL OPTICS APPROXIMATION

For the scattering of a plane wave by a perfectly conducting body,

the physical optics scattered field is given by

19
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-~ = 1 ~n > x eikR
Hyo™ T (nx H)*» 35— ) s (2-11)
S

where

i = the unit outward normal to the surface S s of the scattering body,

R = the distance between the receiver and the integration point,

k =27 /% (A = wavelength),

N s
ik(k
a 23.H°e1 ( r) on the geometrically illuminated part of S
H =

0 on the geometrically shadowed part of S,
H, = amplitude of the incident magnetic field,
4 = unit vector in the direction of the incident magnetic field,
k = unit vector in the propagation direction of the incident
radiation,

T = the vector from the origin to the integration point.

For a sphere of radius a, and R>>a, this yields

G (o 0 72 ika(l+cosO)cosﬁ
(©) 2 (2ka) sin(3 cos/3 Jo(ka sin @ sinp e

i

(2-12)

L 4 a2

0

where 0°(Q) is the radar cross-section, O the angle between X and the

radius vector to the receiver (@ = 0 is backscattering), and Jo(x) is
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the zero order Bessel function. G has been computed as a function of
© for ka = 5 and 100 (Fig. 6) and as a function of ka for backscattering
(Figure 5). For backscattering, the integral gives

_g_(_(_)_)__gl_Sin2fa , l=-cos2f,
a? Ca 2P§

(2-13)

It is seen that the physical optics result is a good approximation
for large enough ka since it is then nearly the geometric optics field
(as is the exact solution). However, the manner in which the physical
optics result approaches geometric optics is in serious disagreement with
that of the exact solution (the amplitude of the physical optics
oscillations about geometric optics gives some idea about the amplitude
of the true oscillations for values of ka as large as shown,but a random
choice in phase and period of these oscillations is just as accurate a
guess as physical optics). This is due tb the fact that the physical
optics correction terms come from the assumed discontinuity in the field
at the shadow boundary. That this is a poor assumption may be seen from

Fock's expression (Ref. 19)¥ for the width d, of the penumbra region,

#* The")\l/3 dependence of the width of the penumbra region is also
obtained in Reference 22, Detailed treatments of the field in this

transition region are given by Bremmer (Ref, 10) and Fock (Ref. 18) using

integral forms for the field.,
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d= (j\a[?/Qj)l/B, showing that as A decreases the field becomes more
slowly varying with respect to the wavelength. See Section 3.1.1 for

further discussion.

2.6 ON PHYSICAL INTERPRETATIONS OF THE FORMULAS

The terms in the different expansions for the fields may be inter-
preted in various ways. However, not all the interpretations are considered
valid by the various workers in electromagnetic theory. In this section
we shall discuss briefly the various interpretations and indicate where
much more complete treatments will be found. However, we shall go into
detail attempting to clarify some of the controversial points.,

First of all, each term in the Mie series (2-3) has the form of the
field due to a multipole source located at the origin. This is discussed
in Stratton (Ref. 60).

Next we consider the series in Section 2.3, By studying the
individual terms for small wavelength, i.e., in the approach to geometric

optics, Bremmer (Ref. 10*), for example, shows how each term is composed

# The material in Reference 10 to which we refer here and elsewhere
in this report, appeared originally in a series of papers by van der Pol

and Bremmer in the London Philosophical Magazine during 1937 - 1939.
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of two systems of waves whose directions of travel are in the same
direction radially but in opposite senses in the ©-direction. The
amplitudes of each are the same, so the result is a system of waves
standing in the O-direction and traveling in the r-direction.

In like manner Bremmer shows that the terms in the Watson type series
for a perfect conductor represent travelling waves in the ©@-direction and
standing waves in the r-direction for large r. Various authors term these
waves "residue waves", "creeping waves" or "radial modes"., The validity
of some aspects of this interpretation is the controversial point
mentioned above and will shortly be discussed in more detail,

Before going on, however, we point out that there are additional
terms which occur when the sphere is a non-perfect conductor. These are
arranged by Bremmer so they can be interpreted as waves which are
refracted into the sphere and umdergo various reflections before emerging.
The refracted waves are dominant for scattering by water drops (Ref. 66),
negligible for problems in which the antenna is near the earth (Ref. 10).
These terms may be more or less important than the creeping wave terms,
depending on the complex dielectric constant of the sphere material and
the sphere size in wavelengths., Bremmer's interpretations are modified
in some respects by Ljunggren (Ref. 39) as the result of his independent
analysis. Fock (Ref. 18) and Franz and Beckmann (Ref. 21)‘a1so give

interpretations of this type, the latter being in disagreement with some
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aspects of Bremmer's work,

The physics of the situation and its use by various authors to
develop approximate solutions to the fields are extensively discussed by
van de Hulst (Refs. 65 and 66).

Returning now to the problem of the "creeping wave", the terms in
the residue series are interpreted in Franz' work as due to waves which
have travelled a number of times around the sphere;attenuating and leaking
energy tangentially all the while.* The series being given this inter-
pretation is written for a steady state sinusoidal field, yet the idea of
counting the number of times a wave has encircled the sphere implies a
non-stationary process. That is, a physically reasonable approach to the
identification in the steady state solution of a wave which has travelled
around the body a certain number of times is to look at the problem of a
sinusoidal incident field (frequency w ) which is turned on at time t = 0,
and to follow the wave front as it passes around the body.

This approach is essentially contained in Friedlander's paper (Ref. 22)
in which scattering from a cylinder is treated. Although (as pointed out
by Wu in Reference 71) there is some difficulty in obtaining a solution

for the sphere which is analogous in form to Friedlander's solution, we

% Franz' argument leading to this interpretation appears to be in error.

This is discussed later in this section.

2y
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shall nevertheless discuss the latter in some detail because of the
considerable similarity between the two problems., The Green's function

(the field due to a pulsed source at (r,0,t) = (r,,0,0))is obtained for

the cylinder in the form

®
G(r,0,t5r,) = E F(r,0 + 2nmt;r,) (2-14)
m=-

in which

F(r,O,t;ro)=-L—1'—/dv/dw [J,, (w r)Hf,l)(w r.)

JJ(WHS})(“’I‘O) @), 7 i(ve-wi)
T B (wr)]e ,

where r<rqy,- 00<0<m

(2-15)

and for r>r_, r and r_ are interchanged. (The boundary condition is the
vanishing of the normal derivative at the surface, The units are chosen
so that the radius of the sphere and the velocity of light are equal to
unity). F(r,O,t;ro) is the solution of

2. 2

3

5_;22 - VF= ?.;7{; §(x-r) § (0) § (v), (2-16)
for -0 @<
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with

and the radiation condition.

An important propert.y* of the solution of Equation (2-16) is

F(r,0 + 2mm ,t5r,) = 0 for t< T (2-17)
where
2 2
Tm=5m+ Jre-1+ |5 -1 (2-18)
in which
- -1
2n7+ © -Cco8 l(-l-)-cos (!‘-) nz0
r Ty
$p ™ X (2-19)
2mT - @ —cos (l)-cos'l( _l) m<0
r ro

# Friedlander gives this seemingly reasonable property, stating, without
proof, that it is true because a previous result (Ref. 23) of his on the
extension of Fermat's theorem to diffracted wavefronts, can be extended

to propagation in the Riemann surface, O<r<wm, - c0< &§<00, the sheets

of which are given by (2m-l)7<9<(2m*¥l)7, m =0y, X 1, eees
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The physical interpretation of these results is given in detail in
Reference 22, We discuss this briefly., Consider 0 <9 <7 . At a point
(r,y0) in the geometric shadow region, the field is zero for t = Z;, the
time for a light ray to travel the shortest path between (ro,O) and (r,0)

(see Figure 3).

FIG. 3 GEOMETRY OF THE CYLINDER DISCUSSION

At Z; the diffracted front D', (see Reference 23 for the extension
of Fermat's principle to diffraction) traveling clockwise arrives, and

until Z:l, the time of the arrival of the diffracted front D", traveling

counterclockwise, the field is

G(r,0,3r,)=F(r,0,t;7,), Tt =0, . (2-20)
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For ¢ ) <ts?, (030 =27 is the time for a diffracted front to

pass once around the cylinder), we have

G(r;0,t514)=F(r, 0,157, )+F(r,0-27 ,t5r,). (2-21)
Continuing,
G(rs0, 137, )=F (1,0, 451, )+F (r,0-21, t51, )+F(r, 0427 , 151 ), I3t ,; (2-22)

etc,

A similar type of result is obtained for any source time-function,

sce)= (t) s(t),

which is "turned on" at time t = O; here‘](t) is the step-function

1, t20
1v)= (2-23)
0, t<0 .
For then the solution, A/, which satisfies
2

LH .y 2n S(er) §() st 1(t),

dt
is given by

t

M =/dt' G(r0,t-t'5r ) s(t) = fdt' G(r,0,b!5r )s(t-tt). (2-2)
0

-0
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F(r,0+2n7r,t;ro)= Gn(t)s (2-25)
we have
;,.E fﬁn(t), (2-26)
n= - 00
where
t
Hp(0)=1t- 7)) | ab' G (¢") s(b-t') (2-27)
n
In particular, for
o(t) = o t ,
. w t . w t'
ACTOL LA j att G (t1)e *
| (2
(2-28)
t
=1(t- z’n)éi“”‘ f dt' G (t')e iut! .

In terms of the above interpretation, each function Hn(a) ,t) can
properly be termed the wave which has passed around the cylinder n times,
or, more precisely the field corresponding to the n'th passage of the

wave front around the body. In the limit t—= , (& ,t)—s= the

29



THE UNIVERSITY OF MICHIGAN
2255«20-T

Fourier transform of Gn(t). To compare this definition with that of

Franz, we first write, following Friedlander, the Fourier transform
(82" times which is the solution of the steady state problem),

'(w)H( )(wr)

iv @ (2-29)
(0" ©
H?J

3(r,0, w;ir )-—fdey (wr) J, (wr)- &
(w)

/

as a sum of residues of the integrand at the zeros, 73 of Hg/l)(w) in
the upper half ¥-plane:
00 1
y e B @ W) 1y o)

3‘(1"9:0 31'0)' 2 E (L)1 - e (2-30)

0H, (w)

A= 3
- v.vf

valid for both r>rjand r €Ty For 0 €@ <7, the field corresponding

to the n'th passage of the wave front may be written

iv, (o+t2nm) n3z0
5(r,0+2n1r,w,ro) —5 E (-iv (920 m) n<0 (2-31)




————————e I HE UNIVERSITY OF MICHIGAN e ___

2255=20-T
where
. - I, (w_)HgL)(w ro)H,(il)(a) r)
£ '
il (w)
Jv
)

Franz' corresponding result is

© cos%(o-ﬂ')

in
G, = = K
Fr 2 Sin?{(ﬂ, £
£=1
. i % o i%m (2m-9)
= 3 K
£=1 1_6217{(77’
o0 o0
. o _
GFr - _2—,12 : ; :KJ elvg(@fsz)mi% (277 ~@42n7r) | (2-32)
n=0 4£=1

sy
Thus it is apparent that Franz' statement that the denominator l-e21 4

corresponds to the sum of creeping waves which have encircled the cylinder
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one, two and more times is in accord with the concepts of Friedlander,”
Both Friedlander and Franz give a physical interpretation to the
individual terms (different £ ) of Equation (2-31) (the former using the
term "propagation modes", the latter calling each term a "creeping wave").
For large w (large ratio of radius to wavelength), Friedlander obtains

approximate expressions for the terms

eivg (e+2n 1) nz0

I.r %x (2-33)
il (ov2nr) n<o

in the case r .—*« (incident plane wave) and r = 1 (observation point on

o)

the cylinder surface), each one of which terms he interprets as a simple
1 w-2/ 3 =1

wave with phase velocity do/dt = (1+ 3%y )™*, and subject to an

exponential attentuation which reduces the amplitude by 1/e in the

# Wu (Ref. 71) has carefully defined creeping waves in terms of the
solution (for two-dimensional bodies) on the infinite-sheeted Riemamm
surface in apparently the same way as Friedlander (Wu doing this for
cylinders of arbitrary shape). Hence the above statement of Franz is
apparently in accord with Wu's work as well., However Wu states that his
asymptotic formula for the creeping wave is essentially different from
that of Franz. (Our discussion of Wu's work is based mainly on conver-
sation with Drs. Wu, Rubinow, and Kodis of Harvard since Ref., 71 was not

received until this report was being prepared for reproduction,)
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i 1 -
distance 3™ % 1, 3, (The <, are the zeros of the Airy function
Ai("21/39( »o
The erroneous argument of Franz referred to previously is the

following. For large (), Franz obtains the expression (for e"'iwt’ time-

dependence)
i7/6, \1/3 ipe iy(em-6) -iy (cos-l% +oos.1 'f‘%)
G < - % e"l (%) f(ro)f(r)z e +6 e (2-3h)
P a, 41%(q))
where
i E.*) \’rz-l - Tf/u]
e
f(r) = ;

(2-35)
|w\|r2- 1

2
(This is Equation (25) in Reference 20; QAL (qf) is a function of, , the
exact form of which is irrelevant here. We have put a=l; c=l; lol, '02 =
1 % H @ =0.) Tt is stated that this is a good approximation when w (r-1)

1/3

and W(r,~1) are at least of the order of W™"7, i.e.,

(r - 1)“’3‘*’1/3

1/3

(2-36)

(rg= Lwzw
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Translating from Franz'! article:

"One recognizes as a factor in these expressions the cylindrical
wave running from Pl to P2 to the edge of the visible (or illu-
minated) surface region, and furthermore (under the summation) phase

terms with damping (corresponding to the imaginary part of ¥ ) which

correspond to angular displacements of

Q- cos‘l 1 -cos™L 1
T To

and

27w Q = cos-l -:': -cos-l Lo

To
The factor referred to is clearly f(r) or f(ro). We point out that
neither f(r) nor f(ro) are cylindrical waves "running from P; to Pp".
This is obvious since f(r) comes as an approximation to the Hankel
function (which is independent of @) and the Poynting vector for any
solution of the wave equation which is independent of © (and @) must be
in the radial direction. That is, the Poynting vector associated with
the factor f(r) is along radii of the cylinder and not tangent to the
cylinder. We have checked the interpretation of the individual modes by
computing the Poynting vector, §, for a single propagation mode in the
approximation of Equation (2-33). It twrns out that S is in agreement

with Franz! result, namely it is approximately parallel to the line

3k
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tangent to the cylinder and passing through the observation point provided

1/3 1/3

(r = L)w»w™-, (ro - l)w>w . (2-37)

Incidentally, we feel that Franz! condition (2-36) above is not strong

enough and should be replaced by the inequality (2-37).

2,7 CONCENTRIC SPHERES

Considerable practical importance is attached to solutions for the
scattering of electromagnetic waves by coated spheres, i.e. spheres
covered with a layer of uniform thickness of a second material., This
problem includes, as a special case, spherical shells., It is of interest
to meteorologists in the field of radar observation of weather phenomena
since, for example, an ice sphere covered by water roughly represents a
melting hailstone. Observation of weather balloons is also of importance.
Also, if the inner sphere is metal the solution can be conveniently used
in conjunction with experimental investigations of the reflection
properties of materials used to coat the sphere.

The general solution for an incident plane wave analogous to Mie's
solution for a coated sphere is given explicitly in Reference 3 by Aden
and Kerker. In their paper the sphere, the coating, and the embedding
medium are each permitted to have arbitrary complex dielectric constants.
Scharfman (Ref. 49) specialized these results to the case where the inner

sphere was perfectly conducting, the coating was a pure dielectric and
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the outer medium was free space. He then carried out numerical and
experimental investigations in the resonance region to demonstrate and
explain the very interesting result that in this region the dielectric
coated spheres have greater backscattering cross-sections than perfectly
conducting uncoated spheres whose radius is that of the outer edge of the
dielectric layer,

R. V. Alred presented the formulas for coated spheres irradiated by
a plane wave in Reference )i and made numerical calculations for an
absorbing coating (Section 3.1.2).

For the case of a radial electric dipole source at a finite distance
from a coated sphere a solution is given by Wait (Ref. 68) as an integral
order expansion similar to those in Section 2.3 and converted by a
~ Watson-type transformation to a more rapidly converging series of the

type given in Section 2.4.1.

2.8 TOTAL SCATTERING AND FORWARD SCATTERING -

For many applications there is special interest in either the
forward scattered energy or the total scattered energy for plane wave
scattering, These are related by

Q=2A Imf (w) .
Here Q is the total cross-section, and f(m) is the cﬁmplex forward
ikr

scattering amplitude, that is, the coefficient of _° in the far field
r

form of the solution. These quantities may be computed from the Mie
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series, However, for large ,%; much better means are now available;
namely, the use of asymptotic expansions in inverse powers of /2.

For example, Wu and Rubinow (Ref. 72) have obtained corrections to
the geometric optics total cross-section for short wavelengths in the
case of the sphere and circular cylinder. The method is a direct
summation of the eigenfunction expansions (the Mie series for the electro-
magnetic case) for the forward scattering cross-section, after intro-
duction of the appropriate asymptotic forms. Their results for the
Neumann and Dirichlet scalar problems and the electromagnetic problems

with the sphere are respectively

o~ -0.8640  Neumann
Total .9, __A , where A = { 0,99618 Dirichlet
2i1a2 ( F;)Z/B 0,0661 #* Electromagnetic.

Wu (Ref. 71) has used a different representation for the total
scattering cross-section and obtained more terms in the asymptotic

expansions. His results for the electromagnetic case are:

#% In the reference a sumary of results is given in which the coefficient

is listed by error as 0.1322,
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—Total .34+ 0,06595661 /”e,fz/3
2 -
2na + 0.7797U89 4, V3
-2
- 2.8713350 2
3-8/3

+ 0.088560 - L3 4.

a N
Note that the geometric optics cross-section is

7 - 2
Ioa_‘-oo O"total = 2MTa

twice the geometrical cross-section. It is shown in a very interesting
paper by Brillouin (Ref, 11) that half of the energy represented by this
cross-section is scattered uniformly around the sphere and half is
scattered directly forward to cancel the incident field, thus producing
the shadow,
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ITI
CCMPUTED RESULTS

In this section we have listed many of the more recent computational
results. Description of tables will use a standard abbreviated form given
by the example: x = 0(10)100; 5s., This indicates that the function of x
under consideration is tabulated for x = 0 to 100 at intervals in x of 10,
with results good to 5 significant figures; 5d instead of 5s would indi-

cate 5 decimal place accuracy.

3.1 PLANE INCIDENT WAVES

Fields and cross-sections have been camputed from the series given
in Equation (2-3) (or the Aden-Kerker series for coated spheres) by several
groups as summarized below. Most of these results have been in connection
with scattering from particles with a low index of refraction, Additional
results may be located by use of a summary list of Mie theory computations

recently published by Kerker (Ref. 35),

3.1.1 Backscattering Cross-Section

Several authors have made computations of the cross-section G, for
various values of (”a in the perfect conductivity case. These are summar-
ized in Figure ho It is to be noted that there is considerable discrep-
ancy between the different authors' results at the maxima and minima of the
curve. In Figure 5 the corresponding curve computed by physical optics
(Ref. 54) is given, as is the curve for the acoustic case of scattering by
a rigid sphere (Dirichlet problem for the scalar wave equation), The latter
curve is taken from Stenzel (Ref., 59).

39



MICHIGAN

2255-20-T

UNIVERSITY OF

THE

, S3RO3HL 4O NOISRIVAWOD
"ONRIFLLYOSHDOVE ¥O4 P SNIAVY 40 F4FHAS V 40 NOILDIS-SSOID & "Old

°d S¢ ¥T €& T 1 oz 41 8 4 91 S ¥y € ¢ i oL 6 8 [/ Q S v € 2 L 0

6]
L LI 11111 | rf
"y 9Bod ‘sjou jooy seg | i .
[/ 4
NS AT A
S e I i N A 0 2 S A7 8 540 /A M W Nyl
T IY A Y
/[ NI/ ! ol
| (89 "$2¥)-DIL1SNODV g
! » Qo7 ‘oley v % 0z
T T
| 1I3WeD-S$DILdO TVDISAHd 62 =voy o= woyy | _____ - ‘
‘qo7 "oley ||Buio) pup (UDBIYdIW §O " AlUN _— A
.” 941)-SDILdO TVDISAHd  Ol= "0 01 O = % woyy
m « QP "osey |[puio) i 87
-4OLD3A LOVXA :6Z =" 01 Ol =" woy 1
« ‘9D oley ||auio) pup | (A
(9€ "42¥)-¥OLD3IA 1DVX3 ‘OL="0d 04 O = Ywoyy Ll oe
| oL
LTI P T T T T PP P PP T] ov D
ONRIILLYOSHOVE ¥O4 'I¥IHAS V 4O ' 0 'NOILDIS-SSOUD Ivavy ¥ "ol
og ST v € ¢ 1 Oz 6l 8 4L 9 Sl vL € zZL U OL 6 8 £ e S ¥y € 7 | 0
7 (0
A ’
7 8
IR D I N D N S P N2 WY WA A m
NANAEESANAR NS AR RV AR VR .
v N ’ ﬂ ‘ N_.
..‘l. NL‘
9l
AN
_ (OF4
$9118G Bl WOl Pajp|nd|od ||y i
| | 4
9F §9Y - HOOS D W'l @ Aa2up3dq’| ————— 1 9z
8% JOU - WPj|ed Y [ 3 Wsisuaqny g |
‘| #60d ‘ajou JOO} 839G - "D [DIUNDUOISY [[BUIOD)  — e %_ ra>
LG J9Y - 'qo7 |p2IsAyq [PuolpN AQ SUOHD|ND|DD)  ———— I~ ~ :
1 9c oL
LTI T T T T T I T T T T T rTTd ov D

mo7 yBiajdoy

Lo




THE UNIVERSITY OF MICHIGAN a0
2255-20-T '

In addition to plotting the exact and physical optics cross-sections
3%
R. G. Kell and V. E. Pound have computed the vector difference between the
exact and physical optics backscattered fields and plotted C "E%f times the

magnitude of the result vs. /Da for 0 € /A<2 and also made polar plots of
this field,

The acoustical computation predicts the position of the maxima and
minima shown by the exact cross-section better than the physical optics
cross-section, However, it behaves differently in that the heights of the
first three maxima increase for the acoustic cross-section, while they
decrease for both the physical optics and exact cross-sections. The physi-
cal significance of these comparisons becomes clearer when the prolate
spheroid is studied. Discussion of this matter appears in Reference 56,
Further discussion of the physical optics result also appears in Section 2.5,

Chiao=Min Chu (Ref. 12) and Kennaugh and Sloan (Ref, 3L) have tabu-
lated the backscattering cross-section for water drops at different wave-
lengths using values of the complex index of refraction taken from J, A,

Saxton's well known measurements, Chu computed for

x = 1,3,5,7»5, and 10 mms
Pa = +05(.05).50(,20)1.50(,25)5.00; ks

3
Private communication from R. C.

to K. M. Siegel. Kell of the Cornell Aeronautical Lab., Inc.,
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Kennaugh and Sloan's computations are based on the coefficients given

in Reference 42 for

A e 2
2.8 m .10(,05)1,00(.1)5 341 - 1,941
L.5 m .10(,05)1,00(.1)3.0 h.21 - 2,514
8 mm .10(,05)1,00(,1)2.0 5.55 - 2,851
1.6 cm .100(,025)1,00(, 05)1.,30 7.20 - 2,651
2.8 cm .100(,025)1, 000 8.18 - 1,961

10 cm +10(.01).30(,005),430(.01),60 8.90 - 0,691

Aden (Ref, 1) has computed a similar curve for water spheres at

A= 16,230cm corresponding to €= 81 ~ i 7.8 and various sphere sizes.

3.1.2 Backscattering Cross-Section for Coated Spheres

Based on the Aden and Kerker theoretical results for concentric spheres
(Ref. 3) two sets of computations have been made,

One set is by Langleben and Gunn (Ref.38) who have given curves, for
water coated ice spheres, of G (0) vs, q4;5 the ratio of water mass to total
mass and ;s the ratio of water film thickness to r (the outer radius), for
A= 0,9, 3, and 10cm, 2ma/) being constant (~0,1), They also plot the
corresponding curves for.G'(0)/o(0)y; 0'(0)y is the valus of G'(0) when all the
ice is melted, This illustrates the rapid rise in cross~-section when the ice
begins to melt, Furthermore, they show that curves of O (0)/ O (O)M as a
function of q, or q,, holding \ fixed, are essentially independent of 2 as
long as 2na/\ << 1,

b2
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Secondly, computed and experimental backscattering cross-section tables
and curves are presented by Scharfman (Ref, L9) for metallic spheres with a
ratio of coating thickness to inner sphere radius of 1/6 and relative

dielectric constants of the coating
¢ = 2,5, 4, 8, 10, 15, 25, 50, 70, 100, 1000 and 10000.

In Reference L Alred made a numerical comparison between the magnitude
of the field backscattered from a metal sphere coated with an absorbing

material of permeabilityzf(and complex relative dielectric constant

DN (PR N
H
T =)
as computed by the exact equation and as computed by simply multiplying the
geometric optics answer for a metallic sphere by the reflection factor for

reflection at normal incidence from an infinite plane metal sheet coated with

the material. The results agree to within 15 percent for /93:>12.

3.1.3 Bistatic Scattering

There are very extensive computations (based on the Mie series) of
quantities measuring vistatic scattering for low indices of refraction n.
They include results by

(a) Air Force Cambridge Research Center, Geophysics Research

Directorate.
\ Rudolph Penndorf and his associates have computed a large amount

of data being published as separate parts of Reference L7.

L3
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In part 7 of Reference L7 the Mie scattering coefficients il and
i2* are given for
n = 1,33, /1 = 0,1(0,1)30
6 = 0°(5°)170°; 170°(1°)180°%; Ls and better for small ©
In parts 8-11, 11 and 12 are given for
n = 1,10, 1.k, 1,486, 1.5
[ = 0.1(0.1)30
6 = 0(10°)170°; 170°(1°)180°% L5 and better for small €
(b) The University of Michigan,
Gumprecht and Sliepcevich (Ref, 28) have camputed i, and i, for
e = 90°
n = 1,2, 1,33, L.h, 1.Lb, 1.50, 1,60
Fa = 1(2)5(2)10(5)100(20)200(50)1005 s

Gumprecht et al, (Ref, 30) give i, and i2 for
n =133
/Oa =6, 8, 10(5)40
6 = 0(10)180%; Ls
Unpublished computational results obtained at the Willow Run Labora-

tories are shown graphically in Figures 6 and 7.

* and 1., are respectively the magnitudes squared of the sums in E
2 ¢

and Eg s Equation (2-3),
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FIG. 6 BISTATIC SPHERE CROSS-SECTIONS — H PLANE
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(c) National Bureau of Standards

Tables (computed under the supervision of A. N. lowan) of iy and 12

(Ref. 42) are available for
6 = 0°(10°)180%; Ls or 6d.
n = 1,33, l.hk, 1,55, 2,00,
Fa = o535 o653 1.0 1.25 1.55 1.8; 2.05 2435 2.55 3.05 3.63 LoO;
Le85 5,05 640,
For perfectly conducting spheres angular patterns are computed by
(d) University of California at Los Angeles, Dept. of Meteorology.
For the same parameters and accuracy as in (c¢) 0., A. Tweitmoe (Ref. 6L)
computed the cross-sections corresponding to crossed linear polarizations,
(e) Office of Scientific Research and Development.
Ve K. LaMer in Reference 37 gives iy and i, for

n= 1033, 10’4’4, 1055, 2005
loa = 0,5(0.1 to 0.5) 6,03 © = 0(10°)180°; Ls.

(f) Air Force Cambridge Research Center, Antenna Laboratory.
Under the direction of Nelson Logan the far zone field for
[Oa = 1,1(0.6)9, 5, 10, 20 0 @
are computed and will be published shortly by AFCRC. The pattern is a
far more oscillatory function of @ than Blumer's results (Ref., 7) indicate,
These curves for f; = 10 and 20 are reproduced in Figures 6 and 7. Note
that the E plane pattern is much more oscillatory than the H plane pattern

which is almost isotropic from O to 120 degrees.

L7
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(g) University of California, Berkeley.

A scattering curve for /3 = 12,8 by Hamren (Ref. 31) is shown in
Figure 6,

Physical optics as presented in Reference bL was used at The
University of Michigan to compute curves of G vs, @ for /g = 5 and 100,

These curves are included in Figure 6,

3.1 Total Scattering

The total scattering cross-section Q has been computed by the Mie theory
in many places for low indices of refraction., Some of the more extensive
tables are those of

(a) The Bureau of Standards (Ref, 42).

n = 1,33, 1.kk, 1.55, 2,00 ; /2 = 0,5 (variable) 6,03 3s; (also for
the complex indices corresponding to water at various wavelengths as listed in
Section 3,1.1 , all to 3d, )

(b) Gumprecht and Sliepcevich (Ref, 28)

n = 1,20, 1,33, 1.Lko, 1.LL, 1.50, 1.60

£ ™ 1(1)5; 6(2)10, 10(5)100; 100(10)200; 200(50)L00; Ls

(c) Chu (Ref. 12)

Computation for total scattering of water spheres are given for the

wavelengths and /?a values listed in 3,1.1 for backscattering.

3,2 DIPOLE SOURCE ON THE SPHERE

Many computational results are available for the field along the sur-
face of a sphere due to a vertical magnetic or electric dipole, on or near
the surface, These are based on the series given in Section 2.4 or on geo-

metric optics, depending on which is more appropriate according to the

L8
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magnitude of the straight line distance D between receiver and transmitter,
(a) H. Bremmer.

In Chapter VI of Reference 10 the radial component of the electric
field for a vertical electric dipole transmitter and the tangential component
for a vertical magnetic dipole are computed, Families of graphs are given of
ms electric field E vs. D for average soil (conductivitv = 1013 emu,
relative dielectric constant = L) or sea water (conductivity =L x 10-1lemu,
dielectric constant = 80), The figures cover receiver and transmitter heights

h1 and h2 both zero,

D =0 - 2000 kn

A= 60, 100, 150, 200, 300, 450, 600, 1000, 1500, 2000, 5000,
10000, 20000 m,

D=0 - 200 kn

A=1, 2, 5, 10, 20, 40, 60, 100, 150, 200, 300, 450, 600, 1000,
2000 m,

D=0-30km;0=5kn
A= ,03, ,10, .20, .40, 1, 2, 5, 10 m,

hl’ h2 varied

N = 7m, soil only; D = O - 150 knm,

All combinations of

h1 = 0, 10, 50, 200 m and

h, = 0, .93, 1.87, 5, 10, 20, 50, 100, 200 m,

L9
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A = 3m soil only; D=0 = 150 km
All combinations of

h =0, 10, 50, 200 m and
h, = 0, 5, 10, 20, 50, 100, 200, 500 m,

(v) J. R. Wait.

In Reference 67 the Watson transformation is used to compute the
E-plane radiation pattern of a wertical electric dipole at the surface of
a large conducting sphere. The computations are compared with the experi-
mental results of Bain (Ref, 6) and of Cohn and Morita (Ref. 1li) obtained
for slotted spheres which represent the same thing theoretically. The
agreement is good for the electrically largest sphere (,oa = 550), but only
fair for smaller,fa'values. The discrepancies are attributed to approxima-
tions in the residue series ( which are valid only for 1arge,#;), and to

experimental errors. The computations were made for 2 = 550, 131 and 26.2.
a

The angle 6, measured in the E-plane (i.e,, perpendicular to the slot) from
the slot, ran from 60° to 150°,

3.3 AUXTLIARY TABLES FOR EXACT SUMMATION

The functions of # and n needed to determine the field directly from
the equations (2-3) and (2-6) have been tabulated in various places. The

most convenient sources are listed below with details of the tabulation,
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3.3.,1 The Associated Legendre Function Pnl(coso) and Tts Derivative

d Pyl(cos6/do

An extensive tabulation of these functions is due to Gumprecht
and Sliepcevich (Ref, 26) who tabulated them for
n = 1(1)420; 6 = 0°(10°)170°(1°)180°; 5=,
N. Logan and G. Reynolds of the Air Force Cambridge Research Center

have tabulated P\ and d pnl(coso)/de for

n
n = 1(1)150; @ = 0°(1°)180°%; 6d.
These results will appear in the near future as an AFCRC Electronic
Research Directorate report.
Tables (Ref. L43) prepared by the Mathematical Tables Project at
the National Bureau eof Standards give the above functions for
n = 1(1)10; @ = 0(1°)90°%; 6s,
Gucker and Cohn (Ref.2) tabulate these quantities for
n = 1(1)32; @ = 0(2.5)180% 5s.

34342 Bessel Functions

In Reference 27 the Ricatti Bessel functions Sn(x) and cn(x) and

their derivatives are tabulated, These functions are related to the

functions ¢ (x) and 4 n{X) used in this report by

W (x) = sy(x) and {(x) = S, (x) = 1 Cy(x) &
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Two tables are given. The first lists Sp(x), s,',(X) and C;,(x) for

x = 1(1)6; 6(2)10; 10(5)100; 100(10)200; 200(50)400; 6d.
The second lists S, and Sy

x = 1,2 (miscellaneous values)6LO; 6d.
In all the above, for each value of x, n covers the range from 1 to a
number somewhat greater than x, such that n presumably goes high enough
to insure that the significant terms in the series may be computed.

Reference Ll prepared by the Mathematical Tables Project gives

l—”y 5 () =t %@ .

In Vol. I the ranges covered are
25 ,
* v = 3(1) =5 5 x = 0(.01) 10(.1)25;
ty . _,37_ ; x = 0(,01) 10(,05) 10.5(.1)25;

8s to 10s for x < 10, mostly to 7s for x > 10,
In Vol. II, the ranges covered are

ty ..;9_ (1) 42, x = 0(.01) 10(.1)25;

vy m _L%. (1) L1, x = 10(.1)25
8s to 10s for x < 10, mostly 7s for x > 10,

Also given are tables covering the ranges
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z ,.% (%) ’%,x =0 (,1) 10, 9d; % -% (1) % ’
x = 10(.1) 25; mostly 7s; -2 = g% (1) 2% s
x = 0(.1) 9.5(.05) 10(,1) 25; mostly Ts,
-V = % (1) % , x =0(,1) 25, mostly 9s.
The function [ n C3 be computed from the above data by using the formula

{, @) = ¢ (x) -1 ¢, (x).

3.3.3 The Mie Series Coefficients

The coefficients an( /0& , 7) and bn( /03.’ 7) are tabulated by them-
selves in References 12, 28, L3 and 47, for the indices of refraction
and /0 values given for the scattering functions and for sufficiently.

a
large n values to evaluate the series at the @ values for which the

scattering functions were tabulated.
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EXPERIMENTAL INVESTIGATIONS USING SPHERES

Most of the numerous experimental measurements of scattering fram
spheres are not absolute measurements but are made for calibration pur-
poses. In the radar field they are made, not ¢to check out Equation (2-3)
(which is equivalent to checking Maxwell's electromagnetic equations),
but to check the over-all experimental set-up or to obtain the results
for other scatterers by measuring their echoes relative to sphere returns.

In the field of colloid science the Mie theory is used in conjunc-
tion with experimental work to determine the particle size and concentra-
tion in dilute suspensions, However, in a few cases in this field the
experiments have been carried out with the object of verifying Mie's
theory; that is, the application of Equation (2-3) to explain phenomena

observed when electromagnetic energy is shone on clouds of particles,

Li,l CALIBRATION PROCEDURES USING SPHERES

In this section the experimental procedures will be described some-
what more specifically, but no attempt will be made to go into details
of procedure and equipment or evaluation of accuracy,

In most of the experiments the measurements are based on the

5k
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bistatic radar equation which may be written as

P 3
G (e, ) = c-f--—gﬂ)——g- Rfﬂf ’

Py Gy G N

where

THE UNIVERSITY OF MICHIGAN
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(4-1)

G = bistatic radar cross-section of scatterer

6,f = coordinate angles defined in Figure 1
Pt = power transmitted

P = power received

Gt = transmitter antenna gain

G, = receiver antenna gain

= prange from transmitter to scatterer
Rr = range from receiver to scatterer

A = wavelength of radiation

c = calibration factor

For the target essentially in free space and Rt and R, sufficiently

great, C is unity, However, experimental conditions usually require one

or more of these conditions to be violated, so ordinarily C ¥ 1, In

addition, the effects of experimental errors in measuring the remaining

factors in Equation (L-1) may be lumped into C.
The measurement procedures are then of two types.

is proposed to make absolute scattering measurements.

In one type it

Ranges are made
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sufficiently great and the instruments needed to measure the quantities
on the right of Equation (h-i) are each sufficiently accurately calibrated
so that, when the quantities are measured for a sphere of known cross-
section, C is acceptably close to unity. The equipment is then used
to measure absolute values of G  for the scatterers of interest. This
procedure was used, for example, at the Wright Air Development Center
(Ref, 5) for measurement of radar cross-sections of aircraft in flight,
(The calibrating sphere was hung from a balloon by a long nylon cord).
An alternative procedure not requiring such accurate calibration
of the individual instruments is to measure I’r for a sphere of known
G= G'sp(e,gé), and then to measure P, for the scatterer of interest. Then
Pn(with scatterer of interest)

G -G -
(e,8) Y R TT— (L-2)

This procedure is by far the more common.

In all the above, when bistatic measurements are to be made it
must be remembered that G refers to the scattered energy. Hence, it is
necessary in the measurements to subtract (considering phase) the
component of the primary field which enters the receiver.

A quite different experimental procedure for measuring backscatter-
ing has been used at Harvard by Aden (Ref. 1 and Ref. 2) and by Huang
and Kodis (Ref, 32), This procedure makes use of the fact that the

scattered and incident fields form standing waves along the path from
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transmitter to scatterer, The radar cross-section can be related to
the voltage standing wave ratio and position and spacing of the minima

and maxima, The formula is derived in Reference 1 as

) Lw 2 (3:) + A/(L‘HQ) -1 2
G = 1611‘ dez (R.,.) + 1 C
B 1+ (B8/w)

except that we have inserted a factor C which is considered to become
closer to unity.as the assumptions used previously with Equation (L4-1)

are more nearly satisfied, The symbols are

L = distance from scatterer to transmitter
w2 = distance from scatterer to a chosen minimum
A = gpacing between minimum and adjacent peaks

R = voltage standing wave ratio using peak adjacent
to the minimum and toward the scatterer

R, = same as above but using peak toward transmitter
The measurement procedure used depends on symmetry about a plane
and enables one to measure the quantities involved without severely dis-
turbing the fields, The portion of the body to one side of a plane of
symmetry (hemisphere, for a sphere) is placed on a conducting plane,
thus simulating the entire body in free space. This method permits a
receiver antenna or probe to be inserted into the field from below the

plane through a small aperture with very little distortion of the field.
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As a check on his set-up Aden used metal spheres of known G to
determine that C was sufficiently close to unity, then made absolute
measurements of his "water spheres" (spherical shells of n~1 filled
with water). The near zone field as well as the far zone was investi-

gated both by Huang and Kodis and by Hamren (Ref, 31).

4.2 VERIFICATION OF THE MIE THEORY

In the case of dilute suspensions of particles of uniform size,
Mie's theory assumes that there is negligible interaction between
particles, so that the scattering cross-section of a volume of the sus-
pension is simply the number of particles multiplied by their individual
cross-sections, It also assumes that the particles may be replaced by
spheres of appropriate radius, Experimental verification of the theory
is, therefore, something more than verification of Maxwell's equations,
Typical examples of this verification follow.

Mie's original paper served to explain quantitatively some experi-
mental results, found by W. Steubing, concerning the color and polariza-
tion of light scattered by gold sols, Among other things Mie pointed
out that Steubing's particles indeed deviated slightly from sphericity,
as indicated by the polarization at 90o scattering.

Paranpje, et al (Ref. L45) have investigated scattering as a func-

tion of the angle 6 for optical scattering from an artificial aerosol
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of large water droplets with /08 = 10, 20 and 30, They find agreement
with computations based on Mie's work.

LaMer (Ref, 37) verified the use of Mie's theory in predicting
the screening effect of liquid smokes, More recently Gumprecht and
Sliepcevich (Ref. 29) have investigated the applicability of the Mie
theory to the attemuation of intensity along a beam of light passing
through a cloud of particles of large //L « As /l increases, more and
more of the light is scattered in the forward directionf Thus in com-
puting attenuation due to scattering from the beam, it is necessary to
use, in place of Q, the cross-section which measures the total scattered
energy per particle, a cross-section, Q,, which measures the total
scattered energy minus the amount scattered forward into a small cone,
The ratio R = Qa/Q is a function of the size and position in the beam
of both the receiver and the particles, This dependence is experimentally

investigated in Reference 29 for particles of )/1 up to LOO,

Fof morors
cf References 11 and 59.
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THEORETICAL PROCEDURES

This section was written to give theoretical support to the results
given in Section II. It contains derivations of the different representa-
tions of the scattered fields and analyses of their convergence properties.

The different forms of the solution generally fall into two classes,
We term those series which involve only the integral order Legendre and
spherical Bessel functions the "integral order expansions®, the others we

shall call "complex order expansions®,

5.1 DERIVATION OF INTEGRAL ORDER EXPANSIONS

Various related derivations of these expressions appear in the
literature, These will be reviewed and compared here, Sources at a
finite distance as well as plane incident waves will be considered. The
problem is to find the E and i fields in a region external to a sphere when
there is an electromagnetic wave incident on the sphere, E and H are
subject to Maxwell's equations. In the region outside the sphere and

excluding the source, the equations are

curl E - 1wprH = 0, dv H = 0

(5-1)
curl H + {w€EE -GE = 0, div E = 0,

«iwt

(We have assumed e time dependence,) In addition, the total E field

has zero tangential component at the sphere surface and the scattered




THE UNIVERSITY OF MICHIGAN
2255-20-T

*

field dies out like a spherical wave, i.e., satisfies the Sommerfeld
radiation condition infinitely far from the sphers. If r is the distance
from the sphere this condition is expressed as

/- r(_&___n_ - 1k§)=o (5-2)

r— 00 3"

- FY
Fram (5-1) follows the existence of vector potentials A and A and

3*
scalar potentials @ and § such that

AH=curld E=-grad g + 104,
€ E= - curl T*, H= - grad @* + iUi*. (5=3)
A condition such as
div grad ¢ +/¢£w2 g=0 (5-4)
must be imposed on @, which is otherwise arbitrary (See Chapter I of
Ref. 60).
The determinations of E and H in the literature often use Herts
potentials T1 and TN *, defined by
-~ -
T =pe 3L, V= peST (5-5)

or closely related functions, which will be discussed shortly. From

e 2= .
Maxwell's equations one finds that T and | satisfy the wave equation

curl curl J] - grad div J7 - #¢ W2 T = 0 (5-6)
when one lets @ = - div'ﬁ', f = - div'ﬁ*. Then

H=-iweecurlTT , E=curl curl'TT (5-7)
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and similarly

- e ¢ -~ b, 3

E=fivcurl]] , H=curl curl]] . (5-8)
The total field is the sum of those obtained from ‘ﬁ' and ﬁ *,

The related functions come about this way; one assumes that

- 3t

— o A -i A
Tl D bl & T=35(> utld (5-9)

n=0 n=0
where 3 is a wnit constant vect'or or a unit radial vector in a spherical

coordinate system, and the a, and b, are constants. Then fram (5-6) it
follows that the ¥, satisfy

1l
curl curl ¢/ - grad divpa -a)"}cé#/ a=0. | (5-10)
One sees from (5-7) and (5-8) that
s -k - a
H= ~ o Z(‘ﬂ M+ by N) (5-11)

where

(5-12)

2 | v - 1 n
a!ln--.—k curl‘Hn-»Eeurl curl ‘Vn a.

2 2y 2y
IFor @ a constant vector, this is simplya Ld + 3 +2 il +w 2/‘6 Y=o,
3 x2 &yz 022
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C 4

The vectors aﬁn and were introduced by Hansen and are termed vector

n
wave functions, With & = ¥, a unit radial vector, they are used as the
starting point in Stratton (Ref. 60) to derive the Mie series, Equation
(2-3) of Section II.

The completeness of the sets of vector wave functions (5-12) is
discussed in Studies XI of this series (Ref. 55). In that report a is
taken in turn to be each of the %, 3'}, Z unit vectors along the axes of a
Cartesian coordinate system. The electromagnetic field scattered by a
prolate spheroid upon which a plane wave is incident is expressed in
series of certain of these resulting vectors written explicitly in terms
of prolate spheroidal coordinates and the coefficients for one special
ratio of major té minor axis (10:1) determined by machine computation.

When the limiting case of equal major and minor axes is taken, this
prolate spheroid series gives a solution alternative to the Mie series
for the sphere. The alternative series is more easily obtained directly
but we have not as yet found the coefficients explicitly.

Debye wrote TT and 'ﬁ'* respectively as T[; and ';TTZ. Ty and T,
are now called Debye potentials in the literature (See Ref. 9, for example,
where certain advantages in the use of these potentials rather than the
vector potentials A and i* are demonstrated).

For a plane wave the expansion of the field directly in terms of rf{.
and rﬁ vectors in (5-12) is well known and leads to the Mie series in the

following way: this expansion for £ is added to a similar one with unknown
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coefficients for the scattered field and the boundary conditions are
applied to determine the coefficients. Since the boundaries are spherical,
the determination is simple when the rﬁ and rﬁ type of ﬁ and i vectors

are used, For a horizontal dipole source parallel to the x-axis at a
finite distance from the sphere, the incident wave is most easily expanded
in % and XN vectors (using a= f, the unit vector in the direction of the
x-axis). Tai (Ref, 61) then used relationships he derived between the two
types of M and N vectors to express this incident field in terms of rM.and
N, This again makes matching the coefficients at the boundary relatively
simple,

From Tai (Ref. 61) one has Equation (2-5) for the field of a horizontal
dipole of moment pf. The scattered field components may be written as
Equation (2-6).

The a, and b, in Equation (2-4) are determined by the boundary condi-

tions that

E:+EZ=E;+E;=O,onr=a. (5-13)

Note also that the condition

L

Her=0 onr=a (5-1k)
follows from Equation (5-13) and Maxwell's equations.

The radiation condition (5-2) is satisfied by the choice of

(n(/O) = ll’iff Hg?%(f) and (;(/0) in the expansion given in Equation (2-6)

6l
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/
and not by either their complex conjugates or ¢/ ( /0), ¢ n(/” ), their
real parts. The truth of this statement follows from the fact that the
series are represented to a given accuracy by a finite number of terms,
where this number, N, is independent of / o (This is verified in Section
L
5.2 after the a, and b, are determined .) For now, asp~> 00, {°2>> N

and therefore one can use the asymptotic form

ntl i
(P = 0™t (5-15)
from which it is evident that the finite sum is multiplied by a factor
% eiP and hence acts as an outgoing spherical wave to satisfy (5-2).
The conditions (5-13) may be written as
1 1l
0 .—.Z 2n+1 (g Pp(cos0) + Y 9 Pp(cose)
-\ n———— n
a(n + 1) $ind Yo
(5-16)

1
0 =Z an+l )y aPtl,(cosg) .y P _(cose)

a(n + 1) " o ) a sin® ’

*Actually such a verification is carrled out explicitly only for the

scattering of a plane wave, However, similar considerations apply here,
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where 7]

x, ={ @L‘Vn( L)+ 2, $ (A
, , - (5-17)

b4 =Srn(/éb4—nan((?a) + by (ﬁ(/oa) .

By inspection one sees that (5-16) is satisfied by

X =Y =0. (5-18)

It follows from appropriate uniqueness theorems (see Reference 55) that
(5-18) provides the only set of X, and Y, which satisfy (5-16).
There is an interesting sidelight on this statement about uniqueness
which has application to the determination of coefficients for the alternate
g Y.L I
form of the solution in terms of ;K, M, and % vectors, Assume that the
solutions (5-18) were not observed by inspection. Then a straightforward

way to determine the coefficients would be to use the identity

2
8ind 4P (cos0) =02 B (ege) - (m1)° B 1(c080) (5-19)
o on¥l D1 m+1 ¥

1
to reduce (5-16) to expressions involving only the functions Pn(cose)
which are orthogonal over 0<@ =7, Equating the coefficients of
Pi(cose), k=0, 1, «.. to zero yields equations for X, and Y,. However,

1
since P% = 0, the coefficients of P which arise are arbitrary functions

of /ﬁa‘
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The equations are:
+3
] ~—— Iy =—=1,0=0
(n+1) (n+2) ol 0 e 22
(5-20)
2n + 3 n o3
+ X, + X =0
(1) (#2) P P mr2 W27

for n = 0, 1, 2, ¢es, corresponding to coefficients of P}&]_(cose). Thus

two coefficients appear to be arbitrary. However, there is only one

choice which will yield a convergent expression. Furthermore, Equation (5-1})
yields

Xn =0 n=1, 2, 'YX Y (5‘21)

and no information on Yn. Howsver, X, = O leaves no free choice in
solving the above system of recursion equations for X, and Y.
To obtain the Mie series for an incident plane wave of amplitude

E,s one lets the dipole recede toward infinity so that in the finite

2
geries /013 >N, and (5-15) is applicable to [ n( /pb). Then letting

_k3pei/0b

0= m (5-22)

in Equation ( 2-6) yields the Mie series.
It should be pointed out that the above solutions are also obtained
by Tai in Reference 62 to illustrate use of the tensor Green's function,

T -
?, expanded in terms of i?and r‘N‘veci;ors. E is given by the formula

E= 1w/°//f T3 av (5-23)
v
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derived fram the vector Green's theorem, Here .J-is the dipole current
and V is the region outside the sphere.

The convergence of these series is such that they take somewhat more
than /a terms to sum,which makes calculation lengthy and difficult for
large /ﬂa. However, alternate, more rapidly converging series have

recently been obtained.

5.2 CONVERGENCE OF THE MIE SERIES

In this section an upper bound, R, on the remainder of the series
(2-;-3) after N >,”a terms, is obtained. From this and a lower bound on the
series an estimate is obtained of the number of terms needed to furnish
the values of the field to a desired accuracy.

The terms to be considered aret

120 +1) |0 n(F P (cose) (’(P)
( n 42 N ¢} ( ) cosQ
p n(ntl) ( n {0 sin® l Z'n(f a) /
(5-24)
We can replace the functions of © by Bﬁgﬂ_-l, since
Pﬁ(cose) n(n+l)
stme |- T ? 6= (5-25)
and
dPlg(cosO) £,n(ni-l , QT | (5=26)
de 2

As shown in Reference 53 the first inequality may be demonstrated by induc-

tion on n by combining the facts that

- ]
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an(cose)I <1, Pi(cos@) = - gin® (5-27)

and the recursion formula (Ref. 4O, p. 54)
Pi_l(cose) - P;_l(coso)z (2n+1) sin@ P,(cose). (5-28)

The second inequality (5-26) may be proven as follows. First of all,

dPi dzgn
dG = dgz Y (5"’29)

Furthermore (Ref. 4O, p. 50)

Pn(cose) = a5c08 00+ a cos(n-2)0 + eesta, coSO + 841

(5-30)

+ ar_,_zcos(-e)‘k ceota,, coS (=no)

where the coefficients 8,0 03, are either positive functions of n or

zero. Thus
-sz(cosG)
—-—9—2—-—- = a, n° cos@ + al(n-Z)Zcos(n-Z)O oo ta, cos® +
de

(5-31)
+ eee + amnzcos(-ne)

also is the sum of cosine terms multiplied by non-negative constants,

Hence 2
l dPn(cosO)

de?
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achieves its maximum value at 8 = 0, However, for a general n it is not

too easy to evaluate

2
dPy

de?
=0

directly from Equation (5-30). It is simpler to use Legendre's equation
which may be written in the forms

dan(cose) dP, (x)
=x

" - n(tl)P (x) (5-32)

(1-x2) dan(x) - ox dPp(x)

- n(n+1)P,(x) (5-33)
ax? dx

where x = cos®., From the second form it is clear that when © = 0,
iy, x=1

x dPp(x)

n(n+1) (5-34)
dx

3 n@l) Pax)| =

(ST

=1 x=1

and hence from the form (5-32) of Legendre's equation,

2
dP
—¢|e ME (5-35)
Next we note t.hat' ¢l ,0), is monotone decreasing (Ref. 40, p. 25) so
that l {
WA
m/ 1, /O;Iﬂa (5-36)
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£.P) |
£l £l

A bound on may be obtained as follows: First, note that

/

d Z'(x),2 A
"""3;"‘"= Zn(n"'[n[n .

Now use the differential equation for g;, namely

[n”+ (1 - 3%;—12 )5”“: 0,

to show that

dx dx

! 2 2
dlfn(x)l _d [n(x) /n(n+1) -1
\ 2
The first factor was shown to be negative; hence

dl[;(x)l >0, n(n+l)¢ x°

dx
£0, n(nl)>x° .

/
For n fixed and x —»wm, !n(x)—'-l. The function l Zn(x)| looks as
shown schematically in Figure 8.

1.0 \

£

,‘ n(n+1)

X
FIG., 8 SCHEMATIC REPRESENTATION OF

¢ ;(x)l

(5-37)

(5-38)

(5-39)

(5=L0)

T1
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Therefore

{ '</)

- <1 A< {n(ns) (5-41)
{ (f)

n

? - R /< and /5 ln(n+l) (5-42)
VA £ ([nta)) 77 /

Using the asymptotic approximation

H(l)= tanho . (2)

Hy /4(
v 3 1/3

%; tanh%X-)exp[fzz(tanhot+ % tanh%x-u0-2iﬁyj] (5-L3)

with cosh X =2/ , we obtain

1/2
()| v 258 <1- —t > —2 0 (sw)
n « 'n(n+1) b(n+ % )2 2(n +1/2) °

We shall therefore make use of (5-4l) to rewrite the inequality (5-42)

in the form

%
VA

< 2(n + 1/2) (5-L5)
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It remains now to bound

2 2
/0

From Reference 15 we have the inequality

ATAR

¥l fa)

} 9 where 7/=n+%.

B e [x o VFO) (5-16)

where x = A/J/ , 0<x=<1, and

2
F(O,X)=log(l+ NL-X )"1-x2 (5-L7)

X

is shown in Figure 9. Furthermore, Watson (Ref. 69) has shown that

J‘y'( Fa) < (l z xz)l/h G-WF(O’X) . (5-h8)

I27T?J X

From this,the definition Y, (¥) = Iﬂy/2 J ,1(r), and Eq.(5-46) we obtain
2

-5/6+21/u) o~V F(0,x) 2 o~ VF(0,x) (5-49)

FEN

ti"(/a)< (v

13
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FIG. 9. AUXILIARY FUNCTION F(o,x) vs. x
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Both of the bounds in (5-46) and (5-49) are bounded by

2 e-UF(O,x) ,V>3/2
M

Hence the remainder after N terms is bounded by

00

i 4 g 3 o~VF(0, x_.)
R<{ i/ V- e > T+l
/Ps K+l ’ (>-50)

L - 3F 2F _
i 1/2 (:F -l)h e (N+l)3-e. (3NB"’6N2-1&)*eF(3N3+3N2+3N+1)-N3 = R.

7.

This bound holds for the remainder in EO or E¢. To obtain an upper

bound on the error in evaluation of the sum we consider -i/}_‘, s Where Z

is a lower bound on the sum. From numerical work available to the authors

and from other considerations, it tums out that, for all 9, ¥

2.

sip

- 1
210

:E‘or,ﬁa > 1.

# There is a possible exception for E, to this statement m a small
neighborhood around 0 ~ 120°, In this region a modified further
analysis will be needed.
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Where this lower bound holds we have that the relative error is less
than
- = LT -NF
) 8 (10
E—_"R . 8 | JIF(pr1)3e2F a3y oy2
5 ﬂ3/2 (eF-l)h e”" (N+1)2-e“" (3N“+6N<-1 )
— a
(5-51)

b o (GFN 341 - 1

where F = F(O, ,%/(N-*-l)) .

For any given.E this relationship specifies a curve of N vs /Z°
Figure 10 gives such a curve for E= .04, For a given /42, if the number
of terms N(,/é) determined from this curve is used, the relative error

will be less than .CLh. The curve is not very sensitive to changes in E.

5.3 COMPLEX ORDER EXPANSIONS

The radial vector wave functions M and TN used in Section (2-1) are
probably the most natural ones to use since they permit the boundary
conditions to be satisfied in a conventional meanner rather directly. How-
ever this is no reason to suspect that representations in terms of other
systems of base vectors might not be more rapidly convergent. This is
indeed the case, as is found in the recent literature., The rapidly
convergent form given in the body of this report is essentially derived

by Felsen (Ref. 17) in the course of a general treatment of acoustic and
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1.0
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electromagnetic problems in regions bounded by spheres, cones and planes.,
Using a Green's function approach, Felsen derived series” from which the
Hertz potentials may be obtained by differentiation. Franz (Ref. 20),
who obtains the Green's function for the vertical dipole case states that
the same procedures go through for each component of the general Green's
function for the sphere problem. The ideas leading to Equation (2-10)
are also contained in Franz' works; however, the equation does not seem

to appear explicitly there or elsewhere in the literature,

5.3.1 DERIVATION OF EQUATION(2-8)

The method used by Franz is an application of a procedure used by
Watson (Ref. 69) for the vertical dipole case which, however, was carried
through by him only for the dipole on the sphere's surface., It is applied
to the horizontal dipole case here.

We now carry out the transformation for the @ component of the

total field given by the sum of Equation (2-5) and Equation (2-6).

Consider the integral

! A,dy
I ﬂ‘/’cos(ﬂ'lr)
C

% There are misprints in these series as they appear in Ref. 17. In Egs.
(4.11) and (L4.15) of that reference eéch term should have a cos (Q-—§3
factor and in addition the factor % in (L4.15) should be replaced by
i/(Lmk).
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where
.
1
2y Ifu_ %_(-cos Q)
Av =
(V-3 (Y+3) sin ©
\ (5-52)

(/v)
. (£3)

\
1
). 3 (-oos) g1 1(py) f , (/O)K' (fa)-¢' (/a){’ (f)
+ ) 1 \ ‘//v-% "'22: V-3 V- ’
0 (y-%(/”a) l- 2 ’
J

and the integration is carried out in the complex Y plane about the path C

w X
1
Nll“

vy (A (fa-¢¥ (L] (p)
V-3 V-3 V-3 3

Uz

S
'
i

Wl

consisting of the imaginary axis and a semi-circle of large radius drawn
about the origin in the right half plane,
In addition to the poles at the zeros ¥ =n + % of cos 7 there are

)
which lie in the first quadrant. It is assumed that the radius of the

also simple poles at the zeros ¥ =n,of D-%(/a) and V = s! of {;_%( /.0&)

semicircle is chosen so that it does not pass over any of the poles. By

the Cauchy residue theorem I equals 27i times the sum of the residues at
the poles interior to C. The sum of the residues at 2/ = (n + 3),

n=1, 2, .oo. yields the series in (2-5) + (2-6)., However, as shown be-

low, direct evaluation of the integral shows that I = O in the limit as the

THE UNIVERSITY OF MICHIGAN
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radius of the semi-circle approaches infinity. Hence, the sum of residues
at V= n + 5 equals minus the sum of residues at /= sp and at 2’ = n,, since
the residue at 2/= % can be shown to be zero. The latter two sums thus
form the alternate representation of Eg given by Equation (2-8).

The evaluation of the integral to zero will now be discussed. The
analogous integral in the treatment of a non-perfect conductor does not
vanish, The integrand on the imaginary axis is an odd function of 2’ so
this part of the integral vanishes, The integral along the infinite semi-

circle remains to be studied. Because the function Z]J ( /) diverges near

l arg(2/+ %) = g for lvl>> /” one has to investigate the integrand
carefully in the limit as l')}’*—bmo In fact the analogous integral for
the scattered field alone diverges and it is only the total field which

*
converges as I]}'»ao.

We shall consider the various factors separately. For the #/(x)

# Because of this white, (Ref. 70), who studied the scattered field for
the plane incident wave case, used a completely different contour on which
the integrals converged, but did not vanish. He evaluated them oy
stationary phase to obtain alternate representations for the scattered
field which were fairly accurate for 0°< © < 900, and 170°< @ < 180°,

See also Sec. 2.4.1 (b) on J. M. C. Scott's work.
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and Z J)( X ) we need asymptotic forms for Jy(x) and

o 3, (x) = J_(x)

-1 sin 27

(L), \
i (x) =

for |u)>> x. e have

Y

.gxx)na(z 1

2) -I-:“_(.w 1)

from the power series for Jv(x). Also

-V -V

I (x)m(f) 1 (3&) (V) sinww
v 2 ‘——'(1_])) 2 e

argv|< T,

o ()

Furthermore for |v| > 1,

(5=53)

(5=54)

(5-55)

(5-56)
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With this basis we can write
v » (5=57)
J (/0) H (1)( /03_ 1 e-iv”(lpf)a)_ ({0) Psv)sinvﬂ
smvr y[(v) |2['W) a m

Hence

) 2
R AR YR AP el {( —;;) _ (_gg) } o (558)

Next we shall consider the ratio

e
Hy </b

H,, (A) .

For this purpose use Equations (5-53) to (5-56) to find that

=jvmr v
(L), oya s 2 2o\ _e xe (5=59)
Hy ()~ -1 &% [ex) 2 gin 2w (2‘1)) } .

elw . Note that

2

We shall write V =V, + i7Ji =

(5-60)

(?_13_)1)=exp|j, log2| l 7) | P (—z) 1ogz| l + ([/):’ zexp(a+ib)
ex
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=i Y iVi . 1)5-
o (3 o= b Do

The two terms in Eq. (5-59) have the same magnitude for ]v|>> 1,

X<y and - %( v< 21r_ for one ¥ only, namely

1og[ IvIJ
ex
Yo, x) &0 —=— (5-61)

v L]
1 + log [2_..__I_.:|
ex

(1)( )‘ l sin(b + X ) The zeros of H (x) (and

hence the poles, 2, ( /), of the integrand) lie along the curve defined
¢ a

When (V = wb’

by sin [b( /a)+ ﬂ'/).;jl = 0 in the ¥ plane. Also note that

d V’hg lVlzx) o x

o x log |v |

so that ‘Vb(]v | , Pb)> ‘I/b( ‘7} l’/aa) and for sufficiently large !-ul ,
Wb( |V \: /ab)"‘

We shall consider separately three cases (a), (b), and (c)

corresponding respectively to the first term dominating in the Hu( /;) ’

Hy( /?D), to both terms of the same order of magnitude, and to the second
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term dominating. In case (b) we recall that the path of integration
avoids the poles 'zf? ( /oa) and in fact we can route it through the region

for which sin[ b( /aa)"' -E]N 1 . Then we can write

f Ur
(1) ._.E) (a)
Hv (/b) . (fb 3 (5.62)
1)
By (/a) (5) 1 (b)
Ao r
%) o

For the Legendre function P1 (=cos@) we use the asymptotic form
v

i
2

Pl (-cos@) = 2 F cos [ (v+ 2)(m-09) + f—} (5-63)

V- % 77 sin@
which is wvalid for ‘ﬂ >> 1l and 7 - -\-1'-|— > 0 > _li_ « Thus we have
v )]
the ¥ dependence l
1l

+

P:L %(-0030) ~ c! exp{ % 1og|v vil (ﬂ-g)-l-ui‘w}

cosvm V-

(5-6L)
= ¢! exp &% 10%11)‘-]7):1'.’ 0}

where ¢! is of the order of unity.
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Finally, using dv = lvldt// s We have the following bounds for the
magnitude of the first half of the integrand for large Ivlm cases (a),

(b) and (c) respectively:

v Iv' P];j 1 (-cos®) Z

[/ B LGP -4y P8, ()

(¥-3)@+3)  cosvr  {,(f,)

(4)
|

P * ¢" exp i- % loglvl- |vi| 01 (b)  (5-65)

: (e)

where c!'! is the order of unity.

Recalling that /. >f >/0a and that ¥ = n+} is avoided by the path
of integration it is clear that the integrand vanishes as l-z) I—-co in
the first case. It does not vanish in cases (b) and (c).

Let us determine an angle ¥ = ‘VO such that for ¥ <¥  case (a)
clearly holds. For ¢ > (I/o we shall then use the V dependence given by

case (c) and evaluate the portion of the line integral from Y= Wo to

=1
v,
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We accordingly specify a number y such that e2y<< 1. Then for

a( lz/ l, Y, /oa) s y case (a) holds. We can therefore determine {, from

’ Wo, Fa) =y, i.e.,

||

ly'sivl(logg-e—l-ia- cos Po= ¥,8in YY) .

the relation a( | v

This yields
1og2l | -2 y
v~ 3 S (5-66)
2 * -
° 1og£_‘.?.l.+1
e/oa

The contribution to the integral for t’l°< Y< -%— is bounded above by

=%log |V "/2
c" e $log | lj’ exp[-olvlsinqh- v cos Y log —’f-ﬁ';)} dy

Y :
&

Since ©>0 it follows from Eq. (66) that this bound vanishes in the
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limit as / 44 / increases. The magnitude of the second half of the inte-

grand turns out to behave like this |V |2 times the first half, Hence
the integral I equals zero.
The analogous integrals for E, and for the case where are
g gr r By P>f

handled in the same way; all have the same e xponential dependence on the

semi-circle as |V | —ae

5.3.2 Rkapidity of Convergence of Equation (2-8)

The complex order series (2-8) may be shown to converge for all
e > 0, the magnitude of the terms going, for large enough / , essentially
as e-t( where tj In t( ~ dre The early terms, however, increase with
X when the observation point is not in the geometric shadow region,
these terms decreasing "rapidiy" only within a certain limited region of
the shadow., It is the purpose of this section to determine this region
for a particular definition of "decreasing rapidly". Before making such
a definition, we first discuss some general aspects of the series.
Approximate formulas for the zeroes, s ¢ and nj , are available for
small and for very large A 3 those for smalil £ , in the "tangent approxi-

.
mation are ,
3% The formulas for the zeroes of Z; and !; used here arise from the so-

called "tangent approximation", those of Equation (2-9) from the "Hankel

approximation", This terminology is used in Bremmer's book (ref. 10, p 30).
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- (5~68)
- 12/3
81 ;‘.’/oa +% 011/3 31/3 2&7_ (b £=3)

these being valid up to larger and larger values of {the greater /Oa is.
(The maximum value of £is linear in /Oa )e In this range of/ s the magni-
tudes of the terms $§( and NI in the series (§( and If( involve sl and n_/e

respectively) decrease monotonically within the shadow region. Hence we
feel that in a reasonable definition of "rapid convergence", a necessary
and INZ/Nl

condition would involve an investigation of those intermediate values

condition is that the ratios |82/31 be small, A sufficient

for which the above approximations cease to be good, requiring that the
corresponding terms contribute negligibly to the sum. Although it is
felt to be highly probable that the intermediate and higher terms are
negligible when the early terms decrease rapidly, it would be desirable
to prove this; (we have not carried out such a proof). In this section
we will determine the region (in r,8) within which [SZ/S]_I < 7 and

|N2/Nl|s\z (’zls some fixed small number).

We will use the following asymptotic expressions, wherein 7/ =T + 1

stands for eithern_ ors, ,

£ £
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P (=co080) 2 e
- \27 8ind (5=69¢)
1
O By (-cose) l vilwg|,Zom-oexy 1 |
= v 2 1/3
=K 27 8in6 f a
and the exact formulae
1l 1l
Pv(-cose) an(-cosO) v (v+1)
-z T = - ~ (5-70)
e 06 2
= =
From these one may see that |Nj|<< ISI‘ and ! 041 | |1+1/Sl| ’

at least for fairly small {, when ( /ﬂb /a)>>/a 1/3 and the observation
point is in that part of the shadow region for which 7 - @>1/ /0 /3

@ =7 and ( / - /0&) >> /%l/ 3 . Hence we need consider only the ratio

/\_ = : (5-71)
51
Using (5-69) and (5-70) we obtain
/2, 1/3 1
~| 82 1 i i A -1 /4 1
= = xp|=-(s,-87)(0-cos = - cos )| s7-0 >
/\ 5 (5) e[*‘21 E} 15173
(5-72)
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The factors multiplying the exponential are both = 6.
Then, if we denote s;' - si by S;..Z and require J\_s? < 1/2,we obtain

(to within our approximations) that

fa
/0

1 0.6 . _ -l< /Oa)
= e —— ] rad.; and @_ = cos .
= ) o Po

1/3 1/3
Inequality (5-73) is valid for @ = 7 and (..L) < o< TT-A(_]-_) .

/pa Pa

The geometrical significance of these results can be seen from the

> cos(@ - 6, - 3, (5-73)

where

fact that cos-l (a/r) =9 - Ol - CS' is the equation of a cone, the gener-

ators of' which are perpendicular to those of the cone © = Q. + 8 s and

1
are tangent to the sphere. This is shown in Figure 11, the region r < r,

being excluded since the approximations made in using the Debye expansions

= -a/cos (Ql+<§)) 91 +5>7’72

FIG. 11 ZONE OF RAPID CONVERGENCE
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)1/3

for the Hankel function required ( ﬂ- /0‘)>> ( fa . Note that rp. .

may be infinite; this ocours when 6; +§< %. In other words when

N +,§5_;£ and 62 Z. + 6, +§ , thenA< Y for all r,* In the case

Iy— (incident plane wave), we see that Phax is finite for all 7

(assuming n< ol)e

A numerical example will help to give a feeling for the magnitudes

involved when /ﬂ‘ is large but much less than the /oa encountered in radio
propagation around the earth (where /a 's exceed 1000). We shall consider
6l < /Qa < 125, /a = 6l being down to a range where the asymptotic forms
used begin to be poor approximations. Then, since

i o~ 1/3
8, = 1.5 /oa

siz lies between 6.0 and 7.5. Thus for 7 = .06 (A.<0.1), § is approx-
imately between 22° and 18°, /\.(in the sense of the average mentioned
previously) is approximately .06 on +the surfaces of the cones corresponding
to these §'s and the given /ﬂb' For an incident plane wave, we find that-

rm/a is between 2.7 and 3.2,

# These statements have not been proved for m- 1/,01/3< @ < 7r since

one of the terms in the cosine appearing in the approximation to

' Pg}) (-cos @) has been neglected. In this region, both terms become
comparable, corresponding physically to the interaction between waves
traveling around the sphere in opposite directions. /A_can be expected
to oscillate with @ on the surface of the cone in this region, so that
Yz is a kind of average of A .
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bSel REPRESENTATION USEFUL IN THE IRRADIATED REGION

It is evident from the preceding'section that the series 2-8 is
310w1y convergent except well within the shadow region. That is, only
there do the terms of the series decrease rapidly from the beginning.
It is obviously of interest to obtain an expression which is useful in
the directly irradiated region.

For this purpose we introduce partitions of the Legendre function
and its derivative which are analogous to those used, for example, by
Franz for the vertical dipole and for the cylinder case. The technique
is to split from the series a term which contains the geometric optics
scattered field. The remaining series converges rapidly in the lighted
region, Prior motivation for this type of partition other than analogy
with Franz will be discussed at the end of this section. The partition

consists in writing

ur_ 1 s
Pvl(-cose) = - e"L "Pv (cos8) + 2 i sinvy G, (6)
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1
P (cose) »*
where G, (8) = 72 + iJT;' Q]_;)(cose) s

and Q_‘l) (cos@) is the Associated Legendre function of the second kind,
We introduce the partition expressions into Equation 2-8, and

obtain E0'81+82uhere
in wr

. 1
Sl-ik’p008¢ (1) o 1B, (com) £ O (R ()
b, G| ey emnr wme  Ff, A
is, ' 1 n=n
+ (23,41) o GP:,'Q(cosO) fslo”b)[&(p)w;!(/)) {
8,(’(8!" 1) sins7 J8 -g—s— {: () -
and -
. iCpcosf Z (2, +1)  Gpy(cosd) Z& g/’)(i(/{,) 4”? ()
2 d
2¢Ph £=1 ny(mg +1)  sin @ 35 fn o) n*n,

+

(23 +1) 35, (0) ég 2re (/1,)33(/3)

S'EP

* See Reference Lo Pge 63,
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-1 /pa.

Where before convergence was governed by the form 6 - 8, = cos T —,

the convergence of Sl is now determined by 6 = 27+ Q. + co's":L é .

L P
Rapid convergence is, therefore, obtained for Sl in the irradiated
region,

82 can be ﬁritten as integrals over contours surrounding the points
n J: and Sjp
integrals over the semicircle in the upper half plane vanish, we find that

respectively, excluding 2= 0 and /= =l. Noting that the

kjpcos¢

2 2vrie,ole;J (I+K)

S

s [ O [ | S 1

] Ao ol . ,
. [ d/‘/?_;“f/z_%“’) A Z g _%(/g sy )

and the contour C is shown in Figure 2,
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For 1 <€ </i <</ﬂ<</g, I and K may be approximated by a saddle
point evaluation. The result of this evaluation is to show that K
approaches the sum of the geometric optics scattered field and the inci=-
dent field. The saddle point for the first terms of I and K occurs

at /ﬁi = /aa sin‘g s that for the second terms at //2 = sin@., Due to
the derivative of G)“_%(G) occurring in K, the latter is a factor of
//; larger than I,

Thus this partition which was chosen purely by analogy to the one
used by Franz does result in having the s olution as the sum of a rapidly
convergent series plus a term which contains the geometric optics
scattered field and the incident field. However, it is not clear how
Franz was guided to make this partition. Such a partition is obviously
not unique, and to obtain the first correction, for largeJ/Z s to the
geometric optics answer, one must compare the first terms of the series
(Sl) with the higher order terms obtained in the saddle point evaluation
of Sz.

It is interesting to note that in the cylinder problem (where the
lack of an evident guide to Franz! partition is also present)

Friedlander's approach leads him quite naturally to a partition into the

reflected field (plus incident field) and the field due to the passage
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of energy around the body. The obvious question now is, are the parti-
tions of Franz and Friediander the same? We shall show the answer to

be yes, Friedlander's solution is of the form

(¢ 2)
G -Zr(o + onm)

= -

@
F(e) --g Z IE( eiv ilel, - ®< 0<0
47 |

where

(see Section 2,5). Limiting ourseives to 0 < @ s 7, it follows from
the discussion in Section 2.5 that F(8), for 6 in the lighted region,
is exactly the field due to the geometrically reflected wave front
plus the incident field. Thus the natural partition is
G=FO)+G 5, 0=0<7, 0 in the lighted

region. 00 )

0
Then g' = F( 6 + 2nm) + > F(® - 2nmr)
n= n=

(¢ ¢ 2] Ly \ 3 - .y
e

But |0 - 2mr|- anT-0fornz1l, 6<7.

X3
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Hence
' 0 21??”3 ® >92irrv1
G = =7 ZKY' cos?ee"-‘rr__xf mcos:{zo
n=1 /=1 £=1
1ﬂ;?

% e cosvy 8
= im K
2 A ain% ” ’
which is identical to Franz' partition.
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