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Abstract - This report presents new CPW-type stub and filter configurations which are useful
for compact microwave circuit design. It is shown that conventional open- and short-end quarter
wavelength stubs can be shortened by a factor of three by folding the center conductor. Also,
narrow-band open-end stubs and filters are demonstrated which have thin-film overlay capaci-
tors integrated across the stub sections. In this work the circuits have been implemented using
microshield transmission line, a geometry in which a 1.4 pm-thick dielectric membrane supports
coplanar conducting lines virtually in free-space. The new stub configurations are also suitable for
standard substrate-supported CPW.

I. INTRODUCTION

Micromachining techniques have recently been utilized for transmission line design, resulting in
high performance components which operate from microwave to sub-mm wave frequencies [1, 2].
One such line, microshield, is a partially shielded geometry which is micromachined in a silicon (or
GaAs) substrate and uses a 1.4 ym-thick dielectric membrane to support coplanar conducting lines
essentially in free-space (Figure 1). Another micromachined geometry is the substrate-supported
coplanar waveguide with integrated shielding cavities; a version with only a lower cavity is also
shown in Figure 1. As demonstrated by Drayton and Katehi [3] the self-enclosed nature of this line
results in minimal parasitic radiation and can eliminate problems related to package resonances.

Although high performance is generally a prime system requirement, many of today’s RF ap-
plications, such as wireless communications, also demand architectures with high density layouts.
Two of the main obstacles in achieving this goal are circuit crosstalk and component size. In the
case of CPW (coplanar waveguide) based tuning stub elements, crosstalk can be minimized by
using series stubs which are patterned in the center conductor, as opposed to shunt stub config-
urations. These types of stubs are useful for switches [4], filters [5, 6], and DC and LO blocks.
At low frequencies or on low permittivity substrates, however, they tend to occupy considerable
amounts of space since they are often designed to be a quarter-wavelength long. As a solution
to this problem, the concept of folded series stubs is introduced herein. It will be demonstrated
-that these miniature configurations provide a narrower bandwidth than the conventional geometries
and are only one third as long. This size reduction is particularly important for implementations
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Figure 1: Micromachined transmission lines: microshield and shielded coplanar waveguide.

using the membrane-supported microshield line, since the relative permittivity of microshield is
very close to 1. For completeness, it will be demonstrated that the folding technique can be uti-
lized with the substrate-supported, shielded coplanar waveguide, as well. Also presented in this
report is a new technique for designing narrow-band stubs, in which distributed element stubs are
combined with lumped element, MIM (metal-insulator-metal) capacitors. Measured 3-dB band-
widths of around 16% have been obtained using circuits which are A/4 in length, demonstrating a
significant reduction over the 100% bandwidth of a comparable series open-end stub.

It is noted that the contents of this report represent an accumulation of material which is taken
from references [7, 8, 9].

II. COMPACT STUB DESIGNS

II.1 Short-End Stubs

A conventional short-end series stub in CPW can be realized by deforming the center conductor
with two shorted slots which are connected to the center conductor-to-ground plane slots (Figure 2).
At the resonant frequency, these inner slots are a quarter wavelength long and thus the short circuit
at point A is transferred to an open-circuit at point B, resulting in a band-stop response. Using the
folded approach, the inner slots are simply folded back upon themselves one or two times. The five
short-end, folded stub geometries which were studied are illustrated along with the conventional
design in Figure 3. For the single-folded approach there are two ways of interleaving the fingers,
whereas there are three possible arrangements for the double-folded approach. Each pattern yields a
unique frequency response, as demonstrated by the examples provided in Table 1 and the associated
plots in Figures 4-9. This data contains calculated results which were generated using a full-wave
moment method analysis along with experimental results for design S-D. By comparing these plots
to the performance of the conventional design (S-A) shown in Figure 10, it is seen that similar
behavior is obtained using Design S-D, although it is 2.4 times shorter than S-A at the first band-
stop resonance. Also, the 3-dB bandwidth is reduced from 70% to 40% by using the folded design.




Figure 2: A microshield short-end series stub.

| Design | S [W[S [S; [Wi [Wo[ L [ & [A/L]
S-A 12602070 |75[ 20 [ 20 [2720 ] 1.4 | 4.2
S-B 26020 [36[36] 20 |20 [1320] 1.4 | 7.3
S-C_[260 |20 ]36[36] 20 [ 20 [1320] 1.4 | 7.4
S-D 26020 [20[20] 20 [ 20 [1020] 1.4 | 9.9
S-E [260][20[20[20] 20 | 20 {1020 | 1.4 | 89
S-F1 [260]20]20[20] 20 | 20 [1020] 1.4 | 9.2
S-F2 13080 |10 |10] 10 | 10 | 720 [ 13.1| 9.8

Table 1: Parameters for conventional (S-A) and folded short-end stub designs (refer to Figure 3),
where ), is the guide wavelength at the first band-stop resonance. The dielectric constant of 1.4
was used to simulate the microshield line for the dimensions given in the table. All dimensions are
in pm.

The other four configurations have somewhat different characteristics and provide varying degrees
of miniaturization.

In order to show that the folding technique is also applicable to standard substrate-supported
CPW, a design on GaAs is included in Table 1 (S-F2). A potential problem with the high per-
mittivity substrate is parasitic radiation, since a relatively wide center conductor is required to
accommodate the multi-finger geometry. The performance can be greatly improved, however, by
utilizing the micromachining techniques reported by Drayton et al. [3] to integrate a lower shielding
cavity. This type of cavity has been assumed in the analysis of design S-F2, the results of which
are shown in Figure 9. The cavity size in this case was 800 pm wide by 500 pm deep (see Figure 1),
which was small enough such that a shorter version of the same geometry could be made to operate
very well up to at least 35 GHz. At lower frequencies (e.g. below 15 GHz), larger line widths can
be used without significant radiation effects, making the shielding cavities unnecessary.
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Figure 3: Conventional and compact short-end series stub configurations. S; refers to the center
finger width and S, refers to the width of all outer fingers.
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Figure 4: Performance of stub S-B.
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Figure 5: Performance of stub S-C.
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Performance of stub S-D.
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Figure 7: Performance of stub S-E.
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Figure 8: Performance of stub S-F1.
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Figure 9: Performance of stub S-F2.
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Figure 10: Comparison between the results from a full-wave moment method analysis (FWA) and a
coupled line technique based on quasi-static approximations (CLT) [9]. The circuit is a microshield
short-end series stub (design S-A from Table 1).

I1.2 Open-End Stubs

The open-end series stub is identical to the short-end stub except that the center conductor slots
on either side are connected to each other. This creates an open-circuit at the ends of the slots,
which transfers to a short circuit at the input port at the resonant frequency and gives a bandpass
response. Along with the work on the short-end stubs, an investigation has been made into different
possibilities for folded open-end stubs. In this case there is only one way of interleaving the fingers in
a single-folded approach, and two ways for the double-folded geometry. These three configurations
are illustrated along with the conventional design in Figure 11.

As shown by the examples provided in Table 2 and the corresponding plots in Figures 12-18,
each pattern exhibits a different frequency response. It can be seen from the last column of the
table that the performance of the conventional design (O-A) is achieved using a stub with a total
length of around A,/10 (O-D1 through O-D3). It is also observed that the implementations which
are essentially interdigitated capacitors (O-B1, O-B2, O-C) have characteristics that are distinctly
different than the conventional stub. Finally, as with the short-end stubs, a lower shielding cavity of
dimensions 800 um by 500 um has been included in the designs on the high permittivity substrate.

The last row in Table 2 represents a circuit designed to resonate at approximately 330 GHz. The
results, shown in Figure 17, do not include the effects of a lower shielding cavity and yet the radiation
loss is still low enough that the performance is maintained through the first resonance. Using the
approximation that the total ground plane separation should be less than A/10, this design has an
upper frequency for quasi-TEM operation of around 300 GHz. Assuming the minimum line width
to be 5 pm, this represents the practical limit for the microshield, double-folded stub geometry.



[ Design | S [W[Si[Sa [Wi[Wo [ L [ e [M/L]
O-A [260[20[70[75] 20 | 20 [2720| 1.4 | 4.2
O-B1 [260]20[36[36] 20 | 20 [2320] 1.4 | 5.2
O-B2 | 90 [60[10 10| 10 | 10 | 900 [ 13.1] 4.9
O-C [260 20 [20]20] 20 | 20 | 1140 | 1.4 | 6.0
O-D1 [26020[20][20] 20 | 20 | 1140 | 1.4 | 10.0
0-D2 | 130 |80 |10 10| 10 | 10 | 550 | 13.1 | 10.0
O-D3 | 65205 [ 5] 5 | 5 | 8 [ 14| 9.6

Table 2: Parameters for conventional (O-A) and folded open-end stub designs (refer to Figure 11),
where A, is the guide wavelength at the first band-pass resonance. All dimensions are in um.
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Figure 11: Conventional and compact open-end series stub configurations. S; refers to the center
finger width and S, refers to the width of all outer fingers.
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Figure 15: Performance of stub O-D1.
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Figure 16: Performance of stub O-D2.
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Figure 17: Performance of stub O-D3.
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Figure 18: Comparison between the results from a full-wave moment method analysis (FWA) and a
coupled line technique based on quasi-static approximations (CLT) [9]. The circuit is a microshield
open-end series stub (design O-A from Table 2).

I1.3 Hybrid Stubs

In addition to the folded stub configurations, an alternative design approach has been developed
which emphasizes bandwidth reduction along with circuit miniaturization. The target applications
are those in which the quarter-wavelength resonance of the series stubs are utilized for frequency
separation, as in the use of the open-end stub as a band-pass filter. With conventional or folded
series open-end stubs, the 3-dB bandwidth typically ranges between 70% to over 100%, depending
on the substrate and the stub geometry. This may force the circuit designer to cascade multiple
stubs in series in order to achieve a smaller passband, leading to circuit dimensions around 0.5 A,
or greater. An inherent property of the open-end stub, however, is that the bandwidth can be
decreased by increasing the shunt capacitance. This fact motivated the implementation of the
“hybrid” stub geometry, in which lumped element capacitors are integrated with the distributed
element stub.

The basic configuration consists of two cascaded stubs, with the second stub reversed relative to
the first (Figure 19). Along the length of the stubs, MIM (metal-insulator-metal) overlay capacitors
are deposited in shunt with the outer stub arms and the upper ground planes. This is believed to be
a unique approach for combining lumped and distributed elements for filter applications, although
variations of the technique have been presented by previous authors (e.g. [10, 11]). In this research,
the capacitor dielectric was a silicon monoxide (SiO) layer which was approximately 1 ym thick.

Several different designs are detailed in Table 3, and the predicted and measured performance
of the stubs is presented in Figures 20-25. For the purpose of comparison, the performance of a
design which has no capacitors (H-O1) is shown in Figure 20. The center frequency is 60 GHz,
corresponding to the quarter-wavelength frequency of each of the open-end stubs. In design H-02,
17.5 pF capacitors have been integrated 410 ym from the ends of each stub, resulting in a pass-band
resonance at 37 GHz and a 3-dB bandwidth of 26% (Figure 21). By moving the capacitors closer
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Figure 19: Hybrid open-end stub configuration.

to the ends of the stubs, the passband is shifted down to 32 GHz, as demonstrated by design H-O3
(Figure 22). This trend indicates that the lowest resonant frequency, for a given stub length and
capacitor size, is obtained by positioning the capacitors at the stub ends. An explanation for this
can be found by breaking down the circuit into simple resonators, each one formed by a series
capacitance (the stub section) combined with a shunt capacitance (the overlay capacitors). Placing
the capacitors at the end of each stub maximizes the distance between resonators, thus reducing
the resonant frequency. By examining the curves in Figure 23, it is observed that the resonant
frequency can also be decreased by utilizing larger capacitors. This is accompanied by a significant
reduction in the bandwidth, however, and the insertion loss naturally tends to increase.

A method to lower the resonant frequency and keep the insertion loss down is to use stubs with
a higher characteristic impedance, as in designs H-O5 and H-O6. These stubs have broader 3-dB
bandwidths than stubs with lower characteristic impedance, since the shunt capacitance is smaller.
Thus, the same size overlay capacitor yields a wider bandwidth and lower insertion loss; this is seen
by comparing the characteristics of designs H-O3 and H-O5. The last design in the table (H-O6)
shows that a resonant frequency at 25.5 GHz can be achieved with 1 dB insertion loss and 30 dB
rejection at 5 GHz. An open-end series stub of approximately the same length exhibits 0.25 dB
loss at 27 GHz and only 7-9 dB rejection at 5 GHz.

10



l Design i S I '\ I Sl l Sg l Wr[ W2 l L1 ‘ C, fF l € l }\T/L:l;l SZl,max l %BW i
H-O1 | 260 (20|40 (85| 25 | 100 | - 00 |14 2.28 - 76
H-O2 | 260 |20 |40 |85 | 25 | 100 | 410 | 17.5 | 1.4 | 2.98 -0.83 26
H-O3 | 260 |20 |40 |85 | 25 | 100|170 | 17.5 | 1.4 | 3.15 -0.90 24
H-O4 | 260 | 20|40 |85 | 25 | 100 | 170 | 35.0 | 1.4 | 3.83 -1.80 10.5
H-O5 | 260 (70|40 85| 25 | 100|170 | 175 | 1.1 | 3.70 -0.50 28
H-O6 | 260 | 70|40 |85 | 25 | 100 | 170 | 25.8 | 1.1 | 4.45 -1.00 18

Table 3: Parameters for hybrid open-end stub configurations, all of which have a total length of
Lr=2500 (refer to Figure 19). The passband insertion loss, Soi mqer (dB), is included for designs
which have been characterized experimentally. All dimensions are in pm.

11
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Figure 20: Performance of stub H-O1.
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Figure 22: Performance of stub H-O3.
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ITI. BAND-PASS FILTER DESIGNS

A variety of methodologies exists for the implementation of planar bandpass filters. In microstrip
or stripline form it is common to utilize a configuration of edge-coupled strips, as with the filters
presented by Chi and Robertson [12, 13]. For coplanar waveguide applications, filters using a
combination of series and shunt tuning stubs, such as the conventional geometries presented in the
preceding sections, have received considerable attention (e.g. [14, 15, 16]). In a slightly different
manner, electrically-short series open-end stubs have been utilized as admittance inverters between
Ag/2 resonators in end-coupled designs [6]. The main objectives of this research, however, were
to develop filters with minimal lateral width to keep the cavity dimensions small, and to achieve
reasonably short longitudinal dimensions. Designs ranging in length between 0.5-0.8 A,, and with
bandwidths between 15 and 60%, will be presented herein. In all cases the measured pass-band
attenuation, which includes radiation and conductor loss, has an uncertainty of less than + 0.1 dB.

The different band-pass filter implementations are illustrated in Figure 26 and some of the
performance characteristics are listed in Table 4. The first design consists of three open-end stubs
which are cascaded in series, with each stub being approximately A;/4 in length at the center
frequency [9]. The measured response (Figure 27) shows an insertion loss of only 1.0 dB from 22-
32 GHz, which is competitive with the best waveguide bandpass filters using suspended stripline [17].
The attenuation of this filter could be reduced by using thicker metalization! or larger slot widths
to minimize the conductor loss. In order to predict the performance, the scattering parameters
of a single stub were determined using a full-wave analysis, and the filter was treated as three
non-coupled elements. The agreement between the measured and calculated results is nearly exact
at the high end of the band, and the shift of approximately 1 GHz at the low end of the band is
consistent with the comparison for a single stub [9]. The good agreement indicates that there is
very little electromagnetic coupling between the stubs, even though the separation between them
is only 150 pm.

The next two designs in Table 4 are based on the folded open-end stub geometry, and their
performance is illustrated in Figures 28 and 29. It is immediately apparent that these 5-section
filters provide greater out-of-band rejection than the previous 3-section design, and yet they are
only 65% as long due to the use of the compact stub. Design 2 has a measured 3-dB bandwidth of
32% and a pass-band loss of 2 dB, while design 3 has a bandwidth of 40% and only 1 dB insertion
loss. The single difference between the filters is the outer slot width, which is 20 ym and 70 pym
for designs 2 and 3, respectively. This slot-width effect is characteristic of all the series stub-based
designs, and while some decrease in loss is expected as the bandwidth increases, a substantial part
of the improvement is due to the lower conductor loss of the higher impedance line. In comparing
the measured and predicted results, it is seen that the center frequencies are within 0.5-1 GHz,
but that a discrepancy of 5% in the bandwidth exists in both cases. This is believed to result
from modeling the filters as non-coupled resonators, as explained for the previous case. A complete
model of the entire filter would certainly be a more accurate comparison, however the size of the
system becomes impractical to solve using the formulation employed in this work.

The last two designs in Table 4 consist of a series combination of the hybrid open-end stub
configuration. In comparison to the previous geometries, this type of filter is more appropriate for
achieving narrow bandwidths and fast roll-off in the rejection at the low end of the band. These

! All circuits fabricated in this study had a metalization thickness of 1 um.
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Figure 26: Band-pass filter configurations studied in this research. Element lengths and separations
are specified in microns.

advantages come at the expense of the high-end rejection, as seen in Figures 30 and 31. Design 4
has a bandwidth of 17% and a pass-band loss of 0.9 dB. Upon re-examining the design, it was found
that the 1000 pm separation between the elements (see Figure 26) caused the second pass-band
to shift down in frequency and degraded the out-of-band response. In design 5 the separation was
reduced to 40 pm, resulting in improved high-end rejection and similar low-end and pass-band
performance. The predicted response from a coupled line analysis of this filter [9] is shown in
Figure 31. Compared to design 1, the filter exhibits 23 dB more rejection at 0.5f, and 4 dB more
rejection at 1.5f,, although the overall length is 60% shorter.

IV. CONCLUSION

Microwave applications such as wireless communications depend on high performance components
and high density architectures. To help meet this requirement, this report has presented compact
series stub configurations for CPW which are up to 2.5 times smaller than conventional imple-
mentations. Designs which use the membrane-supported microshield line have been validated at
Ka-band through comparisons of experimental data and results from a full-wave analysis. Using the
same theoretical model, it has been determined that the upper frequency limit for the microshield
stub is approximately 330 GHz. Another new approach was developed that combines integrated

14



{ Design J Type [ 1, | Lt at f,, A, I %BWJ S21 . maz [Sg; @ 0.51, | So1 @ 1.5fﬂ

1 O-A | 29 0.80 58/55 -1.0 -17 -17
2 O-D | 24 0.51 32/27 -2.0 -29 -32
3 O-D | 25 0.53 44/38 -1.0 -20 -21
4 H-O | 28 0.56 17/15 -0.9 -36 -18
5 H-O |29 0.47 17 - -40 -21

Table 4: Parameters for microshield band-pass filter designs (refer to Figure 26). The passband
insertion loss, Sp1 maz (dB), is included for designs which have been characterized experimentally.
In the %BW column, the first number is the measured 3-dB bandwidth and the second is the
predicted value.
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Figure 27: S-parameters for bandpass filter design 1 in Table 4.
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Figure 28: S-parameters for bandpass filter design 2 in Table 4. The folded open-end stub dimen-
sions are the same as those of design O-D1 in Table 2.
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Figure 29: S-parameters for bandpass filter design 3 in Table 4. The folded open-end stub dimen-
sions are the same as those of design O-D1 in Table 2, except that W=70 pm.
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Figure 30: S-parameters for bandpass filter design 4 in Table 4. The hybrid stub design is the same
as design H-O5 in Table 3.
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Figure 31: S-parameters for bandpass filter design 5 in Table 4, which is identical to design 4 except
that all elements are separated by 40 pm.

17



thin-film capacitors with standard distributed-element stubs. For a circuit length of A/4, these
designs provide at least 20 dB more low frequency rejection than a simple tuning stub. A number
of band-pass filter implementations were also pursued which employed the different types of series
stubs as end-to-end resonators. These designs achieve minimum lateral width (typically around
300 pm) and lengths ranging between 0.5-0.8 A, with bandwidths between 15-60%.
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L Objective

» Test survivability of membranes after thermal cycling and vibration testing
» Characterize stress of membranes using vibrational analysis.

IL Description of Membrane Structures

The membrane structures used for this study were fabricated at the University of
Michigan. Two different sizes were used (see Figure 1). The shaded black area is the
thermal oxide/SiN/oxide membrane with gold metallization and the white area is the

supporting silicon wafer.

8.5 mm

7.5 mm

=
unu 68
unu ¢y

(a) (b)
Figure 1: Schematic of membrane structures: (a) Small and (b) Big.
The processing steps to grow the membranes were as follows (reference Tom Weller):

1. The first layer is a thermally grown silicon oxide that uses a standard CMOS process
of dry-wet-dry growth. The typical furnace temperature is 1100°C. Dry oxide is
grown with an oxygen flow rate of 3 L/min. Wet oxide flow rates are 1.7 L/min.
oxygen and 2.5 L/min. nitrogen. The furnace temperature is about 800° C when the
silicon wafers are inserted into the furnace, and it is ramped to 1100°C at about 5
deg./min.

2. The second layer is an LPCVD silicon nitride, grown at about 50-80 A/min. The
following parameters are used:
LPCVD tilt zone temperatures: 810, 820, 830°C
NHj3 160 sccm
DCS (dichlorosilane) 40 sccm



3. The third and final layer is an LPCVD oxide, grown at about 50-80 A/min. The
following parameters are used:
LPCVD SiO3, tilt zone temperatures: 910, 920, 930°C

N> (dilute) 290 sccm
N,O 120 sccm
DCS 60 sccm

Typical layer thicknesses are 6500/3500/4500 A (thermal oxide/nitride/oxide). These may
vary +500 A. The membranes are typically about 1.5-2 mm wide, and the length ranges
from 2.5 mm up to 10-12 mm. In some cases, 8mm x 8mm membranes have been used.
The metallization is typically a gold layer which is 1-1.2 um thick and covers more than

95% of the membrane surface. For the 8mm x 8mm membrane, however, the gold covers
about 10% of the surface.

L.  Thermal Cycling

Thermal cycling was performed in the Materials and Processes Lab at the Jet Propulsion
Laboratory. The membrane structures were thermally cycled from -65-*150°C and
inspected optically after 100 and 200 cycles. Please see "Results and Discussion"”
(Section V) for more detail.

IV.  Vibration Testing

Sample Mounting

Samples were mounted on a steel block using two different adhesives: Adhesive one was
a heavy viscosity, multipurpose, water soluble ultrasonic couplant and adhesive two was
Eastman 910 glue. Adhesive one remained viscose during testing and was easily removed
from the membrane structures after testing. However, due to adhesive one's viscosity,
attenuation and sample displacement during testing was a concern. Therefore, adhesive
two, which hardened seconds after application, was also used. Unfortunately, samples
tested using adhesive two could not be removed from the steel block without breaking the
membrane structures.

Test Parameters

Vibration testing was performed in the Environmental Test Lab at the Jet Propulsion
Laboratory. The membrane structures were subjected to random vibration in each of their
three principle axes, as shown in Figure 2. Figures 3-5 show the data plots for the control
accelerometer of each axis. The random test profile is a modified version for what is
specified in the reference for "Extended Exposure with Severe Radiation" for spaceborne
computer modules. As modified, these vibration levels should provide a high level of
confidence in the capability of the membrane structures to withstand any subsequent
electronics higher assembly dynamics test exposure or flight environment even though not
every potential resonance peak may be enveloped in these vibration test parameters.



Figure 2: Axis definition and sample setup for vibration testing.

Vibration testing was performed as follows:

Random vibration gqualification levels:

Frequency [Hz] Level

20 0.129 g2/Hz
20-50 *+6 dB/octave
50-2000 0.8 g2/Hz
Overall: 39.6grms

Duration: 180 sec./axis

Test sequence:
Run #1: X-axis random vibration, 0 dB for 180 seconds

Run #2: Y-axis random vibration, 0 dB for 180 seconds
Run #3: Z-axis random vibration, 0 dB for 180 seconds
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V. Results and Discussion

Figure 6 shows the sequence of survivability tests performed and the number of samples
tested. After vibration testing, membrane structures glued using adhesive two were
inserted into the thermal cycling chamber while still on the steel block. However, these
membranes ruptured after only one thermal cycle due to the lack of venting. All other
membranes survived the thermal cycling and vibration testing without breaking, as
determined by the careful examination of each membrane for signs of rupture using optical
microscopy.

ample Set A Vibration Al
2 small —) Testing — Samples
2 big (Adhesive 2) Survived
ample Vibration 100 ‘All
2 small —_— Testing Thermal Samples
2 big (Adhesive 1) Cycles Survived
ample Se 100 Vibration All
I small — > Thermal —_ Testing Samples
1* big Cycles (Adhesive 2) Survived
ample 100 Vibration 100 'All
2 small Thermal 9 Testing ) Thermal » Samples
2 big Cycles (Adhesive 1) Cycles Survived

*Technician broke membrane after x-axis random vibration test.

Figure 6: Sequence of JPL survivability tests performed and number of
samples tested.
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Axis definition and sample setup for vibration testing.



Vibrational Stress Metrology



Introduction

A new technique is demonstrated for characterizing stress in membranes, since
conventional approaches such as, x-ray rocking curve, and Raman spectroscopy do not
work on amorphous membranes. Knowledge of the stress in supported membranes is
critical for evaluating their eventual performance and reliability in applications, such as,
transmission line technologies and x-ray lithography masks. Static and dynamic methods
can be used for determining stress. In static techniques the stress is derived from
membrane deflection in response to a known static pressure. The present report
demonstrates a dynamic technique. Forced vibrations of the membrane are induced by
external sinusoidal pressure fluctuations, where driving force frequency is varied, while
recording membrane displacement with a laser vibrometer. At resonant frequencies the
membrane exhibits displacement peaks. Thus a record of the frequency response of the
driven membranes permits a determination of the resonant frequencies. The main
advantage of our technique is the possibility of measuring displacement as a function of
position on the membrane allowing an evaluation of modal response. The focused laser
beam used for probing different regions allows the fine spatial resolution required for
studying millimeter dimension membranes. Moreover the displacement measurements can
be corroborated by surface velocity measurements using the same laser vibrometer,
allowing a self-consistent approach to testing.

For a homogeneous rectangular membrane of density p (Kg/m3) and under a uniform
biaxial stress o (N/m?2) the resonant frequencies f,,, are given by [1,2]:

1 o, m* n” s
S = GU D+ ()
where m and n are integers, 1,2,3....... Thus knowing f;,,, and p allows a determination of

o. Lx and Ly are the membrane dimensions.

The membrane samples that are used in the present study are neither truly homogeneous,
nor perfectly rectangular. Moreover, the damping forces which determine the spectral
profiles of displacement versus frequency may vary over the membrane surface as a result
of the metallization patterns used. A mathematical analysis based on finite element and
finite difference techniques is called for, in order to model membrane response, thereby



facilitating interpretation of experimental results. However, in this preliminary study we

treat the samples as homogeneous rectangular membranes with an assumed density.

f,n Obtained above is altered by atmospheric loading and the relation used to account for
this fact is [3] :

o = (o)l +1.34<-’5-j39'1>1
7o

where (f,n)air 1 the measured frequency from which the desired frequency can be
obtained. p,;, is air density, L = V(Lx.Ly) and t is membrane thickness.

Experimental Setup

Dynamic testing of the membranes, at atmospheric pressure was conducted using the
experimental setup shown in Figure 7a. Samples were mounted on a rigid support using
double sided adhesive tape. The sample mount, laser vibrometer and speaker were
supported on an air table in order to minimize noise interference from extraneous
vibrations. Pressure fluctuations generated by the audio speaker (JBL Model 4370),
excited membrane vibrations over a frequency range (10 - 46 KHz). The response of the
membranes (displacement versus frequency) is interferometrically monitored by the laser
vibrometer (Polytec PI Inc. Model OFV-302). A digital signal analyzer (HP Model
3562A) is used to perform frequency response scans on the membranes. A sinusoidal
‘reference output fixed at 100 mV peak, is simultaneously applied to channel 1 of the
digital signal analyzer (DSA) and the audio amplifier driving the speaker. Amplifier gain is
adjusted to obtain desired output from the speaker. The analog, fringe counter output
from the laser vibrometer controller, feeds channel 2 of the DSA. A frequency response
scan is comprised of a linear sweep of frequency (resolution of 25-30 Hz) from the DSA
reference. The ratio of power spectra (PS Channel 2 : PS Channel 1) is recorded during
the scan. PS Channel 1 is flat since it originates from a fixed amplitude sinusoidal signal,
thereby serving as a reliable reference. Relative variations in the PS Channel 2 are thus
recorded, during the frequency response measurement. These variations correspond to
laser vibrometer output, or, membrane displacement as a function of excitation
frequency. Data transferred from the DSA to the computer contains both displacement
and phase information of the membrane vibration, however, in the present report only
displacement has been analyzed.



The output level of the speaker was chosen so that the membrane response could be
discerned over the entire range of investigated frequencies. At the same time the laser
vibrometer was used to probe regions of the substrate along the membrane boundary to
ensure that it was not vibrating so that translational motion of the membrane did not
interfere with the measurements. Laser vibrometer output was frequently recorded in the
absence of excitation and the background noise was found to be 2-3 orders of magnitude

lower than the driven response.

The measured frequency response of the membranes suffers from inherent output
fluctuations of the speaker. Especially since a speaker is employed well beyond the audio
range, its output cannot be assumed to be flat. A 1/4" microphone (Bruel & Kjaer, Model
4135) with a preamplifier (B & K Model 2618) and power supply (B & K Model 2801)
was used to measure the speaker output. This was done after removing the mounted
sample and positioning the microphone as close to the region occupied by the membrane
as possible. The calibration of the microphone itself could not be checked, however, it is
assumed to conform to its specifications of being flat within +/- 2 dB up to 100 KHz.
Based on the microphone response the peak pressure applied to the membrane can be
estimated to be in 1 - 5 Pa range.

Figure 7b shows a schematic top view of samples investigated. The blackened and hatched
portions, respectively, represent the membrane and substrate. Three white spots on the
membrane labeled 1, 2 and 3 mark locations where frequency response was monitored.
Nominal membrane dimensions are also indicated in Fig. 7b. A set of membrane samples
with smaller dimensions were also provided and await testing.

Results

Three samples with the dimensions indicated in Fig. 7b were tested. Table 1 summarizes
the treatments of the samples.

Figures 8, 9 and 10 show the frequency response of each of the membranes following
testing described above. Table 2 summarizes the frequency peaks observed at location 1
(see Fig 7b) for each of the samples. These frequency peaks are analyzed by studying the
ratio fi,n/frvn . Where m, n, m', n' denote the mode numbers of the resonance's. This



ratio is  independent of the membrane density and atmospheric loading, depending only
on membrane dimensions.

Table 1

Sample 1 | As-deposited

Sample 2 | Vibration testing ,100 thermal cycles (-65°C to 150°C)

Sample 3 | 100 thermal cycles (-65°C to 150°C), vibration testing, 100 thermal
cycles (-65°C to 150°C)

Using this approach the mode numbers of the membrane vibrations were identified within
an error of the indicated percentages. After correcting the observed frequencies for
atmospheric loading membrane stresses can be obtained assuming that the homogeneous
density of the membrane is 10083 Kg/m3. The density value was obtained by weighting
the relative thicknesses of SiO,/Si;N;/Au.

Table 2
Sample 1 Sample 2 Sample 3

(fnn)air m,n (Fmn)air m,n (fran)air m,n

KHz KHz KHz

22.173 1,1 23.841 1,1 18.188 1,1

25.145 1,2 (2%) 25.942 1,2 (6%) 19.855 1,2 (5%)

31.956 13 (5%) | 32.608 1,3 (0%) 24.275 1,3 (3%)

37.753 1,4 (5%) 37.971 1,4 (2%) 28.985 1,4 (2%)

43.623 2,2 (2%) 44.492 1,5 (2%) 33.623 1,5 (3%)
38.188 2,2 (5%)
43.188 2,4 (3%)

Thus the following stresses are obtained
Sample 1 1.815 x 108 N/m?
Sample 2 2.098 x 108 N/m2

Sample 3 1.221 x 108 N/m?



The stress values reported serve as a demonstration of the technique. Testing of a larger
number of samples is required before any conclusions about stress “dependence on

treatment of the membranes can be derived.

The frequency response at the three probed locations are shown in Figures 8, 9 and 10.
The relative displacement, as expected is highest at location 1. Qualitative differences in
the spectral profiles, for instance between sample 1 and 2 (Fig. 8 and 9), where the same
stress level is indicated deserve further study. The Polytec vibrometer used has not been
independently calibrated but based on manufacturer's specifications the displacements
observed in the spectra range from 107 - 108 m.

Conclusion

A new technique for measuring stress on supported membranes has been demonstrated.
Further testing is required in order to characterize the stress level dependence on
treatment and fabrication. A New Technology report on the technique described above is

in preparation
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Figure 7 (a) A schematic view of the experimental arrangement used to measure stress in
the membranes. The sample holder, laser vibrometer and speaker are all mounted on an
air table; (b) showing a top-view of the sample and the membrane dimensions.
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