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Bayesian Data Analysis ol Gambling Preferences

Introduction

Bayesian data analysis has been feasible since 17(:% when Rev, Thomas Bayes
formulated his theorem (which is just a straightforward application of the def-

inition of conditional probability):

P(H|D) = P(D|H) P(H) /z; P(DlHi> P(H,)

N J

"

P(;) (overall prob.)

Despite its availability for such a long time, research workers have made
little use of it., Even most researchers who consider themselves Bayesians
have used it only as a normative model for human information processing
Eut not for processing data, although Edwards, Lindman & Savage (1963) have
pointed out its advantages for statistical inference almost 10 years ago, and
although easily readable textbooks are available now (e.g., Hays & Winkler
1970 have a long chapter on Bayesian inference, and the books by McGee (1971)
and Winkler (1972) are especially devoted to these procedures).

Bayesian statistics differs from traditional statistics in using infor-
mation not coptained in the sample, namely, P(H), the prior probability of the
hypothesis. In testing hypotheses, traditional statisticians use only P(D|H),
rejecting a hypothesis Hi when P(DIHi) plus the probability of more extreme
data is below a certain prefixed level &,

Traditional statisticians have occasionally objected to the idea of



taking into account any prior information, like P<Hi)’ which was not obtained
from én observed sample. Those who use Bayesian methods but insist upon priors
inferred from previous observations rather than intuition call themselves Em-
pirical Bayesians (e.g., Martiz, 1970),

In a sense, Bayesian statistics can be viewed as an extension of tradi-
tional statistics; it uses the same information plus something more, namely
prior prdbabilities, under assumption that all information available should be
used for decisions among competing hypotheses., Actually, according to the
'principlé of stable estimation, even strongly biassed priors cannot do much
harm to the posteriors as long as the data used for their revision do have
enough diagnostic impact, and as long as the prior distribution is not too
small in the region favored by the data, and/or not too peaked elsewhere,

(For more details about the principle of stable estimation, see Edwards,
Lindman & Savage, 1963.) Thus, the arbitrary and intuitive nature of prior
distributions does not constitute a reason for not using Bayesian statistical
methods.,

It is probably easy to show that every scientist observing and analyzing
data has some priors with respect to his hypotheses—however, to discuss this
is not the point of this paper, and the reader interested in these problems is
referred, e.g., to Kuhn (1962), Convenient techniques to elicit and assess
the scienﬁist's prior probability distributions over hypotheses are available;
some Qf them are described, e.g., in Winkler (1967) and Stael von Holstein
(1970) .

In this paper, we pay little attention to prior distributions over



hypotheses. We will rather concentrate on likelihoods P(DlHi), which are more
public ahd less controversial than prior P(Hi).

Usually, a hypothesis to be tested in traditional statistics implies that
s certain parameter value obtains, e.g., in traditional null hypothesis test-
ingAthe hypothesis is: Hb:e = eo for some parameter 6, which is tested against
the rather diffuse alternative that 6 # eo. In most cases, traditional stat-
isticians cannot figure a probability for the data observed given this diffuse
alternstive hypothesis, and therefore B, the probability of an error type II,
is left unknown.

In such a case, the Bayesian usually would not consider a point hypothesis
o = eo as oppoéednto a continuum of other values of 6, but rather would assess
a continuous prior distribution over the whole parameter space, which 1s then
treated as a continuous set of hypotheses, The evidence from the sample ob-
served would then be used to revise this continuous prior distribution over
the parameter space according the Bayes's theorem, which reads for the con-

tinuous case:

g(x|e) f(e)
[e(x|e") f£(e') ae'

f(elx) =

and gives a continuous posterior distribution over the same parameter space.
Although Bayesian statistics can handle any number of competing hypotheses
simultaneously—up to an infinite number which 1s the continuous case discussed
just above—the most convenient case deals with only two competing hypotheses—
such as the traditional test of Hb against its alternative, the catch-all hypo-

thesis. The advantage of testing only two hypotheses against each other in



Bayesian analysis is that Bayes's theorem can then be written in ratio form
so that P(D) cancels out:

P(HiID) P(H,) P(D|H,)

P(HQID) = pE) PO

This is known as the odds-likelihood-ratio form of Bayes's theorem:

QD = QO « IR(D); in words:

posterior odds = prior odds x likelihood ratio.

For conditionally independent data, the likelihood for the whole set of data

D= (dl’ dz; ceey dm) is the product of the likelihoods of the individual data

P(D|H,) = T P(d |H,),
i 3 g 1

and then the odds-likelihood-ratio equation becomes:

Q = « II LR(4.).
D o) 3 ( j)

Bayesian data analysis with these formulae are easy, straightforward, and ef-

ficient if you have perfect knowledge of the data generating process which

gives you P(D|H), but can be quite a problem if you don't.

Bayesian Analysis of Learning Data

Let's look at an easy case first: excellent examples to do Bayesian data

analyses are comparisons of learning models, E.g., Restle & Greeno (1970)



compare a linear operator model (Hl) by Bower (1901) (also, see Atkinson,

Bower & Corothers, 1965, p. 91).

P(c|H) = a-(a-b)(1- el>“‘l

and an accumulative model (H2)

b +06 a(n -1
2 - 1)

P (clHZ) =

n 1 +6.(n-1)

o

where Pn(c‘Hi) is the probability of a correct response on trial n under the
respective models, ei is a parameter of the learning curve, and a and b are
initial and asymptotic success probabilities, respectively. Corresponding
probabilities of wrong responses (errors) are Pn(elHi) =1 - Pn(c'Hi).

Bower (1961) had 29 Ss learn a list of 10 items, "to a criterion of 2 con-
secutlive errorless cycles, A response was obtained from the § on each pre-
sentation of an item" (p. 528). Stimuli were pairs of consonant letters, re-
sponses were the integers 1 and 2, each of the assigned to 5 of the stimuli.

Twenty-nine Ss times 10 items makes 290 on each trial (unless some Ss did
not get to the last trials because they completed their two errorless cycles
earlier). The data Bower obtained, in terms of relative frequencies of cor-
rect responses on the n-th trial, are reproduced in Table 1, column 2, from
Restle & Greeno (1970, p. 8).

To evaluate the two competing learning theories Hl and H2 given the evi-
dence from these data, Restle & Greeno (1970) assumed & = 1, and b = ,5, esti-
mated 6, from the data, and calculated Pn(clHE) using these parameter estimates.

Resulting Pn(clHl), Pn(c|H2), and corresponding Pn(elHl) and Pn(eng) are
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reproduced in columns 3-6 of Table 1. Restle & Greeno then compared the two

models by calculating the sum
A, = 5 (P (c|H,) - P (c observed))2
n DB i n

for both models (1 =1, 2). Al was ,0042, A2 was ,01l, indicating a better fit
of Hl.

A Bayésian data analysis would consist of calculating likelihood ratios
Pn(clHl)/Pn(ClHQ) for each correct response observed, and Pn(e|Hi) / Pn(eng)
for each efror response, and multiplying them all together to get the overall
likelihood ratio.

To do éo, we.need\absolute frequencies of errors and correct responses
on the 11 trials, which are not given in Restle & Greeno's book, nor in Bower's
paper. We reconstructel them by multiplying the relative frequencies given in
Restle & Greeno (column 2 in Table 1) by 290 (29 Ss times 10 items), resulting
in the absolute frequencies of correct responses of fn(c) and errors (fn(e))
reproduced in columns 11 and 12 of Table 1. (These estimates may contain some
errors if some Ss quit before reaching the 11lth trial because they had completed
their two errorless cycles earlier,)

For convenience, the calculation of LR(dj) and LR(D) is performed in log-

arithms: In column 13, we have
R(D = f log P H ) -
log IR(D ) o (e) [log P (c|H) - log P (c[H,)]

+ £ (e) [log P (e|H) - log P (e[H,)],



and

¥ log LR(D ) = 1log LR(D),
n n

with the respective logarithms in columns 7 through 10, and observed frequencies
fn(c) and fn(e) in columns 11 and 12,

The resulting log LR(D) is 9.0253, indicating a likelihood ratio LR(D)
over a biilion: LR(D) ~ 1.061 * 109. I.e., 1f we had assumed equal priors,

) = .5, this would mean that H1 is over a billion times more likely
that Hz.

Although this could be taken as strong evidence for the principle of
stable estimatién-—even very heavily bilassed priors would have been corrected
by such & large likelihood ratio, we have to consider it with some reservation."

As we pointed out already, it is doubtful if we can actually assume 290
observations in the last trials (7-11) because some Ss may have quit earlier,
Reduction of the numbers of observations in the last trials would reduce LR(D)
considerably because trials n = 7 through n = 11 contribute most to LR(D),
except for n = 2,

Unfortunately, the original complete data are no longer available, How-
ever, a letter from Bower assures that these figures actually can be taken as
numbers of correct responses assuming that the subjects would not make any
more errors had they continued after thelr last two errorless cycles.

Another question is whether we really can assume independence of obser-
vations enabling us to multiply likelihoods. Although the observation them~

selves are clearly obtained independently, the independence assumption for the

conditional probabilities Pn(dlei) might not hold,

-8 -



A way out of this might be not to calculate thce whole learning curve for

each model, but rather just to predict Pn+ (dj|Hi) from the Pn (observed so

1
far) by

1]

P lelp i) (1-06)P +oa,and
R +tao0 (R +W)

b elr i) TN TR 31) - (w2 . %1 )le L
n n r n 5 1 1 n -8 5 1 1

]

In Model 2, this requires an additional assumption about Rl and Wl; we

used Rl = Wl = 5 for the calculation of Pn(clP Actually, the choice

n-l’HQ)'

of Wl = Rl dges ngt make much of a difference,
We use this example to demonstrate a slightly different way of performing
the data analysis: In Table 1 we took logarithms of Pn(c|Pn_1,Hi) and
Pn(eIPn_l,Hi) for 1 = 1, 2, and then subtracted the logarithms of these proba-
bilities for i = 2 from those for i = 1 (multiplied by the respective numbers
of observations); 1in Table 2 we calculate the likelihood ratios for correct
responses and errors directly (by dividing the hit probabilities in column
5, and by dividing the error probabilities in column 6 by those in column 7
to yield column 8), and then take the logarithms of these likelihood ratios
for hits and errors (columns 10 and 12) to multiply them to the respective
numbers of observations (columns 9 and 11), and sum over these products.
The log likelihood ratio is now "only" 2.2508, indicating a likelihood

ratio of: 178.2 in favor of Model 1. Of course, taking into account the observed

number of correct responses on the previous trial in each calculation of
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Pn(CIHi’P ) brings these probabilities under both models closer to the ac-

n-1
tual data, and thus levels out differences between them. The resulting like-

lihood ratio is still large enough to correct even strongly biassed prior odds

against Model 1, and now it takes conditioned non-independence into account.
The analysis could be further improved by many maximum likelihood extimates
f‘orAei rather than the least squares estimates we took from Restle & Greeno
(1970) for this demonstration, However, since the evaluation of learning
models is not our main concern in this paper, we will now turn to analyses

of choice-among-gambles data,

Bagesian Analysis of Gambling Preferences

As we have seen, Bayesian data analyses are quite straightforward models
that provide us explicit probabilities of occurrence between O and 1 for each
event we might observe, We have taken learning curves as an example; other
feasible examples could be taken from psychophysics, signal detection theory,
Lucean & Thurstonean choice theories, etc.

However, in analyzing gambling preference data we encounter different
problems, particularly with deterministic choice models. Since they require
deterministic choices; i,e., with probabilities O and 1, no Bayesian data
analysis is feasible under these assumptions. This may be one of the reasons
why decision analysts and other scientists strongly advocating Bayesian pro-
cedures as normative models for human information processing rather seldom
use Bayesian methods in their data analyses: they mostly favor deterministic

choice models which prevent them from applying their own principles,

11



We are going to illustrate Bayesian data analyses of choice-among-gambles
data.on two sets of data here, both borrowed from colleagues: one is from an

experiment by Hommers (1973) with normal and educable retarded children of 8,

10, 12, and 1L years of age where it seems rather appropriate to replace the
deterministic normative model by a probabilistic one, the other set of data

is from an experiment by Seghers, Fryback & Goodman (1973) with adult subjects
where the conventional (Lucean) probabilistic choice models ﬁight indicate

too weak preferences as compared to the choice probabilities inferred from

the data.

Hommers' Data

Hommers (1973) in his dissertation compares choices among bets made by 8,
10, and 12 years old normel children, and 8, 10, 12 and 1k years old educable
retarded children, ZEach set of gambles presented as choice alternatives to
the S consisted of 3 bets labelled W, L, and S, respectively, where W indicates
the choice with the largest amount to be won but with the smallest winning
probability, S the one with the largest winning probability but the smallest
amount, and L had medium probability and payoff. Table 3 shows winning prob-
abilities (P), payoffs (V), and expected values (EV) for the three choice
alternaﬁives W, L, and S of each of Hommers' 15 stimuli, Stimuli were presented
to Ss in form of index cards showing sets of."winning" and "not winning" balls
in urns, and displaying the amounts to be won in coins. Subjects made their

choice by indicating their favored gamble, which was played thereafter. About

12



half of the Ss in each age and school level had previous experience with
choices on stimulus cards with two choice alternatives, so that there are three

independent variables: school level (normal vs. educable retarded) , ape level,

and prior gambling experience vs, no prior pambling expericnce,

Hommers' data, i.e., frequencles of choices of the alternatives W, L, and
S of the 15 stimuli in the 1k groups, are displayed in Table 4, Hommers' anal-
vsis of these data consisted of chi square comparisons between these figures,
testing various hypotheses about differences in the development of risk vs.
safety orientation and EV maximization between the age groups tested and between
the normal and educable retarted children.

However, since it is assumed that these children follow some probabilistic
choice model, it is feasible to apply a BIL choice model to these data, and
do a likelihood ratio analysis., Three probebilistic choice models derived
from Hommers' hypotheses seem to be naturally applicable in this situation: Ss
are either (1) safety oriented, i.e., focussing on the probability of winning,
and thus should choose the alternatives with probabilities proportional to
their respective winning probabilities, or (2) they are value oriented, and
choose with probabilities proportional to the payoffs, or (3) they are ex-
pected-value oriented, and choose with probabilities proportional to the ex-
pected values of the alternatives, All wins and expected values are positive,
Choice probabilities for the alternatives W, L, and S of each stimulus are
calculated under the assumption of each of these three models, and displayed
in Table 5. In these computations, use has been made of the "auxillary sums"

in the last three columns of Table 3; e.g., in stimulus 1, the sum of the EV

13



Hommers' (1973) stimuli: three-alternative choices among bets

Table 3
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absolute choice frequencies in

Hommer's data:

Table L
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of the three-choice alternatives is 11.0 (= 1.5 + 5,0 + L4,5), and thus, under
assumption of EV orientation, the cholce probabilities of alternatives W, I,
and S are 1,5/11.0 = ,1%6, 5.0/11.0 = ,.455, and 4,5/11.0 = 409, respectively.
For convenience, the choice probabilities have been con#erted into

logarithms in the right half of Table 5. As in the previous examples, we
again assume independence of observations, so that the likelihood of the whole
set of data (observed choice frequencies) or of parts thereof is equal to the
product of choice probabilities under assumption of the various models., In
logarithms, this means multiplying the choice frequencies from Table L4 to the
logarithms of cholce probabilities from Table 5, and then summing up over al-
ternatives and stimuli for each model, The antilog of this sum is the likeli-
hood of the data set ﬁnder the specified hypothesis or model. These 1likeli-
hoods can be compared pairwise between models (but only for the same data set);
however, the resulting likelihood ratios can be compared between data sets,
i.e., between the different experimental groups.

 For some of Hommers' (1973) data, this has been done in Tables 6-9. The
sume in the bottom rows are the logarithms of the likelihoods (probabilities)
of the respective data, assuming that the probabilities of individual choices
are generated by the models named on top of the columns., Of course, they are
all negative; the larger their absolute value, the smaller the probability of
the data under the respective model,

In the order of their likelihoods, we get from the four groups analyzed

‘the foilowing likelihood ratios between pairs of models (see Table 10).

16
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Similar analysis could be performed for other 10 of Hommers' 14 groups
too. We have displayed in the rightmost column of Table 10 the rank order of
models as indicated by the likelihood ratios calculated from the data; al-

though the likelihood ratios themselves differ considerably, it is interesting

to note that 12 year old retarded children show the same rank order of models
as the 8 year old normal children, thus supporting Hommers' hypothesis of
retardation as a shift in development., Also, comparison of the results from
12 year old educable retarded children without gambling experience with those
from their classmates with prior gambling experience unveils a considerable
influence of this experience on choices among gambles,

Besides these anal&ses for individual groups, larger groups can be taken
into consideration, e.g., likelihood ratios between models can be calculated
over all Ss with prior gambling experience, or over all retarded children to
be compared to those calculated over all normal children, etc., Since we used
these data only for illustrative purposes, we need not go into further detail.
Also, we will turn to the problem of interpretation of such analyses later in

this paper
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Seghers, Fryback & Goodmen's Data

The next set of data we are going to use are those of Seghers, Fryback &
Goodman (1973). They presented their Ss sets of 7 gambles, like those

reproduced in Table 11:

Table 11: List #1 as an example

bet # win on L lose on 32 EV Var
1 1.55 1.10 - .806 .683%
2 3.45 1.15 - .6%9 2.088
3 5.30 1.20 - b8 b k69
L 7.15 1.25 - 317 6.96%
5 8.95 1.30 - .162 10.423%
6 10.80 1.35 0 14.567
7 12.65 1.40 + .162 19.479

Wins and losses were determined by means of a roulette wheel which was respun
if 0 or 00 occurred, such that "win on 4" (numbers) means a winning probsbility
of 4/36 =1/9, etec.

Seghers, Fryback & Goodman's lists varied in

(1) expected value (EV),

(2) range of outcomes (A-B),

(3) step size of expectation increase (AEV),

(L) position of the meximal EV bet (OBP),
Dependent Qariables were:

(g) choice of most perferred gamble.

(b) rank orderings of the sets of 7 gambles.
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Although the experimental design looks as though a factorial design AVOVA had
been planned, the data don't permit cuch an analysis. A frequeﬁéy anaiigis
&s suggested by Sutcliffe (1957) would be more appropriate, however, low ex-
pected cell frequencics in Lhe overall contingeney table prohibits such an
analysis,

A Bayesian data analv/sis is suggested as an alternative.

However, since Seghers, Fryback & Goodman assume & deterministic decision
making model, this analysis runs into the problems mentioned before. The
simple probaoilistic choice model used to analyze Hommers' data is no longer
appropriate here since there are negative expectations which are‘not compatible
with a BTL choice model‘based on these expectations as scale values,

Deterministic decision making models predict choice of the optimal gamble
with probability 1, and of all other alternatives with probability O

1 if

€ is optimal
P(choice of gamble gj) =

O else
where "optimal" is defined in the context of the respective decision making
model to be tested, e.g., it would be the maximum EV bet under the expectation
maximization model, or the ideal risk bet under assumption of Coombs Portifolio
Theory. Unfortunately, likelihoods of O or 1 cannot be handled by the Bayesian
data analysis model. Thus, we have to modify these models somehow to get away
from the O-1 likelihoods., There are several ways to do so of which we will
tr& to

(1) keep the deterministic model in principle, but dilute the too peaked

o-1 likelihood function by allowing for some error variance,
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(2) modify the deterministic hypothesis somewhat arbitrarily to smooth

its peak, following an example given by Pitz (1968), who encountered

a similar problem,
(3) abandon the deterministic model completely in favor of some prob-
abilistic choice model (as they have been used for riskless choices

for a long time),

(4) replace the deterministic model by some hybrid of deterministic and

probabilistic components,

We will explore all these possibilities in turn,

(1): Introducing error variance: Our suggestion is to dilute the too
peaked likelihood functions somewhat by allowing for error variance: The di-
luted H1 no longer assumes Ss always pick the maximal EV gamble, but rather

assumes that Ss err sometimes in the sense that they don't choose a certain

gamble although they mean to choose it,

Fortunately, the data by Seghers, Fryback & Goodman provide a way to esti-
mate these error rates: they had their Ss do the task twice, Our suggestion
is to use the observed discrepancies between first and second choice (under
otherwise equal conditions) as estimates of error rates, To do so, the S8
first and second choices of gambles are tallied in 7x7 confusion matrices, sep-
arately for each glven position of optimal EV bet (OBP). A completely con-
sistent §‘should make the same choice on both occasions: 1.e.,, all entries

should be in the main diagonal, and all other cells should be empty. Every
deviation from this diagonal matrix 1is considered an "error," an inconsistency,

a deviation of the S from his pure strategy assumed under the hypothesis of
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expectation maximization, Hl' Assuming that Ss err at both cholces, 1.e.,
both lst}and 2nd choices have a chance to deviate from the Ss' true cholce pre-
dicted by his strategy, we take the average of row and column distribution for
each stimulus as 1ts error distribution.

~ This procedure assumes that, on the 2 days, S at least once chooses his
"jdeal bet" without meking an error, It does not take into account those cases
where S “waﬁts to" select a certain bet but "misses” on both days, This may
lead to an underestimation of error rates. A better way would be to get con-
fuéion probébility estimates from more often repeated choices, in a complete
pair comparison matrix, or from a different task, like the procedure used in
DeSoto & Bosiey (1962) (quoted in Coombs, Dawes & Tversky, 1970, p. 68 ff.).
This cannot be done with these data, but it could be in future experimentsf-

if you want to make the assumption that confusion of memory traces is

representative of confusion in choices.
Now, with this knowledge about S's error probabilities, we can modify the
0-1 distribution under the former pure expectation maximization hypothesis:

1 at maximal EV

We diminish the peak of the distribution (formerly P(D]Hl)

]

bet) by replacing the 1 by the repetition rate (lst choice = 2nd choice) in 1lst
choice/Qnd choice confusion matrix, and by replacing the zeroces by the relative

frequencies with which Ss have chosen the respective gambles "erroneously."

Thus, the EV maximization hypothesis H implies data probabilities of
1

" P(D |Hl) = the repetition probability of the maximal EV bet for
O

the maximal EV bet (D ) chosen
0]
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and

P(Di|Hl) = the probability of choosing D, given § has chosen D_on

i%o

the same trial in the 1lst or 2nd repetition.

‘(; P(DilHi> should be 1 if everything is correct.) Analogous computations can
bz done for other alternative hypotheses, like variance perference, also,
Tables 12 and 13 give examples of such confusion matrices between 1lst and
. 2nd choice: Table 12 are absolute frequencies; Table 5 is the same matrix with
a matrix of ones added to it. (Actually, the entries in Table 12 are averaged
over 2 presentations.)
The rationale for adding these ones to the cells is again a Bayesian one:

we are revising here, in principle, Dirichlet distributions (see, e.g., Novick &

Grizzle, 1965). We start with a uniform (flat) prior distribution

p(1, 1, 1, 1, 1, 1, 1) with all parameters equal to 1, and then add to them the
numbers of observations to obtain the parameters of the posterior distribution
after Bayesian revision. However, summing cell entries from row and column
would assume independence of observations from the two sessions which probably
is not given since we assume that S's choices were influenced by the same pref-
erence structure on both days. Thus, to avoid an overly peaked Dirichlet dis-
tribution, we average over column and row entry rather than adding them up.
Actually, this does not make a difference as long as we calculate only means

and not variances,
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Choice on day 2/choice on day 1

Table 12:
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As an illustration, assuming that gamble #1 is the optimal bet in the Ss'

view (H_ ), and having observed the number of choices displayed in Table 13, we

get:
Table 14

_from row 1 : 117.5 13.5 8.5 3.5 2.5 I 6
from column 1 : 117.5 1L.5 10.5 6 L.5 2 9
sum of both : 235 28 19 9.5 7 6 15
average: ¢ 117.5 14 9.5 .25 3.5 3 7.5
and thus

the choice

probabilities: = .73k .088 .060 .027 .022 .019 .0L7
for gamble # 1 2 3 L 5 6 7

when gamble #1 is the "true choice" assumed by the model.

Some results of such tallies are reproduced in Table 15, assuming various

choice strategies on the side of the Ss. Column 2 displays choice probabilities

under an a priori random-choice null hypothesis (all gambles chosen with equal

probability 1/7 = .143).

Table 15
(1) E(2) (3) (4) (5) (6) (1 (8) (9)  (10)
e Hy: maximize EV: % > M B 5o

0} & o maximal EV is i L 5 o § N § 0
° o o is in gamble — e — = — = — S
5 ot © © © [0}
§=ﬁt Og % ﬁ ..ﬁ ..'f,
& S #1 3 #5 #7 S A A T )

1 143 802 .110 .080 .092 T34 112 127

2 143 .060 .140 .051 040 .088 .818 .05L4 116

3 143 .0%8 566 .058 046 .060 .080

L 143 .031 .0h5 .12k .050 .030 .063 JA17 S .59k

5 143 .019 .024 482 .0Lko .022 .031)

6 143 .018 .0%5 .082 062 .019 .025 .652 .062

7 L1543 .0%2 .060 J117 670 .0L7 .057 .105
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Columns 3 through € are the diluted choice probabilities assuming ex-
pectatiénlnaximization with some errors, calculated in the manner described
above trom confusion matrices between choices in first and second sessions
of Ss but tallied separately for 1ists where gambles 1, 3, 5, and 7 were op-
timgl, respectively,

Column 7 is calculated from the tallies illustrated in Tables 12, 13, and
1k, assuminé that Ss have the strategy of always Picking gamble #1, no matter
what the parameters of the gambles in the list are,

Columné 8 through 10 are choice probabilities calculated under similar
hypotheses, assuming that Ss have preferences for certain regions of the lists
of gambles presented to them, i.e., that they always pick gambles #1-5, or
#5-7, or #3-5, respectively,

With the choice probabilities from Table 15 taken as P(D]Hi), all these
models can be tested against each other by calculating the respective likelihood

ratios. To make the analysis more convenient, all hypotheses could be tested

first against the random-choice null hypothesis (HB). The resulting likeli-
hood ratios against Hg could then be divided by each other to yield likeli-

hood ratios agains each other since

POl) 7 Rlu)  p(dm )
—~_}__ / J _ 1
P(D[H ) yd D[ ) ~ P(DlHj)

However, this is only feasible as far as Hﬁ and Hﬁ are mutually exclusive,

H, H, and H in Table 15 are not since they all assume a strategy to choose
1 2 3

gamble #1,



The choice probabilities assumed under hypotheses H

i

through H5 from Table

15 yield the likelihood ratios reproduced in Table 16 if tested against the

uniform distribution HO.

To use Table 16, we multiply the entries by the prior odds every time the

respective datum comes up; e.g., to test hypothesis Hl against HE, we would

multiply prior odds (i.e., odds so far obtained) by 5.1k if § chooses gamble

#1, and gamble #1 is optimal (maximal EV) in the respective list.

Table 16: Likelihood ratios calculated from Table 15

(1) (2) (3) (1) (5) (6) (7) (8) (9)
Gamble ‘ LRl/O IR IR IR IR

# 1 opt % opt 5 opt T opt 2/0 5/0 h/O 5/0

1 5.61 17 .56 6L 5.14 .78 .89

2 L2 .98 .36 .28 62 1.91 .38 .81

3 27 3.96 L1 .32 ) .56

L .22 L6 .87 .35 .21 NIV .82 1.39

5 .13 17 3.37 .28 .15 .22

6 .13 .25 .57 43 .13 .18 1.19 43

7 .22 L2 .82 L.69 .33 Lo <Th

32



Again, it will be more convenient to do this in terms of logarithms, thus

we have,nin Table 17, the log LRl/O in column 3, and the number of choices for

the respective gamble in column 2,

Table 17
(1) (2) (3) (1) (5)
gamble number of log log log
# choices LRl/O LRQ/O LR&/O
1 3 - .1938 + .T110 - .1079
2 0 - .5528 - .2076 - L4202
2 2 - .Lkolo - 5768 - .2518
L 2 - .b4559 - 6778 - .0862
5 1 - .5528 - .82%9 + .0755
6 1 - %665 - .8861 + .0755
7 15 + 6712 - L4815 + .0755
log IR | +6.6657 - 8.9087 + 2838
IR L.651x100 1/(8.104%100) 1.922

The data in column 2 are the choices made by 12 Ss in 2 sessions among
the gambles of list #l, reproduced in Table 11, where gamble #7 had maximal
EV, such that the logarithms in column 3 of Table 17 are those of the like-
lihood ratios in column 5 or Téble 16. The sum of the products of entries in
columns 2 and 3 of Table 17, the overall log likelihood ratio, is 6.6657, in-
dicating a likelihood ratio of h.651*106 in favor of expectation maximization
(Hl) over ragdom choice (HO).

Columns 4 and 5 show the respective log LR for hypothesis H2 (always pick
gamble #1) over the random choice hypothesis Hg, and for hypothesis Hh (always
pick gamble # 5, 6, or 7) agalinst the random choice hypothesis HO. Resulting

8
likelihood ratios LRO/E = 8,104*10" in favor of Hg (random choice) over H2
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(always pick gamble #1) with these data, and LR = 1,922 in favor of H

L/0o L

(always pick # 5, 6, or 7) over H (random choice),

So far, we have analyzed only the choices among gambles of one list— of
course, 1t is feasible and advisible to do it over the whole set of data from
all lists, simply by summing up the respective log LRl/O over all data for the
&arious hypotheses Hi' Seghers, Fryback & Goodman have done this for each of
their Ss, individually, and we are reproducing their results for one of their
Ss as an example in Table 18. Besides calculating likelihood ratios LRl/O for
" the aforementioned hypotheses H& against the random choice hypothesis Hé over
all (1lists) (column 2), they also did it for specified subsets of lists, e.g.,
lists with high EV (column 2), lists with low EV (column 4), lists with high
EV differences between gambles in the lists (column 5), lists with low EV dif-
ferences (column 6), lists of gambles with large variances (range of bet, i.e.,
|win-loss|) (column 7), and lists of gambles with small variances (column 8).
Thus, it is possible to compare data likelihood, for the various hypotheses Hi
under different stimulus conditions,

This breaking down likelihcod ratio analyses into analyses over mutually
exclusive‘subsets of the whole data set corresponds roughly to what is done to
the sum of squares in analysis of variance (ANOVA), or to the chi square in
analyses of multi-dimensional contingency tables (e.g., see Sut:liffe, 1957):
It shows ﬁow much the respective subsets of data (i.e., data under specific
conditions) contribute to the overall likelihood ratio. To make fair com-
parisons of this kind, we have to take care that these subsets are of equal

size,

3l
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The product of the likelihood ratios LRi/j competing hypotheses Hi’ Hj
from éxhaustive and mutually exclusive subsets of data equals their likellhood
ratio over the whole data set. E.g., in each row of Table 18, the products of
entries in columns 3 and 4, 5 and 6, or 7 and 8 equal each other, and equal the
entry of column 2, except for rounding errors. (This provides, by the way, an
easy means of checking computations.)

The results of such likelihood ratio analyses over the subsets of data
can be used to find out under which conditions which hypotheses are how much
more likély than others, and thus may lead to more specific theories about the
underlying pattern of behavior,

The éoﬁparison of likelihood ratio analysis to more conventional methods
like ANOVA is not always straightforward; the easiest comparable traditional
technique would be a frequency analysis because it deals with the frequencies
of occurrence of events which enter directly the likelihood ratio analysis (as
exponents, )

Seghers, Fryback & Goodman did analyses of variance over the same data we
used for demonstration in Table 18, both terms of absolute deviation of bet
number as dependent variable, and in terms of absolute deviation of bet number
as dependent variable, and in terms of absolute deviation of bet number chosen
from maximal EV bet number in the respective list. Results (for the same S,
and same éession as in Table 18) are shown in Table 19,

Seghers, Fryback & Goodman's lists were constructed in such a way that,
given the maximal EV bet in the list (in positions #1, #3, #5, or #7 of the

1ist = optimal bet position OBP), the adjacent gambles decreased in EV to both
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sides by a step size DEV = difference in expected value, Thus, the dependent
variable "absolute deviation of number bet chosen from number of maximel EV
bet" can be considered a measure of S's deviation from expectation maximation
behavior.,

Whereas such independent variables like "high level of maximal EV in list"
versus "low level of maximal EV in list" (first line in Table 19), large step
size of EV differences in list versus small step size (line 2 in Table 19),
and range of outcomes of gambles (line 3 in Table 19) show no significant dif-
‘ference in the dependent variables, there are some differences between the con-
tributions of the respective subsets of data to the likelihood ratio between
expectatioh maximization and random choice hypotheses in Table 18 (line 1). How-
ever, we have no ﬁeans to compare these two kinds of analyses quantitatively.

Testing the various hypotheses Hi about choice behavior against the random
choice hypothesis Hé is the approach to their evaluation that comes closest to
traditional hypothesis testing. Testing them against the most descriptive
choice probabilities is another possibility these likelihood analyses offer
for which no counterpart exists in traditional statistics,

Comparisons of data likelihoods under the various hypotheses aforementioned
to these (by definition) maximal likelihoods can show how far out hypotheses
Hi deviate from actual behavior. These most descriptive choice probabilities

specify upper bounds for data likelihoods, under the choice hypotheses, as

illustrated in Figure 1,
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L(D) —+ i ] i i

Hy normative models H optimal
description
random choice, uniform p maximum likelihood p
Figure 1

The most descriptive (maximum likelihood) vector of choice probasbilities
for the seven gambles can be obtained for each subject from his choices by
the followlng method: the data—cholces of one out of seven gambles in each
list—arc generated by a multinomial distribution, with choice probabilities
pjifbllowing a Dirichlet distribution., Thus we can assume a flat Dirichlet
distribution D(1, ', 1, 1, 1, 1, 1) as prior, a miltinomial data generating
process yielding Xj choices of gamble gi, and thus leading (via a Bayesian
probabllity distribution revision) to a Dirichlet posterior distribution,

D(x, +1, x, +1, x +1). This Dirichlet

+ 1, X), +1, x. +1, X +1, X

1 2 3 5 7

posterior distribution gives us the probability P(il%) of vector of choice

probabilities (Pl’ Pps Pzs Py Psy Py, P7) = p of gambles g, through &) given
the vector of observed choice frequencies (xl, X2, XB, X),s x5, Xcs x7) = x,
and what we need is that vector 50 for which P(§|§) is maximal over the space

of all possible p. (Note that this space is restricted by Sp, = 1 for each p.)

3 J
We take S #1 of Seghers, Fryback & Goodman, again, as an example, His
(or, rather, her) choices are reproduced in columns 2, 5, 8, and 11 for the

respective OBP conditions, and summed up in column 14 of Table 20. Columns

3, 6, 9, and 12 contain the choice probabilities under the diluted expectation

maximization hypothesis H1 from Table 15, in columns 4, 7, 10, and 13 we find

the corresponding logarithms. The log likelihood for expectation maximization
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calculated from these figures is -49.7932. The $'s most descriptive strat-
egy, computed as outlined in the preceeding paragrapih, is given in column 16,
with the corresponding logarithms in column 17. The log likelihood from
these figures (which is the maximal attainable) is —ﬁh.5125, and the log
likelihood of this S's choices under the random choice hypothesis HO is

b * log 1/7 = -54.00083. The expectation maximization hypothesis (Hl) comes
much closer to the subjects most descriptive strategy (H7) than to the ran-

dom choice strategy (Ho). The respective likelihood ratios are

S ) k
LRY/l = 3.026 * 10 LRl/O = 1.852 * 10

|

and

]

LR 5.604 * 10

7/0

We have so far used the assumption that Ss occasionally deviate from
their ideal choice and make "errors" in their decisions which we could use
to get rid of. the choice probabilities of 0 and 1 assumed by the determi-

nistic normative models of decision making.
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Expectation Preference Model

In discussing Hommers' paper, we have seen that the assumption of prob-
abilistic preference models rather than deterministic choice models is another
feasible way to avoid choice probabilities of O and 1.

For gambles of the form gj = (wj, pj, lj) where Ss wins the payoff Wj
with probability pj and loses lj with probability (l-pj), this model assumes

that Ss choose a gamble gj with probability P(gj) proportional to the relative

utility U(gj) of the gamble gj,

1]

Pleg.)

; U(gj)/§ U(gj),

J

where

U(gj) = EV(gj) = P, + (l-pj)lj

under the expectation preference model. For each choice of g an S makes,

‘ J
P(gj) is the likelihood of this observation to occur under assumption of
this model.

This expectation preference model works fairly well for sets of gambles
where all EVs are positive, as we have seen in the analysis of Hommers' data.
However, it will run into difficulties if the EV of one or more gambles in

the 1list (set of choice alternatives) is negative or zero.

A Thurstonean (rather than Lucean) choice model might help in this case,

Here, choice probabilities are only dependent on differences between utilities

L2



of choice alternatives, and not on their absolute values, Under the
assumptidns of thls model, the probability of choosing one element (i.e., a
gamble) in a pair of alternatives is equal to the integral of the normal dis-
tribution from - ® to the difference in utilities (expected values) of the
respective pair, where the mean of this normal distribution is O, and its
variance is the variance of the utility difference which is the sum of the
variances of the discriminal dispersions of the two elements (gambles) in the
pair, if we assume independence (uncorrelatedness) of these two discriminal
processes, *Application of this model requires estimation of these variances

which can be obtained from repeated choices.

Regret Avoldance Models

A way to apply a Lucean choice model to choices among bets including
gambles with EV < O might be to consider regrets rather than payoffs, Regrets
are obtained from payoffs by reducing them by the maximal amount obtainable
with each given state of world. Regrets calculated by this method are all
negative; they are measures of undesirability rather than desirability. Thus,
it does not make sense to assume cholce probabilities proportional to regrets.
Whet we need is some antitone transformation on the regrets which leads to high
choice probabilities for low regrets, and low choice probabilities for large
regrets., We bropose three simple models for this purpose:

(a) the sum-difference regret model assumes that choice probabilities are

proportional to the deviation of the respective expected regrets from the sum

of all regrets,

L3



P(1) = o
i

where r i1s the expected regret associated with the ith alternative, smallest
regret being O, N=number of alternatives, Model (&) gives choice probabilities
with a rather small variance, i.e., the choice probabilities are not very
éensitive to differences in regrets.

(b) - the reciprocal regret model assumes that choice probabilities are

proportional to the reciprocals of the respective expected regrets,

P(i) = "

L
1w

He M

This leaves P(i) for\ri = 0 undefined., Model (b) leads to stronger deviations
of choice probabilities from a uniform distribution over alternatives to dif-
ferences in regrets, i.e., model (b) is more sensitive, but cannot always be
used because if leaves the choice probability for an expected regret = 0 un-
defined,

(c) the max-difference model assumes that choice probabilities for

alternatives i are proportional to the differences between the respective
expected regrets and the maximal expected regret,

mgx [ri] - Ty

P(1) =
Nmax [r,] -5 r
1 1 i=1 i
This model is more sensitive to differences in expected regrets than model
(a) and leaves no choice probabilities undefined as does model (b), but

leads to a O cholce probability for the maximal expected regret alternative,

This is an undesirable consequence for a BTL choice model but may be quite

Ly



realistic, In the data analysis, it will hurt only if any S picks the maximum
expected'regret camble,

For the example of 1list #1 from Seghers, Fryback & Goodman (see Table 11),
Table 21 shows the respective choice probabilities with these probabilistic
regret avoidance models in columns 8, 11, and 1k, with the corresponding log-
ari£hms in columns 9, 12, and 15, Column 17 displays the choice probabllities
under error-diluted deterministic expectation maximization hypothesis Hl as
given in Table 15, and column 18 of Table 21 contains their logarithms., In
column 19, we have the actual numbers of choices made by S in this 1list of
gambles, for which we calculated the likelihoods under the hypothesis HE
(random choice), Hl (diluted expectation maximation), Hé (reciprocal regret),

H9 (sum-difference regret), and HlO (max-difference regret), Table 22 displays
the pairwise likelihood ratios between these hypotheses,

As we can see, the data are 1067 times more likely under the diluted
deterministic expectation maximization hypothesis Hl than under the most favored
probabilistic regret-avoildance hypothesis Hg. The data likelihood under the
least favored probabilistic regret-avoidance hypothesis H9 is almost as large
as under random choice assumption HO’ LR

9

This indicates that for likelihood ratio analyses of choices among bets

/O = 1,111.

made by adult subjects, error-diluted deterministic expectation maximization
models seem mﬁch more likely than probabilistic preference models, However,
invthe cgse of Hommers' data where no source to estimate the error rate was
aveilable, probabilistic preference models proved quite useful. It should be
‘mentioned that neither of these studies was originally designed for a like-

lihood ratio analysis—if this had been the case, adequate measures would
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have been provided beforehand.

Pitz, 1968 found another way of handling the problem of data probabilities
of O and 1, in another context, but also with data originally not observed
with a likelihood ratio analysis in mind., He tested a (null-) hypothesis HB of
equal probability of two kinds of observations (p = 0.5) against the rather
ﬁnspecific hypothesis Hl of p > 0,5, The data showed that 32 out of L8 S8
gave responses in accordance with Hi. The likelihood ratio for these data would

have been

- 50
- 2D (1 )16

From this equation Pitz determined the value of pl for which the data would

32 ( 16

be equivocal, i.e,, for which L would be one: .5 = p l-pl) =

1

p, = 8. (That means: if Hl meant p > .8, the data would actually favor

Hg rather than Hl.) Pitz's suggestion is to consider H1 as & distribution

g(p) over p rather than a constant pl, such that the likelihood ratio is

L8
2 ’

(1-p)° &(p) ap

1.0 2

H0 P
5

and he proposes several possible distributions g(p), such as a uniform

(rectangular) distribution over [.5, 1.0], a triangular distribution with

g(p) = O for p < .5, and a kind of beta distribution with a rather high

mean, Such an analysis could be done with the Seghers, Fryback & Goodman

data, too.



Conclusion

Now thet we have seen that we can figure likelihood ratios between various
competing hypotheses on given data sets which were not even made for it, what

do we do now?

.For a complete Bayesian data analysis, we would multiply our computed
likelihood ratios to some prior odds for the respective hypotheses, These
prior odds may be more or less public, or may be our very personal belief
states. Methods to elicit and assess such prior distributions have been
introducted and discussed elsewhere (e.g., Winkler, 1967, Stael von Holstein
1970).

For a domplete Bayeéian analysis, we would consider the possible con-
sequences of our decisions between competing hypotheses, in terms of utilities
assessed to the various combinations of our decisions among hypotheses with the
possible "true" states of the world, and use these utilities in connection
with our prior odds to determine cutoffs for the likelihood ratios where to
decide in favor of which hypothesis or model, There are various techniques
available now tor the assessment of utilities to outcomes, even if these out-
comes are characterized by several revelant attributes. These techniques have
been summarized recently by Fischer (1972).

As we have seen in the few examples given in this paper, likelihood ratios
grow rather rapidly with larger amounts of data. Even very biassed prior
odds would be brought very soon lnto the correct range by multiplication to
vhese large likelihood ratios. This indicates that Bayesian analyses might get

along with much smaller sample sizes than traditional statistical data analyses

L9



with their diffuse alternative hypotheses, How much precisely can be econ-
omized on the sample size, will depend in each case on the cutoff determined
by prior odds and costs and payoffs (utilities) involved, as indicated by a
proper decision analysis (see, e.g., Raiffa, 1969). That a careful formulation
of competing hypotheses alone can result in considerable savings on expected

sample size, has been shown by Wald (1947) already.
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