THE UNIVERSITY OF MICHIGAN
COLLEGE OF LITERATURE, SCIENCE, AND THE ARTS

Computer and Communication Sciences Department
Technical Report

A SELF-DESCRIBING AXIOMATIC SYSTEM AS A SUGGESTED
BASIS FOR A CLASS OF ADAPTIVE THEOREM PROVING MACHINES

Thomas H. Westerdale

supported by:

Department of Health, Education, and Welfare
National Institues of Health
Grant No. GM-12236-03
Bethesda, Maryland
and
Office of Naval Research
Contract No. N00014-67-A-0181-0011
Washington, D. C.
and
U. S. Army Research Office (Durham)

Grant No. DA-31-124-AR0-D-483
Durham, North Carolina

administered through:
OFFICE OF RESEARCH ADMINISTRATION ANN ARBOR
March 1969

Distribution of This Document is Unlimited.

ERRATA SHEET

Page 129, Line 12 should read:
We shall now show that for any theorem of Form ® D a, the formula
Page 129, Line 13 should read:
~T(@) is not provable. Suppose ® Do is a theorem. Then we can
-§£§5—129, Line 22 should read:
by rule 18 from theorem ®Da
Page 129, Line 23 should be deleted:
Page 130, After Line 4 Insert:
Let us call an expression anomalous if it contains a subexpression
of form (8,y,8) in which occurs a variable £ such that @ ‘Q @ holds
but £ is not free in (B,Y,d). Such anomalous expressions can never occur
inside theorems. Now if a is a well formed formula which is not an
anomalous expression, then ® D a is provable. Hence we have shown that
for any well formed formula o which is not anomalous,va(<?) is not
provable. It would have been much more natural (and quite easy) to have
originally defined the class of well formed expressions (and of well
formed formulae) so as to exclude anomalous expressions. (We could even
have defined the class of expressions so as to exclude anomalous expressions.)
With such a natural definition, an expression o is well formed if and only

if it occurrs as a subexpression of some theorem; that is, if and only if

d(z,x) (expression(z) A variable(x) A x €z A type(x)=

exprtype(<>) ~ T(Sf(X,§>,Z)))

holds. This is what is usually meant by a well formed expression.
Page 130, After the Last Line Insert:

If anom is a predicate expression such that anom(c) holds if and

ErrataSheet (Cont.)

and only if o names an anomalous expression, then T(x)D ~anom(x) 1is
provable by a tedious proof which, in outline, is something like the proof
of T(x) D F(x). Thus if o is an anomalous expression,—dr(qy) is provable
by the same argument as above.

Page 214, Delete Lines 16, 17, 18, and 19.

PREFACE

Throughout the original manuscript colored symbols were used to repre-
sent quoted symbols. Use of colored symbols permits a more intuitive and
economical abbreviation scheme than does the use of quotation marks. The
abbreviations discussed in Section 2.1.2.6 would be confusing if quotation
marks were used in place of color. In this particular copy it has been
impossible (for typographical reasons) to use colored symbols. We have
therefore employed the following convention:

Symbols blue in the original manuscript are here surrounded by a

balloon (;) .

Symbols red in the original manuscript are here surrounded by a double

balloon Q

Symbols green in the original manuscript are here surrounded by a
triple balloon .

The text has not been changed in this copy. Therefore symbols inside the
double balloons are referred to as red symbols, etc. The reader may wish
to clarify some of the more complicated formulae (particularly those in
Section 2.2.2.) by writing them out in the original color notation.

The description of our axiomatic system begins in Section 2.1.2.
Section 2.1.1. describes the relationship of our axiomatic system to formal
arithmetic. Section 2.1.1. does give an intuitive overview of the system,
but some of the arguments there are more complete than is required for
such an overview. The reader may wish on the first reading to skip the
more tedious portions of Section 2.1.1., particularly the more tedious
portions of 2.1.1.9. Evidence for claims made in Section 2.1.1. is fre-
quently given in footnotes. Use has been made, in these notes, of notation

explained in Section 2.1.2, so the reader should not be surprised to find

ii

certain portions of these notes unintelligible until after he has read
Section 2.1.2.

The conclusion of Section 2.2.1 is that our axiomatic system is con-
sistent. The reader is assured that this fact, the consistency of our
system, 1s the only thing from Section 2.2.1 that is used in the other
sections. The reader who does not wish to read the somewhat tedious
Section 2.2.1, and who can believe that the system is consistent, may pro-
ceed to the short Section 2.2.2 (where other logical properties of the sys-
tem are concisely developed) without fear that he has missed something that
will be referred to later.

It should also be noted that the reader who has read no more than
Section 1 will be able to understand (though perhaps not believe) much of

the conclusion of section 3.8 .

The present work 1S an outgrowth of certain investigations in the
theory of Adaptive Systems as developed by Professor John H. Holland.
The approach used here is the approach which Professor Holland has developed
for more general cases. My original inspiration was Professor Holland's
Iterative Circuit Computer which resembles the memory nets described here
(taking his generators to be my formula nodes). Professor Holland provided
the key to the scheme described in this paper when he suggested that heuris-
tics might be regarded as 'rules of inference with some conditions missing."
The purpose of this work is to provide a scheme which allows the theory to
be applied in a theorem proving environment.

I would like to thank each member of my doctoral committee for his
guidance and aid.

Professor Peter G. Hinman guided me through logical arguments required

1ii

in Section 2.2, the section which presents the major results of this work.
It was necessary for Professor Hinman to give me a course in Logic, suggest
various approaches to my problem, and demolishmany of my arguments before
the arguments presented in Section 2.2 could be completed.

Professor Arthur W. Burks showed me the necessity of making the argu-
ments given in Section 2.2. For example, he pointed out that if statement
(B) Section 2.2.2 holds, my system is inconsistent. Since I thought at that
time that Statement (B) held, I realized my argument was full of holes.

Professor Bruce W. Arden and Professor Bernard A. Galler aided me in
the implementation aspects of this project. They pointed out areas of diffi-
culty which, with my limited programming experience, I might otherwise
have missed. I was, for example, entirely oblivious of the difficulties
discussed in Section 3.3.5 until I was forced to think in detail about
storage methods.

I would like to express my gratitude for the privilege of working with
the members of the Logic of Computers Group at The University of Michigan.

I would like to thank the members of the Group and of the Computer and
Communication Sciences Department for providing a stimulating environment,
for asking many helpful questions, and for making many helpful suggestions.

I am especially indebted to the late Professor Gordon Peterson for shield-
ing me from the sort of strict calendaring of courses and exams which stifles
a person's education. His advice in matters both academic and bureaucratic
was extremely helpful.

I would like to thank my instructors and fellow students of The
University of Michigan Department of Botany for giving me the understanding

of biological processes that is important for Adaptive Systems study.

iv

I would like especially to thank Professor K. L. Jones of The University
of Michigan Botany Department who was a constant source of inspiration during

the nine years he guided my education as my instructor and counselor.

This work was supported by the National Institutes of Health,

the Army Research office, and the Office of Naval Research.

TABLE OF CONTENTS

PREFACE ii
LIST OF FIGURES ix
1. INTRODUCTION 1
1.1 Purpose of the Paper 1
1.2 The Difficulty in Making '"'Small" Enough Changes 2
1.3 Our Approach: The Meta and Object Level 3
1.4 The Machine's Environment 6
1.5 Organization of the Machine's Memory, an Example 7
1.6 The Effector Acting Upon the Memory Net 13
1.6.1 Principles of Effector Action 13
1.6.2 Use of the Heuristics that are in the Net: an Example 14
1.6.3 Refining a Proof 17
1.6.3.1 The General Scheme--refineproof 17
1.6.3.2 prove--and the Problem of Loose Ends 20
1.6.4 Saving Examples of Derivations Employing Heuristics 22
1.7 Generation of Heuristics 26
1.8 Questions Beyond the Scope of the Paper 28
2. THE FORMAL SYSTEM 30
2.1 Basic Structure of the System 30
2.1.1 Overview of System 30
2.1.1.1 Plan of Discussion 30
2.1.1.2 Pertinent Properties of Formal Arithmetic 32
2.1.1.3 Addition of 1 (representability of individual
functions) 36
2.1.1.4 Addition of X (ordinary-names of functions
and relations) 38
2.1.1.5 Addition of label, cond, and pcond
(algorithmic-names of functions and relations) 38
2.1.1.6 Elimination of + and - 43
2.1.1.7 An Operation on S-expressions: Addition of *
and nil 44

2.1.1.8 Addition of Pv, Iv, Pfvb, Ifvb, newpv, newiv,
newpfvb, and newifvb; subtraction of tv, I,

Pf, and If 46
2.1.1.9 Elimination of S and @ and addition of qu 49
2.1.1.10 Our Axiom Set 55
2.1.2 Expressions and Their Abbreviation 57
2.1.2.1 Motivation for Abbreviation 57
2.1.2.2 Definitions of Classes of Expressions of
our Language 58
2.1.2.3 Format for Abbreviation Rules 63
2.1.2.4 Abbreviations of a Single Color with no
'"Defined" Symbols (the first 12 rules) 63
2.1.2.5 "Defined" Symbols (Rule 13) 67
2.1.2.6 Abbreviations using Colored Symbols (Rules 14-17) 69
2.1.2.7 Comma vs. Dot Notation 73
2.1.2.8 Reading the Expressions in the Tables and Text 73

vi

2.

2

TABLE OF CONTENTS (Cont.)

11 Fcrmedness
Axiomatic System
.4.1 Certain Functions and Relations
.4.2 The Meta Level
.4.3 The Axioms (Table 4)
.4.4 The Rules of Inference (Table 5)
.4.5 Proofs and Theorems
.1.4.6 Summary
Formal Arguments
2.2.1 Consistency
2.2.1.1 Generation of Function Expressions
2.2.1.2 Preservation of Consistency while Making
Identifications between Object and Meta
Levels. (Completion of Consistency Argument)
2.2.2 Incompleteness

= e O

IMPLEMENTATION
3.1 Purpose of Section 3

3.2 Characterization of the Subclass of Machines
3.3 Structure of Memory
3.3.1 Basic Plan of the Memory Net
3.3.2 Some LISP Functions on Bug Values
3.3.3 Condition on Derivation Nodes (Rules and Heuristics)
3.3.4 Net Changing Functions
3.3.5 Storage of Memory Nets-Difficulties
3.3.6 Patching
3.3.7 Tagging and Garbage Collection
3.4 Other Functions which Change Net Structure
3.4.1 Kinds of Functions to be Discussed
3.4.2 Searching
3.4.3 Functions on Two Nets
3.5 LISP Structure of the Effector
3.6 Refining a Proof
3.6.1 The Task of refineproof
3.6.2 The Use of T-tags and H-tags
3.6.3 The Task of prove
3.6.4 Example: A Heuristic which is a Composition of
Two Rules
3.6.5 Less Trivial Situations
3.6.6 parametertreegenerate
3.6.7 Suppose the Model Fails at Some Point
3.7 General Considerations
3.8 Conclusion: Discussion of Adaptation
3.9 Postscript: Other Object Theories
TABLES

4.1 Table 1. Alphabet

4.2 Table

[\

. Basic Recursive Functions

4.3 Table 3. Defined Complete, Recursive Functions of a

General Nature

4.4 Table 4. Axioms

vii

77
80
80
86
91
93
96
97
98
98
98

120
126

131
131
132
133
133
136
139
142
145
148
150
151
151
152
154
158
158
158
160
161

162
167
168
171
173
174
179

187
187
188

190
196

8.

4.5 Table
4.6 Table 6
4.7 Table 7
4.8 Table
4,9 Table 9
4.10 Table 1
4.10.1
4,10.2
4.10.3
4.10.4
4.10.5
4.10.6
4.10.7
4.10.8
4.10.9
4.11 Table 1
REFERENCES

TABLE OF CONTENTS (Cont.)

Rules of Inference

. Defined Complete, Recursive Functions of a
Specific Nature
. Definition of T and Immediate Consequences

Non-Recursive Definitions Especially Useful for

Meta-Theorems. Some Immediate Consequences
Definitions for Handling Recursive Functions; apl

0. Examples
1.
2.

Example
Example

Example
Example
Example
Example
Example

Example
Example

3.

4.

5.

Reflexivity and Transitivity of =

Proof of ~atom(x) = a(x)*d(x) (basic
theorem for a and d)

Some More Theorems about a and d; an
Alternative Induction Axiom

Course of Values Induction (and a
Corollary)

Generation of some Labeled Functions, e.g.,
maplist

6. The Predecessor Function
7.

8. T(x) 2 F(x)

9.

The p Schema

Sketch of Proof of T(x) D T(apl(x))

1. Implementation Routines--Effector Algorithms Used
in Section 3

4.11.1 Basic Functions and Notation

4.11.2 Routines which Return a Bug Value

4.11.3 Routines which Return a Bug Value Paired with a

Sequence of Pairs

viii

199

203
210

211
215
218
218

218
221
222
224
234
236
237
238
242
242
244
247

252

Figure
Figure
Figure
Figure
Figure

Figure
Figure
Figure
Figure
Figure

Figure
Figure
Figure
Figure
Figure

Figure
Figure
Figure
Figure
Figure
Figure

(S S N

= O o0 JO

12
13
14
15

NSS1
NSS2
NSS3
NSS4
NSS5
NSS6

LIST OF FIGURES

ix

10
11
12
16

23
24
25
143
144

148
160
164
165
170

182
182
183
183
184
184

1. INTRODUCTION

1.1 Purpose of the Paper

The overall goal of this paper is to argue for the thesis that we can
arrive at a more general approach to adaptive theorem proving if we first
formulate an axiomatic theory which relates structure of computer programs
to their performance. A major part of the argument will consist in exhibit-
ing an axiomatic theory which possesses the required features.

Until now, adaptation in theorem proving machines has been rather limited.
For example, Newell, Shaw, and Simon's General Problem Solver has a fixed
set of heuristics (i.e., tests to see which strategy is to be followed)
which are employed successively to construct a proof. The machine can
adapt by changing the probabilities with which the various heuristics are
employed, but the set of heuristics it may use remains the same set that
the programmer put into the machine. It has no capacity (or, in later
models, very limited capacity) to generate new heuristics.

In this paper we shall show how an axiomatic theory relating struc-
ture of computer programs to their performance can be used as the core
of an adaptive theorem prover which has a general capability of genera-
ting new heuristics. First we shall design a language suitable for
talking about computer (LISP) programs. We shall then construct a set
of axioms and rules of inference such that the theorems of this axiomatic
system have natural interpretations as statements about LISP programs.

In these theorems, LISP programs appear as long expressions which

behave syntactically as names of partial recursive functions.

Let us write ¢, 6, and y as abbreviations for whole LISP pro-

grams. Then ¢(a) stands for the output of the program ¢ when

-2-

given the input a, just as in normal functional notation. For

example, if (6(x) = P) D (¢(x) = P(x)) is a theorem, then the

statement "¢ and ¢ give identical outputs for identical inputs

as long as 6 gives output zero for those inputs'" will be a true

statement.

‘These statements include statements relating the structure of LISP programs
to their performance. Finally we shall discuss one method by which this
axiomatic system may be implemented as the core of an adaptive theorem
proving machine.

The main section of this paper will be devoted to a formal description
of the axiomatic system. We shall not go into this formalism in the
introduction. We simply mention that the system is as powerful as formal
arithmetic. In the main section we shall show how the axiomatic system
may be derived from formal arithmetic by a series of consistency-preserv-
ing transformations. In addition to showing consistency of the system, we
shall give a Godel-type proof of incompleteness. Following the main section
will be a section explaining how the system might be implemented as the
core of an adaptive theorem prover. The remainder of this introduction
will outline some of the significant characteristics of the sort of

adaptive theorem prover we have in mind.

1.2 The Difficulty in Making "Small' Enough Changes

For a machine to adapt it must change its structure bit by bit,
checking éfter each small change to see whether the change has been an
improvement or a pejoration. A radical change is almost always pointless.

But what does it mean to make a small change in structure, as opposed
to a radical change? In Friedberg's program‘generating machine [Friedberg,

1958], the "structure' was a computer program written in an assembly language.

-3-
The structure was modified by changing various instructions. The performance
before the change was then compared with the performance after the change.

A '"small" change for Friedberg meant a change of only one or two instructions
(as opposed to a change of many instructions). Such a definition of '"small"
is meaningless since his "small" structural changes tended to produce radical
performance changes. What is needed is a theory of structural change which
predicts which types of changes will produce "small" performance changes

and which ones '"large' performance changes. As yet no adaptive machines

have employed any such theory.

Of course the relationship between structural changes in programs and
concomitant performance changes is much too complicated to be represented
as a relationship between "magnitude'" of the change.

McCarthy has attacked this problem in the following manner. He has
first developed a programming language (LISP 1.5) which lends itself to
analysis of this sort. A LISP program is a symbolic representation of a
partial recursive function. The "data' or "inputs'" to the program are names
for the function's arguments. The name of the value of the function for
those arguments is the '"output'. McCarthy has then developed a theory
which tells how to set up certain algorithms which, when applied to the
function representations, tell us, among other things, over what sets two
functions are identical. However, he gives no usable mechanical procedure
for generating the various algorithms. (The set of algorithms we want is
not a recursive set. In our system the set is defined by a generation

procedure discussed in Section 2.2.1.1)

1.3 Our Approach: The Meta and Object Level

Our approach will be more general. We design an axiomatic system, S, the
theorems of which have natural interpretations as statements about LISP pro-

grams. These theorems, once proved, can be used in modifying LISP programs in any

-4-
desired way. (Actually we use a modified LISP, modified in several essential
ways.) A machine can use these theorems as a basis on which to make adaptive
changes. We shall argue that there exist useful theorem proving machines which
make adaptive changes on the basis of these theorems. We shall do this by
describing such a machine in sufficient detail to demonstrate its character-
‘istic properties.

This machine will make two kinds of adaptive changes. First, it will
generate new appropriate heuristics. Second, it will change the probabilities
with which the various heuristics are employed. It is chiefly in the ability
to generate new heuristics that this machine differs from such machines
as the Newell, Shaw, and Simon General Problem Solver. We shall, in this
section (Sec. 1.3), describe in a general way the method by which new
heuristics are generated. Later in the introduction we shall discuss in
some detail how our machine changes the probabilities with which the various
heuristics are employed.

Our machine will be making the adaptive changes in a theorem proving
environment. An essential part of the machine will be a set of axioms
and rules of inference for the system in which we wish the theorems proved.
(The machine will prove theorems in a manner similar to that of Newell, Shaw,
and Simon's General Problem Solver.) Let us call this the object system, and
let us call the language in which the theorems are written the object lan-
guage. The axioms are written in the object language. The rules of inference
are like little LISP programs, each representing a function which maps theorems
to theorems. The rules of inference are written in a LISP-like meta language.

In addition, our machine will need other expressions written in the
meta language. It will need expressions which look like rules of inference,
but which are only sometimes valid. These we call heuristics. They will

be associated with rules of inference in such a way that the successful

-5-
application of a heuristic will imply, for example, that one of a particular
set of rules of inference is likely to be successful. A heuristic is a
quick check to see whether a strategy is a good one. (The machine will,
of course, assign weights to various heuristics according to past suc-
cess.) A well-adapted machine will have a well-organized hierarchy of
heuristics which classify rules of inference into useful overlapping
classes. We will see more complicated uses of heuristics later. (We will
also see how Newell, Shaw, and Simon's heuristics can be written in our
notation.) Some of the simpler heuristics may be thought of as merely
rules of inference with some of the required conditions missing. The
situation is not always so simple, but there will always be some useful
relationship between the performance of the heuristic and the performance
of the rules of inference to which it is related. Now if our machine only
had a good set of statements relating structure of LISP programs to per-
formance, it could generate new heuristics directly from the rules of
inference by making indicated structural changes. (It could also generate
new rules of inference from old rules of inference, and new heuristics from
old heuristics.)

Suppose now that the object system is the system S whose theorems
have natural interpretations as statements about LISP programs. (Some
of these statements relate structure of LISP programs to their performance.)
Then as our theorem proving machine worked, it would produce these state-
ments which would tell how to modify our rules of inference and heuristics
to attempt to improve the performance of our machine. In fact, we can
even write rules of inference in a format such that they themselves become
theorems of the system S. They will be theorems whose natural inter-
pretations are statements of a form something like, '"If such and such is

a theorem, then so and so is a theorem." In fact we shall see later that

-6-
heuristics may be written in a similar format so that they become formulae
(but not theorems) of S which have a form similar to the form of rules of
inference. Thus the theorems of the object system (now the system, S),
the rules of inference, and the heuristics are all written in the same
language, the object language of the system, S. The language of our meta
‘and object levels is identical. We will see how this identification of meta
and object level is exactly the same as the well-known identification made
in formal arithmetic by means of Godel numbering. In our system, however,

we have theorems which are statements about practical computer programs.

1.4 The Machine's Environment

Likening the machine to, say, a mathematics professor's graduate
assistant,one sees that the environment of the machine is not merely the
mathematical system in which the theorems are to be proved, but includes
also the value placed on theorems and completed proofs by the professor
(or, in the machine's case, the user) and the ordering of the problem
sequence presented. This is important, for it means that the machine,
in adapting to take advantage of regularities in its environment, can
take advantage of regularities both in the mathematical system itself and
in the mind of the user. Any machine not taking advantage of this second
class of regularities is ignoring vital information and may stand little
chance of learning. (This point was missed by Amarel [Amarel 1962],
whose machine may have been taking advantage of regularity in the user's
mind rathér than, as Amarel claims, regularity in the mathematical system.)
The graduate assistant takes advantage of such regularity in the professor's
mind when he produces 'elegant'" proofs rather than tedious ones, and when

he becomes proficient in techniques for proving important theorems, ignoring

-7-
whole classes of trivial unapplicable theorems. ("Elegance' and 'impor-
tance' are concepts in the professor's mind, not in the mathematical sys-
tem.) The student takes advantage of such regularity when he looks first

at most recent lessons in his search for theorems to use in homework
problems. (It will not be absolutely necessary that the user use programmed
learning techniques in developing machine competence in the environment in
question, but it may frequently be advisable. Similarly for the professor
developing student competence.) One consequence of the above point of

view is that the sequence of problems and the rewards given are ultimately
determined by the user.

Thus in a vague sense the environment will be a sequence of 'to prove'
problems presented by the user together with the rewards given by the user
for the completed proofs produced by the machine. The environment will
be more regular and the machine's task simpler accordingly as the user

grades the problems in difficulty and makes them interrelated.

1.5 Organization of the Machine's Memory, an Example

We seek a machine "intelligent'" enough to operate in this environment.
Our approach is to construct a machine which attacks problems somewhat
the way humans attack them.

This approach presupposes some knowledge of human thinking. Our

knowledge is obviously meager, but I have found Polya's How to Solve It

[Polya 1945] an invaluable aid. His suggestions are illuminating:
'""Do you know a related problem? ... Here is a problem related
to yours and solved before. ... Could you use its result?
Could you use its method?"
The human is here taking advantage of the very regularities in the environ-

ment we have been mentioning. Our machine must then be prepared to

-8-

remember both results and methods of problems solved (together with their
values, determined by rewards given by the user) and to find similarities
between them.

One way to do this is to remember all previous proofs (proofs which
accumulate little reward are, of course, actually thrown away later) and
‘the rules of inference used at each step. Our machine must also remember
which heuristics were used to arrive at the proof, but let us ignore this
for the moment. Since each line of the proof is a theorem, the machine
need only remember, for each of these theorems, the rule used to derive
the theorem, the theorems to which the rule was applied, and certain param-
eter values the purpose of which we shall make clear below. In other
words, for each theqrem, the machine remembers its immediate derivation.

We now give an example of such an immediate derivation and indi-
cate how it is remembered inside the machine. In this example, for
simplicity, the theorems and parameter values will be written in the
language of propositional calculus, and the ruleswill be written in
English. (In our machine both theorems and rules are written in the
object language of the system, S, but we shall not discuss that formalism
here.)

THEOREMS

Thm. p>o>@op)) > (29D (P 2p))

[
X

Thm. 2: p D (q D p)

Thm. 3: (p Dq) D (p Dp)
Thm. 4: (p D (q Dp)) D (p Op)
Thm. 5: p Dp

RULES

Rule 1: (Modus ponens) If o and B are well-formed formulae of the

-9-
propositional calculus, and if both a D 8 and a are theorems,
then B is a theorem.

Rule 2: (Substitution) If o is a theorem of the propositional calculus,
B is a propositional variable, and Yy is a well-formed formula
of the propositional calculus, then the formula resulting from
uniform substitution of y for B in a is a theorem.

PARAMETER VALUES
Value 1: q
Value 2: q>Op
Now suppose Theorem 4 was derived directly from Theorem 3 by Rule
2. For Rule 2 to have been properly applied in this case, the parameters
a, B, and Y in the statement of the rule must have had values (pD q) D (popP)>
q , and q Dp respectively. The machine stores this infor-

mation in the following net-like structure.

P
Thm. 3 F;>

Thm, 3

. P
Rule 2

/‘ 4 Val. 1

) P o

Figure 1.

-10-
The circle is called a derivation node. The rectangles are called formula
nodes. The dots are called antecedent nodes (the left one) or parameter
value nodes (the right one). The triangles are called flags. Flags with
a T on them (called tag-type flags) fly from all formula nodes whose con-
tents are already-proved theorems or legitimate rules of inference. The

‘antecedent node is connected to the theorem or theorems to which the rule
was applied. The parameter value node is connected to the values (three of
them in this case) for the parameters in the statement of the rule. The
lines connecting the parameter node to the values have flags (called param-
eter-type flags) which indicate which value goes with which parameter.

The presence of these flags indicates that the parameter value node is
indeed a parameter value node and not an antecedent node.

Similarly, suppose Theorem 3 was derived directly from Theorems 1

and 2 by Rule 1; then the machine stores

Rule 1 F

Thm. 3

Figure 2.

-11-
Note: The values for parameters o and 8 in Rule 1 are respectively the
formula which is Theorem 2 and the formula which is Theorem 3.
Similarly, suppose Theorem 5 was derived directly from Theorems 4

and 2 by Rule 1; then the machine stores

N
o .

Thm. 2

Rule 1

}> Thm. 5
v
Thm. 5

Figure 3.

Of course if the machine wants to store all three derivations it
can economize on space by not repeating identical nodes as we have above.
By sﬁch economy the resulting net becomes as in Figure 4.

The machine stores all such derivations together in one interconnected
net called the memory net. This net will contain all the axioms,rules,

previously proved theorems, etc., which the machine wants to remember.

>

Rule 1

Thm.

Value 1

Value 2

Figure 4.

Thm. 2

A portion of a memory net.
Nodes shown here may have
additional connections (not
shown) to each other and

to other parts of the net.

-13-

To construct a new derivation the machine must select the proper rule,
theorems, and parameter values from the nodes already in the memory net,
then construct arrows and nodes connecting these in order that the desired
derivation is included in the net. In one sense, then, the memory net

may be regarded as a passive part of the machine which is acted upon by
the active part of the machine called the effector. The effector performs
the searches for the proper rules, theorems, and parameter values, and

performs the construction operations which alter the structure of the net.

1.6 The Effector Acting Upon the Memory Net

1.6.1 Principles of Effector Action. A major problem, for the effec-

tor, is finding the proper nodes to connect in order to derive the desired
theorems. (Eg. in Fig. 4, to derive Thm. 4, the effector must find nodes
containing Rule 2, Thm. 3, Value 1, and Value 2.) We will describe a
class of possible search and connection algorithms in some more detail in
the implementation section. For now we will merely mention some princi-
ples which guide the search technique.

The first principle is that the nodes the effector needs to connect
will probably already be fairly close together in the net. Thus if the
effector has found a node which it suspects is one of the nodes it wants,
it looks nearby to find the other nodes and then checks to see if the proper
connections can be made. What do we mean by nearby? In addition to the
tag-type flags and parameter-type flags mentioned earlier, there are various
sorts of value-type flags (not shown in the preceeding figures) attached
to nodes and lines between nodes. These flags contain numbers which are
used by the effector in searching and constructing. One such flag on a

line connecting two nodes gives a measure of the 'distance' between the two.

-14-

"Distance'" between two nodes not directly connected can be determined from
the distance between successive nodes along a path connecting the two.

The effector conducts several different sorts of searches. For each sort
of search there is a different kind of value-type flag and hence a dif-
ferent '"distance' measure over the net.

The second principle is that the effector tends to look first at nodes
which have been useful in making constructions in the past. Value-type
flags attached to nodes tell the "worth" of the node, i.e., they tell
how useful the node has been in the past. In addition to being useful
in searches, these flags tell the effector which nodes may be forgotten
when the machine runs short on storage space.

The effector continually up-dates value-type flags to 'reward" the
nodes which are useful (by raising the number on the value-type flag
attached to the node) and bring "closer together' groups of nodes which
have been useful in combination with one another (by changing the numbers
on the value-type flags attached to the lines on paths connecting the nodes
to one another). Of course the act of completing the desired constructions
provides new lines which can have flags whose values, in effect, draw
together the nodes involved in the constructions.

By construction of new nodes a useful corpus of theorems is built up;
and by change of numbers on value-type flags a certain amount of adaptation
takes place.

1.6.2 Use of the Heuristics that are in the Net: An Example. A

search for the nodes required for a complicated derivation would be hope-
less if each possible combination of nearby previously rewarded nodes had
to be individually and completely tested until a combination was found

that worked. The effector needs a way to quickly reject, at least pro-

-15-
visionally, whole classes of possible combinations. Through the use of
heuristics the effector can sometimes provisionally reject a combination
of nodes quickly after examining only a few of the nodes, thus simultaneously
rejecting all other combinations which use those few nodes.

Consider a simple example: Suppose the net is constructed as in
Figure 4, except that the nodes below the broken line have not been con-
structed. Suppose that the effector wants to prove Theorem 5 and suspects
that Rule 1 is the rule it wants to use. Now it is looking for two
theorems to apply the rule to, and two parameter values. Its search will

be simpler if Heuristic 1 (see below) is near Rule 1 in the net.

Heuristic 1: If y is a theorem of the propositional calculus with Das
its major connective and B as its consequent, then g is a theorem.
(Note that this is related to and "simpler" than Rule 1.) It is

easier to apply Heuristic 1 than it is to apply Rule 1, because one need

only look for one theorem, not two.

In Figure 5, the solid lines indicate the derivation of Theorem 5
via Heuristic 1. Note that heuristics may be told from real rules of
inference by the fact that their tag-type flags have an H instead of a T
on them. Also, Theorem 5 has an H on its flag because it was derived
via a heuristic, rather than via a rule of inference, and hence there
is no guarantee that it is indeed a theorem. It is essential to remember
that Heuristic 1 is near Rule 1 in the net but far from Rule 2. (This is
indicated by the dotted arrow in the figure.) (In more complicated cases
there is a whole class of rules close to Heuristic 1 and we must try them
all until we find one that works.) Thus the construction of the solid line

derivation node has moved Theorem 4 and Theorem 5 closer to Rule 1, which

-16-

Hrstc.1

short distance

....... * ° s s e 4 0 0 4 e o8 2 0 40 e B4 . s e e e b

Figure 5.

is just what is needed to help the search for the proper nodes to permit
the application for Rule 1. (The larger the net, the more important this
moving becomes.) Thus the only really difficult search remaining is the
search for Theorem 2.

With each theorem examined in this search, the effector attempts to
apply Rule 1 to it and to Theorem 4 so as to yield Theorem 5. Of course,
there are several ways this application can be made (depending on parameter
value choices etc.), but this problem is small compared to the problem of
finding Theorem 2 somewhere in the net. When finally the effector finds

that Theorem 4 and Theorem 2 satisfy the conditions required by Rule 1,

-17-

then the broken line derivation node in Figure 5 is constructed and the T flag
is added to the node containing Theorem 5 because Theorem 5 has now been
legitimately proved via a real rule of inference.

Thus the search for the proper pair of theorems has been broken into
two stages. Instead of checking each pair (u,v) of theorems in the net,
the effector first searches for the proper up, until it finds one that satis-
fies the heuristic. When such a p is found, a construction is made which
moves it close to the rule to be used. Then when the effector searches for
a (u,v) which satisfies the rule, it is almost certain to pick the y which
has been moved, thus effectively rejecting all pairs using a different y.
Of course there is no guarantee that the effector has moved the right y.
(The idea behind heuristics is only that they help the effector make
good guesses.) In the example above the effector wanted Theorem 4 to be
U, but Theorem 3 would have satisfied the heuristic just as well. In that
case Theorem 3 would have been moved, the effector would have gone on
a wild goose chase, and eventually given up and returned to the heuristic
to look for something which worked better than Theorem 3. Thus the effec-
tor might have picked Theorem 3 by mistake, but at least it would
not have picked Theorem 1 or Theorem 2 because they do not satisfy the
heuristic. Thus in using the heuristic the effector provisionally rejects

all (u,v) combinations in which y is either Theorem 1 or Theorem 2.

1.6.3 Refining a Proof.

1.6.3.1 The General Scheme--refineproof. We have just seen

a simple example of replacing an illegitimate "proof' which employs a
heuristic with a legitimate proof which employs a rule of inference.
The proof employing the heuristic is really a sort of proof '"outline",

and the replacement process is called refining the proof.

-18-

The basic job of the effector is the job of refining proofs. A
proof outline, the steps of which are steps using heuristics, is gradually
refined until we have a completed legitimate proof using only rules of
inference. The above discussion has given a simple example of this process
of refining a proof, where the part of the proof being refined was only
‘one step long. More interesting examples will be given in the implementa-
tion section.

In more complicated examples the effector does not replace the heu-
ristic step directly with a rule of inference step, but rather with
another heuristic step which is more detailed. This is replaced by yet
another heuristic step, and then another until finally it is replaced by
a rule of inference. With each replacement, more conditions are checked,
and more of the required nodes are brought in so that at each stage
the effector checks to see that it is on the right track. (If it is not,
it goes back a step and refines differently.)

In the above refining process the single step of the proof ''outline"
becomes a single step of the final proof. In general, however, this will
not be the case. In many cases a stage in the refining process will con-
sist in replacing a single step (i.e., single derivation node) with two
(or, rarely, more) steps (i.e., two derivation nodes). Thus what was at
first a single step in the proof '"outline" can end up as a whole compli-
cated derivation consisting of many steps in the final proof. We will
give some examples in the implementation section. The actual procedure
for constructing a proof is to begin with a one-step proof "outline" and
then refine it stage by stage.

The heart of the effector is a recursively written program called
refineproof, 1Its job is to completely refine a single step of a proof

"outline'. This is how it works. Suppose refineproof is presented with

-19-

a single step of a proof outline. If the step employs a rule of inference
then refineproof is finished. If the step employs a heuristic then refine-
proof tries to replace this step with a new, more refined step or steps as
discussed above. If this is successful, then refineproof has completed

the first stage in the process of refining the single step. refineproof
then calls itself recursively and applies itself to the new proof step,

or successively to each of the steps if there is more than one. If the
result of these applications is a complete legitimate proof, then refineproof
is finished. If a complete legitimate proof is not the result, then the
first stage in the process of refining the original single step was pro-
bably performed incorrectly. refineproof goes back to the original single
step proof and tries again, this time replacing the single step with a

step (or steps) different from the step (or steps) used in the previous
unsuccessful attempt.

Note that after each stage in the refining process, all pertinent
formulae in the net, while they may not yet be proved, may be said to be
"semi-proved" in the sense that the node in which they stand is at the end
of a proof "outline" the steps of which may employ heuristics as well as
rules of inference.

The procedure, then, for constructing a proof is to begin with a
one step proof "outline'" and simply present this step to refineproof.

It matters very little what the original one-step proof outline is; it is
the connections between the heuristic used and the other heuristics and
rules in the net that governs the effectiveness of the refineproof pro-
cedure and hence the usefulness of the heuristic used. The following
heuristic is as good as any for use in a one-step proof outline which is

to be refined.

Heuristic 2: If a is a well-formed formula of the propositional calculus,

-20-

then « is a theoremn.

1.6.3.2 prove--and the Problem of Loose Ends. Consider a

situation in which refineproof is faced with the problem of replacing a
single step of a proof outline with two steps (i.e., of replacing one
derivation node with two). For this task it calls on a program called
“prove. Remember that if the heuristics being employed are good ones,
most of the nodes which prove needs in order to construct the new two-step
derivation are nearby. Suppose the step to be replaced was a step which
derived formula a. prove now tries to construct a new and more detailed
proof outline from nearby nodes such that the formula derived is a. In
doing this it builds backwards from a. That is, it tries to build the
"second''step of the new two-step outline first. If it has selected a
prospective rule and parameter values for the second step, it can tell
easily (and recurisvely) what formulae need be attached to the antecedent
node to make the derivation work. (These formulae may not yet be in the
net, but prove can construct them.) prove constructs the required for-
mulae and attaches them to the antecedent node. Now these formulae may
not yet have been proved. In fact, as the net stands, they may not even
be "semi-proved" in the sense discussed above. They are 'loose ends";
they are formulae from which something has been derived but which have
not themselves been derived from anything. prove then tries to construct
a proof outline of each of these in turn.

Whenever a formula at one of these ''loose end" nodes is also present
at a nearby node which is not a "loose end" node, then the solution is
trivial; prove simply merges the two nodes which contain the same for-
mula, and the "loose end" disappears. This solution, however, will not

eliminate all "loose ends'. For example, one which cannot be so eliminated

-21-
contains the formula 8, which 1is supposed to eventually be derived in the
first step of the two-step outline that prove is constructing. prove
tries to construct a derivation of 8 in the same way it constructed the
derivation of a, thus producing a new set of '"loose ends'. If prove is
lucky, these "loose ends'" will all contain formulae present in nearby
nodes which are not '"loose ends'". Then prove gets rid of '"loose ends'" by
merging nodes containing identical formulae, as we discussed above. At
last there are no more ''loose ends'". Then and only then is control returned
to refineproof which tries to further refine each step of the new two-
step outline.

Notice that no attempt is made to refine the second step before the
first step has been constructed and all '"loose ends" have been tied up.
It is important that this not be done. The heuristic used in the second
step is supposed to be testing whether or not the machine is on the right
track. Remember that the formulae at the ''loose ends'" were manufactured
specifically to allow the heuristic to work; thus the most important part
of the test is deciding whether or not the ''loose ends" can be tied up.
If they can not, then any '"successful" job of refining step two will leave
the machine with a derivation which, while it looks fine by itself, is a
derivation that should be rejected since it does not fit into the overall
proof. Furthermore, this derivation is a member of the class of derivations
that the heuristic used in Step 2 was specifically designed to reject.
If the "loose ends' cannot be tied up, prove must reject the Step 2 that
it has constructed and try to construct a different one.

Thus it is important that prove keep careful track of which deriva-
tions still contain "loose ends'" and which do not. For this purpose it

uses the tag-type flags which contain an H. Any node which is part of a

-22-
complete proof "outline'" (with no "loose ends") in the net has an H flag
attached to it. Other nodes do not. For example, no '"loose end" has an
H flag. Thus refineproof only attempts to refine steps in which all nodes
have H flags. After each successful stage in the refining process (even
if refineproof is ultimately on the wrong track) all pertinent formulae

"have H flags.

1.6.4 Saving Examples of Derivations Employing Heuristics. After

a proof outline has been successfully refined to a legitimate proof, the
outline and the partially refined intermediate steps in the refining pro-

cess can be forgotten (i.e., eliminated from the net), but frequently

it is better not to. For one thing, each of those derivation steps helps
connect the heuristic used with the heuristics or rules of inference

used in the more refined version of that derivation step. For example,

in Figure 5, the derivation in solid lines helps make a closer connection, via
Theorem 5, between Heuristic 1 and Rule 1. Thus the successful partner-

ship of Heuristic 1 and Rule 1 is re-enforced by remembering a case in

which the partnership was useful.

There is another reason for saving previously successful proof
"outline' steps: they give information about the exact way in which the
heuristic used is related to the rules which replaced it when the "outline"
was refined.

To see how useful this information can be, consider the example shown
in Figure 5. This example shows some details about a common use of
Heuristic 1 (in fact, practically the only use of this heuristic). A
single-step derivation using Heuristic 1 is usually replaced by a single-
step derivation of the same theorem, this one using Rule 1. Usually the

Heuristic 1 derivation and the Rule 1 derivation are related as follows:

-23-

(A) The parameter value for the parameter B8 is the same in the

two derivations.

(B) The parameter value for vy in the Heuristic 1 derivation is

one of two formula nodes attached to the antecedent node in the

Rule 1 derivation.

(C) The other formula (call it &) node attached to the antecedent

node of the Rule derivation is also the parameter value node for

the parameter o in the Rule 1 derivation. This formula node is, in

general, not part of the Heuristic 1 derivation.

Given any Heuristic 1 derivation, and with the above facts at its dispo-
sal, prove can almost construct directly the Rule 1 derivation to replace
it. The only thing needed is the formula node ¢ for which prove must
search. prove examines the appropriate formula nodes in turn, testing each
one to see whether or not it would make a legitimate £. When it has found
one that would (Theorem 2 in the Figure 5 example) it constructs the appro-
priate derivation. The test of a prospective ¢ will be efficient and dir-
ect if use is made of facts (A), (B), and (C) above.

If prove does not have facts (A), (B), and (C) at its disposal, the
testing of a prospective & will be much more tedious. For each prospec-
tive ¢, the £ will have to be combined in various ways with the formula
nodes in the Heuristic 1 derivation. Without facts (A), (B), and (C),
prove would have to try, in the example of Figure 5, ridiculous combina-

tions such as £

Thm. 4

| Rule 1

Figure 6.
Thm. 5

~-24-
Thm. 4 £

as well as the correct
combination which is

Rule 1

Ve Y

Figure 7.
Thm. 5

If prove has posession of facts (A), (B), and (C), it can limit combina-
tions tested to the one shown in Figure 7.

How does prove obtain these facts? By reference to previously proved
problems in which a Heuristic 1 derivation was replaced. If proof out-
lines and partially refined intermediate steps of previous problems are
retained in the net, then attached to the Heuristic 1 nodes are various
derivation nodes of Heuristic 1 derivations in previous problems. prove
selects one of these. Suppose from some previous problem's proof outline,
it selects a Heuristic 1 derivation of a formula n. Now when that proof
outline was refined, the Heuristic 1 derivation of n was replaced (though
the Heuristic 1 derivation was retained in the net) with a Rule 1 derivation
of n, and this derivation is still in the net. Thus n is surrounded by
exactly the same structure that Theorem 5 is surrounded by in Figure 5.

In doing a new problem, prove simply tries to mimic the structure of this
previous model problem. Thus it automatically restricts its attention to
derivations of the form of Figure 7, because that is the form of the
derivation it is mimicking; that is what worked before. Model problems
successfully mimicked are rewarded so that they become more likely to be
used next time. A large part of the machine's adaptation takes place in

this way.

-25-

Of course such mimicking does not always work, as, for example, when
a heuristic is being tried for the first time. In this case we resort to
simply checking which nodes are near the heuristic, and trying to combine
them as discussed earlier. In any case, it is important that the rule
or rules with which the heuristic is to be replaced be close to the heuris-
tic in the net (since this is how candidates for replacement are selected).
When the mimicking technique works, the very lines which connect the
heuristic with the rule or rules (thus causing them to be close together)
give the relationship between the structure of the heuristic derivations
and the structure of their replacements.

The behavior of prove will be discussed more explicitly in the imple-
mentation section.

Thus the net contains not only completed proofs, but successful partly
refined proof outlines. The role of the heuristics in achieving the solu-

tion is thus preserved.

-26-

1.7 Generation of Heuristics

In Section 1.3 we mentioned that once the machine proves a theorem
which relates structure of LISP programs to their performance, the machine
can often use the theorem to help generate a new heuristic directly from
a rule of inference. The generation of a new heuristic is, in form, much
"~ like the derivation of a new theorem. 1In each case, a derivation node is
added to the memory net, and from it an arrow points to a new formula
node containing the new formula or the new heuristic (written in the
object language of S) as the case may be.

For example, suppose the machine were to generate Heuristic 1 dir-
ectly from Rule 1. The record of the generation would look (in part)
as shown in Figure 8. (In Section 3.8 we shall discuss the nodes not

shown here.) This record looks just like a step in a proof outline, and,

> >

Rule 1

¥ Theorem relating
structure to performance.

Hrstc.1

Figure 8.

in fact, as we shall point out in Section 3.8, that is what it is. (We need the
formalism of Sections 2.1 to 3.7 to see why it is genuinely a step in a proof

outline.)

-27-

Now suppose Heuristic 1 is employed in a step of a proof outline as it was
in the solid line construction of Theorem 5. The effector wishes to replace the
derivation employing Heuristic-1 with a derivation employing a rule, a
rule which is nearby. What rule is nearby? Since Heuristic l has just
been generated and has never been used before, it is not connected to any
rule by means of a sample problem which has been saved in the manner dis-
cussed in Section 1.6.4. Its only close connection to a rule is its
connection to Rule 1 via the derivation shown in Figure 8. This connec-
tion is what was indicated cursorily by the dotted line in Figure 5.
This explains the connection via the dotted line in Figure 5, the connection
that was, in that example, so important to the effector in deciding which
rule to select in trying to replace the heuristic derivation.

The situation we have described is rather typical. When faced with
the problem of replacing a derivation employing a brand new heuristic,
the effector, not having any previous sample problem to look at, will
look at the nearby rule and this will be the rule from which the heuristic
was generated. If our scheme for generating heuristics from rules is

at all reasonable, this is just where the effector should look.

-28-

1.8 Questions Beyond the Scope of the Paper

The implementation section will show the existance of at least one
interesting adaptive theorem proving machine which treats heuristics in
a general way. Thus it will show that the class of such interesting machines
is non-empty. Eventually one would like to discuss performance of members
-of the class in various problem environments (i.e., various sequences
of problems presented, and various rewards given the machine for correct
answers--see Section 1.4.). One would compare the performance of various
machines in representative environments. From this would arise a meaning-
ful classification of environments based on behavior of various machines in
those environments. For any two machines, there will be environments in
which the first adapts more rapidly than the second and others in which
the second adapts more rapidly than the first.

Any measure of adaptability is, then, environment dependent, and any
meaningful classification of environments must depend on adaptability
of various machines when faced with them. Such a theory would allow us to
compare machines with each other. The value of such a theory would be
that it would in fact be a general theory of heuristics. It would allow
us to compare one machine with another on the basis of heuristic generation
methods (structure) and adaptability in various environments (performance).

The question as to whether any machines in the class are interesting
is, of course, a subjective one. An answer would require establishing the
adaptability of a member of the class not in the various categories of
environments we discussed above, but in a large number of sample environ-
ments chosen for their intuitive interest (a characteristic not considered
in the above method of classifying environments). This would have to
wait for the actual construction of the machine which we claim to be

interesting.

-29-

We have taken a small step in this direction. We have shown in the
implementation section that there is a member of our class of machines
which performs as well as Newell, Shaw, and Simon's machine in the environ-
ment used by Newell, Shaw, and Simon. (This is generally recognized to
be an intuitively interesting sample environment.) We have further shown
that it is easy to incorporate into this machine, in a very general way,
the improvements which naturally come to mind. (Many were suggested, but
not all tested, by Newell, Shaw, and Simon.) In most cases, these improve-
ments are implicitly in our machine already since their incorporation
means not the construction of a new part of the machine, but the addition

of a few heuristics to the initial memory net.

2. THE FORMAL SYSTEM

2.1 Basic Structure of the System

2.1.1 Overview of System

2.1.1.1 Plan of Discussion. We now begin the description of

the formal system which is the basis of the adaptive theorem prover.
The formal system has the following parts:
A. A set of symbols called the alphabet.

B. A set of formation conventions by which the members of the

alphabet may be combined to form expressions of various kinds, one kind
being called formulae.
C. A finite collection of formulae called axioms.

D. A collection of rules of inference which when applied successively

to the axioms generate an infinite set of formulae called the set of theorems.

E. An infinite set of expressions called the set of well-formed
expressions. This class is recursive relative to the set of theorems, and
includes the set of theorems.

F. An intended interpretation for the well-formed expressions such
that the theorems become true statements. (When we say that a formula holds,
we will mean that it is true in the intended interpretation.)

These parts will all be described formally in later sections. We begin
here with an informal description.

We can think of the system as being obtained by a series of transfor-
mations on a finitely axiomatized first order formal arithmetic. Each trans-
formation preserves consistency so that our system will be just as con-
sistent as the original arithmetic. The formal arithmetic will be one with
propositional variables, individual variables, predicate variables and in-
dividual function variables, as well as the binary predicate constant = in-

terpreted as equality, the individual constant § interpreted as zero, the

-30-

-31-

unary individual function constant S interpreted as the successor function,
the binary individual function constant + interpreted as addition, and the
binary individual function constant - interpreted as multipiication.

We shall first discuss briefly the formal arithmetic and then discuss
each transformation in turn. Each transformation is characterized by an
addition or subtraction of symbols from the alphabet together with con-
comitant changes in formation conventions, axioms, rules, and the set of
well-formed expressions to allow the new symbol to be incorporated into the
language and to permit the intended interpretation we wish it to have.

In this Section (2.1.1) we shall discuss in turn each transformation by
discussing the symbols added or subtracted and discussing their intended
interpretation. We will indicate from time to time what the concomitant
changes are in the formation conventions, axioms, rules, or set of well-
formed expressions. We will not, however, give these conc omitant changes
in detail. We shall reserve such formal discussion for later sections
where we shall present our formal system explicitly. The discussion in
Section 2.1.1 should give the reader an overview of our system. The over-
view will provide a certain motivation for the notation to be described
in the later formal discussion. The notation used there might be

rather confusing otherwise.

As we mentioned, each transformation of the formal arithmetic is char-
acterized by the addition or subtraction of certain symbols from the al-

phabet. The first transformation is characterized by addition of . . The

-32-

second transformation is characterized by addition of A etc., as indicated

below.

Transformation Characterization

transformation 1 add 1

transformation 2 add A

‘transformation 3 add label, cond, and pcond

transformation 4 subtract + and -

transformation 5 add * and nil

transformation 6 add Pv, Iv, Pfvb, Ifvb, newpv, newiv, newpfvb, and
newifvb; subtract tv, I, Pf, and If

transformation 7 subtract S and @ and add qu

When we have finished the last transformation we will have arrived at our
system.

The language of our system is explicitly self-referential rather than
being explicitly about numbers and only self-referential via a Gddel num-
bering as is the formal arithmetic.

2.1.1.2 Pertinent Properties of the Formal Arithmetic. We

begin with a formal arithmetic with plus and times. Since we will be chang-
ing the axioms anyway it is not crucial just which axiomatization we begin
with as long as the axiom set is finite. In order for the axiom set to be
finite, we employ predicate variables and individual function variables,
with rules of substitution for these variables.

For example, we can use as logical axioms and rules of inference, the
axiomatization of Church's system lep [p. 218-219, Church, 1956] with
suitable modification of the alphabet, formation conventions, and rule of
inference *404n to include individual function variables, and the various

constants. (We regard *404n as a single rule.)

-33-

The additional axioms to take care of the various constants could
be, following Mendelsohn [Mendelsohn, 1964]
for equality(using infix mnotation):

X =X

x =yD (P(x) D P(y)) (P is a predicate variable)

for successor, the Peano axioms:

~(# = S(xJ)

S(x) =S(y)>x =y

P(#) D ((V (x) (P(x) DP(S(x)))) > V(x) P(x))

(where our V(x) is Church's (x))

for addition.(using infix notation):

X+ @ =x

x + S(y) = S(x+y)
for multiplication (using infix notation):

xp=90

X S(y) =y+ (x-Y

As we mentioned, our system will use both individual function variables
and predicate variables as well as propositional variables and individual
variables. The propositional variables are: p, q, I, S, D, 95 Ly S5 Pyeee.
The individual variables are: x, y, z, u, V, W, X, %, 2, U,... Each of these

letters,together with its numeral subscript, is regarded as a single symbol

of our alphabet. The alphabet is thus infinite.

In the case of predicate variables,we shall use the subscript I to in-
dicate the number of arguments. The I is a separate symbol of our alphabet.
Unary predicate variables: PI, QI’ RI’ RI, QI, RI’ Ei""

Binary predicate variables: R

PI,I’ QI,I’ 1,1’ RI,I’ Q‘I,I’ RII,I’ E‘I,I""

Ternary predicate variables: P R RI RE etc.

1,1,1° &,1,1° R1,1,10

-34-

Thus the ternary predicate variable R is made up of four symbols:

I,1,I
the so-called base symbol P to which has been added three subscript symbols,
I's. These predicate variables, then, are formed by adding subscript I's to
the predicate variable bases: P, Q, R, B, Q, R, B,... . Each predicate
variable base is a symbol of the alphabet.

| In this discussion we shall sometimes omit the subscript I's when the
predicate variable occurs within a formula and the number of its arguments
is clear from context. Thus, in the above axioms we have written P in

place of P_. This is only an abbreviation for purposes of brevity. For

I
example, the second axiom of equality is really x =y :)(PI (x) D PI(y))
in spite of the fact that we have written, and shall continue to write,
x =y D (P(x) DP(y)).

The notation for individual function variables is similar to the
notation for predicate variables. The individual function variable bases

are £, g, h, f, g, h, f,,... To these we add the subscript I's to indicate

arguments. For example, f

oy 11 is a ternary individual function variable.
5 I

Again, when the arguments are clear from context we shall sometimes omit
the I's.

The predicates differ from individual functions in that their range is
the class of truth values rather than the class of individuals (in this
case, numbers). In both the predicates and individual functions discussed
above, the domain for each argument was the class of individuals. We can
naturally‘extend the notion of predicate and individual function to allow
a domain to be the class of truth values, or even the class of individual
functions or predicates. Thus Dnames a binary predicate, each of whose

arguments is to be a truth value. P is a binary predicate variable

tv,tv

ranging over such predicates. The use of the subscript tv (a separate

-35-

symbol of the language) in place of I indicates the truth value nature of
the arguments. Thus we use I to indicate individual-type arguments and tv
to indicate truth value-type arguments. We also use Pf to indicate predicate-
type arguments and If to indicate individual function-type arguments.

Consider, for example, an individual function like the LISP function
maplist. This is a function of two arguments. The second argument is to be
an individual (in this case a so-called S-expression). The first argument,
however, is to be an individual function of one argument. More specifically,

it is to be an individual function whose single argument is to be an individual.

fIfI,I is an individual function variable ranging over individual functions
of the maplist type. The second subscript is I, indicating that the second
argument. is to be an individual. The first subscript is If, indicating that
the first argument is to be an individual function. Since the single argument
of this function is to be an individual, the subscript If is itself sub-
scripted with a single I. This subscripting of subscripts may be repeated
any number of times, so that the subscripting on variables may become
rather complicated. However, the substitution rules for these variables are
quite straightforward and are rather obvious extensions of Church's rule
404n; hence we shall not give the substitution rules here, but wait until
Section 2.1.4.4 when we can give them in our final notation.

As we said above, we shall often abbreviate predicate variables and
individual function variables by writing the predicate variable base or in-
dividual function variable base without subscripts whenever the needed

arguments are clear from the context. For example, we can abbreviate

f

tV,If (PtV,I(p,x),ngI,I) as f(p(psx),gpfl,l)

PE,I

-36-

Another useful abbreviation we shall employ is our abbreviation for
the so-called numerals. A numeral is any one of the following sequence of
expressions:

g, S(B), S(S(P)), S(S(S(#))),... etc.
In our discussion, we shall often abbreviate @§ as 0, S(f) as 1, S(S(#)) as 2,
S(S(S(P))) as 3, etc. If k is a natural number, we call k a numeral. The
k's are not new symbols of our language, merely abbreviations we will use
in this discussion.

This abbreviation makes it easy to state our representability property.

If Ax X is a formula with free individual variables XyseeesX then let
ot Xy n
AE % stand for the formula derived from Ax X by uniform replacement
ook . ot Xy
of Ro""’Rn for the free occurrences of Xgse++sX . We say an n+l-ary

relation on integers is weakly representable whenever there is a formula

A x such that for any natural numbers ko""’kn’ the relation holds on
o0t Xy

k ...,kn if and only if AEO,...,R

is provable.
n

In formal arithmetic with plus and times, every recursively enumerable
relation is weakly representable. [Mendelsohn, 1964]

2.1.1.3 Addition of 1 (representability of individual

functions). The graph of every n-ary partial recursive individual function

is an n+l-ary recursively enumerable relation, and is hence weakly re-
presentable. If the partial recursive individual function is a polynomial
function, then its graph is weakly representable by a formula of form X, =,
where X, is the individual variable for which is to be substituted the name

of the element of the function's range, and o is a term not containing a free

-37-
X, When this is the case, I shall say that the term o mimics the in-
dividual function. For each partial recursive individual function, we would
like to find a term which mimics the function. In formal arithmetic with
plus and times, this can be done only for polynomial functions.

Let us add to the system of formal arithmetic, the new variable

binder 1 . If Ax X is a formula with free variables X aeeesX s then
ottt Xy
1(x0) Ax X is a term which means intuitively: the unique value for
o’ Xy
X, such that Ax x holds, when such a value exists. When none such
ot 0¥y

exists, the term will have an undefined value.
Suppose we add axioms to the system to implement this meaning. Now given
any n-ary partial recursive function, its graph is weakly representable

by some formula A . Hence the formula x_ =1 (x_) A is true
X seeesXo) 07 "X senenXp

for values satisfying the graph. Whether this second formula weakly re-
presents the graph depends on whether the formula is provable in the cases
mentioned above where it is true. Proving the second formula for values

satisfying the graph is harder than simply proving AX X for these
0’"""?’"n

values because we now have to prove the uniqueness of the xo's for each

set of x xn‘s in the domain of the function. Because of the incomplete-

1,...,

ness of formal arithmetic, then, there will be formulae AX X such that:

3 v ey

o) n

Ax X weakly represents the graph of a partial recursive function ¢, but
O,QQQ,n

the formula X, = 1(x0) AX X does not weakly represent the graph of ¢ .

9 e ey

(0] n

The following however is true: Given a partial recursive function ¢ , there

is a formula Ax such that both AX

9 e 0y

and x_ = 1(x) A
seees o 07 "X ,...,X
n) n) n

-38-

weakly represent the graph of ¢ . (In most practical cases, if Ax X
ITEETS

weakly represents the graph of a partial recursive function ¢ , so does

X, = 1(x0) Ax X .) Thus we can mimic any partial recursive function
IETRRPS

we want to.

2.1.1.4 Addition of A (ordinary - names of functions

and relations). So far our system contains names for only a few individual

functions (Eg. plus and times). We shall introduce names for all the partial

recursive functions. We shall do this via the Church X notation. If

B 1s a term which mimics an individual function, then the expression
X0 Xy
(x, (x,5..., x), B) is a name for the function. (Similarly, if
1 n xl,..., xn
Ax X is a formula which represents a recursively enumerable Relation,
ot Xy

then the expressicn (A , (xo,..., xn), A <) is a name for that
n

relation.) We shall add axioms to the system to implement this meaning in

X o

the proof structure. Since for any partial recursive function there is a
term which mimics it (and for any recursively enumerable relation there is
a formula which weakly represents it) we have, in the above way, provided
an expression naming each partial recursive function and recursively
enumerable relation. We shall call such expressions ordinary-names of the
functions and relations.

2.1.1.5 Addition of label, cond, and pcond

(algorithmic-names of functions and relations.) Our interest in such functions

and relations stems from the fact that they possess algorithmic evaluation
procedures. When we can find such an algorithm we will write an expression
which describes the algorithm. This expression will be in a LISP-like

notation (my LISP is like LISP 1.5 [McCarthy 1962] except that

-39-
I have made some minor changes in notation and one significant change in
the evaluation procedure) and will be called an algorithmic name for the
function. The structure of such an expression reflects the particular
algorithm it describes. The notation of our system is so close to LISP
notation that any polynomial function has an ordinary-name which is also an
algorithmic-name. The only added symbols needed to complete the LISP
repertoire for writing functions defined over non-negative integers are the

symbols label, cond, and pcond.(pcond is an alternative spelling for cond.

It is used in certain cases described in a later section,) label is the
symbol which is used to indicate explicit definition by recursion. cond
and pcond are especially useful in such definitions. Our usage is almost
identical to LISP usage.

We will not describe the usage in detail here, but the reader un-
familiar with LISP usage may benefit from the following example: The ex-

pression (cond, (al,sl),(az ,82),...,(an,Bn)) which we abbreviate to

[o1> B13a,> Bosuees ana-en] has the same value (for a particular set of

2 2
values for its variables) as does Bj, where j is the smallest number such

that uj has value true. We use label, combined with cond to write an
algorithmic-name such as this one for the primitive recursive function
factorial: (label,f, (A,(x), [x = > 1;8~>x + f(x - 1)])). For purposes

of illustrationwe have used here a subtraction symbol which we have not

yet defined. Note that this expression reflects the usual primitive recursive
defiﬁition of factorial. The dummy function variable f which follows the
label is to be regarded inside the definition as naming the function we

are trying to define. One can use label in recursions which are not primitive

recursions.

-40-

We need to do more than merely apply algorithmic names, LISP fashion.
We need to put rules in the system which allow us to process and modify these
algorithmic names according to various rules of inference so that we can
compare them with each other and with ordinary names. An example of such
modification would be: substitution of argument terms into the matrix of
a A expression according to one of the rules of inference (analogous to a
stage of LISP application of a function). An example of comparison would
be: if ¢ is an ordinary-name and ¢ is an algorithmic-name, then we will
want to prove ¢(x) = y(x) if we can, so that we can then substitute ¢ for ¢
in theorems, thus turning these theorems into statements about the per-
formance of the LISP program .

Unfortunately if a function or relation is not a total function or
relation, it may have an algorithmic name which, when processed in the ways
we want to process algorithmic names,would produce a contradictory statement
and ruin the consistency of the system. For example, consider the function
name (label, f, (A, (x) , (f(x) + i))) which we abbreviate as ¢. Then ¢(y)
(by the recursive definition of ¢) evaluates to ¢(y)+1l. We can even prove
6(y) = ¢(y) + 1 from ¢(y) = ¢(y) by the process of partial evaluation of
the right hand side. Hence ¢(y) # ¢(y) is provable and the consistency is
ruined. We want to declare such '"contradicory" algorithmic-names illegal.
It turns out, luckily, that we have no need for these contradictory algorithmic
names, because every partial recursive function has at least one non-con-

tradictory algorithmic name.

-41-

How do we set up the formalism so the contradictory names are never
used? All contradictory names contain label, but beyond this they have
no easily recognizable structural characteristic. We don't want to
limit ourselves to only complete functions. For example, we can easily
allow all ordinary names to be used. They are all non-contradictory.

Here is what we do. We carefully control which label-containing
names are used. We start with a finite set of such names called the
initial set of algorithmic names. (These will be the names occurring
in the axioms.) We then write the rules of inference so that no new
label is introduced unless either: (1) It is part of a name which has
appeared previously in a theorem; or (2) it is part of a new name which
has been generated from an already occurring name according to a spec-
ial procedure which guarantees that the new name will be non-contradictory.
This is an oversimplified description of a scheme which will be described

in detail in a later section.

When a theorem is proved which contains a function name not oc-
curring in any previous theorem (whether or not the proof employs (2) above

to introduce a new label) then we say that that function name is generated.

-42-

A function name which can be generated, is called generatable. (The
initial set of algorithmic names is thought of as already generated and
hence trivially generatable.)
We have now arrived at the follow-

ing: Given any n-ary partial recursive function with ordinary name ¢ , we
‘can write a LISP program Yy which calculates its value. ¥ is then an al-
gorithmic name of the function. We can even write the LISP program such
that ¢ is a non-contradictory algorithmic name. Then

V(xl) ce V(xn) (¢(x1,...,xn) = w(xl,...,xn)) is true, but Y might not be

generatable and even if it is, the above formula might not be provable.

Footnote: Sections 4.10.6 and 4.10.7 will illustrate situations where ¥ is

generatable, but not generatable from ¢ , and where

Lz}xl)... V(xn) (¢(xl,...,xn) = w(xl,...,xn)) is probably not provable.

However by picking the proper axiom set we can ensure that every partial
recursive function has a generatable algorithmic name.
Footnote: we need only be sure that the class of functions which have

generatabie algorithmic names is closed under primitive recursion and the u

operator. Section 4.10.7 will indicate how to show closure under the y

operator.

Similarly, given any n-ary recursively enumerable relation with
ordinary-name ¢ , we can write a LISP program ¥ such that ¥ is a non-con-
tradictory algorithmic name and V(xl)... 'V(xn) (@(xl,...,xn) =y (xl,...,xn))

is true.

-43-

Again ¥ might not be generatable and even if it is, the above formula
might not be provable. However, by picking the proper axiom set we can en-
sure that every recursively enumerable relation has a generatable algorithmic
name.

When the above equivalence statements have been proved, we can use the
substitutativity of = and = (subject to the proper restrictions made ex-
plicit in our rules of inference) to change theorems using ordinary names
to theorems using algorithmic names. (Theorems using algorithmic names
can often be proved more easily without use of the above equivalence
statements.) Thus we can prove a class of true statements about LISP programs.
Of course, we cannot prove all true statements because the formal arithmetic
we began with was incomplete, and the incompleteness is retained through
each of our transformations of the system. (We shall prove the incomplete-
ness of the final system.) Thus incompleteness arises from the self-describing
capability of all these systems, a capability of which we shall make explicit
use in our final system.

2.1.1.6 Elimination of + and -+ . Note that it is possible for the

names in the initial set of algorithmic names to be names of functions
which have no ordinary names. For the system as described so far, the in-
itial set of algorithmic names is empty.

Let us write algorithmic names for plus and times such that the symbols
+ and - are not used in the names. (The symbol S is used. The names are
simply the LISP programs implementing the primitive recursive definitions
of plus and times in terms of successor!) Let us abbreviate these two names
as @ and . (These are not new symbols, just abbreviations we will use here
to represent the algorithmic names.) These names are non-contradictory since

they are names of complete functions.

—44-

Then let us put @ and » in the initial set of algorithmic names. (This
could be done by adding the axiom H(x) (x = ((yez)ew)). In this section
(2.1.1) we will mention many algorithmic names which we want in the initial
set. We shall wait until we have a long list of such names before we dis-
cuss which axioms are to be added to include the names in the initial set.)

It is easy to see, from the meanings of A and label discussed above
and expressed explicitly by our rules of inference, that if @ and ° are in
the set of initial algorithmic names, then for each axiom A*. using + and °*

and hence for each theorem A,. using + and - , there is a theorem Ay, formed

from A by uniform replacement of ® for + and for + . Furthermore, none
of the formulae in the prodof of A, ~contain + or . . Conversely, for
any theorem A, usihg ® and ¢ , the formula A_ is also a theorem.

Let us eliminate the symbols + and ° from the language, and all the
formulae which use them. We thus remove the axioms which defined + and -
Now any relation which was weakly representable by a formula using + and -
is still weakly representable by a new formula obtained from the old by re-
placement of + by ® and - by °. Thus any function or relation which had a
name before still has a name. We have eliminated + and - from the language
without destroying the representability of any function or relation. The

only individual function constant symbol remaining in the language is S.

2.1.1.7 An Operation on S-expressions: Addition of * and nil. Let us con-

sider a Godel numbering of the expressions in our language.

We first state what we mean by an S-expression (as in LISP): (a) Each
symbol (or atom) in our alphabet is an S-expression. (b) If o and B are
S-expressions, so is (a . B) , which is called the 'cons" of o and B .

If yvis the cons of o and B then o is called the "car' of ¥ and B is

called the "cdr" of vy, (Note: in this scheme, the parentheses and dot are

-45-
not called numbers of the alphabet, but are introduced into S-expressions
as part of the process of concatenating numbers of the alphabet.)

By writing our syntax rules carefully (see Section 2.1.2.2.), we can
arrange matters so that all the expressions in our language are S-expressions,
though, of course, not all S-expressions are expressions of our language.
(Then the expressions we are writing in this text may be regarded as ab-
breviations of the appropriate S-expression. The abbreviation conventions
are specified in Section 2.1.2.) In order to make it easier to write our
syntax rules, we add the symbol nil to our alphabet. This symbol will be
used as a sort of delimiter in constructing the expressions of our language.
Its precise use is explained in Section 2.1.2.2.

Counting variables, our alphabet is countably infinite. Let us order
the alphabet (excepting nil) in some appropriate order and let a symbol's

index be its number in this ordering. Now let us Gddel number the S-ex-

vressions. To be specific, we could do it as follows. Suppose 4 1s an S-
expression: if 4 is nil then its Gddel number is zero;

if 4 is any other atom (other than nil) with index n then its
Godel number is 2n - 1;

if 4 is the cons of o and B and if n is the Godel number of o
and m is the G&del number of B , then the Gédel number of 4 is (2n + 1)2m+1.
The important p¢int is that for each number, n, there is an S-eXpression
with Godel number n. Let us write the abbreviation™ for n whenever n is
the Godel number of a.

Now, via an algorithmic name for the exponential function, we can easily
write an algorithmic name (which we abbreviate as ®) for the function
cons. That is, if a has Gddel number k, B has Gédel number j , and the
cons of o and B has Gddel number n, then n = (k ® j) is provable. Or

equivalently, f;“fgﬁ = (o ®‘§) is provable. Let us put ® in the initial

-46-

set of algorithmic names.

Now let us add the binary individual function symbol * to the language.
It is defined by the new axiomx * y = x ® y. * is thus a symbol for the
function cons in the same sense that ® is an algorithmic name for the
function cons.

It is trivial now to write ordinary names (using 1) for the functions
car and cdr. (car and cdr of an atom will be the atom itself) We will
abbreviate these names as a and d respectively. Thus, whenever, as before,
n = (k *3) is a theorem, so is k = @ (n) and j = d(n). The names a and d

contain the symbol *, but do not contain the symbol S.

2.1.1.8 Addition of Pv, Iv, Pfvb, Ifvb, newpv, newiv, newpfvb, and newifvb;

subtraction of tv, I, Pf, and If.

We would next like to eliminate S from the language. We eliminated +
and * by re-defining them in terms of S. Now that we have introduced * we
would like to eliminate S by re-defining it in terms of *. Unfortunately
we are foiled by the fact that our alphabet is infinite, because of the
four infinite sets of variables and variable bases included in it. As we

mentioned in Section 2.1.1.2, these sets are:

1. The propositional variibles {P, 95 T, Sy P Gso--1
2. The individual variables {x,y, z, u, v, W, X, ¥Yi,...}
3. Predicate function variable bases {P, Q, R. B, Q,...}

4. Individual function variable bases {f. g, g, f,...}
If we eliminate S we will have no way of handling these sets. In order to
handle these infinite sets and the G&del numbers of their nembers, we need
predicates: Pv, Iv, Pfvb, and Ifvb true respectively on Godel numbers of

members of the above four sets.

-47-

We also need individual functions: newpv, newiv, newpfvb, newifvb, with
the following properties. For any S-expressions, o and B :

~r

if newpv (@)= B holds then B is a propositional variable not in a ;

if newiv (3)= B holds then B is an individual variable not in a ;

if newpfvb (d)= B holds then B is a predicate function variable base not in a ;
if newifvb (&)=8 holds then B is an individual function variable base not in o .
We add these predicates and functions in the same way we added *. We first
define algorithmic names for the four predicates and four individual functions.
We then introduce eight new symbols to be equivalent to these. We proceed as

follows. It is easy to use S,®, and ° to define the following algorithmic

names.

Abbreviation for

algorithmic Name Predicate Named
Pv True on Godel numbers of propositional variables
Iv True on GOdel numbers of individual variables
Pfvb True on Godel numbers of predicate function variable bases
Ifvb True on G&del numbers of individual function variable
bases

Similarly, we can define algorithmic names abbreviated newpv, newiv, newpfvb, and
newifvb. The individual functions they name can be described as follows.

(Remember that we have an ordering of variables by their indices.)

newpv (¥) = B holds iff 8 is the first propositional variable of index >
those in the S-expression o .
newiv () = B holds iffg is the first individual variable of index > those

in the S-expression a .

newpfvb (@)= B holds iffg is the first predicate function variable base of
index > those in the S-expression ¢ .

newt fvb (@)= B holds iffg is the first individual function variable base
of index > those in the S-expression o .

-48-

Footnote: An example of how this can be done is seen below. We use here
notation and abbreviations which are explained in Section 2.1.2.

maxx (x, u, y, v, £) == [u=y >y ;® > £(x,S), y, v)]

maxy (X, u, y» V) = [V =X >x ;®> maxx(x, u, y, S(v),maxy)]

(maxy causes no problems even though it is not complete.)

n

max (X,Y) maxx (X, X, Y, Y, maxy)

evenn(x, y) = [x =y >®; x =S(y) »® ;@> evenn(x, S(S(y)))]
(similarly this causes no trouble)

even(x) =: evenn(x, @)

maxpv (x) = [x = §>@P; Pv(x) > x; ~even(x) - f;

® > max(maxpy (a(x)), maxpv(d(x)))]

nextpv(x) = [Pv (x) > x;® > nextpv(S(x))]

newpv (x) = nextpv (S (maxpv(x)))

As we introduced the new symbol * by adding the axiom x * y= x ® y , we now
introduce eight new symbols by adding the following eight axioms.

Pu(x)

Hi

Pv (x)

Iv(x) = Iv(x)

Pfvb (x)

Pfvb(x)

Ifvb (x) = Ifvb(x)

m

newpv (x) = newpv(X)

newiv (x) = newiv(x)

n

newpfvb (x) = newpfvb(x)

newifvb(x) = newifvb (x)

We shall call these symbols the eight special function symbols, and
these axioms the eight special function axioms.
Now that we have the symbols Pv, Iv, Pfvb, and Ifvb available, we can

use them for an additional task. We can use them for the subscripts on

-49-

predicate and individual function variables in place of the symbols tv, I,
Pf, and If which we have been using. These last four symbols can then be
eliminated from the alphabet. Thus a symbol like Iv has two uses. It is
sometimes used as a predicate name and sometimes as a subscript in variables.
Confusion will never arise between the two uses since the use ig always
clear from context. As before, we will often abbreviate by omitting sub-
scripts in variables when the argument-types are clear from context.

2.1.1.9 Elimination of S and § and Addition of qu. We can now proceed

with elimination of S. S occurs both as a component of numerals of the
form n and as a symbol not part of a numeral. We shall first introduce an
alternative notation for numerals which allows us to write numerals without
employing an S. Then we shall find a function expression (which we shall
abbreviate as [S]) which does not contain S and which we can use as a re-
placement for S in the same way that we earlier used ® as a replacement
for + and ¢ as a replacement for * . The new way of expressing numerals
will depend on the fact that each numeral is the Godel number of some ex-
pression. We will express the numeral n by writing (qu,o), where a is the
S-expression whose Godel number is n. qu is a new symbol of the language.
In other words, we will allow ourselves to write @ as (qu, a). We thus
avoid the use of S unless o contains an S. (qu,a) may be thought of as an
individual constant which names o. In this sense, the qu fulfills the same
function that quotation marks fulfill in some logical systems and that the
symbol quote fulfills in LISP. When we finish this section, the form
(qu, o) will be the only acceptable form for numerals to take in the ex-
pressions of our language.

Let us begin by insisting that § (i.e. 0)be written in that form
wherever it occurs. Since zero is the Godel number of nil, this means we now re-

place @§ with (qu,nil) wherever § occurs in expressions. Thus # may be

-50-

eliminated from our alphabet. In our discussion, however, we shall continue
to write @ as an abbreviation for (qu, nil), though # is no longer a symbol
of our alphabet. For the (qu,a) notation to work for all numerals as well
as the old notation, we want a theorem of form @ =(qu,a) for each S-expression a .
Now in our system, formulae of the following types are theorems, where o and B
‘are S-expressions: @ * B = (a.B) ;
newpv (&) = %I(where B is the first propositional variable of index >
those in @)}
newiv (3) = B (whereB is the first individual variable of index > those
in o)
newpfvb () = B (where B is the first predicate variable base of index > those
in o);
newifvb (3)= B (where B is the first individual function variable base of
index > those in a).
If ¥ = (qu,a) is to be provable for all S-expressions o , then the
counterparts of the above theorems using the (qu,a) notation should also
be provable. These counterparts are:
A. (qu,a) * (qu,B) =(qu, (a.B));
B. newpv((qu,a)) = (qu,B) (where B is the first propositional variable
of index > those in a);
C. newiv((qu, o)) = (qu,B) (where B is the first individual variable
of index > those in a);
D. newpfvb((qu,a)) = (qu,B) (where B is the first predicate variable
base of index > those in o); and
E. newifvb ((qu,0)) = (qu,B) (where g is the first individual function

variable base of index > those in a).

-51-
Now let us mot add the formulae of form @ = (qu,o) to the theorem set yet.
(These formulae contain S and we are trying to eliminate S.) Let us first
add the formulae of types A through E to the theorem set (they don't contain S,
except perhaps inside the aor B) by adding to our rules of inference five
rules which generate theorems of these forms. We call these five rules,

rules A through E. (The reason we need these now is indicated below.)

e

Footnote: Using the neotation for rules of inference described in Section

2.1.4.2,and used in Table 5, the rules would be

A: T(xy@)=(x*y)@))
B: newpv(x) =y > T(x y@))
C: mnewiv(x) =y D T(x y@
D: newpfvb (x) y D T(x y@), and
LE—: newifvb (x) y D T(xy@) .

We are now in a position to define the function expression which we

p—

s

shall use to replace S. This expression will be abbreviated as [S]. The
symbol S does not appear anywhere in it, though the numeralsf , (qu ,p),
(qu, (p)), and (qu, (p,p)) do appear in it. We addto the initial set of
algorithmic names.
-;ootnote: Using the notation explained in Section 2.1.2, one way of
writing such an would be as follows: Let us abbreviate an S-expression
of the form (p. (p. (p. *** (p. nil):'**))),which contains n p's,as 7 .
Iic&g,’(‘) is nil. Now let us define a new function with an algorithmic
function name which we shall abbreviate as gn. This function shall have the

property that for any S-expression a, if n is the Godel number of o then

gn(@)=@holds. (We write@ instead of (qu,a), following the notation

developed later. Note: , @, #, and 0 are abbreviations of the same

expression, namely (qu, nil))

-52-

gn could be defined as follows:

x%y [x=¢+y;®+d(x)¢(®*)’)]
x®y= [x=0+0:0>y F (4 T y)]

Gp(x,y) = [y =9 ->@®+ x Texp(x, d (y))]

For propositional variables we define

comert (y) == [y =0~ §;0 +®* convert (d(y))]

pvindexx (X,y) = [~Pv(x) > B;a (y) = x » convert s
®~> pvindexx (x, newpv(y) * y)]

pvindex(x)=: pvindexx (x, §)

We similarly define: Zvindex for individual variables,
pfvbindex for predicate function variable bases,
and = Ifvbindex for individual function variable bases.
From this it is easy to define
index such that if an atom o has index m then index(@) =@ is provable.

gr (0 = [x =905 atont) - a((Q) * indea(x);

@»c(@’-‘ (a0 () éx\p(@, gncdcx))ﬁ@)]

Similarly the inverse function gn_l could be constructed as follows:

pveomvert (x) =[x = @ > §;0- newpv(pvecomvert(d(x))) * pvconvert(d(x))]
pvindex” 1 (x) == a(pvecomwvert (x))
similarly for ivindex"l, pf'vbindex'l, I fvbindex'l

Then we can easily define index™t

Ralf (1) = [x = § v x =@»¢ : @ half (dd(x))]

even(x) = x =®’-‘half(x)

oddfactor(x) = [~even(x) = x;@- oddfactor(half(x))]
twosexpp (x,y) =t [~even(x)— y; ® > twosexpp (half(x), p * ¥)]

twosexp (x) =: twosexpp (x,H)

-53-

gn_l(x) = [x=0~>0;
~cven(x)~ index > (half(@ * %))

©gn” L (half(d(oddfactor (x)))) *gn” H(d(twosewp (x)))]

Then we can define [S]by (x) = gn—l (@* gn(x))

Now by virtue of the new rules that we have added (rules A - E above)
if o and B are S-expressions then: S(G) = % holds, if and only if,
((qu,a)) = (qu,B) is a theorem. In such a case,((qu,ou)) = (qu,B)
is proved by successive transformations of the right side of the theorem
((qu,a)) =[S] ((qu,a)) according to our rules of reference. This process
of transforming the right side into a constant, (i.e. into the form (qu,B))
is called "evaluating" the right side. The evaluation could not proceed
to completion without the presence in the system of the theorems generated
by the five rules of inference A - E that we just added to the system. The
only reason we added those five rules when we did was specifically to permit
the evaluation of [S] ((qu, @)).

So[S]behaves like a successor function name when it is applied to

constants. To see that[S]is really a successor function consider the

following: Definition: Let & stand for the S-expression o with [S] un-

iformly replaced by S and then each sub - S-expression of form (qu,B) uniformly
replaced by 8. Now if o is a theorem then & is a theorem, and can be

proved in a proof in which qu doesn't appear except as (qu,nil). That this

is so can be seen by replacing[Siwith S and (qu,8) with B in the proof of a.
The result can be easily converted into a proof of & by intercalating lines
here and there. (The only interesting intercalation required is in a step

of the proof of a in which something of form[S] (y) was expanded. But if

() = o is a theorem (o being an expansion of [§] (7)), then S(.‘Y’) =3 is
going to be a true statement in arithmetic and will be provable without use

of qu. We can then use this theorem in the required intercalation.)

-54-

Since [S)names a successor function we see that [S]induces a linear
ordering on the set of S-expressions, an ordering that reflects the
particular Gddel numbering we decided to use. Had we used a different
Godel numbering, we would have had a different [S]. For example, suppose
we pick a different Goédel numbering which is just like our old Goédel num-
bering except it is based on an indexing of the atoms which, while being
otherwise the same indexing we had before, has the indices for the atoms O
and V switched. Suppose we defined an(S)based on this Godel numbering.
This also would behave like a successor function. Now the basic successor
function of our system is S. This is the function about which we are
proving theorems. Now how does it behave when applied to constants? This
we have not specified. We have specified some things about its behavior
on constants when we added rules A - E. But these things are true of both
and@above. Let us add enough axioms so that [S] (x) = S(x) , is provable.
This will end the ambiguity. Let's do this in a perhaps inelegant but
certainly straightforward manner, by adding([S] (x) = S(x) to the set of
axioms.

Now @ = (qu,a) becomes a theorem for each S-expression a . Also, it
is still true that if o is a theorem then so is & where the proof of &
does not employ a qu, except in (qu,nil), and also does not use the axiom
(x) = S(x) . Thus we have added no new theorems except those employing
a (qu,B) where 8 is not nil. Hence our system must still be consistent.

Now since(S] (x) = S(x) 1is a theorem, we can replace S with[S] in all
our axioms without changing the theorem set at all. Now let's remove
(x) = S(x) from the axiom set. (Deletion of an axiom can never ruin
consistency.) Now no axioms contain S. S has become a useless symbol

so we eliminate it from the alphabet.

-55-

We now have an explicitly self-describing system. We shall no longer
regard (qu,a) as a numeral, but rather an individual constant which names
the S-expression o . We think of the individual variables as ranging over
S-expressions, rather than over numbers. Domains and ranges of functions
are no longer ever sets of numbers, but are instead sets of S-expressions.

Finally, the expressions of our language may all be thought of as themselves

S-expressions.

2.1.1.10 Our Axiom Set. This completes our overview of the system and

its derivation from formal arithmetic by additions to and subtractions
from the alphabet. In the following sections we shall give a more precise
description of the system. We shall specifically state the axioms and
rules of inference of the system. It will be clear then how the intuitive
meanings of the symbols introduced in this section are implemented.

In addition to making precise our description of the axiom system, we
shall simplify some axioms and rules of inference somewhat so that the
properties in which we are interested will be more evident. (This simpli-
fication, while convenient, is not necessary. We could easily implement
the suggestions of this section directly. How this would be done will be
obvious after looking at our simplified axiom system. Our simplified axioms
and rules are listed in Tables 4 § 5. (The format of the tables will be dis-
cussed more fully later.)) For example, the Peano axioms using [S]have been
simplified to their analogues using *. Along with this we have suppressed
the ordering of the S-expressions via the Gddel numbering. This ordering
is useless to us and we only introduced it in order to make the formal con-
nection between our (qu,o) notation and formal arithmetic. The suppression
of the ordering has allowed us to dispense with several old axioms and rules

and replace them with new simpler ones. These new axioms and rules

-56-

were theorems and meta theorems in the old system, so the replacement creates
no inconsistencies.

Footnote: The changes involved in the above simplification of the axioms

and rules may be summarized as follows:

Axioms deleted: Axioms added:
Peano axioms for Peano axiom analogues for * 8 - 10 Table 4
X*y=x9%y disjointness of atom classes 15 Tabile 4

eight special function axioms, new variables are variables 16 Table 4
Section 2.1.1.8

new variables are new 17 Table 4

Rules deleted: Rules added:
rules B - E Section 2.1.1.10 variables are variables 14 Table 5
different atoms are # 15 Table 5

The axioms § rules on the right are theorems when the set of axioms and

rules includes those on the left. The axioms added can be proved from the
axioms deleted. Roughly speaking, rule 14, Table 5 can be proved as a meta
theorem, from rules A-E, Section 2.1.1.10, the eight special function axioms,
and the Peano axioms for[ﬂ; rule 15, Table 5 can be proved, as a meta theorem,

from rules A-E Section 2.1.1.10 and the Peano axioms for [S].

Actually, in addition to making the simplification discussed above, we
shall also introduce a complication. We add two new rules of inference
(we will call them rules 18 and 19) and we also add a procedure for continually
adding more rules of inference. This procedure will take advantage of the system’s
self-describing capability. The procedure will provide a means to implement
the suggestions made in the introduction section with regard to heuristic
generation. Since this addition is not a simplification we will have to

show that it does not introduce any inconsistencies. In future sections we

-57-

will show this and will also demonstrate certain incompleteness properties
which follow from our consistency preserving techniques.

2.1.2 Expressions and Their Abbreviation

2.1.2.1 Motivation for Abbreviation. As we mentioned, we find it con-

venient to define a set of so-called S-expressions and to write our syntax
rules so that the expressions of our language are all S-expressions. This
practice allows us to state our meta theorems and rules of inference more
simply. In our discussion, however, we will not want to write out ex-
pressions of our language as S-expressions. We will want to abbreviate our
expressions into a notation similar to the usual notation for an applied
first order predicate calculus system like ours. (We have used this more
usual notation in the preceeding discussion.) Now of course we won't
abbreviate all S-expressions. We do abbreviate those which are expressions
of our language. We may abbreviate more or less as suits the purposes
of our discussion. (Eg., pv (~p) 1s an expression which is already in
abbreviated notation, but it may be further abbreviated to pv~p if we wish.)

The reader who is familiar with the usual first order predicate cal-
culus notation is already familiar with most of our abbreviated notation.
The reader has already been introduced to our use of the Church A Our
use of label, cond (alternatively pcond), * (LISP cons), a (LISP car), and
d (LISP cdr), is the same as their use in LISP, and our abbreviation of
cond is just like that in LISP m-notation. (A brief example of the use of cond
and label was given in Section 2.1.1.5)

We will want to be very explicit in stating our syntax rules so we
will state them for unabbreviated expressions. Since we will be writing
the expressions in abbreviated form, we need to first specify a procedure

by which the reader can unambiguously arrive at the unabbreviated expression

-58-
if he is given the abbreviated form. Before we do this we shall give an

explicit definition of the set of expressions of our language.

2.1.2.2 Definitions of Classes of Expressions of our Language.

The symbols of our alphabet are called atoms; they are given in Table 1.
The structures we will be concerned with are S-expressions (not to be con-
fused with expressions or wfexpressions which we shall define later). As in
LISP, £ is an S-expression iff it is an atom or of the form (a.B)
wherea and B are S-expressions. As in LISP, we may abbreviate (o. nil) as
(o) wherever it occurs in an S-expression, and (a.(Bl,Bz,..., Bn)) as
(a,Bl, 62,..., Bn) wherever it occurs in an S-expression. An S-expression
not abbreviated this way is said to be written in dot notation. An S-ex-
pression abbreviated in this way is said to be in comma notation. (We shall
make a practice of using comma notation.) An S-expression which can be ab-
breviated in this way into a form without dots is called a list.

I shall use lower case Greek letters to indicate strings of symbols
with properly paired parentheses and brackets. (This is the way I used them

above.)

A type is an S-expression of one of the following forms :

1. Pv
2. 1Iv
3. (Pfvb, al, az,...,uh) where each a, is a type
4. (Ifvb, Uy Ooyenns an) where each a, is a type

We define a predicate, whose name we abbreviate as typep true on any
S-expression of one of the above four forms. We now define the subset

of S-expressions which follow the syntactic rules of our language. These we

shall call expressions. With each expression we will associate an S-expression of

one of the above four forms. This S-expression will be called the expression's type.

-59-

An expression of type Pv is called a formula-type expression. An ex-
pression of type Iv is called a term-type expression. An expression whose
type is of form (Pfvb, Ups Opseees an) is called a predicate function -type

expression. An expression whose type is of form (vab,al, a - an) is

o
called an individual function-type expression. Both predicate function-
type expressions and individual function-type expressions are called function-
type expressions.

The class of expressions is that class of S-expressions in which we will
be interested. It is the class of "expressions of our language."

We first define a subclass of the class of expressions, called the class

of variables. There are four sorts of variables.

Sorts of Variables Type of the Variable

1. Propositional variables. These are atoms. Pv
(see Table 1)

2. Individual variables. These are atoms. Iv
(see Table 1)

3. Predicate variables; these are of form (Pfvb, o) az,...,an)
(MyOiys Qnseees an) where ©m is a
predicate variable base (see Table 1)
and each o is a type

4. Individual function variables; these are of (Ifvb, Oy Gpseens an)

form (¢,a1, a o an) where ¢ is an in-

A

dividual function variable base (see

Table 1) and each oy is a type

-60-

An expression is an S-expression of one of the following forms.

Form of the Expression

Type of the Expression

10.

11.

12.

13.

14.

15.

16.

17.

18

®

®

o ; (where o is a propositional variable)
a ; (where o is an individual variable)

(qu,a) ;(where a is an S-expression)

2.

Pv
Iv

Ifvb

Pfvb

(n,al, Gysevns an) ; (where 1 is a predicate

function.variable base and each o, is a type.
1

This expression is a predicate variable.)
*

newpv

newiv

newpfvb

newifvb

. (9, Qs Goseeey un) (where ¢ is an in-

dividual function variable base and each
oy is a type. This expression is an in-

dividual function variable.)

Pv
Pv
Pv
Iv
Iv
(Pfvb,
(Pfvb,
(Pfvb,
(Pfvb,
(Pfvb,
(Pfvb,

(Pfvb,

(Ifvb,
(Ifvb,
(Ifvb,
(Ifvb,
(Ifvb,

(Ifvb,

Pv, Pv)
Iv, Iv)
Iv)
Iv)

Iv)

Uys Qpseee

Iv,Iv)
Iv)
Iv)
Iv)

Iv)

Otl, OLZ,--

,G.)

-)Of:)

-61-

Form of the Expression

Type of the Expression

19.

20.

21,

22.

23.

24.

25.

(M) ag, Ggyenns an) ;(where m is an ex-
pression of type (Pfvb, Bl, 82,..., B.)
and each @, is an expression of type Bi)

(o, oo uz,...an) ; (where 6 is an ex-
pression of type (Ifvb, Bl, 82,..., Bn)

and each o, is an expression of type Bi)

(peond, (o, B), (04ys 8,)5eees (@, B))

; (where each oy and B, is an expression
J

of type Pv)

. (
(Cond) (al’ Bl)’ \ OLZ’ 62):--': (uns Bn))
; (where each o is an expression of
type Pv and each Bj is an expression of

type 1v)

(V}(nl, Ngseses nn),a) ; (where each Ny is
an individual variable and o is an ex-

pression of type Pv)

(Hs (nl, n2"'-, nn); o) N (Where each ni 1s
an individual variable and o is an ex-

pression of type Pv)

(dr, (n),n) ; (wheren is an in-
dividual variable and o is an expression

of type Pv)

Pv

Iv

Pv

Iv

Pv

Pv

-62-

Form of the Expression

Type of the Expression

26.

27.

28.

29.

30.

(v, (n), a) ; (wheren is an individual
variable and o is an expression of

type Pv)

(A, (nl, UPYRRRY nn), a) ; (where each ni is
a variable of type Bi’ and o is an expression

of type Pv)

(A, (nl, Noseses nn) @) ; (where each nj is a
variable of type Bi’ and o is an expression
of type Iv)

(label, ™, A,(M;5",--.5 n)sa)) ; (where

each ns is a variable of type Bi’ a 1s an ex-
pression of type Pv, and n is a variable of

type (Pfvb, B,,8,,...,8))

(label, ¢, (A, (Mysnys---sn)sa)) 5 (whereeach
ny is a variable of type B: » a1ls an expression
of type Pv, and ¢ is a variable of type

(I1£vb,8, B,ye--8))

Iv

(Pfvb, BysBoyr--es Bn)

(I£Vb, 1y Byseevs B)

(Pbe’Bl’BZ"'°’B)

(Ibe’Bl’BZ""’Bn)

-63-

2.1.2.3 Format for Abbreviation Rules. Although we are

mainly interested in abbreviating expressions, there are a few situations
when we may want to abbreviate an S-expression which, although composed
of expressions, is not itself an expression. For this reason our procedures
will be given for handling abbreviations of any S-expression .

We shall give a recursive procedure for deriving an S-expression from
an abbreviated S-expression. This will be called the unabbreviating pro-
cedure. The procedure will be given recursively; i.e., we shall assume
that we know how to unabbreviate any abbreviation shorter than the abbrevi-
ation we are working with. The procedure for unabbreviating single symbols
will be given explicitly.

By the unabbreviating procedure we shall give in Sections 2.1.2.4,
2.1.2.5 and 2.1.2.6, an abbreviation 1s converted into an S-expression
written in comma notation. (The comma notation was introduced at the begin-
ning of Section 2.1.2.2 and used throughout 2.1.2.2 in defining the classes
of expressions of our language.) In Section 2.1.2.7 we shall give the pro-
cedure for converting comma notation into dot notation.

2.1.2.4 Abbreviations of a Single Color With No 'Defined"

Symbols (The First 12 Rules). The symbols used in abbreviated S-expressions

are the symbols of the alphabet and (v
) A

p

[a

| d

-64-

(Certain symbols will appear as subscripts in an abbreviation) Other symbols
may be used if already 'defined!' We shall ignore these for now and discuss
them later. (A single word is, for our purposes, regarded as a single
symbol; e.g., nil) The symbols may be in any number of colors. For now we
shall limit ourselves to S-expression abbreviations written all in one color.

Abbreviated formula-type expressions look just like formulae in an
applied first order predicate calculus (which, in fact, they are). As is
usual in such formulations we may drop sets of parentheses, relying on pre-
cedence conventions to give us the information which the parentheses normally
would. Our first task, then, is to replace these parentheses.

A substring of the string of symbols forming the abbreviation is called

a sub-S-expression candidate if its parentheses match, if it can be unambigu-

ously unabbreviated by our procedure, and if the result is an S-expression. A sub-
string of the string of symbols forming the abbreviation is called a sub-

expression candidate if its parentheses match, if it can be unambiguously

unabbreviated by our procedure, and if the result is an expression. By our in-
duction assumption, we see that we can determine all sub-S-expression can-
didates and subexpression candidates of our expression.

In the rest of Section 2.1.2, £ denotes our abbreviation;o,ol,oz...etc.
denote sub-S-expression candidates. Greek letters other than £, A, or o denote
subexpression candidates. A letter or string with a bar over it denotes
the unabbreviated form of whatever is under the bar.: }indicates optional
parentheses.

We unabbreviate our expression & according to the following rules which
we try to apply in order:

1A. If &€ is of form (Gl, o _,On) (n21)

g

; g o]
then & is (1 Opreees n)

1B.

-65-

2)

If £ is of form ¢ (Gps Gpsenes un) and § is a function-type expression,

If £ is of form (01. 02) then £ is of form (61.]

12 %o En)

If £ is of form | o> Bl; ay ¥ 82;...; o - Bn] and Bl is a formula-

then ¢ is (§ , a

type expression, then E is
(pcond, ('071, 61) , (&'2, 62) ye e (E'n,Bn))

If ¢ is of form [a >B;30, »B,5...5 o > 8] and -B-l is a term-type

expression, then £ is (cond, ('&1, é-l), (&'2, By)senes (3., 8))

If ¢ is of formia, v a v...v o i where each o, is a formula-type

1 2
expression and no oy has a v outside of parentheses,

then £ is (v, &, (v, o (onnnn. (v, &y, @))

el

If £ is of form {a_ A O, A ... A O A ocn",: where each &_i is a formula-

1 277 n-1

type expression and no oy has a A outside of parentheses,

then £ is (A, o, (A, Geeeens (A, G s &))

If £ is of form :'_'ocl) 0‘2:’ where ¢ is an infix binary function name
abbreviation (e.g.,D, See definition in Section 2.1.2.5)and
where the type of ¢ is of the form (, , By» B,) where

R, is the type of oTl and 8, is the type of O-LE.

1
then T is (¢, o o))
If £ is of form ~o

then € is (=, @)

-66-
9. If £ is of form iin(Yl, \PYRRRF yn) § where n is a listbinder
(see Table 1), then £ is (n, (15 €pseves €D, S) where
for each i if YiiS a predicate variable base or an individual

function variable base and if Y5 (al, az,...,am) or

(Yio Ops Ogseees am) is a subexpression candidate of § with Bj

being the type of s then e, is (v, By, Byse.v, B), and

otherwise €: is Yi'

10. If £ is of form [I (al, CPYRRR an) where Il is a predicate variable

base or individual function variable base, and Bi is the

type of a s then g is ((II, Bl, 82,..., Sn), OUps Gosnne, an).

11. If ¢ is of form »HT, T T where [l is either a predicate variable
12 Tpse Ty
base, or is an individual function variable base, or is one of
the four atoms, Pv, Iv, Pfvb, or Ifvb and where each ?i is a

type, then £ is (I, T, T,,..., ™)

12A, If £ is an atom
then Z is ¢
12B. If £ is @, then % is (qu, nil)
13. If £ is a single symbol, not an atom,....

this situation will be discussed in section 2.1.2.5.

Note: V (x) (P (x)) is not an abbreviated expression; it unabbreviates
to (V, (x), (((P, IV), x))). V(x) P (x) is an abbreviated expression;

it unabbreviates to (V, (x), ((P, Iv), x)).

-67-

Since rule 7 precedes 9,

V(x) P(x) D P(x) unabbreviates to (D, (V, (x), ((P, Iv), x)), ((P,Iv),x))

as does (V(x) P(x)) D P(x)
However
V (x) (P(x) D P(x)) is different; it unabbreviates to

(v, x), (o,(P, Iv), x), ((P, Iv), x)))

2.1.2.5 "Defined'" Symbols (Rule 13). A definition

statement is a symbol string in one of the following 5 forms:

1. ¢ = v where ¢ does not occur in vy ,
2. ¢(a1, Opseees an) = B where ¢ does not occur in 8 ,
3. o) ¢ o, = B8 where ¢ does not occur in B ,
4. ¢(Gps Ogsee- an) = B where ¢ does occur in B, or
5. oy ¢ a4, = g where ¢ does occur in B

In addition,the foliowing must hold for the above 5 forms:
Each oy is a variable - or variable base (predicate variable base or in-
dividual function variable base). Each ¢ is a single
symbol (e.g. letter or word) which is not any of the symbols of our al-

phabet (Table 1) and not any of the symbols in the box below.

(), .[1;~

The symbol ¢ occurring in a definition statement is called a “defined"
symbol, and it is said to be defined by the definition statement in which
it occurs. Any defined symbol may be used in an abbreviated S-expression
(including the 4y or B of a definition statement, see the 5 forms above), so
long as it is defined by a definition statement occurring (or referred to)

earlier in the discussion.

-68-

Rule 13 now can be written:

13A. If & is a single ''defined" symbol ¢ then,

If ¢ is defined by a statement of form 1, € isy .

If ¢ is defined by a statement of form 2, £ is (A, (@), @yseees @),B).

If ¢ is defined by a statement of form 3, £ is (), (al, az),B)

If ¢ is defined by a statement of form 4, t is

(label, (s, 61, 62,..., 6n), (O, (al, Oseens an),y))

Where § is the type of o and:

(1) 1If B is a formula-type expression then 6 is the first
predicate function variable base not occurring in B ;

(2) If B is a term-type expression then 6 is the first in-
dividual function variable base not occurring im 8 ; and:

y is B with each occurrence of ¢ replaced by (6, 61, 62,...,5n).

If ¢ is defined by a statement of form 5, £ is as for form 4 with n = 2.

(With respect to rule 7:

¢ is an infix binary function name abbreviation if and only

if it is D, = , *, or a "defined" symbol whose definition statement
is of form 3 or 5 above)'The reader may note the striking similarity
between our abbreviated definition statements and LISP definition
statements in m-notation. Obviously, the form of abbreviations is
quite dependent on preceding definition statements.

138. If £ is of form addad (a), then £ is (a , (d, (d, (@, (d,a))))).

Similarly for any string composed of a's and d's .
13C. If ¢ is of form addad, then ¢t is (x, (x), (&, (5; (&; (@, d, x))N)).

Similarly for any string composed of a's and d's.

-69-

Example: ~ is an abbreviation for (A, (p), (D, p, ®)) . (The

definition statement of ~ is given in Table 3.) ~p is an abbreviation

for (A, (), (>, p,®)), p)-

2.1.2.6 Abbreviations Using Colored Symbols

(rules 14 - 17). In abbreviations we may use colored symbols to indicate

a quote operation (i.e., to indicate the existence of a qu)

Color of Symbol Meaning
Black Unquoted symbol
Blue Quoted symbol
Red Doubly quoted symbol
Green Triply quoted symbol

We will use colored Greek letters (except A) in our rules in the following
way: If o stands for a
string of symbols, then@stands for the same string of symbols but with
the following color changes:

Symbols black in o are blue in@ ;

Symbols blue in ¢ are red in@;

Symbols red in ¢ are green in@; etc., etc. Similarly, with other

Greek letters used to represent strings. If o is g then we will sometimes

write'for. E.g., if o is * y then o is (*, (qu, x), y),

@is @, and is . Note, @stands for a string

which has no black symbols. If@ stands for such a string, thenstands

for the same string but with the following color change:

symbols blue in (¢)are red in());
symbols red in@are green in@; etc., etc.

-70-

These color conventions given for o will be the same for other Greek

letters (except A\) including ¢ . To handle colored abbreviations, we add

the following rules.

14.

15.

16.

17.

If £ is of form@ then € is (qu, 0)

If £ is of form @c@ then £ is (*, o, 9)

If £ is of form @o]‘? 02@ 03 Gn@ then £ is (*, Gl’ @02?03 0’9)

Suppose there exist two sequences: cSl, 62,..., cSn , a sequence of

€ , €_ , a sequence of variables,

term-type expressions, and e 1

1 g
such that no occurs in £ and such that a uniform simultaneous
substitution of 's for Gi 's in § yields@where o is an expression.

Now let B be the result of uniformly simultaneously substituting the

§,'s for the@'s in. Then £ is B

Example 1.@)((There is a definition statement for ~ in Table 3)

Use rule 17 with 6l= x and e = P Then B is (((A, (p), (D, P, ®)), x@

and the answer is B which we get by rule 16:

O, @, (2, p 6)) @)

rule 14: (*, (qu, ()\ 1) (P): (D) P, @))), @)

rule 15: (*, (qu, (A , (P, (D, P, ©))), (*, X, B)

rule 1, several times: (*, (qu, O, ®, (>, 1:, ®))), (*, x, §)

rule 12, several times: (*, (qu, (A , (p), (2, p, ©))), (*,x, (qu, nil)))

This is a term-type expression, and is of type Iv. Note @x is the same

expression as @ x@ SO we say @x is @x@ since they are abbreviations of

the same expression. We shall frequently talk in this way. We can also say

@x is (*,@, (*s x, §))

-71-

Example 2.
Qx>
By example 1 we see @x is a subexpression candidate of type Iv.
Hence rule 7 operates: (*, ©_x~, ¥)
Rule 12: (*,_@—Tc, y) This gives the same as (see Example 1)
, (,@, (*5 x, 8)), ¥y)
Example 3.
SERR
Now rule 7 doesn't work,but rule 17 does,as in Example 1 with
§ = x* y, The result is the same as (see Example 1) (*,@, (*, (*,x,y), 0)).

This is quite different from Example 2.

Note that: (*, x,y))) gives the same result so we can also say,
Cl * W) is @(*, % v
Example 4,

x@y
By rule 17 with 61 = X, 62 = vy, & T Py, T Q @ x@)@
Rule 16: (*,@ , @x?y@). Rule 16: (*, @ (*, X, W))

Rule 15: (@ *, X, (*, 7, 8)))

Rule 12: (*,@, 5 x, (%, v,0)))

Rule 14 and 12: (*, (qu, 2), (*, x, (*, y, (qu, nil))))

Note: x@y is@*(x* (y* #)) . It is also @x@y@ .

Example 5.

T(@.)@) (There is a definition statement for T in the tables)

By rule 2 and 14 alternately, we get:
@@p @)

» (qu, T()))
T, (@, T.E5D))

(T, (qu, (T, (qu, P >P)))

(T

(T

(T, (qu, (T, (qu, (D,P,P))))) We then use rule 13.

-72-

We must stress that all 17 unabbreviating rules are
to be used as a unit. A symbol such as @ appearing in any rule

means the result of successively applying all 17 rules to o .

-73%-

2.1.2.7 Comma vs Dot Notation. The unab-

breviating procedure given in Sections 2.1.2.4, 2.1.2.5, and 2.1.2.6, gives

a result written in the so-called comma notation. This is a perfectly good
notation and it is the one we shall generally employ (in fact, it is the
notation we employed in Section 2.1.2.2 when we gave definitions of the
classes of expressions), but it is itself a sort of abbreviation. (It is

the result of making the kind of abbreviation mentioned at the very beginning
of Section 2.1.2.2.) In other words, after applying the unabbreviating
procedure of Sections 2.1.2.4, 2.1.2.5, and 2.1.2.6 to an abbreviated S-ex-
pression, one still has an abbreviated S-expression.

In order to completely unabbreviate an S-expression one must follow the
above unabbreviating procedure with a second unabbreviating procedure which
is given below. The notations here are the same as in the previous procedure.
There are three rules.

1. If £ is an atom, then £ is £

2. If ¢ is of form (o), then £ is (5. nil)

3. If ¢ is of form (01, Opsnens on) then € is (ol, (02,...,0 n))

Note: These 3 rules are distinct from the preceding 17 rules. G occurring

in these 3 rules means the result of applying only these 3 rules to o .
o occurring in the preceding 17 rules means the

result of applying only the preceding 17 rules to o .

2.1.2.8 Reading the Expressions in the

Tables and the Text. In Section 2.1.2.5 we pointed out that the form of an

abbreviated expression depends very much on what definition statements pre-
cede it. We will want to use many 'defined" symbols in the following sections.
We could either defer each definition statement until the "defined'" symbol
is needed, or we could list all the definition statements now. We shall adopt

the latter course for most 'defined" symbols. However, instead of actually

-74-
inserting the block of definition statements into the text at this point,
we have placed the block of definition statements in the tables in Section 4.
We refer the reader to these definition statements now and warn the reader
that we shall in the future freely use the symbols '"defined'" by the definition
statements in Section 4 (except for Section 4.11).

To aid the reader in deciphering the tables of Section 4, we shall make
the following remarks about the organization of the tables: The definition
statements are all contained in Tables 3, 6, 7, 8, and 9. Tables 3, 6, and 9,
consist entirely of definition statements. Since the definition statements
are gathered in the tables for easy reference, the reader need not learn any
of the definitions until he feels it is necessary. In fact, we shall (in
Section 2.1.4.1) giye English statements of the meanings of the important
"defined" symbols. The reader will find these English statements sufficient
for most purposes and he may decide that careful scrutiny of the definition
statements is unnecessary.

Table 1 lists our alphabet.

Table 2 lists those function expressions which name our basic recursive
functions, each of which has its own special evaluation procedure (see the
note in Section 2.1.4.2).(In any machine employing our system each such pro-
cedure would be stored as a separate subroutine.) The meanings of the
function expressions are given using the notation of Section 2.1.4.1.

Table 3: This is a basic list of definition statements for symbols
which are abbreviations for the names of recursive functions. As in all tables ex-
cept 11, each definition statement employs only those '"defined" symbols which
have been defined in previous definition statements. Table 3 gives definitions
for all the ''defined'" symbols used in Tables 4 and 5 except T and Pfstep. We

shall see in Section 2.1.4.2 that each of the function names given in Table 3

-75-

is an esgpecially nice kind of function expression called a complete recursing
function expression.

Tables 4 and 5: There are no definition statements in these two tables.

Each of these tables is a sequence of abbreviated expressions, using the
""defined" symbols which were defined in Table 3 (and also using Pfstep and
T,"defined" in Tables 6 and 7; see apology below). The expressions ab-
breviated in Table 4 are the axioms of our system. We shall be discussing
these in Section 2.1.4.3 and later sections. We shall see in Section 2.1.4.2,
that our rules of inference can also be written as expressions in our language.
Table 5 gives the abbreviations of these expressions. We shall be discussing
them in Section 2.1.4.4 and later sections.

Table 6: Like Table 3, this table consists entirely of definition
statements for symbols which are abbreviations of those especially nice
kind of function expressions (which we shall discuss in Section 2.1.4.2)
called complete recursing function expressions. As "defined" in this table,
each RuZei symbol has an obvious relationship to the i 'th rule of inference
in Table 4. At the end of the table, the RuZei’s are used in a definition
statement which "defines' the symbol Pfstep from which the symbol Proof (which
names the predicate true on proofs) is immediately '"defined.'" From this,
in Table 7, the symbol T (which names the predicate true on theorems) is
"defined." We shall discuss the meanings of Pfstep, Proof, and T in
Section 2.1.4.1 and later sections. The whole purpose of the definition statements
in Table 6 is to make simpler the definition statements for the above three
predicate expressions.

Apology: Since the definitions in Table 6 can most easily be thought of
as being derived in a natural way from the rules of inference in Table 5, we

have placed the Table 6 definitions after the rules of inference. The reader

-76-~

will find this arrangement more convenient than the reverse, but strictly
speaking, since the expression T is used in the rules of inference, the
definition statement for T, and hence all the statements in Table 6, should
precede the rules of inference (in which T is used), and should also precede
the axioms (in which Pfstep is used).

Table 7: With this table we leave the realm of those nice complete re-
cursing functions that we shall be discussing in Section 2.1.4.2. The de-
finition statements in the remainder of the tables give abbreviations for func-
tions that are in general not complete recursing. The only definition state-
ment in Table 7 defines T, the predicate expression which names the predicate
true on theorems. (We shall be discussing T at end of Section 2.1.4.1) Follow-
ing the definition statement for T are several abbreviated expressions which
use T. It will turn out that these expressions are theorems of our system
and that their intended interpretations are virtually the same as the in-
tended interpretations of the expressions in Table 5. It is intended that
the reader defer examination of these theorems, and the other theorems in the
tables, until after we have discussed the axioms and rules of inference in

Section 2.1.4.

Table 8: Here we have several definition statements and interspersed
theorems (proofs not given) which will be useful as a formal counterpart
to our discussion of well formedness in Section 2.1.3.

Table 9: This table consists entirely of definition statements which
are needed for the definition of apl which is defined at the end of the
table. This function expression abbreviation will be discussed in Section
2.1.4.2.

Table 10: In this table are given several sample proof outlines. It is

intended that the reader defer examination of this table until after we have

-77-
discussed the axioms and ruies of inference in Section 2.1.4.
Table 11: This table has nothing to do with our axiomatic system. It
contains some LISP-like routines for implementing an adaptive theorem prover
as suggested in Section 3.

2.1.3 Well Formedness. In most axiomatic systems there is a rule of

inference which allows uniform substitution of a well-formed formula for a
propositional variable. What will be our analogue of this rule? We cannot
allow substitution of any formula-type expression for a propositional
variable, because, according to our definition, a formula-type expression
may contain those "contradictory'" algorithmic-names that we promised to
exclude from theorems. For this reason we define a subset of the set of
formula-type expressions, called the set of well-formed formulae. This set
consists of just those formula-type expressions which contain no algorithmic-
names except those which are generatable according to the procedure we
discussed earlier. Thus the well-formed formulae will contain no 'con-
tradictory" algorithmic names. Because of the nature of our procedure for
generating algorithmic-names, the set of well-formed formulae is not a deci-
dable set. Consider the predicate expression abbreviated as F. (The symbol
F is'defined" 1in Table 8) This expression names the predicate true on S-
expressions which are well-formed formulae. Although,in form,F looks like
an algorithmic name, the definition contains a function-type expression,
(namely T) which can only be regarded as an ordinary-name since it contains
a M. Thus, F is not a pure algorithmic-name but a sort of hybrid, built

up according to our rules of formation of predicate-type expressions from
names, some of which are not algorithmic. Such hybrid names of individual
functions and predicates are so common in our system that the distinction

between ordinary-names and algorithmic-names, which we made earlier, is

-78-
actually of little use to us once we take the more complicated cases into
consideration. We can still speak, however, of purely algorithmic names.

Such names must reflect their algorithmic evaluation procedures. Thus their
unabbreviated forms can contain no V, d, UW!, or 1 , except inside the
expressions 1 (y) ((atom(x) ny = x) v (d(z) y * z = x)) and

1 (y) (Catom(X) Ay =x) v (d(z) z *y =x)) which we are abbreviating

as a and d respectively. (These two expressions are permitted only because
any machine using our system would have stored a special algorithmic evaluation
procedure for @ and d — see note, Section 2.1.4.2) F couldn't possibly be a
purely algorithmic name since, being true on an undecidable set, it has no
algorithmic evaluation procedure. Of course we can freely substitute well-

formed formulae for propositional variables. That is: If o 1s a theorem,

m__is a propositional variable, and B is a well-formed formula, then the

expression obtained by uniform substitution of 8 for m in a is also a theorem.

This meta-theorem looks very much like the rule of inference we want to use.
Close examination of the meta-theorem, however, shows that it cannot be a
rule of inference, because there is no effective way of using it. How does
one decide whether or not R is a well-formed formula? The set of well-
formed formulae is not decidable. Yet we need some rule of inference similar

to the above.

We define a subset of the set of well-formed formulae called the set of
simple formulae. A simple formula is a well-formed formula whose unabbreviated
expression contains no function-type expressions except atoms, predicate

variables, or individual function variables. Note: all the '"contradictory"

algorithmic names (pure algorithmic names or not) are in the set of excluded

function-type expressions.

-79-

The set of simple formulae is a decidable set, so the following can be

a rule of inference: If o is a theorem, m is a propositional variable, and

v is a simple formula, then the expression obtained by uniform substitution

of ¥ for m in a is also a theorem. If we have rules of inference which allow

us to substitute already generated predicaté function-type expressions for
predicate variables and to substitute already generated individual function-
type expressions for an individual function variable, we can, in fact, substitute
any well-formed formula uniformly for a propositional variable by first sub-
stituting the appropriate simple formula and then replacing its predicate
variables and individual function variables by the appropriate function-type
expressions already generated. Later we will examine in detail the rules

which allow us to do this.

We have taken a set of expressions (the set of formula-type expressions)
and created two subsets: The first was created by excluding all expressions
containing function-type expressions which were not generatable. (Non-gener-
atable function-type expressions are all algorithmic names, but are not
necessarily purely algorithmic.) The second was created by excluding all ex-
pressions containing function-type expressions which were neither atoms,
predicate variables, nor individual function variables. We can similarly
create two subsets for other particular sets of expressions, as the chart

indicates.

Particular Set of Expressions

-80-

First Subset

Second Subset

Expressions

Form-type expressions
Formula-type expressions
Term-type expressions

Function-type expressions

Predicate function type

Well-formed expressions
Forms
Well-formed formulae
Terms
Function expressions

Predicate expressions

Simple expressions
Simple forms
Simple formulae
Simple terms
Simple formations

Simple predicates

expressions
Individual function

expressions

Simple individual

Individual function-type functions

expressions
For each line of the chart the following facts hold:
The first subset is a subset of the set in Column one.
The second subset is a subset of the first subset.
The set in Column one and the second subset are both decidable.
The first subset is not decidable.
(Note that in our terminology a function expression is either an individual
function expression or a predicate expression. Instead of "well-formed

formula'" we shall often write simply "formula.')

2.1.4 The Axiomatic System

2.1.4.1 Certain Functions and Relations. Having discussed the

various kinds of expressions in which we shall be interested, we shall now
proceed to discuss our axiomatic system in more detail. We shall specify
the axioms and rules of inference of our system. In specifying these we

shall make free use of the predicate and individual function symbols defined
in the definition statements in the tables.
Before specifying our axioms and rules we will briefly discuss the de-

fined predicate and individual function symbols that we shall be using in

-81-
abbreviations of the axioms and rules. The brief discussion will supplement
the definitions in the tables by giving the dntended interpretations of ex-
pressions whose abbreviations employ the defined individual function and
predicate symbols. To do this economically we shall observe the following
conventions: When a formula is true under the intended interpretation, we
shall say that the formula holds. We shall say that an individual constant
of form (qu, B) names the S-expression B . And when a formula of form
o = (qu,B) holds, we shall say that o names the &-expression B even though
o is not an individual constant. (For example, we say that a((qu, (o.8)))
names a since a((qu, (a.B))) = (qu,o) holds.) For any term-type expression

o , we shall, in our discussion, write '@’ to mean the S-expression which a

names. (e.g. We say that a((qu, (a¢.8))) is a . Note that the symbol "

is merely a convenience for purposes of discussion and is never part of an
S-expression or S-expression abbreviation.)

In Section 2.1.3 we defined several useful classes of S-expressions.
For each such class we can think of the unary predicate true on the class.
Now the predicates of our language are defined over S-expressions so it is
not surprising to find that we can write, in our language, algorithmic names
for each of the above predicates. The tables give definition statements for

defined symbols which are abbreviations for these algorithmic names.

-82-

We give below a chart which indicates intended interpretations of

formulae whose abbreviations employ these defined symbols.

Formula

It Helds If and Only If o Names

expression (a)
wfexpression (a)
simplexpr (o)
formtp ()

form ()

Ftp (o)

F (o)
simpleformula (o)
Trtp (o)

Tm ()
simpleterm (o)
functiontp (a)
function ()
Pfetp (o)

Ffe (o)

Ifetp (a)

Ife(a)

an expression

a well-formed expression

a

a

simple expression
form-type expression
form

formula-type expression
well-formed formula
simple formula

term-type expression
term

simple term
function-type expression
function expression
predicate function-type expression

predicate expression

an individual function-type expression

an individual function name

Similarly, the several charts below give interpretations of formulae

and terms whose abbreviations employ other defined symbols. (Note that an

exact definition may be found of, for example, the set of simple terms, by

first looking at the above chart and noting that the predicate true on

simple terms is simpleterm, and then referring in Table 8 to the definition

statement for simpleterm .

Also, two charts in Table 2 give interpretations

-83-

of formulae and terms which employ the basic complete recursive function ex-

pressions, which are listed in Table 2.

Use of Some Logical Connectives (Predication of Type (Pfvb, Pv) or

(Pfvb, Pv, Pv)):

Formula It Holds If and Only If
~0 o does not hold.
a A B o holds and g holds.
a Vv B a holds or B holds.
a = B o and B both hold or else neither holds.

Use of Some Other Predicates:

Formula It Holds If and Only If
af B o and g name different S-expressions.
ad B o names a sub-S-expression of the S-expression
named by B .
agB ag B holds and if o names a variable then it occurs
free in the S-expression named by B .
(This only makes sense when § names an ex-
pression.)
o ¢ B @ is a variable and 8 is an expression and if

freecheck(o, B, v)

there is no free occurrence of o' in ‘g’ occurring
in any subexpression of g of form (label, 7, §).
(It also holds in some cases when s is not a
variable or 8" is not an expression)

o' is a variable which doesn't occur free in %'in-
side the scope of a binder which binds a variable

free in B . (But it also holds sometimes when o' is

not a variable)

variable (o)
nonvaratom(a)

o € B

-84-

o names a variable.
o names an atom which is not a variable.

Bnames a list of form (o .,a) and @' is a.
n i

1 %

for some n and i such that 1< i< n.

(It may also hold in some cases when a doesn't
name a list.)

Use of Some Individual Functions:

Term

It Names

exprtypela)

type(a)

args(a)

newvarex(a,)

The type of @' whenever o names an expression.

The type of @ if o names a variable, @ if it
doesn't.

The list (81,6 ,Bn) whenever g names a

PR

function-type expression of type T
N

The variable 4 where 5 is of the same type as o

n

. ~
and does not occur in B .

Use of Predicates Defined on Lists:

Formula

It Holds If and Only If

andlista(ll,) (The
type of [l must be Pfvb ~or
this isn't a formula.)
andlistlista ([1,0,B) (The
type of Il must be Pfvb

Iviv

or this isn't a formula)

[1(8) holds for every g such that g8 € o holds.

(So a is meant to be a list)

o and b name lists of form (al, OUyseens an) and
(Bl, BZ""’Bn) respectively, and
H(,) holds for each i ¢ n. (It may also
hold sometimes whena or g don't name lists

as indicated.)

-85-

Use of an Individual Function Defined on a List:

Term

It Names

maplistear($,a) (The type of

¢ must be vabIV or this isn't

a formula)

‘@ ¢c)? o b %@'

when o names a list of form

(al,az,...,an)

Use of Individual Functions Which Perform Substitutions:

Term

It Names the Expression Obtained by

S(a, B, 'Y)

Sf(u’ B: ‘y)

Snf((y,, B’ 'Y)

Ssl(a, B,)

5sfl (o, B, v)

Uniform substitution of B for 4 in 5.

Uniform substitution of B for all free

o in'y,

occurrences of the variable
Uniform substitution of g for all occur-

rences of @' in 5’ except those occur-

rences inside sub-expressions which

are function-type expressions.
(Assuming o and B name lists of form

(al, az,...,an) and 31,82,...,8n)

respectively) simultaneous uniform sub-

stitution of each BifOT oy in Y.
(Assuming o and B name lists of form

(al, Oyseens an) and (51,52,...,3n)

respectively and each oy is a variable)

simultaneous uniform substitution of

each Bi for all free occurrences of

IR
Ol,iln-y.

-86-
We have the three further predicates: Pfstep, Proof, and T .
Pfstep (@) holds if and only if
o names a list of form (Grs Onseees un) where oy is an axiom of our system
or is derivable from the other ai‘s by means of our rules.
Proof (a) holds if and only if
a is a list of form (ul, a

. an) where @, o seees Gy, 0 1S 2

2°° n-1

sequence of expressions forming a proof in our system.
Now except for some in the first chart in this Section (2.1.4.1), all
predicate and individual function names we have discussed so far in this
section are purely algorithmic names (''purely algorithmic" is defined in
Section 2.1.3.),
We define
T(x) = d@) (Proof(y) ~ aly) = x)

T does not have a purely algorithmic name. T (o) holds if and only if

o names a theorem of our system.

2.1.4.2 The Meta Level. Consider a term ¢ (oy s az,...,un)
where ¢ is an individual function expression without free variable and each

o is either a function name, an individual constant (i.e. of form (qu, a)),

or one of the two so-called propositional constants, ® and ® . Suppose

this term names the S-expression g . Using LISP terminology, one could say

that the term has value g or that the function expression ¢ gives value B
when applied to the arguments Ops Gpseees O A LISP program [McCarthy 1962]
is a function-type expression much like ¢ . Such a program is presented to
the LISP interpreter which applies the program to the data, written in the
form of arguments like Gps Goseses O above.

The task of the interpreter is to evaluate terms

like ¢ (al, Qpseees an) to produce the S-expression named by the term.

-87-
In our system we shall have a similar evaluation procedure. In a moment
we shall direct the reader to the definition of our procedure. First, let
us say that it differs from the LISP procedure in two ways:
A. In applying A expressions, one substitutes the argument expressions
directly into the matrix of the X expresion and the result is evaluated.
(LISP would evaluate the arguments and substitute their values. Our
scheme makes the LISP symbol FUNCTION, and all its complications, un-
necessary.)
B. The result of evaluation is a constant. That is, it is ® or @ or a

quoted expression, not the expression itself. Thus, in the above

example, the result of our evaluating q>(ocl,a2,...,ocn) is @, where

¥ 1
names ¢(ocl,oc2,...,un) . We say ¢(a1,a2,...,an) evaluates to.
Now the evaluation procedure is a recursive procedure so if ¢ is the name

of a non-recursive function, there will be choices of the arguments for which

the evaluation procedure does not yield an individual constant which names

l¢(a1, P YRR anj' In such cases, either the procedure does not terminate,

or it yields another term 4 , which names ' p(ags @ ., an)', but which is

g2

not an individual constant. In the second case we still say ¢(u1, GUysee v @n)

evaluates to 4y . Our evaluation procedure is such that if ¢ is any
purely algorithmic individual function name (defined in Section 1.3) then

for any choice of arguments Gps Gpseees O (i.e. any choice of a{s such

that: ¢ (a0 . an) is a term without free variables, each oy which

1: az,"

is a term is an individual constant, and each oy which is a well-formed formula

is a propositional constant), ¢(a1, a ,an) will either evaluate to an in-

grees

dividual constant or the evaluation procedure will not terminate. Such a
¢(a1, GUpsenes an) will never evaluate to a term which is not an individual

constant. If ¢(a1, a . an) evaluatesto an individual constant for any

92

-88-

such choice of arguments o S0 then we say that ¢ is a complete

17 Goree

recursing individual function expression. Any complete recursing individual
function expression is a purely algorithmic individual function name.

Our evaluation procedure handles not only individual function expressions,
but also predicate expressions, and analogous statements are true of them.

If o(o, @ ..,an) is a well-formed formula, then either it evaluates to

27

a formula 4 which holds if and only if @(al, ...,an) holds, or else

OL2:

the evaluation procedure does not terminate. If ¢ is any purely algorithmic

predicate name then for any choice of arguments Gps Opstees O (ie. any

choice of ai's such that: @(al, a . un) is a well-formed formula without

g

free variables, each a, which is a term is an individual constant, and each

o, which is a well-formed formula is a propositional constant), @(al, az,...,an)

will either evaluate to a propositional constant or the evaluation procedure

will not terminate. If @(al, a - an) evaluates to a propositional

277

constant for any such choice of arguments a1, o vy G then we say that

SO
¢ 1is a complete recursing predicate expression.

The complete recursing individual function expressions and the complete
recursing predicate expressions are the so-called complete recursing function

expressions.

Note: Each of the basic function expressions listed in Table 2 has a special

recursive evaluation procedure. A machine employing our system would have

a special little evaluation subroutine (analogous to LISP SUBR's) for each

of the function names in Table 2. Thus, if ¢ is in Table 2, it is a complete
recursing function expression. The function expressions given in Table 3

are built from those in Table 2 by operations analogous to composition and
primitive recursion, so it is not hard to see that the function names given
in Table 3 are complete recursing function expressions, as are the names

given in Table 6. Of course, there are plenty of function expressions whose

-89-

abbreviations are given in Tables 7, 8, and 9 that are not complete recursing.

Our evaluation procedure will be written in a general way so that it will
apply to any term or well-formed formula. If o is a form to which we apply
our procedure, and if all function expressions in the form a are purely
algorithmic names (Then they look like LISP programs.) and if o has no free
variables, no quantifiers, and no i, then either the evaluation procedure
does not terminate or o evaluates to a constant (individual constant or
propositional constant). If all function expressions in such a form o are

complete recursing function expressions then a evaluates to a constant.

Consider the purely algorithmic individual function name which we shall
abbreviate as apl . The definition statement of this defined symbol is given

in Table 9. The intended interpretation is given below.

Term It Names

apl () The expression which results from applying our evaluation

procedure to a . (Note: this expression will not always

be a constant.)
(apl is analogous to the LISP eval function.) Thus, the reader will find
in the tables the specification of our evaluation procedure. It is written
there in the guise of a definition statement for apl. (So we describe our
evaluation procedure in much the same way that the LISP 1.5 manual describes
the LISP evaluation procedure.)

The following meta-theorems will hold in our system.

META THEOREMS: If o is a term which evaluates to 8 then o = B

is a theorem of our system. If o is a well-formed formula which evaluates

to B then o = B is a theorem of our system.

-90-

Since our meta theexems are statements about classes of S-expressions,
we can write them as expressions in our language. For example, the first
half of the above meta-theorem can be written

(Tm(x) Aapl(x) =y) 2 T(x@y) where x is to be@and y is
the<7 . Since rules of inference are meta-theorems, we can write them in
the same way. Modus ponens is (T(x(;))j A T(x)) D T(y)

Now a rule of inference is a meta-theorem of form o > T(B)
where o is a well-formed formula and g8 is a term. To apply the rule to
a set of theorems {nl, Nyseees nmf we substitute constants for all free
variables (These constants are the parameter values referred to in Section
1.5 in the introduction.), obtaining something of form e O T(§)

e 1s then evaluated in

the normal way except that whenever something of the form T (y) is en-
countered it is replaced by ® if and only if the evaluation of 4 terminates
in something of form (qu,ni) . If this procedure terminates and the result
is @ , and if the evaluation of & terminates in something of form (qu, u),
then we say that a result of applying rule ¢ D T (g) to antecedent set

{ N> Npseees N } is the theorem u . If any of the above conditions fail
to be met, we say the attempt to apply the rule fails.

With this application procedure in mind, we have used the above notation
to write, in Table 5, the complete list of the initial rules of inference
for our system. (Remember, we have a procedure for adding new rules of in-
ference. This 1s explained in Section 2.2.1.2) Note that a rule will be
more useful the fewer function expressions it contains which are not complete
recursing, since if it contains many function expressions which are not complete recur-
sing function expressions, the evaluation procedures will tend to not ter-

minate or to yield something other than a constant.

-91-

2.1.4.3 The Axioms: (Table 4). Furnished with the meanings

of the defined functions and predicates: atom , nonvaratom,~, VY , A , =, 9,
and Pfstep, as well as the meanings of the primitive symbols of the language,
we are ready to examine our set of axioms listed in Table. 4. For purposes
of our examination we divide the axioms into several groups.

Axioms 1 - 5: This is simply one formulation of the axioms for a finite

axiomatization of the pure first order predicate calculus. These are just
as they might be in a formal arithmetic.

Axioms 6 - 7: These are the axioms of equality. Again these are just

as they might be in formal arithmetic. Axiom 7b is needed for the substitu-
tativity of equivalence discussed in Section 2.2.1.1. The only reason this

= counterpart of 7a appears in our system, but not in most formal arithmetics,
is that we have predicates with domain of truth values as well as predicates
with domain of individuals.

Axioms & - 10: These are our analogues of the Peano axioms, where our

axioms are based on * rather than on . Recall that we made this simpli-
fication with assurance that we were only decreasing our power by doing so.

Had we retained the more powerful axioms based on , they would have been:

~(@ = [S] (x))
Blx) =8E& >x=y
(P(B) AV(X)(P(x) D P([S](x)))) D Vx)P(x)

-92-

Axioms 11 - 13: We could regard ® , d , and J! as abbreviations

and not actual symbols of our language. However, we do actually introduce
them as symbols, and these axioms may be regarded as their definitions.
Axiom 14: This is the definition of 1 . 1 cannot be regarded as an
abbreviation. We need the actual symbol or we lose power to represent the
functions we want represented. Note we have only formalized an inter-
pretation of 1(x) P(x) when in fact d!(x) P(x) holds. We could formalize
an interpretation in the other cases by picking an arbitrary interpretation

say nil, and adding the axiom

~HI(X)P(x) D 1(x)P(x) = @

-93-

Axioms 15, 16, and 17: 1In Section 2.1.110 we removed from our system

the ordering of the atoms via indexing. We retained, however, a few axioms
(previously theorems) and rules which gave the minimal amount of information
about the atoms needed to carry out the proofs we want. These three are
the axioms retained.

Axiom 18: Remember that we need certain algorithmic names in
our initial set of algorithmic names. This set is the set of algorithmic
names which appear in the axioms. Now all algorithmic names which we need
in the initial set are in the unabbreviated expression which we abbreviate
as Pfstep. Axiom 18 ensures that these algorithmic names are all in the
initial set.

2.1.4.4 The Rules of Inference (Table 5). Furnished

with the meanings of those defined functions and predicates listed in the
charts of Section 2.1.4.1, as well as the meanings of the primitive sy-
mbols of the language, we are ready to examine the rules of inference
listed in Table 5. These are written in the notation explained in Section
2.1.4.2. In Rules 2,6,16, and 17, the predicate é is used to make sure
that in no theorem is there, occurring inside a subexpression of form
(label, = , 8§), a variable bound by a binder located outside that subex-
pression. The 5 in Rule 6 has another purpose too, which we discuss below.
Note that Rules 3,4,5,16, and 17 are the only rules which can generate new
expegssions of form (label, = ,6,) . (I.e., they are the only rules that
generate new algorithmic names.)

Rule 1: Modus ponens.

Rule 2: Generalization.

Rule 3: Change of bound variable.

Rule 4: Substitution of simple expression for a variable of the same

type. Recall, we substitute simple expressions instead of well=formed

-94-
expressions because by using this procedure in conjunction with Rule 5, we lose
no power, and have a rule we can effectively apply.

Rule 5: Substitution of function expression for function variable. This

is written in a way that takes advantage of the following property of the function
exprtype (defined in Table 3). (This property is not mentioned in the dis-
cussion of Section 2.1.4.1). If TTQ»A<)$Q>}nalds, then o will actually be a
function expression whenever q(exprtype K?)) names either Pfvb or Ifvb. (The
analogous statement for forms does not hold: 1i.e., simply having T()I\@s@ hold
and having exprtype(()) name Pv or Iv does not ensure that o is a form.) Thus,
for Rule 5 to be successfully applied, the constant (i.e., parameter value) sub-
stituted for the free variable z in the rule must name a legitimate function
expression.

Rule 6: Application of a A function to its arguments. Axiomatizations
of formal arithmetic which do not have a X notation frequently have one rule
which is, in effect, Rule 5 followed immediately by Rule 6 (so the X disappears
as soon as it is substituted in). Rule 6 and Rule 7 are consistent with our
modifications of the LISP evaluation procedure. Examining in detail the
statement of Rule 6, suppose<>,<> &§> are the constants (i.e. parameter values)
to be substituted for y, u, and v respectively in the application of the rule.
If n is not a legal term then neither @9@ nor @g@ can hold and thus, for
the rule to be successfully applied, v and w must be identical expressions.
Rule 6 allows us to simplify the expression ((x , (x), x), y) to y inside a
theorem. However, we don't want to simplify mapz¢stcap((o, (XD, xX), ¥) (which
we can also write as (maplistecar . ((A, (X), X), ¥))) to (maplistcar . y)
inside a theorem. The result is not even an expression. To prevent this sor
of misuse of functional arguments, the condition expression (v) is added to

the statement of Rule 6. The condition

-95-

(yguv (andlista((x(z)~'z<é adda(y)) ,ada(y)) A
andZistZista((x(x,z)Q z D x €adda(y)),ada(y),d(y))))
in Rule 6 ensures that no new expressions of form (label,n,8) are generated.
Rule 7: Function recursion. This shows the use of label in functions
defined recursively. The ad(y) < add(y) term in the rule assures us that
no new label expressions ean be generated by this rule.

Rules 8, 9, 10, and 11: Conditional expressions. When combined with

the propositional calculus rules, Rule 11 says one can replace o with

[6 >a] ; Rule 9 says from ~o D(...... [81+71; 62”72;"‘; Bﬁ+7n] and

a DO (co... §) we can infer (...... o 6;61+ Yy 82*72;...; Bnr*yn]

The rules also let us go in the reverse direction. In LISP a conditional
expression (beginning with a cond) can be, in effect, either a formula-type
expression or a term type expression. In our system, we use the atom pcond
in the formula-type expressions and reserve the atom cond for the term-type
expressions.

Rule 12: Listbinder notation. This lets us write'V(gl) V(gz).,.Vfgn) o

as V (gl, Epreers gn) o . Similarly for .

Rule 13: Definition of qu. See Section 2.1.1.9 for discussion.

Rules 14 and 15: Rules about atoms preserved along with atoms 15, 16,

and 17 when, in Section 2.1.1.10, we got rid of the ordering on atoms.

Rules 16 and 17: These are the rules which generate new algorithmic

names. They implement the procedures suggested in Section 2.1.1.5 for

avoiding "contradictory" algorithmic names. We shall discuss these rules
in detail in section 2.2.1.1. Note the following with regard

to the specific form of the rules : Suppose<) and<;)are the constants
(i.e. parameter values) that we substitute for z and v respectively in
applying these rules. Then Rules 16 and 17 require us to replace every

occurrence of ¢ in w. This may seem like a restriction, but it is not, since

-96-
we can always trivally re-code the ¢'s wewant to replace and then replace

only re-coded ¢'s. This re-coding can be merely a change of a bound variable,
accomplished via Rule 3. Note that any function expression insidé the gener-
ated function expression must have previously been generated.

Rules 18 and 19: Thesec rules are the central feature of our system.

They allow us to shift theorems from the object level to the meta level and
back again. We shall, in Section 2.2.1.2, discuss how these rules operate
and why they don't destroy consistency. We shall constantly add new rules

to the system according to a scheme which we shall discuss in Section 2.2.1.2.

2.1.4.5 Proofs and theorems. Table 10 consists

of some sample proofs which utilize the various rules of inference. We shall
be referring, from time to time, to lines in these sample proofs which il-
lustrate interesting applications of the various rules.

Accompanying almost every line of proof in the Table is an English
phrase indicating how the line was derived. This phrase usually gives the
rule used and the previous lines to which the rule was applied. It may
also state the constants (i.e. parameter values) which were substituted for
the various frze variables in the rule. These are given by writing strings
of form ¢ = <7»ﬂ1ere £ is an individual variable occurring in the statement
of the rule and(?is the individual constant which is to be substituted for
it in this application of the rule. (Such strings are, of course, not de-
finition statements, in spite of their appearance.)

For the sake of brevity, many lines have been omitted from the proofs
in Table 10, so that Table 10 actually consists of proof outlines rather than
complete proofs. In cases where many lines have been left out, an English
phrase will indicate the nature of the omitted development. Sometimes we just

indicate the key rule or key axiom used in the development. The phrase "by

-97-
P.C." indicates that the omitted development employs only those rules which
our system shares with pure first order predicate calculus. The phrase is
used rather loosely and really is a signal that the omitted development is
trivial, uninteresting, and employs no techniques which are distinctive
to our system.

In some of the later sample proof outlines major sections of the
proof have been replaced by an English discussion of the principles involved.
Use of Greek letters to stand for any oneof a class of expressions makes
these outlines into proof outline schemata, the proof outline being good
no matter which particular expressions are substituted for the Greek letters.

It is not intended that the reader necessarily read through all of
Table 10. We shall, however, frequently refer to parts of Table 10 which
illustrate interesting points. The proof outlines in that table will be a
useful source of examples in the coming discussion.

Since the lines of these proof outlines are theorems, we shall freely
mention them as theorems in the text. We shall frequently mention other
theorems in the text without giving an outline of the proof of each one.

The methods one would use in constructing proofs of such theorems would
not differ substantially from the methods already illustrated in Table 10.
In Tables 7 and 8 we similarly mention some theorems without giving outlines

of their proofs.

2.1.4.6 Summary. As promised in Section

2.1.1.1, we have given a formal description of all parts of our formal
system. Our alphabet and formation conventions were described in Section
2.1.2. The axioms and rules of inference were given in Section 2.1.4. The
well-formed expressions were given in Section 2.1.3. The intended inter-
pretation was given in Section 2.1.1, especially Section 2.1.1.9.

In Section 2.1.1 we described many of the formal properties of our

-98-
system. In doing so we cutlined the reason that our system was consistent
(since it can be derived from formal arithmetic by consistency preserving
transformations). Unfortunately the discussion in Section 2.1.1 preceded
the description of our notation (given in Section 2.1.2) and our axioms
and rules of inference (given in Section 2.1.4). Thus the discussion in
Section 2.1.1 was necessarily incomplete, since we did not have the notation
of the system available for use in the discussion.

Our remaining task is to discuss in detail some formal properties of
our system which we were not able to discuss until now because we lacked

the notation. The first such property is consistency.

2.2 Formal Arguments

2.2,1 Consistency

2.2.1.1 Generation of Function Expressions. As we said in the

last section, most of the consistency argument was made in Section 2.1.1.
We need only review the parts of that argument which were vague.

These are the two parts we will review:

(1) The procedure for generating new function expressions described
in Section 2.1.1.5 for a modified formal arithmetic is followed essentially
unchanged in our formal system. We shall discuss this in more detail
in this Section (2.2.1.1), and show in detail why the precedere introduces
no inconsistencies.

(2) 1In Section 2.1.1.10, we introduced Rules 18 and 19 which allow
us to shift theorems from the object level to the meta level and back again.
We also introduced a procedure for constantly adding more rules of inference.
As yet we have done no more than mention this procedure and Rules 18 and 19.
The precedure and the rules will be fully specified in Section 2.2.1.2 and the

consistency argument will be completed.

-99-
Rules 18 and 19 together with the procedure for adding new rules are
the crucial features needed for use in an adaptive theorem prover of the type
we are discussing. Discussion of these crucial features iS deferred until
after the discussion, in Section 2.2.1.1, of the rest of the consistency
argument.
That is, in Section 2.2.1.1 we shall be discussing the consistency not

of our entire system but rather of a limited system which is without

Rules 18 and 19 and without the procedure for adding rules, but which is
otherwise just like our entire system. Once we have completed the consistency
argument for the limited system, we shall show (in Section 2.2.1.2) how
Rules 18 and 19 and our procedure for adding rules can be added to the limited
system without destroying consistency.

In Section 2.2.1.1, then, we shall be discussing the procedure for
generating new function expressions as it operates in the limited system.
We can divide function-type expressions into those of form (A, (51, £2,...,£n),8),
which we shall cal. X expressions, and those of form (label, m , §), which
we shall call label expressions. A expressions are easily generatable
via Rule 6. It is the procedure for generating label expressions that chiefly
concerns us here. This procedure was briefly discussed, for a modified
formal arithmetic, in Section 2.1.1.5. (The conclusions given there about
generatability still hold in our limited system.) The basis of the procedure
is the use of Rules 16 and 17. Examples of the use of Rules 16 and 17 may

be seen.in Section 4.10.5 in several different lines.

-100-

What might cause consistency problems in the limited system? Generation
of)\ expressions causes no consistency problems. It is the generation of
label expressions (i.e., function type expressions of form (label,m , §))
that we have to worry about. Note: Any A expression in which no label
expression occurs is easily generatable via Rule 6 .

If no label expressions were ever generated we could transform all our
theorems by application of all the X expressions to their arguments.

(E.g. by repeated application of Rule 6). This eliminates all X ex-
pressions from the theorem. Such a transformation transforms a proof into

a proof in a simpler system which uses no x's. In the simpler system
the rule for substitution for a function variable is like the more familiar
formulations such as the one in Church [Church 1956]. This simpler
system is familiar to us and is consistent by the standard model theoretic
proof. The above argument shows that our limited system is consistent if

we promise never to generate a label expression.

Now, because of the extensive use of é and Snf 1in our rules, label
expressions can be generated in the limited system only by

(A) wuse of axiom 17 or 18 in which label expressions occur.

(B) wuse of Rules 16 or 17.

(C) change of bound variable in a label expression via Rule 3.

(D) substitution for a variable free in a label expression via Rules

4 or 5.

Consider a system which is identical to the limited system except that

axioms 17 and 18 and Rules 16 and 17 have been eliminated. Let us call this

the basic system. By the above argument, the basic system is consistent.

It is easy to see that (but for the lack of axiom 17) the basic system is
identical to the limited system except that no label expressions may be

generated.

-101-

We shall prove the consistency of the limited system relative to the
basic system. We postulate a sequence of systems W1, w1, w2, W3, 3", w4", w4
where W4 is the limited system and W1 is the basic system (with a minor ad-
dition). We shall show that each system in the sequence is consistent if the
preceding system is, either by showing that a proof of @ in the former
can be converted into a proof of @ in the latter, or by showing that the
two systems have the same theorem set, or by showing that the former is
identical to the latter but for an added axiom which cannot ruin consistency.

We shall now define the systems W1, Wl’, W2, W3, WS’, W4, and wa~
by stating how each one differs from the limited system: (! whichaxioms and
rules the limited system has that it has not, and (2) whichaxioms and rules it
has that the limited system has not. (All these systems have the same al-
phabet.)

Axioms and rules in category (2) above are selected from the follow-
ing list:

Axiom 14" : ~H!'(x) P(x)D 1 (x) P(x) = ¢

Rule 5°: (TCQy) ~ T(u) A z € u Avariable(x) A
type(x) = exprtype(z) A freecheck(x,z,y))

2 T(Sf(x,z,y))

Rule 4": (T(y) A variable (x) A ~X & y A Simplexpr (z) A
type (X) = expertype (z) A freecheck (X, z, y))

OT(Sf(x, z, y¥))

Rule 5%: T(y) A T(u) A zgu A PAv(X) v Ifo(x)) A ~Xé y A
type (X) = exprtype (z) A freecheck (X, z, y))

D TSF(x, z, y))

Rule 5 " (Tly) ATw) Az Q@ u A variable(x) A ~xé y A
type (x) = exprtype(z) A freecheck (X,z,y))

DTF(x, z, y))

-102-

Rule 20: (This one we shall state in English)

If B results from o by substitution of u for v at zero

or more places (not necessarily all occurrences of p in a), and if none
of these substitutions occurred within a function expression, and if B

is an expression, and if o is a theorem, and if either y=v or u=v

"is a theorem, then g is a theorem.

System | Differs from limited system in

Deletion of Addition of

Axioms Rules Axioms Rules
Wl 17,18 16,17 147 none
w1 17,18 16,17 147 20
W2 none 16,17 14” 20
W3 none 4,5 14~ 4%, 5% 20
W3’ none 4,5 14 4", 578 20
w4 none none none none
wa” none 5 147 5 20

We shall now show the consistency of each of these systems by the
methods we have mentioned.

Consistency of Wl

Except for the addition of axiom 147, the system W1 is identical to
the basic system, consistent by the standard model theoretic proof. The
introduction of axiom 14~ does not destroy this model thoretic proof, for,
if 1(x)II(x) 1is interpreted to mean the unique x such thkat II(x) holds if
such a unique x exists (This interpretation makes axiom 14 true and says
is interpreted to mean nil if

nothing about axiom 147.), and if 1(xX)I(x)

such a unique x does not exist (This interpretation makes axiom 14" true and

-103-
says nothing about axiom 14.), then the interpretation is still consistent
with the other axioms and the rules of inference.

Consistency of W1~

W1” differs from W1 only in the addition of Rule 20. We can show
that the theorem set of W1~ is identical to the theorem set of Wl by show-
ing that Rule 20 may be proved as a meta-theorem for the System W1.

Rule 20 is our substitutativity of equivalence rule and it can be proved
for W1 by the standard induction technique. For example, it can be proved by
a method analogous to the method of Church's proof of his Corollary *342
[page 190, Church 1956]. We shall just mention a minor way in which our
proof must differ from Church's. Church proves Corollary *342 from Theorem
*340. Theorem *340 he proves by induction on the size of the formula. We
do something similar. But because of the way W1 uses 1 and cond, well-formed
formulae may occur inside terms inside theorems. Hence, where Church
uses = in the statement of his Theorem *340, we must allow for either =
or = in order for the induction to work. Axiom 14~ is needed to carry the
induction through for the case where Church's A begins with 1

Consistency of W2

W2 differs from W1 only in the addition of Axioms 17 and 18. The
effect of Axiom 18 is to introduce certain label expressions into the
language, namely those which we wish to be in our initial set, and those
identical to initial set members but for a change in bound variable.

Addition of any one of the label expressions in the initial set is very
similar to addition of a new function constant. To see that the addition
of the label expression causes no inconsistencies, let us consider the ana-

logous problem in adding any new function constant symbol to the system.

-104-

One could modify the system W1 by adding function constants in the
way we shall describe.

Suppose one wishes to add a symbol ¢ to the system and suppose one
wishes it to be a function constant of type p , naming a certain function.
The addition can be accomplished in two steps. First one adds ¢ to the
alphabet and changes the expressions Pfatom, Ifatom , and exprtype as they
appear in the rules of inference so that they regard ¢ as an atom of type p .
(Specifically change exprtype by the addition of x =—>@ at the beginning
of the main conditional. Also if ¢ is a predicate constant, add x =to
the disjunction in Pfatom. If ¢ is an individual function constant, add
X = to the disjunction in Ifatom.) (Among other things, these changes
allow the substitution of ¢ for the proper function variables.) Second, one

adds a single axiom to characterize ¢ . It must be a formula of form

1l

$(Eps Epvers)

a if ¢ is a predicate function constant, of form

¢(£1, gz,...,gn) o if ¢ is an individual function constant, where the
gi's are variables, and they are the only variables free in o . We shall
always insist that ¢ occur somewhere in o . For example, if one wants ¢
to stand for the LISP function maplistcar , one adds the axiom

o(f,x) = [atom(x) » x ; @ > fla(x)) * ¢(f,d(x))] . If one makes
sure that the axiom holds when ¢ is given the desired interpretation, then
no inconsistencies are introduced. If it also holds when ¢ has other inter-
pretations, no problems arise; but if it does not hold, whatever the
interpretation of ¢ , then an inconsistency might be introduced. Thus, if
instead of the above axiom one adds the axiom ¢(f,x) = ¢(f,x) no incon-
sistencies are introduced. But if one adds ¢(f,x) = ¢(£,x)*0@ , an inconsi-

stent system results.

or

1]
R

By virtue of Rule 20, the addition of axiom ¢(£1, Exses gn)

¢(g1, 52,..., gn) = o allows one to substitute o~ for ¢(n1, Noseees N)

-105-

where a” is derived from a by simultaneously substituting the nl, nz,...,nn
for El’ gz,..., gn (as long as the substitution is not inside a function ex-
pression). And Rule 6 allows one to substitute ((A (51,
for o” (in the same situations). Thus one can directly
substitute (A (gl, gz,..., gn)u) for ¢ any place ¢ occurs (outside function
expressions) other than as a functional argument. We can regard ¢ and
(A(El, 52,..., gn)a) as alternative and interchangeable names for the same
function.

Suppose we were to allow interchangeability of ¢ and (A(gl, 52,..., gn)a)
everywhere outside function expressions, even as functional arguments. This
would introduce no inconsistencies since it would only mean, in effect, that
we have two names for the same function which, as we have seen above, are al-
ready interchangeable whenever it matters, i.e., whenever they are applied
to arguments.

We can achieve this effect by using, instead of the atom ¢ , the ex-
pression (label, m, (A(gl, gz,..., gn) a””")) everywhere --- where ™ is a
variable of the same type as ¢ not occurring in o,and a”” can be derived
from o by substitution of m for ¢. Let us call this label expression ¢~.

It is the analogue of the atom ¢. ¢~ has no free variable and behaves just
like ¢ did, in that it can be substituted for function variables by virtue of

P

Rule 5 and the characterizing axiom ¢(g1, gz,..., gn) z a or

o7 (E1s Egrvees £ = o”"" (where o”"” can be derived from o~ by substitution

n

of ¢° for m). Furthermore, we can substitute () (s Epseves &) o)
for ¢° anywhere outside of a function expression by virtue of Rule 7.

Thus ¢ behaves just as ¢ did (i.e., any proof using ¢“can be converted
into a similar proof qsing ¢ simply by replacing all occurrences of
(x (El, 52,..., gn) a””*) and ¢” in the proof by ¢), with the one addition

we wanted and the further addition

52,"', gn) a)’nl’n2’°"

>N,)

-106-

that by virtue of Rule 3, we can substitute for bound variables in ¢~.

let us say two expressions are almost identical if they are identical or if

they differ only by changes of bound variables. Any theorem § in the system
with ¢ has a counterpart & in the system with ¢~ where &7 is derived
from § by replacing all occurrences of expressions almost identical to
(A(gl, Ez,..., gn) a”’) with ¢ and then replacing all remaining occurrences
of expressions almost identical to ¢ “with ¢ . Thus, we have introduced no
inconsistency and have added, in effect, a function constant without adding
to the alphabet.
We can introduce any label expression in this way by introducing its
characteristic axiom as a new axiom, so long as the characteristic axiom
holds under the intended interpretation for the label expression. The
result will be a new system different from W1 but still consistent. Consider
the label expressions whose abbreviations are given in Tables 3 and 6. It
is easy to see that the characteristic axiom of each of these label expressions
holds if the label expression is interpreted as the function defined by
the LISP program that it resembles. Thus, the characteristic axioms of these
label expressions may be added to the axiom set without destroying consistency.
Actually, since the characteristic axioms are needed only by Rule 5,
and not by Rule 7, any axiom containing the label expression will do as well
as the characteristic axiom so long as the label expression occurs in it and
so long as it is true under the intended interpretation. We have added

axiom 18 to serve for all the label expressions in Tables 3 and 6.

-107-
The characteristic axioms now appear as theorems. E.g. consider a ¢~ from

these tables which is an individual function expression:

(1) x=x axiom
(2) £(8), Eppeves 80 = (B Epueees E) from (1) by Rule 4
(3) @ > Pfstep(x) axiom
(4) ¢7°(El, 62,..., En) = ¢7(£1, £2,..., gn) from (2) § (3) by Rule 5
(5) ¢’(gl; ‘52,"') gn) = from (4) b)’ Rule 7
(G YCEANUNN S LIS NE I AN
(6) ¢’(El, Epseees e) = a”” from (5) by Rule 6

With axiom 18 added, the label expressions abbreviated in Tables 3 and 6
are in the initial set, and only expressions almost identical to them are
generatable. Since axiom 17 holds under our intended interpretation for € ,
addition of this axiom can add no inconsistencies. Note that none of the
label expressions appearing in theorems of W2 have any free variables.

Consistency of W3

The System W3 is just like the limited system except for the addition
of Rule 20 and the changing of Rules 4 and 550 as not to allow substitution
for variables free in label expressions.

We shall show consistency of W3 relative to W2 by showing that a proof
of ® in W3 may be transformed into a proof of @ in W2. Suppose.ml, Qs e sty
is a proof of @ in W3. We shall transform the proof successively. After
each transformation we will still have a proof of ® in W3. After the last
transformation we will have a proof of @ in W2.

The first transformation is accomplished as follows:

First, divide into equivalence classes the set of all label expressions

appearing in a0 L by putting two label expressions in the same

IR

class if and only if they are almost identical (i.e., identical but for

-108-

changes in bound variables). Let I be the set of all such equivalence
classes which don't contain a member of the initial set (i.e., don't contain
a label expression occurring in axiom 18). If I is empty then our proof
can be trivially converted into a proof of @ in W2, by replacing any line
derived by Rule 16 or 17 (Such a line contains only label expressions
almost identical to those in Axiom 18.) by a derivation of that line from
Axiom 18 by P.C. and Rules 5% and 3. Otherwise, to each member © of I we
attach an integer called the rating of 0 . The rating of © is defined

to be the smallest integer I such that a label expression in 0 occurs in O«
(No two members of I have the same rating because each use of Rule 16 or

17 generates only one new label expression — because of the é in the statement
of the rule.) Let I be the member of I which has the largest rating. Then

no member of I occurs in our proof as a proper subexpression of another

label expression.

Now consider the line o., where I is the rating of I . Then o, must

I

have been derived via Rule 16 or 17 from some line, say aj. aj must be of

I)

form ¢(E1, 52;°'°3 Em) = g or (b(gl’ 523--" Em) =g . Let nl’ n2:~'-, nk

be the variables free in ¢ whose free occurrences in . are all in sub-

expressions of form ¢ . Let C1s Tooee be a sequence of variables

s Ly

occurring nowhere in Gys O S0 with Ly and nj of same type for all i.

2

Let aj’ be the result of simultaneous substitution of Lis Tosee for

. Ck

free occurrences of Nps Mogssees M in aj . For any i, let ai“ be the
result of substituting the 1> Toorres Ly for all occurrences of Nps Mgoeeesmy
in a. . Then al” s az”,..., aj” can be easily converted into a proof

i

of aj” in W3 by prefixing certain lines. For each a; (1 £ i < j) which

is an axiom, we prefix lines deriving ai” from oy via Rules 3 and 4.

-109-

If 6 §hseeey O are the lines we prefix to do this, then

1’ 72 h
61, 62,..., éh, oy , az seees aj s el, 82,..., €y > aj is a proof
of a.” where €. is derived from €, (and €, from o¢,”” and o.” from ¢)
J i i-1 1 j J R

by Rule 3.' We insert this proof into Gy O RN immediately after

AT
the line aj . Note that this addition does not increase the member of classes
of label expressions appearing in the proof. Now aj’ is of form

o7 (El’ 52,..., En) =8 or ¢ (El, Ez,..., En) = B. Also, all num-

bers of I occur in the proof only after uj’ , i.e., in lines aj+l’ aj+2 se e

Now, a member of I is of form (label, m , y). If y* is the result of
replacing all free occurrences of T, in Y with (label, T ,y), then we call
y” the expanded form of (label, m , y). Two label expressions with the same
expanded form must be the same label expression, for otherwise they would
each occur as a proper subexpression of the other. Let 1” be the set of
expanded forms of members of I . Let ai‘ , for j + 1< i< n, be the
formula formed first by replacing all occurrences of members of I%in o with ¢7,
and then replacing all remaining occurrences of members of I by ¢” . Note,

in the replacement no new variables become bound since all free variables in

¢~ which do not occur free in the element of II” or Il being substituted

for, do not occur in o Now we can easily insert lines in the sequence
Otlp 042,-", Otj) (51, 6'2:--., Gh, ai’ ,055’ se e ey Olj" s El, 52:°“’ EQ':

‘ O T ‘ i T i i ich m T I
aj s aj+1 FWETES o to make it a proof in W3 in which no member of

appears. It is clearly a proof up to the qj’

Suppose ai’ is some line after o.~

-110-

If @, was an axiom or was derived via any rule but 6, 16, 17, we

add no lines. 1In such a case, either ai‘ is o, OT o, was derived from

a, or from o, and a, via Rule 1, 2, 3, 4u, e

K K L , 7, 12, or 20. Call the

rule used p . In such a case we must have K > j or (in the case of
Rule 1, Su, or 20) K >j and L >j. Then ai’ is derivable directly from

o,” or from o,” and a. ” via Rule p . (Note, if we were using rules

K K L
4 and 5 instead of 4" and 5 this would fail.)

If a, was derived from ag via Rule 6, then we must examine the value

of the parameter y in the Rule 6 application. It must be of form

n_)

0 “e
(ﬂl, nz) > Ny

(A) If 0 is not a member of " , then we add nothing, and ui‘ is o,

or else K > j and ai'is derivable from aK’ via Rule 6, since any member

of T or I” occurring inside 6 can contain no dummy variable free (because

in W3, as in the limited system, and as in our whole system, no variable in

a theorem occurs bound inside a label expression, where the binder binding

it is outside the label expression —see Section 2.1.4.4) and hence the

members of I and I” remain unchanged when the ni's are substituted for the
dummy variables. Thus the Rule 6 application still works when ¢~ is sub-
stituted for members of I” and II

(B) If 6 is a member of II” , then we intercalate lines deriving,

- n) = B;) or

from o.” , a theorem o.” yeeas
J J 2 n

of form ¢'(n1, n

» _ PN . . '] . A
o7 (Nys Moseees nn) = B”” , by substitution of the n,'s for the Ei s in aj .

-

Then ai’ can be derived from aK’ and aj’ via Rule 20.

-111-

If o, was derived from Oy via Rule 16, then oy is of form

® D6(zy, Toseens cn) . If 8 is not in I then neither a; nor oy contain
an occurrence of a member of I and ui’ is oy and is still derivable via
Rule 16 just as before. Hence we need add nothing. If 6 is in I then ai’
is ® 2 ¢°(Cy» Lyswwvs L) whose proof, via Rules 4 and 5 from @ >p , aj’ ,
and 4 ,We can easlily intercalate.

If o, was derived from Ay via Rule 17, we proceed as in the Rule 16 case.

After all the required intercalations, we end up with a proof of @
in W3 which is much like our original proof. But now all members of I
have been eliminated and yet we have added no new equivalence classes of
label expressions (no new members of I). The set I for this new proof has
one fewer member than the set I for the old proof.

We can now transform the new proof in the same way we transformed
the old proof, giving us a still smaller X . We can repeat this until
we get an empty I , and the proof thus arrived at can be
trivially converted (as we said above) into a proof of ® in W2.

Hence if @ is provable in W3, it is provable in W2. Then, since W2

is consistent, W3 is consistent.

Consistency of W3~

The system W3~ 1is identical to W3 except for change of Rule 5% to
5+ Y. At first sight it might appear that this change adds some power to
the rules, but it is clear upon reflection that any proof in W3~ can easily
be converted into a proof of the same theorem in W3, simply by replacing
each step which uses Rule 51 by the proper sequence of steps using Rules

4" and Su. Hence the theorem sets of W3 and W3~ are identical, and W3~ 1is

consistent because W3 is consistent.

-112-

Consistency of W4~

W4~ differs from W3~ in the substitution of Rules 4 and 5~ for 4u and

574,

We shall show the consistency of W4~ by showing that W4~ and W3~ have
the same theorem set. We shall do this by showing that a proof of a in W4~
can be transformed into a proof of o in W3”". We shall, then, be considering
transformations of proofs in W4~ .

We shall begin by considering transformations of a special kind of W4~
proof which we shall call a single substitution proof. A single substitution
proof is a proof in W4~ which becomes a proof in W3” upon deletion of its
last line. We shall first show that we can transform any single substitution
proof into a W3~ proof which contains all the lines of the single substitution
proof. The transformation will be in two steps, the first step being what
we shall call preprocessing. To see what preprocessing is, we need to dis-
cuss some transformations of proofs in W3~ .

If Aps Oosevny O is a proof in W3”“and n and ¢ are variables of the
same type, r not occurring anywhere in the proof, and if ai‘ is
the result of replacing n by ¢ in all bound occurrences
in a5 then there is a proof 81, 82,..., Bm in W3” in which each of the

ai’ appear as lines and in which n never appears bound except perhaps in
formulae which are almost identical to axioms (i.e., identical but for
change of bound variable). We construct the proof 81, 82,..., Bm by

o . Now

intercalating lines in the pseudo proof al’, A" ey Oy

12 o an’ is almost a proof as it stands.

Certain of the steps, however, are "illegal." 1I. e., they would be
legitimate steps in W3~ if it weren't for an unusual change of bound variables.
We shall show how to add lines to successively reduce the number of "illegal"

steps.

-113-

Let aj’ be the consequent of one of the "illegal" steps. It is not
hard to convince ourselves that aj must either be an axiom or it must be
the result of application of Rules 2, 16, or 17. If ajis an axiom, then we
insert before uj’ in the pseudo proof, steps deriving uj’ from uj by
successive applications of Rule 3. If ujis the result of an application

of Rule 2, 16, or 17, then we modify o, @ - aj by changing all n into

AL
¢ (and then adding lines so that the axioms with ¢ substituted for n are
legitimately derived from the real axioms via Rules 3 and 4). The resulting
sequence is inserted into the pseudo-proof before o.”. This puts, before

-~

uj , a theorem identical to aj

-

except that free n's are replaced by ¢ .

This theorem will be identical to aj‘ if aj was originally generated

via Rule 2. Otherwise aj’ may be legitimately derived from this theorem

via Rule 4, since none of the free n's in aj’ are inside a label expression,
aj’ being in the special form taken by the results of Rules 16 or 17.

This eliminates one "illegal' step. We proceed in this way to eliminate

each "illegal" step. This finally gives us a proof in W3” in which n does
not appear bound, and in which each ui’ is present.

Suppose OUps Ggseees O is a proof in W3”; we can convert this proof with
respect to an expression B by successively transforming the proof as above
such that for each variable free in 8, this variable does not appear bound in
the converted proof, and such that for each oy there is a line in the con-
verted proof almost identical to oy (i.e., identical to oy but for a possible

change of bound variables).

We are now ready to discuss single substitution proofs. A proof

Vs Vgreees W in W4~ is called a single substitution proof if

Vs VgseeesVg g
not itself a proof in W3“ then v, must have been derived by substitution

is a proof in W3~ . If the single substitution proof is

of an expression B for a free variable € via Rule 4 or 5

-114-

We shall first show we can transform all such single substitution
proofs into proofs in W3” . We do this in two steps.

The first step is preprocessing, which is accomplished as follows:

We first convert Vis Voseees vK—l with respect to B , giving Oy Opseves Qo 7e

Then there must be a formula o almost identical to 2 such that

%5 az,..., o is a single substitution proof, and such that o is derived

by substitution of g“for &, where B”is identical to B except for certain

o 1s a

changes in bound variables. Pick one such o - Then Oy s0nseees O

preprocessed form of VsV v

grres Yy
Ups Opyene, O is a single substitution proof of a special kind,

for not only is its last step derived by substitution of an expression g~

for a free variable £ (as is the case for all single substitution proofs),

but variables free in B~ occur bound nowhere in a., o

1° 9re

single substitution proof is called a preprocessed single substitution proof.

o . Such a
n

(A single substitution proof which is already a proof in W3~ is also called
a preprocessed single substitution proof.)

If o in such a preprocessed single substitution proof is derived
by Rule 4 or 5° from line oy by substitution for a variable free in a label
expression in a; then we say the rating of the proof is i. Otherwise we say
the rating is 1. (Note: the first line of a proof, being an axiom, contains
no label expressions with free variables.)

We shall now show we can transform every preprocessed single substitution
proof gy Gpseens @ into a proof 1in W3” in which each oy (for 1 ¢ i ¢ n) occurs
as a line. We shall do this inductively. Proofs of rating 1 can be trans-
formed trivially. Suppose we know how to transform all preprocessed single
substitution proofs of rating less than j. We shall show how to transform

an arbitrary single substitution-proof of rating j.

-115-
Suppose Gps Gpsevns O is such an arbitrary proof. Since the proof
has rating j we know . is derived via Rule 4 or 5° by substitution of B
for £ in the line uj, where £ occurs free in aj inside a label expression.
Hence aj is not an axiom nor is it a theorem which is almost identical
to an axiom, since such formulae have no variables free inside label

expressions. We also know that aj

-116-

wasn't derived by Rule 8, 9, 10, 11, 13, 14, or 15 since theorems from
these rules have no labels.

Suppose aj was derived from oy (k < j) by Rule p where Rule p is either Rule
2, 3, 6, 7, 12, 16, or 17. In that case let y be the result of substituting

g for £ in a (this substitution is always legal because variables free

k

in B don't occur bound in oy unless aj is almost identical to an axiom, and

we said this wasn't the case). Consider the proof ao_, «

1 2’--" O"n_le .

This is a preprocessed single substitution proof of rating k and by the

induction assumption can be converted into a proof Bl, 82,..., Bm (m > n)

in W3” in which Y and each oy (for 1 ¢ 1 ¢ n - 1) occurs as a line.

Now a, can be derived from Yy via Rule p , where the parameter values are
modified by substitution of B for £ where appropriate. (Some detailed
checking is needed to verify this; we shall not reproduce the details here.)

Also, y occurs in 61, 82,..., Bm so Bl’ B - Bm, a is our desired

g0

converted proof of 4, @ , O

g3 n

k k
Rule 1 or 20. Let y and Y~ be the result of substituting 8 for £ in

We can make a similar argument if uj was derived from o, and a,. by

k

and o,. Tespectively. Then by our induction assumption we can convert

k
Oy Opyeens G 4y Y and Ops Opsenns O s Y~ into proofs
By 62,..., Bm and 81’ , By sy Bm: in W3~ . Then
Bl Bosevns By BS By seens Bm: s e is our desired converted proof of
s Ogyeees an . a is derived from Y and Y* by Rule 1 or 20 as is
appropriate.

If aj was derived from oy and oy - via Rule 57 substituting 8°° for

n in ak,then if n is different from & we can handle this situation judt like

the Rule 1 case. If n and £ are identical, our final proof is

B:7 5 B, seee, B 7, 0, 0

- 1 greres O where @ is derived from ak and Yy by Rule 57.

-117-
If aj was derived from oy via Rule 4, substituting g”“” for n in

s then we first construct a few lines €15 € €, of a W3” proof

IRREE

which contains no labels, with € being a theorem containing B”~.
(Since B““is a simple expression, this is trivial.) Let y and vy~ be

the result of replacing free £ with B” in oy and e, respectively. By

)

the induction assumption we arrive at a proof 81, 82,..., Bm in W3~

containing y as before. B s Bm, €15 Egseves Eps Y, o is our con-

1’ 82,...

verted proof, with o derivable from y and y” by Rule 57, and y“derivable

from €, by substitution of 8" for free ¢.

-118-
Thus, we have shown inductively that we can convert every preprocessed
single substitution proof into a proof in W3~.

Suppose Vis V is any single substitution proof, with Vg

st Vg

resulting by substitution of g for & . We preprocess ViV » vg to get

gy

a preprocessed .single substitution proof o > o where o is almost

12 Yoo

Ly O into a proof Bl, B B in W3~

"identical to v, .Convert a., P RRRELm

K 12 %20
in the manner we have shown. Let O 5 Ep, Epreees Eppo vK be a derivation
of Ve from o by successive changes of bound variables. Since a is among

B Bm , the following is a proof in W3~ :

1) 82"",

vl, vz,..., VK—l s Bl, 82,..., Bm, 81’ 52,..., Eh s VK

Thus we have shown that we can convert all single substitution proofs
into proofs in W3~ containing all the lines of the single substitution proof.
This means we can convert any proof in W4” into a proof in

W3” as follows: Suppose A, @ o is a proof in W4~ and suppose &

XRRERILA
of the lines are derived by substitution for a variable free inside a label
expression. Suppose aj is the first of these undesirable lines. Then

&> az,..., uj is a single substitution proof which we can convert into

a proof Bl’ 82,..., Bm in W3 . Then Bl’ B B

P . a. “on
2° > P J+1: J+2: > an

is a proof in W4~ with only g¢-1 undesirable lines. Proceeding in this way,
we eliminate all undesirable lines, giving us a proof in W3~ .
Since all of the original ai's appear in the converted proof, anything

provable in W4~ is provable in W3” ; W4~ and W3”have the same theorem set.

Therefore, W4~ is consistent since W3~ is.

Consistency of W4

W4 differs from W4~ in the elimination of axiom 14~ and Rule 20 and

the substitution of Rule 5 for Rule 5° . Now Rule 5 is just a special case

-119-

of Rule 5°. Thus any proof in W4 is a proof in W4”. Hence if @ is
provable in W4, it is provable in W4~ . By the consistency of W4~ ,

then,W4 is consistent. Since W4 is the limited system, we have shown the

consistency of the limited system as promised.

-120-

2.2.1.2 Preservation of Consistency while making identi-

fications Between Object and Meta Levels. (Completion of Consistency

argument..) We have shown the consistency of the limited system; we must
now show the consistency of our entire system. Our entire system differs
from the limited system in the addition of Rules 18 and 19 and the addition
of a procedure for adding still more rules.

We shall first show that the addition of Rules 18 and 19 to the limited
system will not destroy consistency, will not even add any new theorems to
the system's theorem set.

As we said in Section 2.1.4.2, Rules 1-17 may be written as formulae
in the object language. (It is not hard to show that T is a generatable
function expression.) In fact, so written, they happen to be theorems of
the limited system. (This dual nature of rule-expressions is basic to our
system: In the object language, these expressions are theorems. In the
meta language, they are rules of inference. The exception, Rule 19, is
discussed below.)

A completely equivalent form for Rules 1-17 is given in Table 7. A glance
at the Table 7 formulation of Rules 1-17 and at the definition of T shows
us clearly that the following two meta theorems hold for the limited system.

(1) For any S-expression o, if a is a theorem then T«?} is a theorem.

(2) For any S-expression o , if T«?) is a theorem then o is a theoren.
Thus the addition of Rules 18 and 19 (which merely state these meta-theorems)
to the limited system as rules of inference adds no new theorems and so
can't destroy consistency.

Are Rules 18 and 19 also theorems of the limited system, the way Rules
1-17 are? We have a recursive procedure to convert, for any o , any proof:of

o into a proof of’TKP. Thus it is not hard to prove Rule 18

-121-

as a theorem. There is, however, no recursive procedure which will take
us, for any o, from any proof of TGQD to a proof of o . It turns out
that Rule 19, as a theorem, is not provable and it is the only rule that
is not so provable.

We could increase the set of axioms by adding Rule 19 as an axiom.
This would not destroy consistency, but since the T in the new axiom
refers to a theorem in the old system and not a theorem in the new system
with the axiom added, we just have the same thing to do over again, this
time with a Tl’ which means theoremhood in the new system, etc., etc.
Can we rewrite Rule 19, replacing T with a function which means provable
in the system to which this re-written Rule 19, has been added, thus
solving the problem once and for all? Yes, it is possible to so re-write
Rule 19; but whether the addition of this re-written rule as an axiom
destroys consistency, I do not know.

Now we have shown that the limited system with Rules 18 and 19 added
is consistent. Consider the class of theorems in this system of the form
a D T(B). Any theorem in this class may be regarded, as described in
Section 2.1.4.2, as the description of a possible rule of inference. Any

such rule of inference could be added to our system without destroying

consistency, without even adding anything to the set of theorems of the system.

-122-

To see why this is so it is only necessary to see how a proof step
using this new rule could be replaced by steps using the old rules. Consider
a proof step in which the new rule a O T(B) is used to derive theorem w
from theorems Y12 Yooy with the parameter values<:>,<:>,...,<:)
being used for the free variables cl, gz,..., Cm . (See Section 2.1.4.2
for description of how the new rule is applied and for explamation of our
terminology.) We shall show how to derive w without the new rule.

By Rule 18 we.can derive theorems T(<:>) , T(<:>) s eee T((Z))

By hypothesis,a D T(B) is an already proved theorem. We can use
Rule 4 to substitute the parameter values for the free variables in this
theorem, giving a new theorem €D T(S).

We shall make use of the following meta-theorem.

(A) (F(x) A oneapl(x) =1y) D T(x@y) (The proof is by
induction on the Godel number of the expression named by x.)oneapl is that
function from which apl is built by iteration. Its definition is in
Table 9, and it is generatable. The above meta-theorem is the meta-theorem
from which one would prove the meta-theorem

(B) (F(x) A apl(x) =Y) :)T(x<7 y) which we stated in

English in Section 2.1.4.2.

-123-

Let oneapl” be defined exactly as oneapl is except that

oneapZ’(@@Q) names @ for all Y

I.e., the definition is:

oneapl” (x) = @@ V= @ Dv - @’@ '

mol(x) » x5 a(x) = (1) » @Qoneapl” (ad(x)) ;
a(x) = v a(x) >
[atom(d(x)) + x ;
aad(x) = @ + adad(x) ;
aad(x) = @ »a(x) * dd(x) ;
® > q(x) * (@oneapl’(aad(x)) 9 adad(x)@ * ddx))]
a(x) =® va(x) = @ v a(x) = @ >
apltwoatoms (@a(x) @oneapl’(ad(x)) g oneapl” (@dd(x)) @) ;
a(x) = @ v a(x) = @ V Pfatom(a(x)) Vv Ifatom(a(x)) -+
ap Loneatom(@a(x) 0 oneapl'(ad(x))@)

atom(a(x)) » x ;

aa(x)

@ > Ssffixl(ada(x),d(x),adda(x)) ;

> Sffix(ada(x),a(x),adda(x)) * d(x) ;

aa (x)

@—)x]

-124-

Let ¢ be a class of well-formed expressions defined by the statement
that a well-formed expression p is in I if and only if one of the following

holds:

(-

. 4 is of form T() for one of the Yi ;

2. u 1is of form (cond, (pl, o,), (p2 s 02),..., (pk , Ok)) or of form
(peond, (py, 07)5 (py, 05)5.-0, (g, 0y)) where py is in I

w

. uis of form (D , p , 0) or of form (=, p , 0) or of form (*, p , 0)
where either p or ¢ are in I ;

4. 4 is of form (a, o) or of form (d , 0) where ¢ is in £ ;

5. u is of form (¢, o) where ¢ is a function symbol of our alphabet

and ¢gis in I .

Note that each y in I contains certain occurrences of TC(:P'S such
that if these occurrences are replaced by ® the resulting expression, which

we shall designate as 7 , is not in ¢ , and such that replacement of any

-125-
fewer occurrences of T(@)'s results in an expression still in £ . Note
also that if u is a well-formed formula in I then p = 7 is a theorem.
This is because the occurrences replaced are all outside function expressions
and not within the scope of any quantifiers, and also because the T(@)-'s

are theorems.

Now we can prove the meta-theorem

© (F(x) noneapl”(x) =y) D T(x @ Y)

from meta-theorem (A). We do this as follows. Suppose B is the well-formed
formula named by x in the statement of meta-theorem (C). Let v be the ex-
pression such that @ =0neapl’(®) holds. Then meta-theorem (C) claims

¥ = v is provable. Can we show this? If oneap7(®)=@holds, we get 4 = v
by meta-theorem (A). If 0neap7(®) =®does not hold, then 1 is in &

in which case either @=9 holds or oneapl(®)= @holds. In either of these
latter cases we can prove W=v from meta-theorem (A) and u = {I. Thus we have

proved meta-theorem (C).

Now return to the theorem ¢ D T(§) which we derived above. We know
that repeated application of oneapl” to ¢ eventually yields ® . (This
is because repeated application of oneapl” is exactly what we did when we
applied the new rule —see procedure for rule application outlined in
Section 2.1.4.2— and the application of the rule was successful.) Hence by
meta-theorem (C) we can prove ® = ¢ and hence we can prove T(S). Now
apl (@) = holds (since the application of the new rule was successful)
so by meta-theorem (B) we can prove § E@ .From axiom 7b we get P(8) D P(@)
and thus T(§) D T(@) and T(@) .Then we get w via Rule 19. Thus we have
proved w without the use of the new rule. Thus the addition of the rule
o DT (B) to the set of rules of inference did not add any new theorems to

the system and so did not destroy consistency.

-126-

OQur procedure for adding rules of inference to our system is simply
to add, as a rule, any theorem of form o 2 T(B) that one wishes to. Our
system, then, can be thought of as being identical to the limited system
except for the addition both of Rules 18 and 19 and of a procedure for
adding an unlimited (but always finite) number of additional rules of
inference. We have shown that these additions add nothing to the theorem

set. Hence our system is consistent since the limited system is.

2.2.2 Incompleteness. Having shown the consistency of our system, we

shall now show some of its other formal properties, specifically those pro-
perties related to incompleteness.

We shall need to use the theorem
W TeQ 0> T(y@ apl(x))
This is a generalization of the theorem T(x) D T(apl(x)) whose tedious
proof is sketched in Section 4.10.9. A similar technique gives us a proof
of (A).

Now theorem (A) may be used as a new 'derived" rule of inference, as
explained in Section 2.2.1.2. When we use it this way we shall refer to
it as Rule (A).

Now define

B(x) = Sf(@,x@,x) :

As an example of the use of Rule (A), consider the following derivation:

(1) PQ(fM™))) 2 P(Q(fw))) by P.C.

@) ~1(z()) S ~T(z())

from (1) by Rules 5 and 4 several times

() ~(e(E@a@))) > (T(@D ®)

from (2) by Rule (A)

-127-

() ~(2(@))):~T(@)

from (3) by Rule 6

(5) T(z()): T(z())

from(2)by P.C.

©) TCa(@la@))) > T(@)

from (5) by Rule (A)

We shall show that our system is incomplete by exhibiting a well-formed
formula which is not provable and whose negation is not provable. The
formula is

(7 TC z())

whose negation is

(8) ~T(())

Now if (7) is provable then

©) T(ET(2 QET(a(z))))@)

follows from (6) and (7) via modus ponens.

From this, (8) follows via Rule 19. Further, if (8) is provable then
(9) follows via Rule 18 and (7) follows from (4) and (9) by P.C. Hence
if either (7) or (8) is provable, they both are and our system is inconsistent.
But we showed our system was consistent and so neither (7) nor (8) is provable.

Hence our system is incomplete.

Clearly then (9) is not provable either, nor is its negation
(10) ~T¢ @)
provable. For if (10) were provable then (8) would follow from (6) and (10)
by P.C.

Consider the following statement:

(B) "If o is a well-formed formula then T(Q}) D a is provable."

-128-

This statement does not hold for our system. Consider the case when o
is (8) above. Then the statement claims we can prove
(11) T(@) D ~T(uza())
But if we could prove (11) then from (6) and (11) we could prove (8) by the
propositional calculus. Since (8) is not provable, neither is (I11).

Note the vast difference between the false statement (B) above and the
statements of Rules 18 and 19, either as rules or as formulae in the
object language. (As formulae, of course, Rule 18 is a theorem and Rule 19

is not.) The statement (B), in our notation, is

F(x) D T(x@x) .

This is not a theorem and is false under the usual interpretation.

Note: if o is statement (8) then ~T((a)) is statement (10). In such

a case o is not provable and yet'vT(<7) is not provable either. Hence
it is clear that although T weakly represents the set of theorems, it does not
strongly represent the set of theorems nor does it "express' provability in the
sense of Mendelsohn [Mendelsohn, 1964 p. 177 ff].
We shall now show the non-provability of consistency within the system.
We shall show that
(12) F(x) O (~T(x)v~T(@x))
is not provable. We first consider the following proof:

1. ~T(Z() 3“‘“ ®)

this is (4) which we proved above

: 1 QEDERD) QCIDETDY

from 1. by propositional calculus and then Rule 18

- OERELD Q) - DEDY

from 2.and Rule 1 used as a theorem.

-129-

4. T(x) DT(x@)

Rule 18 used as a theorem.

- CRETD Q- QEPEED

. DD > TDEED

from 3. and 5. by propositional calculus.

Qv

Now if (12) were provable we could prove

(13) ~'r(Qv ~T(@)
from (12) and the clearly provable F(@).

Then from line 6. and (13) we could prove (10) which we know is not provable.
Hence (12) is not provable.

We shall now show that for any well-formed formula a, the formula
~T(@) is not provable. Let o be any well-formed formula. Then we can

construct the following proof:

1. ~V(x)(F(x) D +T(x) v ~T(@X))) D X)) FMX) A T(x) A T(@X))
by P.C.

2. (T(x) A T(x)) :>T()

from Rule 1 used as a theorem

3. A (F(x) A T(X) A T(@;@) DT()
from 2. and T(@x) ::>T(x) (this from Rule 6 used as a theorem --

4. T() tedious proof)

by propositional calculus and Rules 4 and 5, followed by Rule 18.
(This is where we use the fact that a is a well-formed formula.)

5. T() :T(@)

from 4.
6. ~V(X)(F(x) D T(x)V ~T(@x))) DT(@)

from 1, 3, and 5.

-130-

7. ~T(@):> V) (F) D 6T(X) v ~T(QX)))
from 6.by P.C.
Hence if'~T(<?) is provable we can derive (12) from line 7 above. Since
(12) is not provable, as we have already shown,fvT(<?) is not provable.
Are there any S-expressions o for which—~T(<?) is provable? Yes.
We can show that if o is not a formula type expression, then-T(<?) is
provable. We do this as follows: Suppose o is an S-expression which is
not a formula type expression. Then since Fip is a complete recursing
function expression, we can derive the following lines:
1. Ftp(@):)Ftp(@)
by P.C. and Rule 5
2. Ftp(@)::@
from 1. by Rule (A)
3. T(x) DFtp(x)
by the same tedious proof we referred to for proof of T(x) D F(x)
earlier.

4, T(@):Ftp(@)

from 3.

5. ~T(@)

from 4, and 2.by P.C.

3. IMPLEMENTATION

3.1 Purpose of Section 3. In Section 3 I shall show the existence

of a class of interesting machines which utilize the language described in
the last section. These machines, when regarded as adaptive theorem provers,
do not possess those limitations and obvious shortcomings which have plagued
previous adaptive theorem proving machines.

The class of machines discussed here is diverse. Machines which possess
identical memory structure may differ in their search algorithms. Machines
whose memory structure and search algorithms are essentially the same may
differ in the specific reward schemes used.

Now the adaptability and rate of growth of a machine in a particular
problem environment depends on the reward scheme. I will not in this paper
attempt to discuss and compare various reward schemes for various machines.

A meaningful discussion along these lines would have to include a more pre-
cise definition and meaningful classification of the various problem en-
vironments. This is beyond our reach as yet. It is hoped that expected
behavior of machines of the kind discussed here might become the basis for
such a classification in the future.

Since demonstrations of growth rate and degree of adaptability must
await either this kind of detailed study or actual programming, the current
attraction of this class of machines comes chiefly from the interesting
hierarchical method of handling heuristics, which bears a resemblance to
the techniques of Polya, and which avoids the limitations of previous
adaptive methods, and from the fact that comparison with other hierarchical sys-
tems (eg. [Holland 1961]) suggests that this class of machines contains mem-
bers with an acceptably limited growth rate.Although the growth rate may be
acceptably limited, the absolute size required is probably very large for

interesting members of this class of machines. The construction of these

-131-

-132-
machines may be beyond the range of present day technology.

Simpler members of the class can be programmed on present day computers.
One machine in the class, as a result of a very restricted reward scheme,
acts just like Newell Shaw, and Simon's General Problem Solver. [Newell,
Shaw, Simon 1961]. I will indicate, by way of example, how this
machine operates.

The discussion of such examples will be preceded by a characterization
of a subclass of the class of machines. This subclass is large enough to in-
clude many of the interesting adaptive machines. The discussion of the
adaptive properties will necessarily be imprecise, but it will show the
operation of the hierarchy and it will indicate several rather human aspects
of the problem solving apparatus. The discussion is not designed to specify
the properties of aﬁy particular machine, but only to indicate the usefulness
of the language described in Section 2.

3.2 Characterization of the Subclass of Machines.

A typical machine in the subclass consists of two parts which I shall
call the memory and the effector (or central processor). The memory is merely
a storage section in which we store already proved theorems, useful formulae,
and other items mentioned below. The effector is a set of algorithms which
operate on the memory one after the other. Some of these algorithms are in-
dicated in the following typical sequence of effector operations,

Suppose the user presents the machine with a theorem to be proved. The
"insert problem' algorithm places the theorem in the memory at a special
spot and returns a pointer to that spot. This pointer is handed to the
"refineproof' algorithm (the only one which we shall discuss in detail) which
alters the memory to produce, inside the memory, a proof of the theorem.
Another algorithm reads this proof to the user who then says how much he thinks

the proof is worth. A fourth algorithm takes this rating and makes certain

-133-

rewards of formulae in the memory on its basis (we shall indicate how this
is done). After this, other effector algorithms may juggle rewards within
the memory, cause certain formulae to be forgotten, and cause other formulae
to be produced on the basis of the rewards.

We shall first discuss the structure of the memory. Then the refineproof
algorithm will be outlined. After that we will discuss, in general terms, the
other algorithms and further possible sophistications.

3.3 Structure of Memory

3.3.1 Basic Plan of the Memory Net.

The memory may be thought of as containing a finite number of entities
called memory nets. (Later we will see how to arrange things so that we need
only store one net.)

The structure of memory nets was partially explained in Section 1. A
memory net may be diagrammed as a set of nodes connected by arrows (called
paths). The direction an arrow points is only a reference direction; the
algorithms are able to follow a path in the direction of the arrow or in
the reverse direction. Some arrows are thick (drawn as a double line) and
some thin. Various triangular flags are attached to nodes and paths.

There are three types of nodes: join points, formula nodes, and
derivation nodes. These are diagrammed respectively as a dot, a rectangle,
and a circle. Each join point is attached to only one outgoing arrow.

Arrow heads for arrows coming into join points are not drawn. Arrows coming
into join points are thin arrows originating at formula nodes. An arrow
leaving a join point is thin and terminates at a derivation node. Thick arrows
always originate at a formula node and terminate at a derivation node. Each
derivation node has two thin arrows coming in from join points, one thick

arrow coming in from a formula node, and one thin arrow leaving to a formula

node. (A typical neighborhood of a derivation node is seen in Figure 2,

-134-
Section 1,) Each formula node has any number of thin arrows coming in from
derivation nodes, any number of thick arrows going out to derivation nodes,
and any number of thin arrows going out to join points.
Each formula node contains an S-expression of the language of Section 2.
(The S-expression may be thought of as written inside the rectangle.)
The triangular flags are of three types. The tag type contains a T or H.
The parameter type contains an individual variable of the language of
Section 2. The value type contains a number.

Not all entities satisfying the above conditions are memory nets, but
it will be easier to state the other conditions if we first define 'bug value."
"Bug value" can be most easily defined if we consider how a memory net might
be stored in a digital computer.

One convenient way of storing a memory net in a digital computer is as
a memory structure of the LISP type [McCarthy 1962]. We first convert
the memory net and all its contained S-expressions into one huge special S-ex-
pression called a net-expression. This is then stored as an S-expression is
stored in LISP. If we do this then we can write the algorithms of the ef-
fector as LISP programs. (We shall indicate the general outline of a LISP
program for the refineproof algorithm.) Each algorithm then becomes a LISP
function whose arguments are to be memory nets.

Dummy variables used in these functions will be called bugs to distinguish
them from the individual variables of the language of the preceding section
whose values were normal S-expressions (not net-expressions) rather than nets.

(Definition: A sequence will mean an expression of the form
(al, OYRRRY an). The o, are said to be members of the sequence.)

A net may be written as a net-expression in many ways. One way is to

select one mede to begin with and write a sequence, the first member of which

-135-

is the contents of the node (if it's a formula node), the second a sequence
of contents of the various flags of the node, and the others data pertinent
to the various arrows entering and leaving that node, data such as direction,
thickness, contents of any flags on the arrow, and a sub-S-expression in
sequence form which describes the node at the far end of the arrow in the
same way that the whole sequence describes the original node. By a recur-
sive argument, we see that the whole sequence gives the structure of the
entire memory net seen from the point of view of the originally selected
node.

The members of the sequence, cxcept the first two, contain sequences
which give the structure of the memory net from the point of view of each
of the neighbors of the originally selected node. Hence if one begins with
a sequence which describes a net from the point of view of one node, and
wishes to derive from it a sequence which describes the same net from the
point of view of a neighboring node, one has only to pick the appropriate
sub-S-expression of the original sequence. And to return from this new
sequence to the original, we once again take the appropriate sub-S-expression.

Notice that the net-expression, as we have described it, is an infini-
tely deep S-expression. 1I.e., such a representation as we have described
above results in an infinite S-expression when we try to represent any net
of two or more connected nodes, because each node is a neighbor of its
neighbors. However, by using the LISP functions RPLACA and RPLACD in the
proper places we can construct a net-expression that, while finite and with
no such redundancies, curls back on itself in such a way that it appears to
any LISP function operating on it to be the infinitely deep S-expression we

have described above.

-136-

Such apparently infinite net-expressions will be said to describe a memory
net from the point of view of a particular node. These net-expressions will be
named by the arguments to which we apply the algorithms in the effector, and
they will be the values over which the bugs range. Hence a bug value is an
S-expression which describes a particular net from the point of view of a
designated node. Each bug value describes a net and designates a node of
that net.

Let us make some informal definitions. Suppose & is a bug value. Then
let us refer to the net described by £ as [§] . Similarly, let us refer to
the node designated by £ as £ . Now certain thin arrows may terminate at 2

The origins of these arrows are, then, certain nodes in . These certain

nodes are called thin-predecessors of € . Now other thin arrows may origi-

nate at E . The terminations of these arrows are, then, certain other nodes

”~
in . These certain other nodes are called thin-successors of £ . We

similarly define thick-predecessors of 2 and thick-sucessors of £ by replacing

the word ''thin'" by '"'thick'" in the above two definitions.

3.3.2 Some LISP Functions on Bug Values

We shall now mention several LISP functions defined on bug values.
The precise definition of these functions depends on the precise method of
storing memory nets.
Definition of derivations and derivationsusing: Suppose ¢ is a bug
value and £ is a formula node. Then derivations(<?) and derivationsusing(<?)
both name seqiences of bug values; each of these bug values describes Eﬂ
The members of the sequence named by derivations(:gy) designate the various
thin-predecessors of € . The members of the sequence named by deriuatﬂonsusing((?)

designate the various thick-successors of €

We will want these sequences to be examined by other LISP functions. In

-137-

doing so, it will be important to examine and modify the contents of value-
type flags attached to the arrows connecting E to the nodes designated by the
members of these sequences. This means that the arrow in question must be
specially marked in each member of the sequences. We will assume this has
been done; any number of methods are possible. (One method is to generate,
instead of the sequences of bug values, sequences of pairs, each pair con-
sisting of a bug value and a pointer to the relevant flag in the bug value.
In this way the net itself is not changed. I shall assume for simplicity
that the members of the sequences are the bug values, but in a specific im-
plementation scheme this need not be so.)

Definitions of containedformula , T-tagged , and H-tagged : 1If § is a
bug value and £ is a formula node, then containedfbrmula(())’which we write asC?,
names the S-expiession contained in £ . T-tagged and H-tagged are LISP
predicate expressions. T-tagg&i(gp holds if and only if E has a triangular
flag containing a T . H-tagged((?) holds if and only if £ has a triangular
flag containing an H.

Definitions of down and rule: Suppose § is a bug value and S is a
derivation node. Then down(QD and Pule«Q) both name bug values describing
[8]. The bug value named by down(<)) designates the single thin-successor
of 3 . The bug value named by rule(@) designates the single thick-pre-
decessor of § .

Another condition on memory nets: Recall that if § is a bug value and §

a derivative node then there are only two thin-predecessors of 5 , and that

these are both join points. One is called the antecedent node associated

n
with § . The other is called the parameter values node associated with 5 .

They may be told apart as follows. Each arrow terminating at the parameter
values node has a parameter-type flag. The parameter-type flags on the various

arrows coming into such a join point are all

-138-

different from one another. Arrows terminating at the antecedent node have
no such flags.

Definition of antecedents and parameters: Suppose § is a bug value
and § is a derivation node. Then antecedents(@? names a sequence of bug
values each describing [§]. These bug values designate the various thin-

- predecessors of the antecedent node associated with s . Again, suppose §
is a bug value and § is a derivation node. Then parameters(:g» names a
sequence of pairs, each of the form (ni, Bi) where each ni is an individual
variable and each Bi is a bug value describing[§]. The Bi's designate the
various thin-predecessors of the parameter values node associated with § .
For each i, ny is the variable written on the parameter-type flag attached
to the thin arrow which goes from ﬁi to the parameter values node associated
with § .

The functions we have defined allow us to move from one node to another
of a net. We can make statements such as: If x designates a derivation
node then x € derivations (down(x)) holds. (Unless the pair scheme of tag-
ging is used which I mentioned.) In this statement, € was meant to be the
LISP function of that name. However, if we ignore the order of members. in
a sequence and regard it as a set, then e can be thought of in the set
theoretic sense. We will frequently use such set theoretic abbreviations
on sequences the order of whose members is unimportant. So instead of
* derivations (X) we may write derivations (X) U { X } ; we may write xC vy
instead of andlista((A (z) z € y), x); etc.

We shall need some more LISP functions which we can define by definition
statements in LISP m-notation as described in the LISP 1.5 manual
[McCarthy 1962]. However, instead of using exactly the m-notation,

we shall use a modified m=notation which is identical to the notation used in

-139-
Section 2.1.2 in our definition statements for the function type expressions.

For example, we define the following:

pair(x,y) = [x =0~ § ;9©~ @a(x)@ a(y)@ * pair(d(x), d(¥))] ,
projl(x) =: maplistecar(a ,X) ,
proj7 (x) =t maplistecar(ad, Xx) ,
find(x,y) == [y=0~> 0 ;aa(y) =x > a(y) ;9> find(x, d(y))] ,

and variablesin is defined such that variablesin (a) names a sequence of

the free variables in the well-formed expression '@’ . Although the notation
here is the same as that of Section 2.1.2, the definition statements here
imply the actual definition of a new LISP function, whereas the definition
statements of Section 2 were merely summaries of our abbreviation conventions.
Note, we use "'as in Section 2.1.4.1.

3.3.3 Condition on Derivation Nodes (Rules and Heuristics). In

Section 2.1.4.2 we saw that a rule of inference was simply a theorem of
form o D T(B). We specified, in that section, the procedure for applying
such a rule of inference. Now a heuristic, in our scheme, is formally a
formula type expression (not necessarily a theorem) of form o DO T(8). The
procedure for applying a heuristic is the same as the procedure, described in
Section 2.1.4.2, for applying a rule of inference. Of course, the use-
fulness of a heuristic depends not on its form as an expression but rather on
its position in a memory net. The significance of its position in a memory
net was outlined in Section 1.

In Section 1 we did not have available the notation to discuss the
actual form of heuristics and rules of inference. We have now specified that
form and specified the application procedure. We shall now review the ap-

plication procedure and re-state, this time with the aid of the notation we

-140-

have developed, the way in which the connections to a particular derivation
node reflect an application of a rule of inference or heuristic.

In the rest of Section 3 we shall use the word rule to mean something
which is either a rule of inference or heuristic. Thus, a rule of inference
is a rule which, as an S-expression, is a theorem.

Consider a particular rule of form a D T(B). Suppose Yy is a sequence
of pairs such that all the free individual variables in the rule are
contained in W, and for allg, if @e pr’ojl(@) , holds then
ad(find(@, @)) names a bug value. Then g can be evaluated as follows: (1)
for each individual variable v which is free in 8 , substitute the S-ex-
pression named by ad(f‘ind(@,@)) for all free occurrences of V in 8 . (2)
Then apply the function apl to the result. This application will terminate
in time 1t and yield a constant, or it won't. If it does we return the result
(call it @). If it doesn't we return .

The LISP function that does all this is result : If ¢ names o DT(R),
n names Y , and ¢ names a number such that @= ¢ (z) holds for some specified
function ¢ , then pesult(&, n, &) names p if the application terminated
in time 1 and names ® otherwise.

In a similar way, we could make the same substitutions in o and apply apl.
However, here we will be likely to encounter a T. Let us simply keep
track of our T encounters in the following way. Each time we try to evaluate
apl() let us return the value , but add the S-expression named by
the evaluation of apl(@) to a special sequence 0 which we keep for the
purpose. (In evaluating the apl(@) we return when a T(87) is encountered ,
adding the S-expression named by apl() to 0, etc. etc.) If this process
terminates before the time limit t and yields a , then return@ , otherwise

return . The function which does this is requiredantecedents :

-141-

If £, n and ¢ are as before, then requiredantecedents (¢, n,) names o
if the process terminated in time 1 and names (®)otherwise.

Thus we can summarize the idea of a derivation via a rule of inference
as follows: If £ names a theorem of form o D T(B), y names a sequence of
pairs as above, and T names a number, and if andlista(T,requiredantecedents(&,y,1))

holds, then T(result(&, y ,t)) holds. We have described an
application of the rule of inference a D T(B).

This idea of a derivation is what is to be summarized by a derivation
node in the net. Hence we want one more condition to hold on memory nets.
For every bug value & which designates a derivation node, there exists a
number « such that result(mZe(@), parameters(@),@)= down (@) holds
and requiredantecedents (rule(@) sparameters (@) ,@) €

maplistcar(containedfbrmula,antecedents(<?)) holds.

When ruZe((?) names a theorem the derivation node summarizes the
application of a rule of inference. Otherwise it summarizes the application

of a heuristic.

-142-

3.3.4 Net Changing Functions

All the functions so far discussed whose range is bug values or se-
quences of bug values or sequences of pairs of variables and bug values have

one feature in common. If ¢ is an expression naming such a function and ¢

is a bug value which is a subexpression of ¢(@, @, cen ,Q)' then there exists
a bug value ¢ and an integer i such that ¢ is a subexpression of n; and
is the same net as [£]. In other words, no new memory net is produced by ¢ ;
it just produces a new pointer (in the LISP sense) to an old net.

We shall now consider functions which actually produce a new or dif-
ferent memory net. We shall consider later how such a new net is stored.
For now, we simply specify its net structure.

The most obvious types of functions, of the sort which produce a new
net, are those that erase nodes (and their connections) from an old net, or
attach a new node to an old net. We will need both types. We will specify
the operation of the second type in some detail. The operation of the first
type is no different in principle.

Definition of comstructderivation : Let us suppose p is a bug value; w
is a list of pairs such that varﬂlablesin(@) C projl(@ Yholds and proj2(®)
names a sequence of bug values; a 1is a sequence of S-expressions; and ¢
is a bug value. Let us write w as ((nl, z;l), (nz, (;2),..., (nn, (;n))
and write o as (Bl, 62,..., Bn) . In the caseswe are interested in, all
the above bug values describe the same net and they all designate formula nodes.
(We could define this for cases of bug values not describing the same net, but it
is not necessary.) Thus we could diagram a section of the described
net by the solid lines in Figure 9. (I have omitted many possible flags.)
Then constmctderivation(@, @, @, @) namesa bug value v such that is

the net in Figure 9 with the broken lines added. U 1is indicated in Figure 9,

-143-

A N
as are new nodes Yyseees Yoo where

o
.

holds for all i.

[} '-—_'""l
! « o o e) A
20 Lo \\

(T
A troaA
|
yl [
|
] e —
——— e m - =
~ \ -
~
SO \ P |
< \ P p—
~o N e e, .
~o \\ P
7
\\\\ s
5
N
~N
N
N
~
N
~
N
~
N
P N
* ~
N
\\ .-
.
aaaa -
¥
—_—] .
~
- A e e el q !
: P =TSR EEEEES U
_—]

:{%; Note, I have put 6'__%111
: £ : the box instead of .
—7 e That is, nodes in thi$ dia-
l \ gram contain the node's name.
In the real net, they contain

the formula, of course. I shall

follow a similar procedure for
nodes (but not for flags) in
future diagrams.

Note that once the broken lines have been added, all the labels in the
solid boxes are incorrect. For example, ,5\ is a node in the original net,
not in the new net. [£]is different from . I.e., down(@) = @ does
not hold, although down(@) = @ does hold. Of course, is the same
as and @ € antecedents(@) holds.

Of course, before making such a construction we would want to check to
be sure there is a k such that result(@ , @, @) =@ holds and
requiredantecedents (@ R @ R @) C maplistear (containedformula, @) holds.

-144-

Notice that the function constructderivation really only constructed
”n
the nodes 5 and ?1,..., Yo The others were there to start with. For
some purposes we will want to use the similar function, constructparameterderivation.

In this case the nodes ?1,..., $m are available to start
’~ ~
with as are 5, and 21,...,£n . The function must construct nodes v and £ .

Definition of comstructparameterderivation: Here suppose p and w are

as before, and suppose a is a sequence of bug values (v . s Ym) . As

1o
before, assume the nets [p], , and are identical for each i.
Let ¥ be an S-expression. Then -constructparameterderivation(@, @, @, @)

names a bug value v, much as before, describing the total net in Figure 9

(though in this case the 7.'s can have other connections just as the

i
gi's do) , where@ = @ holds.

Another sort of function which produces a new net is the join function
which combines two nodes of a net. We shall give its definition by a gen-
eral description in English and by an example. Suppose o and 8 are two bug
values, @ is the same as , & differs from ’é s o and @ are both
formula nodes, and —@_= holds. Then join changes the net[o] into a new

.. A N A ~ ~

net by combining the two nodes o and B8 into one node Y . @ = @
A

holds and all arrows which entered or left @ or B in the old net are now

diverted so that they enter or leave ? . E.g.:

124

<>

é) becomes 6

Figure 10.

We say Q): join(@,) holds.

uY,

m>

-145-

3.3.5 Storage of Memory Nets - Difficulties

By way of example, we have indicated three functions (econstructderivation,
constructparameterderivation, and join) which produce new nets. We now con-

sider an economical way of storing these new nets.

The various algorithms of the effector will be written recursively
as LISP programs. The process of following the algorithms will then consist
in evaluating an expression of the form ¢((;)) where ¢ is a LISP function
expression (or algorithm) in the effector, and n is a bug value describing
a net in the memory. It makes no difference whether we do the evaluation
in LISP fashion (with an association list and LISP eval function) or in
the manner of the evaluations in Section 2 (using substitution via our apl
function). In either case, we will, during the evaluation, have to keep
track of many bug values simultaneously. For example, in the LISP-type
evaluation, these bug values will be stored on the association list to-
gether with the variables (bugs) which currently have those values. Thus at
a given moment we may have to have, in memory, a large number of bug values,
just as in normal LISP we have to have a large number of S-expressions. Let
us call the set of bug values we must remember at current time, the current
bug value set.

Now an S-expression can be thought of as a pointer to a spot in a list
structure memory. A bug value can be thought of as a pointer to

a node in a memory net. As long as the members of the current bug

value set all describe the same net, the storage problem is easily solved.
The memory need only hold that one memory net and the members of the current
bug value set are simply pointers to various nodes of that net. Creation of
new bug values of the same type causes no problem. Suppose we execute,
inside a LISP PROG, y:= down(x) where x and y are bugs and the bug value

paired with x on the association list is a . This execution adds y to the

-146-

association list, paired with a pointer to a node in the net [a]. We already
have the net [a] in memory, and a pointer to the node @ . That pointer is
already paired with x on the association list. The pointer to be paired

with y simply points to the neighbor of Q which is at the end of the thin
arrow leaving 4 . Though we have created a new bug value, we have not
‘created a new net. The storage problem is simple here. y:= ¢(x) (where X
and y are bugs) causes no problem, then, unless ¢ actually creates a new

net structure.

Suppose now that ¢ creates a new net structure and we try to execute
y:= ¢ (x), where x and y are bugs and the bug value paired with x on the
association list is a .(For simplicity we consider a ¢ with a single argument,
though the three examples we gave of such a ¢ had 2 or 4 arguments.)

In a normal LISP program such an instruction causes no problems and
is handled automatically by the LISP interpreter. It is the fact that our
variables are not normal variables, but bugs, that causestrouble. To see
why this is so, let's consider the analogue in a normal LISP program (i.e.,

suppose o is a normal S-expression, not a net expression), Consider, for

example, a ¢ which adds something onto o . In a normal LISP program,
an example would be ¢ =: (A (u) <>* u). In executing the instruction
y = ¢(x), the LISP interpreter has only to take the pointer paired

with x , use it to construct a new pointer to pair with y , and save both
the old and new pointers. This works because the value o of x (old value)
is to be a subexpression of the value of y (new value).

The situation is quite different if x and y are bugs, and ¢ adds
nodes to the net described by 5 . We add the nodes, create the new net
expression, and save the proper pointer to one of the nodes (presumably a

new one) to be the bug value for y. But what are we to do with the old

-147-

pointer that was the value for x? New nodes have been added to the net

to which it points so it no longer stands for the original bug value a of x .
(Looked at another way, the bug value represented by that old pointer now
contains a subexpression which is the new bug value for y , designating

one of the newly constructed nodes. This certainly was not the case when

we started.)

The perpetrators of this unfortunate state of affairs are the pseudo-
functions RPLACA and RPLACD hidden inside ¢ . (If there were no LISP pseudo-
functions in ¢ , such a thing could never happen, but we need them to make
the new nodes into neighbors of their neighbors. Thus any function which
constructs new nodes contains such pseudo-functions.) LISP pseudo-functions
are notorious for changing the value of a variable behind the variable's
back. (see LISP 1.5 manual [McCarthy 1962]).

We would like to be able to write LISP programs for the effector
algorithms in the normal recursive LISP style and assume that no bug will
change its value unless we tell it to by a statement such as X = ¢(x)
or some such. We want to be able to retrieve the old x value if we write

Y= ¢(X) followed by [I(y) - vreturn(y); © > return(¢ (x))]
where Il names a predicate over bug values and ¥ is another function from
bug values to bug values. To permit this we must write those functions
which change net structure in such a way that the old bug values remain
unchanged.

One way of accomplishing this would be to copy the old net, making
the required change on the new copy. Thus a new memory net would be added
to memory each time an instruction was executed which changed net structure.
A memory net would disappear from memory only when all pointers to it had

disappeared. Then it would be snapped up by the LISP garbage collector in

-148-

the normal LISP fashion. This procedure of duplicating nets has many dis-
advantages not the least of which is the huge storage space requirement which
grows ridiculously for exactly the sorts of procedures we want to reward

the system for using.

3.3.6 Patching

Why copy a whole net when we only want to change a tiny part of it? It
is more sensible to put a patch over that portion of the net we wish to change.
To illustrate, let us use the example we drew before in Figure 10.
Suppose we begin with bug values o and B such that@ =® holds and such
that [a] is the same as [g] and such that the neighborhoods of @ and §
are as shown in the left hand portion of Figure 10. Suppose we execute
@ = gjoin(@ ,) . Then the resulting net will be (in the neighborhood

A

of oo, B, and 9) as in Figure 11.

m>

Figure 11,

-149-

The paths which have been added are drawn as broken lines. They are to be
distinguished from all other lines as they are members of the patch. The
outer dotted line indicates the edge of the patch. Any solid line within
the edge is covered by the patch. Lines crossing the edge of the patch
are double, having a broken and solid component.

Let us regard the bug values o , B , and y as pointers to nodes in
[a] , (or [a]), and [Y] respectively. I have indicated these pointers
in Figure 4 by the curvy arrows. The curvy arrow is solid if it is to be
regarded as pointing to a node in [o], and broken if it is to be regarded
as pointing to a node in . Now let us indicate the bug values ¢ and v
defined such that @ = a(derivationsusing((8))) and @ = a(derivationsusiny(@))

hold. The pointers for these bug values are indicated in Figure 4.
They seem to point to the same node, but one is solid and one broken so we
see § is meant to point to a node in[a], and v is meant to point to a

node in[y]. The consequences of this are most clearly seen by attempting

to find'rule(@)' and rule(@)' . In either case we start with the node pointed
to by the curvy arrow labeled § or v . In either case we move backwards
along the thick arrow which terminates there. But that arrow has a broken
and solid component. In the case oi:'E'Z—e_(—(:S?_)I the curvy arrow was solid so
we pick the solid component and move under the patch to 8 . In the case of
W the curvy arrow was broken so we pick the broken component and move
up onto the patch to ¥ . Thus = ruZe(@) and@ = ruZe(@) hold just

as if we had saved two whole nets. Instead of saving two nets with curvy
arrows on each, we save one net with a patch, with two sets of curvy arrows
(solid and broken); the members of one set 'see' the patch, and the members

of the other don't '"see'" the patch as they move over the net.

-150-

If, at any time, all bug values whose curvy arrows are broken have
disappeared from the association list, then we can erase the patch with
impunity. Similarly, if at any time all bug values whose curvy arrows are
solid have disappeared from the association list, then we can, with impunity,
turn the broken curvy arrows into solid ones, erase the solid stuff under

the patch, and make the broken stuff that is on the patch solid.

3.3.7 Tagging and Garbage Collection

Suppose instead of distinguishing the patch by broken vs. solid, we just
tag the "broken' component of the double arrows crossing the edge of the
patched area with a (1). We similarly tag the "broken'" curvy arrows with a
(1). We say the patch is tagged with a (1). Thus our patched net stands
for two nets, an untagged net and a 1l-tagged net.

Now, suppose we want to put on another patch. We just tag the new patch
with a different number. The details depend on whether we want this new
patch to go on the untagged net or the 1l-tagged net. In the first case,
the new patch gets tag (2) and if it overlaps the old patch it is placed
upon the stuff under the old patch. In the second case the new patch gets
tag (1, 2) and is placed upon the stuff written on the old patch. The curvy
arrows get the same tag as the patch. Each new patch gets a tagging sequence
ending in a number not in any other sequence in the association list. 1In
this way we develop a hierarchy of patches upon patches.

As in LISP, we periodically garbage collect. We examine the association
list for‘redundancies. E.g., suppose all curvy arrows whose tag sequence
contains a 3 have a 7 immediately preceding it. In that case the 7 can be
dropped and the 7 patch made a part of the net it patched (i.e., of the
uppermost patch it patched). The stuff under the 7 patch is then cut loose
from the net and is picked up by the regular LISP garbage collector. Converse

if 7 appears in no curvy arrow tag sequence, then the 7 patch can be cut loos

-151-

Because of the recursive structure of the effector algorithms, the
number of patches will drop drastically upon completion of a subroutine.
In the examples we shall consider, the number of patches will drop to zero
upon completion of a ''to prove' problem presented to the machine.

At any given time, then, the memory of a machine consists of a single

patched memory net, this being equivalent to many unpatched nets.

3.4 Other Functions Which Change Net Structure

3.4.1 Kinds of Functions to be Discussed

We have yet to specify in more detail certain important algorithms
of the effector. These will be built up from primitive functions (on bug
values) both of the type which leave net structure unchanged (we have already
defined these) and those that change net structure. We have discussed
only three of the latter type; we require several more. We will describe
how they change net structure; but remember that what is actually accom-
plished is the creation of a patch as described in Section 3.3.6.

In addition to functions which add nodes to the net like those dis-
cussed above, other functions erase nodes. I shall not describe these in
detail.

Simpler than either of these kinds of functions are functions which
merely change flags. T-tag simply attaches a flag containing a T to the node
designated by the argument. I.e., T-tag(@)names the bug value n where
can be formed from[f] by attaching a new flag with a T to the node § s
and where fi 1is that node to which the new flag has been added. H-tag
similarly attaches a flag containing an H to the node designated by the

argument.

-152-
Recall that various value-type flags may be attached here and there
to nodes and arrows. We will want functions which read the values on these
flags, raise them, and lower them. We will be looking at these values

usually in one of three contexts: searching, rewarding, or punishing.

3.4.2 Searching

The simplest search pattern is the search of a sequence of nodes.

Suppose & , En are bug values which all describe the same net.

1 Epoee

Now let us suppose that with each €i we can unambiguously associate a

number value from some nearby value-type flag. Then we can define a function

bestlist which makes a probabilistic choice from among the Ei on the basis

of the size of these values. The bug value returned would then be the £i

selected. Actually it will be convenient to raise, at this time, the

number on the flag we looked at when we obtained the value to associate with

€i. (I.e., "Unto him that hath shall be given',since a large value means

higher probability of being chosen and being chosen raises this very value.)
A more detailed description of the procedure follows. Suppose n is a

sequence of bug values all describing the same net, together with a desig-

nation, for each bug value, of a value-type flag. (Examples of such a

sequence would be'derivations(<;>f or'derivationsusing($>)‘for some bug

value ¢ . Recall that we decided not to specify in these cases the exact

method of distinguishing the value-type flag.) Suppose k is a number. Then
bestlist(<)’§>) names a bug value ¢ determined as follows. A probabilistic

choice is made among the bug values in n on the basis of the numbers on their

associated value-type flags. If none of these numbers is high enough with

respect to k , return ¢ . Otherwise return the chosen bug value and raise

the number that was the cause of that bug value being chosen (i.e., raise

-153-

the number on the flag). This converts the old bug value into a new one, & ,
which describes a slightly changed net (one flag is changed).

The function bestlist is, in a sense, a model for all the search
functions we shall use. The principle of the other search functions is the
same: select a bug value or pair of bug values from a set of bug values
or pairs of bug values; make this selection on the basis of numbers on
value-type flags; raise the number on the value-type flag used to select the
winning candidate; return ¢ if the numbers on all the value-type flags are
low with respect to a parameter k ; otherwise return the winning candidate,
complete with modified flag.

The function bestproductinlist is the same as bestlist except that
the sequence is a sequence of pairs of bug values, each member of the pair
with an associated value-type flag. The value of the pair is to be regarded
as the product of the numbers on the two value-type flags associated with the
members of the pair. Selection is based on this value. The pair selected
is modified by raising, in each bug value, the values on both flags used;
i.e., the two bug values in the pair returned are modified so that they end
up still describing the same net.

Certain parts of our algorithms are designed to handle very bad
situations, when no obvious heuristic seems to work. In these cases,
searches over a whole net are required in order to find the right heuristic
to use. These complicated and, for our purposes here, uninteresting searches
can be designed in various ways.

If £ is a bug value and k a number then bestnetrule((>,<>) names nil
or a bug value n constructed as follows: A node § of[£] is selected
probabilistically on the basis of numbers on certain value-type flags attached
to the nodes of [E]. (p is a bug value and [p] is .) These numbers

are, however, not the sole criterion used in the choice. Nodes 'closer"

-154-

to 2 are weighted more likely to be chosen then nodes farther away. The

"distance" between a node and £ is calculated with the aid of the numbers

on value-type flags attached to arrows along paths connecting the node and £
If the value-type flag on the chosen node © does not have a high enough
number with respect to k , or if p is too "far" from £ with respect to k ,

~ then bestnetrule(<),()) names nil. Otherwise p is modified to form n by
raising the number on the value-type flag attached to © . 1In this case
bestnetrule(<>,§b names n

Bestnetparameterrule is like bestnetrule, but different value-type
flags are used to guide the choice of node. Actually the operation of
bestnetparameterrule is a bit more complicated and will be explained in more
detail later, as will bestnetparametervalue.

In eliminating patches, etc., in garbage collection, it could happen
that the patched net is split into several parts not connected with one
another. This creates a small problem. Ad hoc provision will have to be
made so that all parts are saved. The three above functions (and other

similar ones) will have to be able to look at all saved parts of the net.

3.4.3 Functions on Two Nets

Now we take advantage of the fact that memory is really a single
patched net and not several different nets.

It is possible, for example, that,although [£] and[n] are two different
nets, 2 and ﬂ are the same node of the patched net. That is, the
curvy arrows for £ and n point to the same node, but they have different
tags. Thus we have a one to one correspondence between certain nodes in [g]
and certain nodes in [n].

Similarly, if [£] and are two different nets, and E and 7 are not

the same node of the patched net, then via such a one to one correspondence

-155-

there may be a node 7 of [£] such that 7 and § are the same node of the
patched net. We say((F jumpback(@ ,@) holds. If no such node 7 exists

then jumpback(@) @) = @ holds. In other words, the curvy arrow representing

?mpback(@ ,@)' points where the curvy arrow representing n points, but
is tagged as the curvy arrow representing £ is, whenever such a tag makes
- sense.

We will need some way of punishing a wrong choice in a search.

Suppose we have selected a certain node 7 in by, means of one of
the search functions, raised the number T to m on the appropriate
flag and perhaps even constructed some new nodes. Suppose the net
which is the result of all this turns out to be all wrong and we wish to
return to and choose a different node. But how are we to keep from
choosing ¢ again? We want the flag Ppunished by lowering t so that
there is less chance of picking 4 again. Suppose 'E\ and 7 are the same
nodes of the patched net in memory. Then erasepunish(@ ,@) names a bug
value w which is just like ¢ but with values on value-type flags altered as

follows: For each value-type flag ‘> in[g] we find the corresponding one

-156-

l@ in . We examine the pair (t,m) of numbers. (7 is 0 if there

2
exists no corresponding flag in .) Set v equal to ;— . (Or perhaps not
this exact function. We need a v equal to ¢(t,m) , where ¢ is a function

such that for any numbers t, m, and u :

(1) T = ¢(1,1) ’
(2) > ¢(t,m) > ¢(T,1) whenever 1T < 7 <y , and
3 0<é(r,m :)

Now the value-type flag on which corresponds to !> on is to be l>
Note that this function can be executed very quickly since actual work is needed
only on areas of the patched net where the patches differ for [£] and .
punish is just like erasepunish except we require the nets and
to be identical except for values on value-type flags.
reward @ s @) names the same bug value as erasepunish(@ R @)
except that with t and m defined as before and v equal to ¢(t,m) ,

we now require, for all numbers t, m, and u ;

(1) T = ¢(1,71) ’
(2) T < ¢(t,m) < ¢d(t,u) whenever m < 1T < u , and
(3) 0 < ¢(t,m)

-157-

If some of the flags we are to be rewarding or punishing are to be
attached to new derivation nodes, then they had better be added to new nodes
by constructderivation. I shall not specify just which flags are to go on
the new derivation nodes. Suffice it to say here that the definition I gave
of constructderivation should be modified so that the new node receives
the proper value-type flags with the values appropriate monotionic functions
of nearby value-type flags.
Similarly, the definition of join should be modified so that each
of the values on the flags on the new nodes is the sum of the two corresponding
values on the corresponding flags on the two old nodes which have been joined.
We shall make frequent use of the term operate . If we write an operate
statement such as ¢ '= operate(ig)), it means that in the rest of this pro-
gram (i.e., LISP PROG): if o names a bug value then ¢(a) is to mean jumpback(a,Q));
if atom(a) holds then ¢(o) is to mean o ; and if o names neither
a bug value nor an atom, ¢(a) is to mean ¢(a(a))* ¢(d(a)). We shall
find this abbreviation very useful. Any Greek letter may be used on the
left of the operate statement. In place of?§7 I may write any term which

names a given bug value.

-158-

3.5 LISP Structure of the Effector

The effector may be thought of as a set of LISP programs, each des-
cribing a LISP function. The LISP functions are defined over S-expressions
and bug values (remember, a bug value is really a specialized S-expression,
though we are treating it as something different). These LISP functions
are built up from one another in the normal LISP programming fashion. In-
cluded in the effector are the following functions: the primitive functions
of the LISP 1.5 interpreter; the LISP functions analogous to the function
type expressions where abbreviations are given by the definition statements
in Sections 4.3, 4.6, 4.7, 4.8, and 4.9; the LISP functions described
above in this section (these are defined over bug values). Other functions
in the effector are built from these, until finally we arrive at certain
functions, such as refineproof, which are described recursively in LISP
fashion and are the so-called effector algorithms which we have mentioned
earlier and which operate on the memory during machine operation. (Since the
functions are defined over bug values we must guard carefully against in-
finite recursion. If a and B are bug values then the evaluation of@ =
recurses infinitely, at least in some circumstances. I will never evaluate
such a form unless it is of the fomn<>= B.)

We are now in a position to describe certain effector algorithms. They
will be specified by a LISP program built up from already defined functions
(But we will continue to use some of our notation from Section 2: we write

* for cons and a for car, etc.,etc.)

3.6 Refining a Proof

3.6.1 The Task of refineproof

We shall describe only one of the effector algorithms in some detail,

namely refineproof. This algorithm is used when the machine is attempting to

-159-

produce a proof of an already given formula. Such a problem might arise,
for example, if the user presented the machine with a supposed theorem and
asked the machine to prove it.

Presented with this sort of a problem, the machine makes a trial proof
outline, and then attempts to alternately refine and modify the outline
until a complete proof is achieved. The steps of an outline are not nec-
essarily made via rules of inference (i.e. by theorems in rule form). Usually
they are made via so-called heuristics. A heuristic may be thought of as
a rough approximation to a summary of the rules used in a line of reasoning
or sequence of rule of inference applications. How this is so was discussed
in Section 1. Technically, a heuristic is merely a formula type expression
in the form of a rule (a heuristic need not be a theorem).

In refining the proof outline, a step using a heuristic is replaced by
one or more steps which use rules of inference or more detailed heuristics.
All these proof outlines will be constructed in the memory net by means
of constructderivation. We described the refining process in Section 1. We
shall give a slightly more formal description of that process here.

The first task of the effector is to take the formula to be proved and
construct a simple trial proof outline. The simplest would be a one-step
outline. Suppose at this time, the memory holds the single unpatched net .
The effector searches the net for a heuristic which will yield the re-
quired formula in one step. Such a search is similar to those we have discussed
and will discuss. It is especially simple if the net contains a node % such
that@names ® D T(x), since this heuristic will always yield the required

formula. We have but to add the broken line construction below to the net .

-160-

.
N A
\ i
N\ 7y
APl
Y
=== ==) ,l /‘\\\\‘
\~~__/, / \X 4
| / v
| /r \s
|
| //
!
v/
| /
y— e L

__________ Figure 12,
Note: the new formula node contains the formula to be proved. The

antecedent node has no arrows coming into it and needs none.

From this point on we proceed by successive refinements of this proof
outline. The refining procedure is accomplished by refineproof. The definition
of refineproof or rather an outline of its definition (along with outlines
of definitions of other LISP function names we shall be using) is given in

Section 4.11. Refineproof makes constant use of T-and H-tags.

3.6.2 Use of T-tags and H-tags.

T-tags and H-tags appear only on formula nodes.

The axioms of the system and the rules of inference which are theorems,
are contained in formula nodes which are T-tagged and H-tagged. Certain in-
itial non-theorems (formally only one is required) are H-tagged.

Any other T-tagged node @ must initially meet the condition that the following
holds for o : H(y) (y € derivations (o) A

(T-tagged (rule(y)) v rule(y) = @ @)
A andlista(T-tagged , antecedents (y))) . However, if this

condition later ceases to be met due to erasures, the T-tag remains.

Note: We specifically allow the rule to be rule of inference 19, since this

is the only rule of inference which is not a theorem. By induction, only

-161-

theorems may be T-tagged and hence ;EZ;_T;S must name a rule of inference.

Similarly any other H-tagged node @ must meet the condition that the
following holds for a : T-tagged(a) v H(y) (y € derivations (o)
A andlista (H-tagged, antecedents (y))))

If this condition later ceases to be met because of erasures, the H-tag is

- erased. An H-tag on a node means that the node is the termination of a proof

outline (from theorems) via heuristics.

3.6.3 The Task of prove

refineproof takes the bug value ¢ and the number « and tries to produce
a new net[n| by performing constructions on [£] such that@ =©— and
T-tagged (<>) hold. k is a positive real number which tells how hard to
try (how many unlikely possibilities to try). refineproof first checks to
see if 2 is already T-tagged. If not, it tries to make more precise the
various derivations of 2 . With each derivation it looks at, it first
calls itself recursively to see if it can get T-tags on the proper nodes to
permit T-tagging of E .

If for a given derivation all this fails, it assumes the rule used
was a heuristic and calls expandheuristic. This tries to replace the old
heuristic-type derivation with a brand new derivation. It searches out new
rules, parameter values, and antecedents to use. At worst, the search is
random; at best,the old derivation will give a great deal of information
as to what the new derivation should be like. Hopefully the rules needed
will be nearby in the net (otherwise it was a bad heuristic, or at least
refineproof is on the wrong track). Perhaps a similar problem has been en-
countered before (this, of course, is usually the case for any given sub-

problem), In that case there will be a record in the net that the heuristic

was used to prove theorem X, and there will also be a record of how x was

-162-

finally proved. It is the job of expandheuristic to find the right X. Then

the effector attempts to construct a derivation ofzi;@hich mimics that of 1y .
This construction is done recursively by the function prove . It uses

a sequence of pairs named by the dummy variable & . This sequence (or set)

of ordered pairs may be regarded as a mapping from the X derivation being

" mimicked to the?i? derivation being constructed. Corresponding meta level

nodes in the two derivations are identical. All subroutines return a dotted

pair (a. B) where o is the current bug value and 8 is the current 2 sequence.
Thus, it is the function prove which has the task of deciphering the

meaning of a heuristic by first trying to mimic a previous use of the

heuristic.

3.6.4 Example: A heuristic which is a composition of two rules.

(See Figure 13, solid portion.) Here we see a simple example of a
portion of a net illustrating use of a heuristic, namely, T(¢(x)) D T(6(x)).
to prove the formula named by 6(:<>) i.e., the formula one gets by applying
. . PN .
6 to £ . This formula, as we see,was first '"proved" directly from ¢(()) via
the heuristic. Later (that it was later rather than earlier is not obvious
from the net) this single step was refined by the creation of the two step
derivation via y(Q)) . If this was the first use of the heuristic, the
refining process must have been fairly difficult. (Locating the two rules
to use would have taken place in randomprove via bestnetrule((?, g)) , where
§>names our heuristic. bestnetrule would have found the right rules by
. —

tracing the derivation of the heuristic via <7.)

However, after such a refined proof has once been achieved, then it is
not too difficult to refine a second use of that heuristic in the same way.

Suppose the portion of the net shown solid in Figure 13 is already con-

[sy~ |
structed, and suppose the heuristic is now used to 'prove" another theorem 8(g))

-163-

(See the broken-line derivation of e(@) via the heuristic in Figure 13.) Let
33 be the node containing 6(@)

We can see how refineproof|(,©) would evaluate here if we refer
to Section 4.11 and the effector function definitions (x is a number)., These
definitions are not complete but are merely outlines of the sort of defin-
itions required. (E.g., @stands here for the name of a number related to « ,
but smaller than « . I have not specified in these cases how the new number
is calculated). (Some obvious improvements in the definitions come immediately
to mind, such as diagonalization of sets of searches that are here handled
consecutively.)

I have made in these definitions one violent simplifying assumption:
that each rule contains only one free variable. This is ridiculous, of course,
but allows the definitions to be written much more simply since the searches
for parameter values are straightforward searches rather than complicated di-
agonal ones. The simplification is made only to make the principles of search
easier to see, and could not be made in a real machine. In a real machine,
these searches would be diagonalized in one of the obvious ways.

Happily, the simplifying assumption just happens to be true for the ex-
ample of Figure 13. The function parameters is changed to parameter and returns

a pair instead of a sequence of pairs. Hence we can use the definitions in

Section 4.11 to clarify the evaluation of refineproof(, @)

-164-

! |
A |
[| |
l___;___|
|
i
|
[
)
|
I
I
1
|
I 7
VRN
/"\\ Ill—:-_—]
/ " } l
o == A ke T "
' f
|
—r— R i -
) |
|
i
i
!
[
|
i
|
|
|
|
__._W__._.I
[N 1
[1
' 83 !
| !

Figure 13.

The following hold:

9

(@)
(@)
(@)

= [T(¢(x)) D T (X))

it

T (X)) D TE X))

@'@@li‘\ [B <D

T(¢(x)) D T(O(X)

@ - ' Gad(x)) AT(add(x)) ' 24d())) D T(ad(x) '-

¢(@)
—e(@)

@@;u@

The following hold:

1]

@ J—
$(Q) =
= (@)
=6(@)

il

L)<

-165-

o
°

Figure 14.

-166 -

A
The evaluation proceeds through the following stages (assume @1 and 83
are H-tagged; nets to be described by bug values are indicated periodically;

the bug values in (1), (2), and (3) describe Figure 13 -including broken line
and dotted line portions):

(n Refineproof(, @)

(2) Expandheuristic(@,@, @)

(3) Refinebyexample(@ , @ , @ s @)

Now the effector makes erasures to get Figure 14, solid portion. Bug
values below describe the solid and dotted (....) line portions of Figure 14.
@ @@t G 2 G 2D) 1 Qo) - e ehi
argument is a sequence, but we abbreviate it as a set so that we need write
repeated members only once.)

(5) Parametergenerate (, ,{w,w, }, @) @)

(giving w:= in the parametergenerate program; see definition

of parametergenerate .) (Assume: result(, , @) = holds.)
(6) Parametercheckgen(, , ,{ w, @, })
Q&Y (D¢

Now the effector constructs the broken line (----) part of Figure 14.

Bug values below describe the solid, dotted and broken line portionsof
Figure 14.(requiredantecedents (. , ’, @) = w(@) holds)
(7 Completedemv(% \ (Gz, B), @, . . ’

m@)

(define A =: {w, @) , @, (ocz, 82) })
(8) Prove(,,@,@, +@)

-167-

(9) Parametergenerate (, , @ ,@ ¥ @) (giving w =:

in the parametergenerate program.)

(10) Parametercheckgen(@ v @ , ,@)

The effector now instructs the circled line (oosss) part of Figure 14.

Bug values below describe all portions of Figure 14.

(Gotine 1 = {,,,,
,,})

@ mpteederint Q@) @G + @)

(12) Prove(, . @ @ w@)

This time the effector executes Join(@ s Q) to combine two nodes

of Figure 14. Since @1 has an H-tag, so does the joined node and, defining

¢ = operate (join(s)) , prove returns the constant naming
'¢() * o (@)

Undoing the recursions, all the H-tagged(a(z)) occurrences hold

because completederiv H-tags éz and §3 in turn. Prove finally gives an answer

of form @ (for some sequence Z) where an H-tag is on '6\3 and the net

constructions we have mentioned have been made. This is returned to refinebyexample

which restores the erased connections and calls refineproof‘(, ¥ @)

where is the new with the new constructions. The original
problem (refining the G step) has been broken into two subproblems (refining

the 62 step and refining the ’p‘l step).

3.6.5 Less Trivial Situations

In the example, we had an entire simple model laid out before us to

mimic. When this is not the case, or when the right model is buried among

-168-

incorrect models, the task is harder and the chances for error greater.
Such cases require random searches through the net to find the required
formula. Such search algorithms can be sophisticated or simple. We have
only indicated where they are used. We have used them in sequential rather
than diagonal manner, since we are not trying to set up the ultimate in

- search algorithms here but only indicate the principles by which they op-
erate. The random search algorithms are, Rcheck , overallcheck, and
randomprove. Each searches for a different kind of formula. Details are

discussed below.

3.6.6 parametertreegenerate

Even when an entire model is available, and no random net searches
are required, the situation can be rather complicated. Good heuristics,
however, give us simple situations. In the previous example we had to break
up a single step heuristic derivation into a two-step one. Sometimes one
must break a single step into three steps, but a good heuristic would be
in the net in such a way that this process is done in two refineproof stages,
first breaking the single step into two, and then breaking one of these into
two more.

In general, the complicated entire model situations are handled just
like the example. There is one situation, however, which is common, but did
not arise in the example. When the effector arrived at parametergenerate
it always found that ad(v) e projl(ﬂ) held, for the current values of dummy
variables v and 2 . One can't always count on this. Suppose the model

e
were as in Figure 15. Here ad(Vv) names y . y 1is not in projl(l) , but
———— =

it is a derivative of a member of projl(ﬂ) , the derivation being via rule(].

We call such a rule a parameter rule because it generates a parameter value.

-169-

Such rules are easy to recognize since they are all of form

(T(xl) A T(x2)4« el A T(xn)):D T(W(xl, X s xn)) for some in-

PIEEE
dividual function ¥. Hence it is trivial to follow a model back through one
of these rules and mimic it in the new proof. This is the job of parameter-
treegenerate . etacheck then tries to use the generated parameter value for
the job it is supposed to do. Of course, our definitions are simplified

since we are assuming the rule contains only one free variable, only one

parameter.

1]

T(x) D T(2(x))

T(¢(x)) D T(¥(x))
T(W(x)) D T(8(x))
T(¢(e(x))) D T(8(2(x)))

-170-

Qa>

Figure 15.

-171-

It is important to distinguish parameter rules from other rules since
they perform quite a different function and are really only individual function
type expressions written in rule form.

We make the simplifying assumption that it will never be necessary to
search through a cascaded series of parameter rules to get to the member of
. projl(l) we want. In general, this makes a lot of sense because we can
automatically arrange our construction rules to collapse down a cascaded
series into one rule, the process being trivial, recursive, and reversible.
The result merely shows composed individual functions to the right of the
implication sign. I have not taken the trouble to arrange for the collapsing,
but I have arranged the random search functions (which generate these rules)
in such a way that cascades do not develop. The parameter rules are treated

like individual functions, not like real rules.

3.6.7 Suppose the Model Fails at Some Point

Suppose the effector is looking for a formula to fit in the proof, and
none of the corresponding parts of the model proof lead it to members of
E}Z}I{Efﬂ . (2 having the current value for the dummy variable & .) The
model has failed at this point. Before the effector rejects the whole model,
it might be a good idea for it to take a look at nearby formulae to see if
they are what it is looking for. When no model exists, the whole proof
attempt must consist of this sort of search. The situation is not as bad
as it seems. In Figure 13, for example, even if none of the solid lines
existed (i.e., if there was no model) a search of the net near & would

quickly bring the effector to the correct rules of inference.

The random search, then, begins at an appropriate node or nodes and
searches nearby nodes first. It should search first those nearby nodes with

high values on value-type flags. (Each random search algorithm looks at a

-172-

different set of flags.) The algorithm looks at a number parameter « ,
which tells it, in effect, how thoroughly to search. By the rewarding and
punishing routine, the search avoids repeating a trial too often. (We can
fix things so it never repeats a trial if we wish.) The algorithm carries
along the 2 sequence. The algorithm will be constructing new nodes and

——
hooking them onto old ones. If these old ones are in proj.,(&) then this
g 2

is good to know because at that point the effector can stop its random search
and go back to the model. (I have indicated this in the algorithms by a
recursion back to prove and hence to checklistprove , but I have indicated
it only for antecedents.)

Theoretically, given a high enough « , these random searches could search
the whole net. But the net could easily have become split in two parts by
erasure of certain nodes. We must keep track of both halves, not only to
prevent one part from being garbage collected, but to allow the random
search algorithms to search both halves.

I have indicated three random-search algorithms.

Type of Formula Sought Algorithm Name Selecting Function Used
normal rule randomprove bestnetrule

parameter rule overallcheck bestnetparameterrule
parameter value Reheck bestnetparametervalue

The first is more general and incorporates the other two. It can be used

when there is nomodel at all. The selecting functions are like bestlist,

but instead of selecting nodes from a sequence they select them from the

whole net, weighting them as we discussed above. The first argument of a
selecting function names a bug value (or list of bug values in bestnetparameter-
value) designating a node (or nodes) around which the effector will concentrate

its search. The second argument names the number parameter.

-173-

As we mentioned, bestnetparameterrule is rigged to discourage cascading.
If it doesn't immediately find what it wants, a nearby parameter rule with
high value, it constructs one. Remember that the rule is just an individual
function. Usually the required individual function will be buried in a nearby
node (e.g., see Figure 8 where the function 9, for?ir, is buried in‘§5).
. Bestnetparameterrule actually searches through selected rules for the proper
individual function and constructs the required parameter rule via the obvious
meta rule. It returns a bug value designating the constructed node. Since
the effector will never want to T-tag the rule, this odd generation causes
no problems. If this sort of search fails, bestnetparameterrule searches
simultaneously (and diagonally) for several individual functions (the search
for each being like the above search) and composes them to create a variable

rule. Unless k is rather high, this search will be quickly given up.

3.7 General Considerations

A more detailed discussion of the alogrithms here presented would be point-
less since their definitions are only a simplified outline of one
possible approach to effector interpretation of heuristics. Much more
sophisticated algorithms are possible. The more sophisticated the effector
algorithms, the simpler the heuristics and memory net structure need be.
Simple algorithms imply complicated models with. many intermediate stages in
proof-refining between the original heuristic proof outline and the final rule
of inference proof. Since we are interested in adaptation of the net, we pre-
sumably would like rather simple effector algorithms (i.e., we don't want to
program too many techniques into the machine; we want the machine to discover
them for itself), but not as simple as the algorithms presented here. The
prove algorithm presented here does exhibit an important property shared

with its more complicated relatives. We described this property in Section

-174-

1.6.3.2. 1In terms of our notation here we can summarize the property by
saying that prove never looks at T-tags, only at H-tags.

3.8 Conclusion: Discussion of Adaptation. Notice that by the reward

and punishment scheme not only is the effector able to make random searches
without always repeating itself, but when it has completed a proof (if we
~write the algorithms correctly) it will have rewarded (or punished if it was
unsuccessful) just those nodes we would want it to try (or avoid) next time;
those strategies which work well get higher reward and are more likely to be
tried in the future. The exact reward for each of the rewarded nodes can be
modified by a multiplier (the same multiplier for each node) set by the user
on the basis of how good a proof was produced. Other effector algorithms

can then help further distribute the reward. The idea, of course, is to erase,
from time to time, very poorly rewarded nodes. Thus the net adapts slightly

with each problem it solves or fails to solve.

-175-

There is a special effector algorithm which, after completion of a '"to
prove' problem, makes random applications of rules in the net to formulae in
the net, thus generating new formula nodes. We shall call this algorithm the
random generation algorithm. This algorithm makes a random choice of a
formula node containing a rule (weighting as more likely to be chosen those
nodes which have accumulated more reward). It then makes a random choice of
formula nodes to apply the rule to (weighting as more likely to be chosen
those nodes which, have accumulated more reward and are closer to the rule
chosen). The algorithm attempts to apply the chosen rule to the chosen formulae.
If the application is successful, the algorithm adds to the net a formula node
containing the resulting formula and a derivation node whose connections show
how the new formula was derived.

Thus the random generation algorithm is very simple. Nevertheless it
allows the machine great flexibility in adaptation. By its operation, formulae
are added to the net in areas which the machine itself has determined (via its
reward distribution algorithms) are important areas. The formula nodes created
are not for use in the solution of a current problem, but are rather for use
in the solution of future problems which are similar to those problems in whose
solution the formula nodes chosen by the algorithm participated.

One way in which these new formulae might be used in future problems would
be as rules. If the new formula generated is in the form of a rule it can
easily be employed as a rule in future problems. If such a new formula was
generated from theorems by a rule of inference, it can be used as a new
"derived" rule of inference. If not, and this is the more common case, it can
still be used as a heuristic.

In Section 1.7 we discussed the generation of new heuristics by the machine.

It is usually through the random generation algorithm that such a generation

-176-

takes place. Figure 8 diagrammed the result of such a generation. We can now
see that the derivation diagrammed in Figure 8 is no different from any step

in a proof outline. It simply happens that the formula generated is in the form
of a rule. We see now that the rule generated (Heuristic 1 in Figure 8) may be
either closely related or quite unrelated to the rules (Rule 1 in Figure 8)

~and to other formulae (the # in Figure 8) from which it was generated; the degree
and nature of the relationship is determined by the rule which was used as a

rule in the derivation. (The node containing this rule is not shown in Figure 8.
It is the node from which emanates the lower of the two thick arrows in Figure 8.)
We can call this last rule a meta rule since it was used to generate a rule. A
rule which is used to generate a meta rule can be called a meta meta rule. Thus
we can think of a rule as being used at a particular level: the object level,
the meta level, the meta meta level, or a still higher level.

Now a single rule may be used successively at any number of different levels.
Thus, it is not the rule which is at a particular level, but only a particular use
of it. Of course, there will be some rules useful at a particular level and
useless at other levels. This specialization is essential to proper adaptation.
Efficient generation of new rules at any particular level depends on the presence
of rules useful at the next higher level. As a corpus of rules is developed,
useful at a particular level ¢ , the generation of rules at the next lower level
(level 2 - 1) becomes efficient. Until this corpus is developed (through reward
of rules at level % which produce rules rewarded at level % - 1) the generation
of rules at level % - 1 is inefficient. Note that though the generation of rules
at level & - 1 is inefficient to begin with, it still takes place, since any rule
in the net can be used at level & . (In fact, we suspect that if level £ is a

very high level, any rule useful at level & - 1 is useful at level & .) Thus,

the net is never in a position of having no rules to use at a given level, since

-177-

any rule can be used at any level. It is only after a good deal of adaptation
has taken place that rules are developed which are specialized for use at a
particular higher level. Rules specialized for use at the lower levels will
appear first (at the object level almost immediately)and only later will rules
specialized for use at the higher levels appear. Thus a hierarchy of rules

- is gradually built up.

(We have been talking as though, given a particular use of a rule, it were
always possible to tell at what level the use occurred. This is, of course, not
always the case, especially before the hierarchy is built up. Suppose Rule A
is used to generate Rule B. Then suppose Rule B is used once at the meta level
and once at the meta meta level. At what level was Rule A used when it was used
to generate Rule B? However, it is useful to think of the use of a rule as if
it occurred at a particular level.)

Now a generated rule may be either a heuristic or a rule of inference. If
it was a heuristic, its '"'proof" must have been only a proof outline (it can never
be fully refined). Even if the generated rule was a rule of inference (and hence
a theorem) its '"proof'" might not be fully refined. (This was almost certainly the
case when the rule was first generated.) In such a case, the rule is a rule of
inference, but, since its node does not have a T-tag, the effector does not know
that it is anything more than a heuristic. If it is a useful heuristic, however,
the effector will spend time trying to refine its proof. This is because the
rule will accumulate reward and thus there will be many attempts to use it. At
each attempt, the effector makes another try at refining the rule's proof outline.
(For the object level, see the command to calculate p in the refineproof routine,
Section 4.11.2. For the meta level and higher levels we need other effector

algorithms.)

-178-

By allowing any given rule to be used on any one level or several different
levels, we can start the machine with an especially simple memory--with a single
corpus of rules to be used on all levels--and then allow the corpus of rules to
specialize. (Alternatively, we could have restricted each rule to a given level,
beginning each level with the same original corpus of rules. This plan, however,
- does not allow a new rule useful at one level to be tried out at another level.)

Our general procedure for generating new rules is what permits the develop-
ment of a hierarchy of rules. That rules generated may be not only heuristics,
but even rules of inference, depends on the procedure (discussed in Section
2.2.1.2) for adding new "derived" rules of inference to the axiomatic system.
(The procedure for generating heuristics is merely a generalization of the
procedure for generating ""derived" rules of inference.) This procedure in turn
depends on both the procedure for generating algorithmic names of functions and
on the procedure for using Rules 18 and 19 to shift a theorem from one level to
another in our language. All these procedures were explained in Section 2 and
it was shown in Section 2.2.1, that addition of these procedures to our axiomatic
system does not destroy consistency.

By showing, in Section 2, the existence of a consistent self-describing
system which incorporates these procedures, we have shown that there exists,
an axiomatic system which may be used as a basis for the sorts of adaptive
theorem proving machines discussed in Sections 1 and 3.

The complete specification of one such adaptive theorem prover is not
possible until various reward plans have been investigated and compared. We
are only beginning this investigation and it promises to be a long one. Our
initial work will be on the so-called 'reproductive plans' which Dr. Holland

has investigated (see description in [Holland, 1969]).

-179-

3.9 Postscript: Other Object Theories

Formally, the machine proves theorems in a particular axiomatic system.

We can cause it to prove theorems in another systenm simply by adding that
system's axioms and rules of inference t> the memory net in the following way.
We define a predicate Sys in the same way we defined T except that the defi-
nition uses the axioms and rules of inference of the new system instead of
the old system. Then Sys is true on theorems in the new system. If we

want the machine to prove a theorem o of the new system, we simply ask the
machine to prove Sy3(<>)

The old system is present, then, 'overseeing' the new system and operating
at the meta level to generate new rules of inference and heuristics for the
new system.

The new system, then, is "subordinate' to the old. There is no counter-
part to Rule 19 for Sys so the new system stays at the object level, as it
were. Rules of inference for the new system are theorems of the old system,
not theorems of the new system.

By the above method we can have the machine prove theorems in trigo-
nometric identities, group theory, or propositional calculus.

In the case of propositional calculus, the new system is a subsystem
of the old system, so for any a, Sys(@) D T(@) holds. As long as all the
special propositional calculus rules of inference require the generated theorem
to be a formula of propositional calculus (a decidable question and thus easy
to add as a condition, see below), we can have the machine use T instead of
Sys throughout.

Let us consider the Newell, Shaw, Simon [Newell, Shaw, and Simon, 1961]
formulation for propositional calculus. (Ignore for now their so-called ab-

stract operators.) They formulate problems in terms of transforming a

-180-
propositional calculus formula a into B by means of (reversible) legal trans-
formations. These transformations, or operators, we may write as individual
functions OP1s OPgsev+s OP_ - Since our machine works with theorems, we
shall attempt to transform the propositional calculustheorem o = B into
theorem o = o by means of applying the opj's to the right hand side. To
- decide what operation to use, Newell, Shaw, and Simon have a set of difference

tests which we can regard as a set of binary predicates Dl’ DZ""’ -

Let us make the following definitions.
D Gy) =~ @ () v...v D (x,y))
prop (o) holds iff a names a well formed formula of propositional calculus.
OO = Lpropld o)+ xG);
atom(X) -~ §;
atff(a(x), ay) # 8 > diff(a(x), ay)) ;
© > diffdx) , dy))]

There are many ways of embedding a fixed scheme such as Newell, Shaw,
and Simons in our system. One is to code it all into one massive rule of
inference. This would only be interesting if the machine then dissected it
into a set of smaller rules. Let's begin with such a set of smaller rules.

We shall ignore, in this illustration, their three rules which use two
antecedents. Since the second antecedent is found by random search, the
models for these rules are essentially the same as for other rules. (Eg.,
see Fig. 5, Sec. 1.) (The (;) then become(;> everywhere.) (If these

three rules are also to operate on subexpressions, further modification

is necessary.)

-181-

The basic rules of inference are, for each J such that 1< j <n

j (prop(x) A prop(y) » T(x@ opj ¥))) o T(x@y). In addition we need
€ (prop(X) A x = y) D T(X@Y)-
Associated heuristics will be
v a(z) =@ S T(z) (like ® D T(x) in the old system)
| w ® DO T(x@y)
™. Di(x,y) DT(X@}') (one for each i such that 0 <ig m)

(D, (x,¥) A ~DiCx, op; (y))) D T(x@y) (one for each i, j, such
that 1 <i<m and 1< j sn)
When DO(@,) holds, Newell, Shaw, and Simon stop trying to transform
the B into o directly by the opj 's, and begin trying to similarly transform
its sub-expressions. We can generate such subgoals by properly employing
the following rule of inference
(prop (X) A prop(y) A T(Aiff(x , y)) A T(S(add(diff(x,¥)) ad(diff(x,y)),x)

§) 5 (@dd(diff (x,y)), ad(dff (x,y)) ,))) > T Q)

These rules (and no axioms) are sufficient for our machine to essentially
simulate the Newell, Shaw, and Simon techniques. The simulation will be
most efficient if the net contains various "models" of the sort we discussed
above. The models in Figures NSS1-—-NSS6 are sufficient to force the machine
to follow a probabilistic Newell, Shaw, and Simon algorithm. (In these
figures, the symbol in a node indicates the nodes contents, not its name.)
Adaptation causes changes in the value-type flags and hence changes in
strengths of connection between the Di's and opj's. (Of course, we can pre-
vent such adaptation by simply returning the net to its original state after
each problem.) In these models the rules frequently have two free variables
so the simplified refineproof algorithm of the last example won't work here.
There is no essential difference, however, between the model-following tech-

nique of this example and that of the last.

-182-

One model:

‘ T(x) D T(ad(x))

T(x) D T(add(x))

Figure NSS 1.

A model for each ™., even for i = 0:

Figure NSS 2.

-183-

A model for each Tij 1 #£0) :

T, .
1]

A model for each Tij 1 #0):

T(x) D T(add(x))l

Figure NSS 3.

Figure NSS 4.

ij

-184-

There are two models for no. Here is one:

Figure NSS 5.

Here is the second model for noz

Figure NSS 6.

-185-

Thus a simple net may be constructed which simulates the Newell, Shaw,
and Simon system, and this construction does not need most of the axioms and
rules of the old system. If these are added, however, then we have the
possibility of adding new rules of inference and heuristics. Newell, Shaw,
and Simon point out that if for many o's, H(<?,opj(<>)) holds, then I is a good
candidate for a new Di' If we have our old system in the net, the machine
can prove the statements of form H(x,opj(x)) . The following meta rule will

convert such a statement into a rule like the ri.'s:

(operator(y) a T (x G0y 2))) > T (Ox G0 ~0x &)y @I TR QD

where we define

operator(y) =1(EQ) @ (r 210 Q>
(i.e. y doesn't have to be one of the original operators; it can be a new
one we've generated).

For practice one would want H(X,opj(x)) to be a theorem for more than
one j. It need not, however, hold for all x, but perhaps only for a subset
of all x. If ¢ defines the subset then instead of H(X,Opi(x)) we would
perhaps only require that

o(x) o (I(x, opj(x))A mx, OPk(x))) be a theorem.

Much less ambitious than this would be simply adding meta rules to combine
the Di's and opj's in various ways to derive new Di's and opj's. Also, we can in-
troduce abstract operators. These can be simply introduced as intermediate rules
between the Hi's and pj'S. Some care must be taken, however, in setting up
the models. The power of the abstract operators is that one can't H-tag the
formula one is trying to prove until one has a complete derivation via ab-
stract operators. Hence the machine must not call in V or w in the models be-

cause they give a false H-tag. (This is a general problem, not limited to

-186-

the Newell, Shaw, and Simon net.) This can be fixed by more complicated
modeling and by low values on nodes containing v and w so bestnetrule won't
find them. This is an example of the sort of difficulty that could be solved

by diagonalization of refineproof so that instead of always refining the last

illegitimate step of a proof outline, it refined the most illegitimate step,

as measured by value-type flags on the heuristics.

4.1 Table 1. Alphabet

PsqsT,S,p 5.
X,Y,2,U,V,W,X, ,.
f,g,h,fi,...

P,Q,R,P ,...

@, ®

nil

D,=,pv,Iv,Ifvb,Pfvb
*,newpv,newiv,newifvb,newpfvb
cond,pcond

qu

V,d,x

A1, 1, 1abel

4. TABLES

(propositional variables)
(individual variables)
(individual function variable bases)

(predicate function variable bases)

(listbinders)

-187-

-188-

4.2 Table 2. Basic Recursive Functions

The basic function expressions which are complete recursing by vitue

of special evaluation procedures.

(Any machine employing our system would

have these procedures stored in it in a manner similar to the way LISP

SUBR's are stored.)

function expressions

)

Pv
Iv
Pfvb

Ifvb

a
"defined" in
d Table 3

newpv
newiv
newpfvb

newifvb

Meanings of the Predicate expressions:

formula
a DB
a =B
Pv (o)
Iv(a)
Pfvb (o)

Ifvb(a)

holds

type
(Pfvb,Pv,Pv)

(Pfvb,Iv,Iv)
(Pfvb,Iv)
(Pfvb,Iv)
(Pfvb,Iv)

(Pfvb,Iv)

(Ifvb,Iv,Iv)
(Ifvb,Iv)
(Ifvb,Iv)
(Ifvb,Iv)
(Ifvb,Iv)
(Ifvb,Iv)

(Ifvb,Iv)

holds if and only if

or o does not hold

and B name the same S-expression

names

names

names

names

a propositional variable
an individual variable
a Predicate function variable base

an individual function variable base

-189-

Meanings of the individual function expressions:

term

o*B
a(a)
d(a)

newpv (o)

newiv(a)

newpfvb (a)

newifvb (a)

names
the cons of o' and B
the car of o’
the cdr of @

the first prepositional variable of
index > those in "’

the first individual variable of
index > those in&@

the first predicate function variable base of
index > those in@

the first individual function variable base
of index > those in o

-190-

4.3 Table 3. Defined Complete, Recursive Functions of a General Nature

Complete recursing function expressions:
~p = p>D ®
pvag= ~poq

parq= ~(p>~q)

p=q-= (p>2q) ~ (qDp)

listhinder(x) = = v v @v X v X @
predatom(x) = ’ @ X @
newfatom(x) =: - . ‘

Pfatom(x) @
Ifatom(x) = newfatom(x) v

nonvaratom(x) =: X =v X ,v x = f(cond)v x ’ ,

v listbinder(x) v Pfatom(x) v Ifatom(x) v x = VX =

: Predatom(X)v x

~

atom(x) =+ Pv(x) v Iv(x) v Pfvb(x) v Ifvb(x) v nonvaratom(x)

a(x) = 1(y) ((atom(x) ~ y = x) v (H(z) y*z = x))

dx) = 1(y) ((atom(x) ~ y = x) v (H(z) z*y = x))
X#y=~x=y

last (x) =+ [atom(x) » Xx; @ »last(d(x))]

length(x) = [atom(X) ~ §; @ +®*Zength(d(x))]

andlistear(Py ,X) =t atom(x) v (P (a(x)) A andlistear(Py ,d(x)))

andZista(PIV,X) = andlistcar(PIV,X) A last(x) =P

andlistlistear (P X,y) =X = P V (~atom(x) A ~atom(y)

Iviv’

A Ivlv(a(x),a(y)) A andlistlistear (P ;1 ,d(x),d(y)))

andlistlista(Py [»X,Y) = andlistlistear Py [X,¥) & length(x) = length(y)
A last(x) = D A last(y) =

ast(x) = [atom(d(x)) » a(x) ; @ » ast(d(x))]

-191-

maplistear (fIV,x) =: [atom(x) >~ x; ©® > fIV (q (X)) *maplistear (flv,d(x))]
contains (P,X,y) == X = y v (~atom (y) A ~P(y) A (contains(P,x,a(y))
v contains (P,x,d(y)))
Subst (P,x,y,z) =t [x = z > y; atom(z) v P(z) + z; © - maplistear ((A (u)
Subst (P,x,y,u)),z)]
reverseconc (X,y) =: [atom(x) > y; @ > reverseconc(d(x),a(x)*y)]
orlistear (PIV,x) =i~andlistear ((A (x)NPIV (x)),x)
X € y =oriistear((A(uu = x),y)
typep (x) = x = v X = @v ((a(x) = v a(x) =)
A andlista(typep,d(x)))

typelist (x) = andlista(typep,x)

Pfv (x) Pfvb(a(x)) A typelist(d(x))
Ifv(x)

vartable(x) = Pv(x) v Iv(x) v Pfu(x) VvV Ifv(x)

Ifvb(a(x)) A typelist(d(x))

varlist (x) = andlista (variable,x)

type() = [0 > @) vex) - @; Pfo(x) + *d(x);
Ifv(x) *d(x); ® > 9]

newvart (x,y) = [x = > newpv(y); X = @ > newiv(y); atom(x) + @;

a(x) = > newpfvb (y)*d(x); a(x) = ~> newifvb (y)*d(x);

®+Q]

-192-

exprtype (x) = [x =' v X =@ ->.'
predatom(x) v newfatom(x) —>

bty < -Q - Egpy X*@*%
variable (x) ~+ type(x); atom(x) - §;

a(x) = + @;

a(x) =v a(x) =@v a(x) = v a(x) = @ @
a(x) = .v a(x) = @ @

a(x) =)~
[exprtype (add(x)) = , ’ maplistear(type, ad(x)) ;
exprtype (add(x)) = * maplistear (type, ad(x)) ;
©->91;

a(x) = " > type (ad(x)) ;
a(espriype@(x))) = (@fvp)~ ’
a(expriype (a(x))) = . @

+ ¢]

args (x) = d(exprtype (x))
newvarex(x,y) = newvart(exprtype(x),y)

mol(x) = atom(x) v a(x) = v vartable (x)

x <y =: contains (mol, x,y)
XAy = XgYAXE#Y
x € y =:contains ((A(y) (mol(y) v (Listbinder(a(y)) A x € ad(y))
v @) =A x = ad(¥)))), X,¥)
X4y = XEQyAX#y
xéy= [~xQey > ® ; alx) = +® 5 O > x2qly) v Xéd(}’)]

-193-

S (x,y,z) =Subst(mol,x,y,z)

Sf(x,y,z) =Subst((A(u) (mol(u) v (listbinder(a(u))v x € ad(u))

v @) =(abed n x = ad())), x,y,2)
. Subst((A(u) (mol(uw) v a(u) =®v a@ =@abed), x.y,2)

[atom(x) ~ z ; ® =+

Snf(x,y,z)

Ssel(x,y,z)

]

§ (newvarex (a(x), (x*(y*z))), a(y), Ssld(x), d(y), S (@(x),
newvarex (a (x) , (x* (y*z))),2z)))]
Ssfl(x,y,z) = [atom(x) ~z ; @ ~
Sf (newvarex (a(x), (x*(y*z))), a(y),Ssfld(x), d(y),Sf@(x),
newvarex (a(x), (x*(y*z))),z))) 1
freecheck (x,y,z) =
[mol(z) v ~xQz~> O ;
listbinder(a(z))+ andlista((A(u) (~uQY)), ad(z)) A freecheck(x,y,add(z)) ;

a(z) = —> ~ad(z) € y A freecheck(x,y, add(z)) ;

@ - freecheck(x,y, a(z)) A freecheck(x,y,d(z))]

for'msimp(PIV,x) = [atom(x) >»Pv(x) v x =@ v x = ;

a(x) =—->a(ast(x)) =A andlista((A(y) (formsimp(PIV, a(y))

~ formsimp (Py ,ad(y)) ~ dd(y) = #)), d(x)) ;
a) = Praco - @Aa(x) - @ > (@l = @Ddad(x) - 9)
~ andlista(1v,ad(x)) A formsimp (P , add(x))addd(x) = § ;
® -+ (Pfatom(a(x)) v Pfv(a(x))) A andlistlista((A(u,v) u = exprtype(v)),

args (a(x)),d(x)) A andlista(Py , d(x))]

-194-

termsimp(PIv,x) = [atom(x) + Iv(x); a(x) = A dd(x) =9 > @ ;
a(x) =—>a(ast(x)) =A andlista((A(y) (formsimp(P; ,a(y))
A termsimp (P ,ad(y)) A dd(y) = #)), d(x)) ;
a(x) = @+ Iv(aad (x)) A formsimp (P, , add(x)) a dad(x) = P Addd(x) =0 ;
® > (Ifatom(a(x)) v Ifv(a(x))) A andlistlista((A(u,v) u = exprtype(v)),

args (a(x)),d(x)) a andlista(P Iy’ d(x))]

Simplexpr(x) = Pfatom(x) v Pfo(x) v Ifatom(x) v Ifv(x)
v formsimp(Simplexpr, X) v termsimp (S implexpr, X)
Simpleformula(x) = formsimp §implexpr, X)
Simpleterm(x) = termsimp (S implexpr, X)
formtofunctiontp (P,x) =:
Pfatom(x) v Pfo(x) v Ifatom(x) v Ifv(x) v
(a(x) =®/\ varlist(ad(x))a P(add(x))
A (exprtype (add(x)) = v exprtype (add(x)) = @ YA ddd(x) = 8) v
(a(x) = N (Pfo(ad(x)) v Ifv(ad(x))) A type(ad(x))=expriype (add(x))
A aadd(x) =@ A varlist(adadd(x)) A P(addadd(x))
A (exprtype (addadd(x)) = v exprtype (addadd(x) = @)
A ad(x) Q addadd(x) A ~ ad(x) L Snf(ad(x), #,addadd(x))
A ddd(x) = P A dddadd(x) = 9)

-195-

expression (x) =:

formtofunctiontp (expression, x) A

[atom(x) - Pv(x) v X = v X =@v1v(x) ;
a(x) Add(x)=¢—>@;
a(x) > o ast(x)) =—> andlista((X (y) (expression(a(y))

A expression(ad(y)) A dd(y) = §
A expriype(a(y)) = @v) & ewpriype(ad(y)) = @v))),dx) ;
a(x) = > a(ast(x)) =Aandli3ta((>\(y) (expression (a(y))
A expression(ad(y)) A dd(y) = @ A exprtype(a(y)) =
A expriype(ad(y)) = @)),dcx)) ;
a(x):@va(x) =@ v a(x) =@ > andlieta(Iv,ad(x)) A expression(add(x))

) :
@;sn

formtofunctiontp (expression, a(x)) Aandlistlista((A(u,v) u = exprtype(v)),

1]

Ala(x) = @ D dad(x) = @) A ddd(x) = @ A exprtype(add(x))
a(x) = ®-> Iv(add(x)) A expression(add(x)) A dad(x) = @
A ddd(x) = B A exprtype (add(x))

args (a(x)),d(x)) A andlista(expression,d(x))]

-196-

4.4 Table 4. Axioms

Predicate calculus axioms

1. p>(Qq>p)

2. (sD2(@29)DUsDp) D(sD>q)
3. (p>®) >D>®)>p
4. V) (poPX)) D 2 VX P(X)

5. V() P(X)DPX)

10.

11.

12.

13.

14.

15,

T

-197-

eflexivity of =

T

X =X

eplaceability of = and

a.

b.

P

x =y D (P DP(y))
(p =9 D (P(p) DP(q))

eano axiom 3

p

~atom(x*y)

eano axiom 4

X

P

*u=sy*v D (x=yaAau=yv)

eane axiom 5, induction

(V() (atom(x) D P(x))A V(x,y) ((P(x) A P(y)) DP(x*y))) D V(x) P(x)

@ definition

© =(® >0©)

d definition

d@) P(x) = ~V(x) ~P(x)

A definition

1

() P(x) = (A PX) ~ V(x,y) ((P(x) A P(y)) Dx

definition

D

A (x) P(x) D P(1(x) P(x))

isjointness of atom classes

a.

b.

C.

(Iv(x) v Pfvb(x) v Ifvb(x) v nonvaratom(x)) D ~Pv(x)
(Pv(x) v Pfvb(x) v Ifvb(x) v nonvaratom(x)) D ~Iv(x)
(Pv(x) v Iv(x) v Ifvb(x) v nonvaratom(x)) D ~P£fvb(x)

(Pv(x) v Iv(x) v Pfvb(x) v nonvaratom(x)) D ~Ifvb(x)

¥))

-198-

16. New variables are variables

a. Pv(newpv(x))
b. Iv(newiv(x))
c. Pfvb(newpfvb(x))
d. Ifvb(newifvb(x))

17. New variables are new

a. ~newpv(x) € x
b. ~newiv(x) € x
c. ~newpfvb(x) € x
d. ~newifvb(x) € x

18. Generatability of certain functions.(See Table 6 for definition of Pfstep.)

® DO Pfstep(x)

-199-

4.5 Table 5. Rules of Inference

Rules of inference: (T is defined in Table 7)

1. Modus Ponens

(T(x@ y) A T(x)) DT(y)

2. Generalization

(T) A V() A ~x &) DT(x@yQ)

3. Change of bound variable

(T(y) A variable(x) A type(x) = type(z)A~xfun~zQu
A S(u,5(x,z,u),y) = S(u,5(x,z,u),v)) D T(v)

4. Substitution of simple expression for variable

(T(y) n variable tx) A Simplexpr(z) a type(x) = exprtype(z)
A freecheck (x,z,y)) D T(Sf(x,z,y))

5. Substitution of function expression for function variable

(Ty) A T A 2R u A (PU(x) v Ifv(X)A type(x) = exprtype(z)
A freecheck(x,z,y)) D T(Sf(x,z,Y))

6. Application of a) expression to arguments (where the A expression is

not inside another function expression).
(T(u) A expression(v) A aa(y) =@
A andlistlista(()(x,z) freecheck (x,z, adda(y))),ada(y),d(y))
A Snf(y ,Ssfl(ada(y),d(y),adda(y)), W= Snf(y,Ssfl(ada(y),d(y),adda(y)),v)
A (y€u v (andlista((A(z) ~ z = adda(y)),ada(y))

A andlistlista((M(x,z) s z D x |adda(y)) ,ada(y),d(y)))))

D T(v)

10.

11.

-200-

Function recursion

(T(u) ~ expression(v) A a(y) =A ad(y) < add(y)

A freecheck(ad(y),y,add(y))

A Snf(y,Sf(ad(y),y,add(y)),u) = snf(y,5f(ad(y),y,add(y)),v))
> T(V)
pcond rule
(Simpleformula(y) A Pv(w)
A andlista((A(x) (Simpleformula(x) A a(x) = A aad(x) = w)),z)
A u = Ssl(z,maplistear(adad,z),y)
A V= Ssl(z,maplistear((A(x) (.*dd(x))),z),y)

AvWEUA~WSY
> 16 €D+ - 2-Q>
cond rule
(Simpleformula(y) n Pv(w)
A andlista((A(x) (Simpleterm(x) A a(x) = A aad(x) = w)),z2)
A u = Ssl(z,maplistear(adad,z),y)
A v =8sl(z,maplistear((M(x) (*dd(x))),z),y)
WQUA~W S

- DGEDRY

pcond initiation

(Stmpleformula(y) a S?lmp leformula(z)

DT(y®u)

cond initiation

(Simpleformula(y) N Simpleterm(z)

e, @Y) 0 - 1. G P
DT(y@u)

-201-

12. Listbinder notation

(T(u) A Sitpleformula(x) A (a(x) = @ v a(x) =@) A dad(x) # 0

A Snf(x, @a(x) @aad(x) @a(x) @ dad(x) @ add(x) @ ,u)
= Snf(x, @a(x) @aad(x) @a(x) @dad(x) @add(x) @ V)

STE)
13. Definition of qu

(x y o ()
14. Variables are variables

a. Pv(x) O T(x@)

b. Iv(x) D T(x@)

c. Pfvb(x) D T(x@)

d. Ifvb(x) D T}(@@x@)

15. Different atoms are unequal

(atom(x) A atom(y) A x # y) D T(x Y@)

16. Generation of Predicate function expressions

(T((z*u)@v)/\ a(z) =®A ZQVA-vzéV

A varlist(u) A andlista((A(x) ~ xé v),u)) D

T((newvarex(z, ((z*u) *v)) @u @

S(z,newvarex(z, ((z*u)*v)),v) @ *u))

17. Generation of individual function expressions

(T((z*u)@v) A al(z) =@AZ dvan~nz v
L

A varlist(u) A andlista((A(x) ~ x € V),u))
5 T(@nem'u((z*u) *v) @nem‘v((z*u) ™ Q

(newvarex(z, ((z*u) *v)) @ u@

S(z,newvarex(z, ((z*u)*v)),v) @ *u) @)

-202-

18. Dropping one level

T(x) D T(‘x@)

19. Raising one level

T(. @) > T(x)

- 203

4.6 Table 6. Defined Complete Recursive Functions of a Specific
Nature

Rule, (x,y,2) = al(y) =@A z = ad(y) A x = add(y)

Rule,(x,y) =t a(x) = @A Iv(aad(x) A dad(x) = @ A y = add(x)
A ddd(x) =8 A~ aad(x) & add(x)

Rulej(v,y,x,z,u) = variable(x) A type(x) = type(z)

A~ x2uan~ z9du A SU,5(x,2z,u),y) = S(u,5(x,z,u),v))

findxy(v,y) = [mol(y) »y; a(v) = a(y) » findz,(d(v),d(y));

® -~ findz,(a(v),a(y))]
findzg(v,y) = [mol(y) »v; a(v) = a(y) > findz (d(v),d(y));
© -~ findzg(a(v),a(y))]
findu,(v,y,x) = [atom(y)+ @ ;listbinder(a(y)) a ad(y) # ad(v)>
[x e ad(y) »y; @~ v];
a(y) — A ad(y) # ad(v)> [x = ad(y) >~ y; @ > v];
finduy(a(v), a(y), x) # @ > findug(a(v),a(y),x) ;
® > findu, (d(),d(y),x)]

Rule,(v,y) = Ruleg(v,y, finde, (v,y),finda (v,y), findus(v,y, finds;(v,y)))

RuZe;(u,y,x,z) =: variable(x) A simplexpr(z) A type(x) = exprtypelz)
A freecheck(x,z,y) A u = Sf(x,z,y)

© findr,(u,y)

1}

findz, (u,y)
findz,(u,y) = findz,(u,y)

Rule,(u,y) = Rule(u,y, findz,(u,y),findz(u,y))

Rule;(v,y,u,x,z) =: zg u A (Pfo(x) v Ifo(x)) A type(x) = exprtype(z)

A freecheck(X,z,y) A Vv = Sf(x,2,Y)

-204-

findz (v,y) = findz (v,y)

]}

finda (v,y) =t finda (v.y)

Rule (v,y,u) =t Bule_(v,y,u, findr_(v,y), findz (v,y)

Rule[(v,u,y) = expression(v) A aa(y) = (:) A
andlistlista((\(x,z) freecheck(x,z,adda(y))), ada(y), d(y)) A
Snf(y, Ssfl(ada(y),d(y), adda(y))u) = Snf(y, Ssfl(ada(y), d(y), adda(y),v) A
(yeu v (andlista((A(z) ~ z @ adda(y)), ada(y))

A andlistlista((A (x,z) < zox < adda(y)), ada(y), d(y))))

findy, (v,u) = [(aton(u) A atom(v))+ f;
mw)JQAu
aa(u)==(> AV

a(v) # a(u) ~ findyé(a(v), a(u)) ;

@ - findy @d(v), dw)]

]

Ssfl(ada(v), d(v), adda(v)) =~ v;

Ssfl(ada(u), d(u),adda(u)) > u ;

RuZeG(v,u) =t Rule;(v,u, findyé(v,u))
RuZe.’Z(v,u,y) =: expression(v) A a(y) = Aad(y) Q add(y) n
freecheck (ad(y), y, add(y))
A Snf(y, Sf(ad(y), y, add(y)),u) = Snf(y, Sf(ad(y), y,add(y)),v)

findy,/,(v,u) =: [(atom(u)a atom(v))> @ ;

a(v) =Av¢u+v;
a(u) =Au;£v—>u;

a(v) # a(w) > findy,@(v),a());
& » findy, (), dw)]

RuZe7(v,u) = Rule;(v,u, findy7(v,u))

-205-

Rule'g(x,z,y,w,u,v) = Simpleformula(y) A Pv(w)
A andlista((A(x) (Simpleformula(x) A a(x) =/\ aad(x) = w)), z)

A u = Ssl(z, maplistecar(adad, z), y)

AV = SsZ(z,mapZistcar((A(x)(*dd(x)), z),y)

A ~WLUA~WNL VAKX = ©y w®uw®v@

.findzs(y,u) = [atom(y) v u =y > §;

a(y) =A adad(y) = u +@y@;

® - reverseconc(findzg(a(y), a(u)), findzg(d(y), du))) 1]
Rulq’s’(x,y,w,u,v) =: Ruleé(x, findzg(y,u), Y,W,u,V)
Rules(x) ==Ruleg(x, ad(x), adadadd(x) ,addadadd(x), addaddadd(x))

Rule;(x,z,y,w,u,v) =t Simpleformula(y) A Pv(w)
A andlista((\(x) (Simpleterm(x) o g (x) = /\ aad(x) = w)), z)

A u = 58l(z,maplistear(adad,z), y)
AV = 55L(z,maplistear((M) (€@nd)*dd(x))), 2),y)

A ~WQUA~WE VA x=©y w@u w@v@

findzg (y,u) = [atom(y) v u =y > @

a(y) =/\ adad(y) = u—>©y@;

® - reversecanc(ﬁndzg(a(y), a(u)),findzg,(d(y),d(u)))]
Ruleg(x,y,w,u,v) = Ruleé(x,ﬁndzg(y,u), y,W,u,V)

Rule 9 (x) =t Rulez;(x ,ad (x) ,adadadd (x) ,addadadd (x) ,addaddadd (x))

Ruley(X,2,y,u) = Simpleformila (Y] A Simpleformula ()

X = cy® u)

-206-

findzlo()':u) =t [atom (Y) v u=Y-> g;

a(y) = a(u) » findzlo(d(y), d(u)) ;
@ - findzm(a(y), a(u)) 1]
RuZe'l'O(x,y,u) = RuZe{O (x,f‘indzlo,y,u)

Rule,,(x) = Ruleia(x,ad(x) ,add (x))

RuZel'l (x,z,y,u) = Simpleformula(y) ~ Simpleterm(z)

A S(z, z@,u) = 5(z, 2 @ $%)
AX = (y @u)
findz (y,u) = [atom(y) v u =y + ¢;
- Cond,)) - v
u = y@ >y

a(y) = a(u) » ﬁndzll(d(y),d(w));
® —>findzll(a(y),a(u))]
Rulel'z(x,y,u) =t RuZel’I(x,findzll(y,u),y,u)

RuZell(x) =t Rulell(x,ad(x),add(x))

Rulel,(v,u,x) = Simpleformila(x) n (a(x) =@v a(x) =@)/\dad(x) 49

A Snf(x ,@a(x) @ aad(x)@ a(x) @ dad (x) @ add(x) @ ,u)
= Snf(x, @a(x) @aad(x)@a(x)@ dad (x) Q add (x) @ ,V)

findxlz(v,u) = [atom(u) v u=v->§ ;

a(u) = @v a(u)=@+ [ad(u) = @aad(v)@ N
ad(v) = @aad(u)@ > u;
o -~ findxlz(add(v),add(u))]

a(v) =a(u) » finde ,(d(v), d(u));

® > findz ,(a(v), a(uw))]

Rulelz(v,u) = Bulelz(v,u, f‘mdxlz(v,u))

-207-
Rule 13(\/) =
‘ adadad(v)- () (@) adaddad(v) ()_= (qw) — (adadad(v) *adaddad (v))@)
Rule ,(u) = (u = adad(u)® A Pv(adad(u)))
adad(u)® A Iv(adad(u)))
adad (u) @ A Pfvb(adad(u)))

v (u= adad(u)@ A T£vb(adad(w)))
Rule (W) = u = adad(u) adadd(u)@

Aatom (adad(u)) A atom(adadd(u)) A adad(u) # adadd(u)

6

v(u=

6

v(u=

;

Rulel (W,y,u,v,2) = y = ((z*u) @v) A
a(x) =®A 24V A~z A
varlist(u) A andlista((A(x) ~ x € v),u) A
@ -newvarax(z ((z*u)*v)) @ 0
S (z,newvarex(z, ((z*u)*v)),v)

Rule| (w,y) = Rulel'6(w,y,dad(y),add(y),aad(y))

RuZel'7(w,y,u,v,z) =ty = ((z*u) @ v) A
a(z) =® A ZQVA~Z£V A

varlist(u) A andlista((A(x) ~ x = v) ,u) A

W= @ newiv ((z*u) *v) ®newiv((z*u) *y) @
(newvarex (z, ((z*u) *v)) @ 1 Q)

S (z ,newvarex(z, ((z*u)*v)),v) *y)

Rule,,(w,y)=: Rulel,(w,y, dad(y), add(y), aad(y))

-208-
Pfstep(x) = ~ atom(x) A

(orlistear((A(y) orlistear((A(z) Rule;(a(x),z,y)),d(x))), d(x))
v orllstear((M(y) Rule,(a(x),y)), d(x))

v orlistear((A(y) Rules (a(x),y)), d(x))

v orlistear((A(y) Rule,(a(x),y)), d(x))

v orlistear((A(y)orlistear((A(z) Rulec(a(x), z,¥)), d(x))), d(x))
vorlistear ((My) Rule (a(x),y)), d(x))

v orlistear((A(y) Bule,(a(x),y)), d(x))

v Ruleg(a(x))

v Ruley (a(x))

v Rule (@ (x))

vRule, (a(x))

vorlistear((A(y)Rule |,(a(x),y)), d(x))

vRule 4 (a(x))

vRule,(a(x))

v Rulels (a(x))

vorlistear ((A(y) RuZelé(a(x),y)), d(x))

vorilistear ((A (y)RuZe17(a (x),y)), d(x)))

Peaxiom(x) =

x=pP>(@>p) \

x={(sD2(>2q)D((s>p) D(sDqQ)

x=|((p D®)D>@®)Dp

x=| V) (poPXx)) D(p O V) P(x))

V(x) P(x) D P(x)

Eqaxiom(x)

-209-

y 2 (P(x) D P(y))

(p 29 (P >P))

Definitionaxioms (x) =

X*u=y*"N> (x=yAu=yv)

(V(x) (atom(x) D P(x)) A V(x,y) ((P(x) ~ P(y))DP(x*y))) D V(x) @

N

x=(® =z (® D@)
v x = J d(x) P(x) = ~ V(x) ~P(x)
v x =[HI(x) P(x) = (HX) P(x) » V(x,y) ((P(x) A~ P(y))D x =Y))
vx =\ PO PLM) PX)
Atomkindaxiom(x) =t v

x =((Iv(x) v PEVD(x) v Ifvb(x) v nonvaratom(x)) D ~ Pv(x)
v x = (Pv(x) v Pfvb(x) v Ifvb(x) v nonvaratom(x)) D ~ Iv(x)
v x ={(Pv(x) v Iv(x) v Ifvb(x) v nomvaratom(x)) D ~ P£vb (x)
v x ={(Pv(x) v Iv(x) v Pfvb(x) v nomvaratom(x)) D ~ Ifvb(x)
v x =|Pv(newpv(x))
v x =|Iv(newiv(x))
v x =|P£fvb (newpfvb (x))
v x =|Ifvb(newifvb(x))
v X =|vnewpv(x) € X
v X =| ~newiv(x) € x
v X =|~newpfvb(x) € x
v X = |~newifvb(x) € x

-210-

Axiom(x) = Peaxiom(x) v Eqaxiom(x) v Peanoaxiom(x) v

Definitionaxiom(x) v Atomkindaxiom(x) v

Proof(x) =: (Pfstep(x) v Axiom(a(x))) A ~ atom(x)

A (d(x) = @ v Proof(d(x)))

4.7 Table 7. Definition of T and Immediate Consequences

T(x) = H(y) (Proof(y) ~ al(y) = x)

Theorems in the form of rules of inference:

1.

2.

3.

10.

11.

12.

13.

14.

15.

16.

17.

(T(y) ~ T(z) A Rule,(x,y,2)) D T(x)
(T(y) A Rule,(x,¥)) D T(X)
(T() A Ruleg(x,y)) D T(x)
(T(y) A Rule,(x;y)) 2 T(x)
(T(y) ~ T(2) ~ Ruleg(x,y,2)) D T(x)
(T(y) A Ruleg(x,y)) 2 T(xX)

(T(y) A Rule,(x,y)) D T(x)

. Ruleg(x) O T(x)

. Ruleg(x) D T(x)

Rulelo(x) D T(x)
RuZell(x) D T(x)
(T(y) A Rule ,(x,y)) D T(x)

Rule 13 (x) o T(x)

RuZe14(x) O T(x)
Rulels(x) D T(x)
(T(y) A Ruley(x,y)) D T(x)

(T(y) A Rule;, (x,y)) 2 T(y)

-211-

4.8 Table 8. Non-Recursive Definitions Especially Useful for Meta-Theorems.
Some Immediate Consequences.

Pfe(x) = a(exprtype(x))

A AY) (T A xQy)
A A (T A xQY)

function(x) =1 Pfe(x) v Ife(x)

1]

Ife(x) = a(eapriype(x))

wfexpression(x) =

function(x) v [atom(x) > Pv(x) v x = V X = vV Iv(x) ;

a(x) = /\dd(X) =g~ 9
a(x) = —»a(ast(x)) =A andlista((A(y) (wfexpression(a(y)) A
wfexpression(ad(y)) A dd(y) = § A
eaprtype (a(y)) = A eaprtype (ad(y)) =)),d(x)) ;
a(x) = —> alast (x)) = A andlista((\(y) (wfexpression(a(y)) A
wfexpression(ad(y)) A dd(y) =8 A
expreype(a(y)) = A eaprtype(ad(y) = @) 1),409) 3
a(x) = @v a(x) = @v a(x) = @eandlista(lv,ad(x)) A wfexpression(add(x)) A

(a(x) = @ D dad(x) = A ddd(x) = § A expriype(add(x)) = ;
a(x) = @-» Iv(aad(x)) A wfempression(add(x)) A dad(x) = § A
ddd(x)= § A expriype(add(x)) = ;
@ - function(a(x)) a andlistlista(((u,v) u = exprtype (v)),args(a(x)),d(x)) A
andlista(wfexpression,d(x))]
F(x) = wfexpression(x) A expriype(x) =
Tm(x) = wfexpression(x) A exprtype(x) = @
form(x) = F(x) v Tm(x)

wffragment(x) = H(y) (Wwfexpression(y) A x €y)

-212-

Theorems:

wfexpression(x) = (form(x) v function(x))

F(x) = [atom(x) + Pv(X) v X = v X = @ ;

a(x) =-> a(ast(x)) =Aand27lsta((>\(y) (Flaly)) A Flad(y)) A

dd(y) = £)),d(x)) ;

a(x) =®v a(x) =@v a(x) = @—> andlista(Iv,ad(x)) A F(add(x)) A
(a(x) = @D dad(x) = @) A ddd(x)=p;

® -Pfe(a(x))aandlistlista((A(u,v) u = exprtype(v)),args(a(x)),d(x)) A
andlista(wfexpression,d(x))]

Tm(x) = [atom(x) ~» Iv(X) ;a(x) = A ddx) =¢ » @ ;

a(x) = > a(ast (x)) =A andlista((A(y) (Fla(y)) A

Tm(ad(y)) A dd(y) = $)),d(x)) ;

a(x) =@+ Tv(aad(x)) A Fladd(x)) ndad(x) = § A ddd(x) = § ;

® » Ife(a(x)) » andlistlista((A(u,v) u=exprtype(v)),args(a(x)),d(x)) A
andlista(wfexpression,d(x))]

Pfe(x) = (Pfatom(x) v Pfv(x) V
(a(x) =®A varlist (ad(x)) A F(add(x))a ddd(x) = @) Vv
(a(x) = A Pfo(ad(x)) A Pfe(add(x)) A ad(x) € add(x) A
~ad(x) € Snf(ad(x), B,add(x))A ddd(x) = § A
type(ad(x)) = exprtype(add(x)) a H(y) (T(y) A x Qy)))

(Ifatom(x) v Ifv(x) Vv
(a(x) =®A varlist(ad(x)) A Tm(add(x)) A ddd(x) = #) v

(a(x) = A Ifo(ad (X)) A Ife(add(x)) a ad(x) € add(x) A
~ad(x) 4 Snflad(x), #,add(x)) A ddd(x) =@ A

type (ad(x)) = exprtype(add(x)) A H(y) (T(Y) A xdy)))

i

Ife(x)

-213-

(T(y) A variable(x) A wfexpression(z) A type(x) = exprtype(z) A

freecheck(x,y,z)) D T(Sf(x,z,y))

The above theorem, or meta-theorem, summarizes Rules 4 and 5. This could be
used as a rule, but unlike our original 19 rules, this rule contains function
expressions which are not complete recursing. For that reason this rule is

not equivalent to Rules 4 and 5 as a rule; it is only equivalent as a

meta-theorem.

Let us combine the above theorems on Pfe and Ife and make some minor
changes to obtain:
function(x) = Pfatom(x) v Pfv(x) v Ifatom(x) v Ifv(x) v
(a(x) =® A varlist(ad(x)) A form(add(x)) A ddd(x) = ¢) v
(a(x) = A (Pfo(ad(x)) v Ifv(ad(x))) A type(ad(x)) = epriype (add(x)) A
aadd (x) = @ A varlist(adadd(x)) A form(addadd(x)) A
ad(x) € addadd(x) A ~ad(x) € Snf(ad(x), §,addadd(x)) A
ddd(x) = # A dddadd(x) = @ AN HY) Tly) A x4y))

Note the similarity of this theorem to the definition statement of

formtofunctiontp. In fact, the similarity is shown by the following theorem:

function(x) = (formtofunctiontp (wfexpression,x) A

a(x) = > Aly) (TO) A x €y)))

Bearing this theorem in mind, we see that expression and wfexpression
are almost identical, the only difference being that the H(y)(T(y) A x €y)
condition is added in a couple of places in wfeapression. The following theorem

indicates this relationship.

wfexpression(x) = (expression(x) A V(z)((z € x A a(z) =)

D dy) (T(hr) A z<y)))

-214-

Unlike wfexpression, expression is recursive.

We have the theorem

wfexpression(x) D expression(x)

We now define:

Pfetp (x)
Ifetp (x)
functiontp(x) = Pfetp(x) v Ifetp(x)

Ftp(x) = expression(x) A expriype(x) =
Tmtp(x) = eapression(x) A exprtype(x) = (:)

formtp(x) = Ftp(x) v Tmtp(x)

1]
.

expression(x) A a(exprtype(x)) =

expression(x) n a(exprtype(x)) =

And now we have these theorems:

funetiontp (x) = formtofunctiontp (expression,x)

function(x) = (functiontp(x) A H(y) (T(y) A x €Y))

wfexpression(x)

‘(expression x) A

V(z)((z € x A functiontp(z)) D Hy) (T(y) A z € y)))

wfexpression(x) = (expression(x) A H(y) (T(y) A x 9 y))

form(x) = (formtp(x) A H(y) (T(y) A x g y)
F(x) = (Ftp(x) A H(y) (T(y) A x € Y)

Im(x) = (Tmtp(x) A H(y) (T(y) A xQy)

Pfe(x)
Ife(x)

= Pfetp(x) A H(y) (T(y) A xgy)

(Ifetp(x) A d(y) (T(y) A x4 y)

-215-

4.9 Table 9. Definitions for Handling Recursive Functions; apl

xay = [mol(x) »x =y ;
listbinder(a(x))~> a(x) = a(y)a Ssfl(ad(x),ad(y) ,add(y)) = add (x) ;
a(x) = [@@bed> a(0) = aly) A 5£@d(0),ad(y),add(y)) = add(x) ;

® > andlistlista(= ,Xx,y)]

replacefx(v,y,u) = [atom(v) »+ u ;
a(v) € y » replacefx(d(v),y,Sf(a(v) ,newvarex(a(v),y*u),u)) ;

® - replacefx(d(v),y,u)]

freefixz(x,y,z) =
[mol(z)v ~ x 4z >z ;
Zistbinder(a(z)) + a(z) *replacefx(ad(z),y,freefix(x,y,d(z))) ;

a(z) = (abeD) > a(2) *replacefn({ad(2)) v, freefizt,y,d2)) ;

@ > freefix(x,y,a(z)) * freefix(x,y.d(z))]

freefixlists(x,y,z) =
l[atom(x) + z; ® > freefixlists (d(x),y,freefiz(a(x),y,z))]
Sffix(x,y,z) =:5f(x,y,freefiz(x,y,z))

Ssffixl(x,y,z) == Ssfl(x,y, freefixlists (x,y,z))

a(x) = |newpfvb
a(x) = |newifvb

a(x) = a

aploneatom(x) =
a(x) =(Pv
a(x) =| Iv
a(x) = [Pfvb

- a(x) = | Ifvb
a(x) = | newpv
a(x) = |newiv

a(x) = \Z/

® - x]

apltwoatoms (x)

>

-216-

[aad(x) # qu > x ;

[
[
[
[
(Tqu,)
(qu,
(qu,

(qu,

(qu,

\Ejj;) d(adad(x))

Pv(adad()) > @; @ ~@1;
v (adad (x)) +; ® >@1;
PEvb(adad (x))> @; @ ~@1;
Ifvb (adad (x))” @) © ~@1;
newpv (adad (x)) [) ;

newiv (adad(x))

[

newpfvb (adad (x)) |));
newifvb (adad(x)) ;

a(adad(x)) 5

we

[a(x) = @ > [ad(x) = @ add(x) = @ ~ @ ;adx) = > add(x); @ - x];
aad(x) # v aadd(x) # > X;
a(x) = @ > [

a(x)
@ -

adad(x)= adadd(x) ~ ;®+ 1;

® » (adad (x) * adadd(x)) @;
x]

-217-

oneapl(x)

[mol(x) + x5 a(x) = @ +®oneapl(ad(x))@;

[atom(d(x)) + x ;

+ adad (x) ;
> a(x) * dd(x) ;
® > a(x) *(©0neapl(aad(x)) 0 adad(x)@ » dd)) 1 ;
a(x) =®v a(x) =@ v ax) = @ >
apltwoatoms (©a(x) 9 oneapl (ad (x)) @ oneapl (add(x)) @) s
a(x) =@ v a(x) = @ v Pfatom(a(x)) v Ifatom(a(x)) +
aploneatom(@a(x) 9 oneapl (ad (x)) @) :

a(x)

aad (x)

1]

aad (x)

1]

atom(a(x)) > x ;

aa(x) = @ > Seffizl (ada(x),d(x) ,adda(x)) ;

aa(x) = > Sffix(ada(x) ,a(x),adda(x))*d(x) ;

® - x]

apl(x) = [oneapl(x) = x > x ; ® - apl(oneapl(x))]

-

-218-

4.10 Examples

4.10.1 Example 1. Reflexivity and Transitivity of =

1. x=x Axiom 6

2. ((M0y = x),x) Rule 6

3. x=y DMy = x),x) D ((A\Y)y = x),y)) Axiom 7, Rule 5
4, x=yD{(x=xDYy = X) Rule 6

5. X=y>Dy =X by P.C.

6. y =2 2W\y)y = x),y) D ((\Y)y = x),2)) Axiom 7, Rule 5
7. y=z2(y =XxDz =X) Rule 6

8, z=y>D(y=xDz = X) From Lines 5 & 7,

by P.C.

In future examples, where I use substitution instances of Lines 5 & 8

followed by P.C. operations, I will merely write the result with the comment

"properties of = ."

4.10.2 Example 2. Proof of ~atom(x) = x = a(x) *d(x)
(basic theorem for g and d).

consedpred(x) =: ~atom(x) D W(y) H(z) y*z = x

PO(~pDaq) By P.C.

f(x) D (~£f(x) D H(y) H(z) y*z = x) By Rule 4 twice
atom(x) D (~atom(x) D Hly) Hd(z) y*z = x) By Rule 5
atom(x) D consedpred(x) By Rule 6

V(x) (atom(x) D consedpred(x)) By Rule 2

Since consedpred does not recurse, we were able to generate it without
use of Rules 16 or 17. In future examples I will not bother to explicitly

generate such functions since it is always trivial via Rule 6.

-219-
The axioms and rules used to generate Line 3 are those of the Predicate
calculus, followed by Rules 4 and 5. In the future, statements so simply
derived will not be explicitly derived but will be merely stated with the

comment 'by P.C."

6. u*vs=u®*y, Axiom 6
7. Hly) dH(z) y *z=u*v By P.C.
8. comnsedpred(u * v) By P.C. & Rule 6

9. V(x,y) (consedpred(x) n consedpred(y)) D consedpred(x * y) By P.C.

10. V(x)consedpred(x) By substitution of consedpred for P
in Axiom 105 and P.C. with Lines 5 & 9

11. ~atom(u) > AX) H(z) x *z =u By P.C. § Rule 6
12, H(z) x * z =u D ((atom(u) A x =u) v H(z) x * z = u) By P.C.

13, H(x) d(z) x * z =u D HKX) ((atom(u) A x =u) v H(z) x * z = u) By P.C.

14. ~atom(u) D HAKX) ((atom(u)A x =u) v H(z) x * z = u) From Lines 11 §
13 by P.C.
temponeu(x) = ((atom(u) A x =u) v H(z) x * z = u)
15. ~atom(u) D H(x) temponeu(x) Rule 6

16. (~atom(u) A temponeu(x) A temponeu(y)):)(fr[(z) X*z=u A

Aly) y * z =u) By P.C. §

Rule 6
17. xX*z=uAy *w=u)DdDXx*z=y*y Properties of =
18. x*z=y*woOxs=y Axiom 9
I9. (H(z) x*z=uAd(z) y*z=u)Ddx=y From Lines 17 § 18,
by P.C.
20. (~atom(u) A temponeu(x) A f:emponeu(y)) Dx=Yy From Lines 16 § 19

21. ~atom(u) O V(x,y) ((temponeu(x) A temponeu(y)) Dx =y) By P.C.

22,

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

-220-

~atom(u) o H!(x) temponeu (x)
~atom(u) D temponeu () temponeu)

~atom(u) > temponeu (a(u))

~atom(u) O H(z) a(u) * z =u

We can, from Line 11, similarly derive
~atom(u) D H(z) z *d(u) =u .

(@au) *w=uaz *@u) =u)dalu) =z

(@u) *w=uaz *du) =u) Da(u) *d{u) =

(H(z) a(u) * z =u A H(z)z*d(u)=u) D u
~atom(u) Du = a(u) * d(u)

~atom(x) D x = a(x) *d(x)
X = a(x) *d(x) D (atom(x) D atom(a(x) *d(x)))
~atom{a(x) *d(x))

x = a(x) *d(x) o ~atom(x)

~atom(x) = x = a(x) *d(x)

u

a(u) *d(u)

From Axiom 13 and
Lines 15 & 21 by P.C.

From Axiom 13 and
Line 22 by P.C.

Rule 6 twice

Rule 6 § P.C.

Properties of = and
Axiom 9

From Line 27 by P.C.
From Line 28 by P.C.

From Lines 25, 26, § 29

Axiom 7
Axiom 8

From Lines 32 § 33
by P.C.

From Lines 31 § 35

-221-

4.10.3 Example 3. Some More Theorems About g and d ;
an Alternative Induction Axiom.

By a technique similar to that of Example 2, we can prove

tt
1]

atom(x) = x = a(x) and

atom(x) = x = d(x)

Corollaries to Line 35 are:

X*y = a(x*y) *d(x*y) Substitute x*y for x

in Line 35 § use Axiom 8
X = qa(x*y) Axiom 9
y = d(x*y) Axiom 9
X*y =u D (x = a(x*y) Dx = a(u)) Axiom 7
u = x* D5 x = a(u) From Lines 39 § 41
u=Xx*y Dy = d(u) Similarly

all these theorems will be referred to below as
simply properties of a § d .
In view of 42. and 43., we can show the following:
u = x*ya(((P(a(u)) » P(d(w))) D P(w))>((P(x) A P(y)) 5P(x*y)))
Via Axiom 7
((Pla()) A P(d(w))) D P(w) D (u=x*y> ((P(Xx) A P(y)) D P(x*y)))
By P.C.
V() ((Plau)) A P(d(w)) DP(u)) D (u=x*y > ((P(x) A P(y)) > P(x*y)))
By P.C.
u=xty > V() ((Pl@)aP(d))) DP) o ((P(X) A P(y)) DP(x*y)))

By P.C.

d(u) u = x* >(V() ((P(@a(u)) A P(d(u))) DP)D ((P(x)AP(y)) 2 P(x*y)))
By P.C.
X*y = x*y Axiom 6

H(u) u = x*y From 49 via P.C.

-222-

51. V() ((P(a(u)) AP(d(u))) > P(u)) o ((P(x) A P(y)) D P(x*y))
From Lines 50 § 48
52 V(x) ((P(a(x)) A P(d(x)))> P(x)) = V(x,y) ((P(x) A P(y)) > P(x*y))
from this and Axiom 10, we get an alternative induction axiom

53. (V(x) (atom(x) > P(x)) A V(x) ((P(a(x)) A P(d(x))) 2 P(x))) D V(x)P(x)

4.10.4 Example 4. Course of Values Induction (and a
Corollary):

Prove (V(x) (V(z) (z< x 2 P(z)) 2 P(x)) o (V(x) P(x))

Define, for this example

B(x)

o (x)

V(z) (z € x 2 P(z2))

V(z) (z<« x> P(z)) > P(x)

Problem is to prove (V(x) ¢(x)) > (V(x) P(x)).

(Note: mol(x) D (&(x) = P(x)) holds.)

The proof proceeds as follows:

54, z€ XD (z4XVz=X)

55, za x> (z<€a(x) vzedx)) From defn, of contains
56. B(x) > (z € x D P(z2))

57. (Bla(x)) A B(d(x))) @ ((z € a(x) 2 P(z)) A (z € d(x) 2 P(z))

58. (B(a(x)) A B(d(x))) @ ((z € a(x) v z 2 d(x)) 2 P(2))

59. (B(a(x)) A B(d(x))) D (z @ x D P(z)) From 55 and 58

60. (B(a(x)) A B(d(x))) D V(z) (z 9 x> P(2))

61. (o(x) A Bla(x))A B(d(x))) D P(x)

62. P(x)D (z = x> P(z))

63. (Bla(x)) A B(A(x)) A P(x)) > ((z< x2P(2)) A (z = xDP(2)))

From 59 and 62

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81

82.

83.

84.

85.

-223-

((za4x2P(2) A (z=x2P(2))) > (24 x> P(2)) From 54

(B(a(x)) A B(d(x)) A P(x)) > (z € x > P(2)) From 59, 62, § 64

(Bla(x)) A B(d(x)) A P(x)) = B(x)

9(x) @ ((B(a(x)) A B(d(x))) > B(x)) From 61 and 66

(V(x)e(x)) > (V(x) ((Bla(x)) A B(d(x))) > B(x)))

atom(x) > ~z 4 x From definition of
contains

atom(x) > (z < x > P(z))

atom(x) > (V(z) (z < x> P(z)))

(8(x) A atom(x)) = P(x)

(atom(x) A P(x)) > (z € x > P(z)) From 62, 64, and 70
(atom(x) A P(x)) > B(x)

o(x) > (atom(x) > B(x)) From 72 and 74

(V(x) ¢(x)) > (V(x) (atom(x) D B(x)))

By Line 53 we get

(V(x)e(x)) o (V(x)B(x)) From 68 and 76 ,
but we also get

B(x) > (x ¢ x> P(x))

so we have the following:

B(x) > P(x)
(Vx)B(x)) > (V(x) P(x))

- (V(x)e(x)) o (V(x) P(x)) From 77 and 80
(V(x) (V(2) (z<x>P(z))>P(x))) o (V(X)P(x)) Rule 6

Other induction rules may then be derived as corollaries as follows.
~atom(x) o d(x) 9@ x

(V(z)(z @ x> P(2))) > (d(x) ¢ x> P(d(x)))

~atom(x) 3 ((V(z)(z @ x> P(2))) 2 P(d(x)))

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

-224-

~atom(x) D ((P(d(x)) D P(x)) D &(x))
(P(d(x)) D P(x)) D (~atom(x) D ¢(x))
(V(x) (P(d(x)) DP(x))) D (~atom(x) D ¢(x))
P(x) Do(x)
(atom(x) D P(x)) D (atom(x) D ®(x))
(V(x) (atom(x) DP(x))) D (atom(x) D ¢(x))
((V(x) (atom(x) D P(x))) A (V(x) (P(d(x)) DP(x)))) D e(x)
From 88 and 91
((V(x) (atom(x) 2 P(x))) A (V(x) (P(d(x)) DP(x)))) D (V(x)e(x))
(V(x)e(x)) D (V(x) P(x)) From 81
(V) (atom(x) D P(x))) A (V(x)(P(d(x)) DP(x)))) D (V(x) P(x))

(Same proof works with d replaced by addadd, for example)

4.10.5. Example 5. Generation of Some Labeled Functions,

e.g., maplist.

This may not be the most efficient generation of these functions.

nestp”(x) =2 andlistlistear((A(y,x)(~atom(x) Ay = d(x))),d(x),x)

1.

2.

nestp” (x)

nestp” (x)

Easily generatable

1H

nestp ” (x) Axiom 6

d(x) = ¢ v (~atom(d(x)) A ~atom(x) A ~atom(a(x)) A ad(x)=da(x)
A andlistlistear((A(y,x) (~atom(x)Ay = d(x))),dd(x),d(x))))

Rules 6 § 7 several times

3.

10.

11.

12,

-225-

nestp”(x) =(d(x) =9 v (~atom(d(x)) A ~atom(x) A ~atom(a(x))
A ad(x) = da(x)a nestp”(d(x)))))
Rule 6
nestp(x) =+ d(x) =@ v (~atom(x) A ~atom(d(x)) A ~atom(a(x))
A ad(x) = da(x) Anestp (d(x)))

Now apply Rule 16 to Line 3 with

| dx) =8 v (~atom(d(x)) A ~atom(x) A ad(x) = da(x) A nestp”(d(x)))))

to get

® D nestp(x)

orlistear(P,x) = orlistear(P,Xx)

orlistear(P,x) = ~andlistear((A(x) ~P(x)),x)

orlistear(P,x) = ~(atom(x) v (~P(a(x)) A andlistear((r(x) ~P(x)),d(x))))
Rule 7 once § 6 twice

orlistear(P,x) = (~atom(x) A (P(a(x)) v ~andlistear((A(x) ~P(x)),d(x))))

By P.C.

orlistear(P,x) = (~atom(x) A (P(a(x)) v orlistear(P,d(x))))

Rule 6
X ¢ y = orlistear((Au) u = x),y) Rule 6
X € y = (~atom(y) A (aly) = x v orlistear((Au) u = x),d(y))))

Line 9 and Rule 6
x ey = (~atom(y) A (aly) = x v xe d(y)))

Rule 6

nestpp”(x) = nestp(x) A A(y) (atom(y) Ay € x)

(generate this via Rule 6)

13,

14.

15.

16.

(o)}

17.

1

Co

19.

20.

-226-

nestpp”(x) = (d(x) = § v (~atom(x) A

~atom(d(x)) A ~atom(a(x)) A ad(x)

H(y) (atom(y) A (~atom(x) A (a(x)

Rules 7 §

da(x) A nestp(d(x)))) A
y vy e dx))))

6 several times

d(y) (atom(y) A (~atom(x) A (a(X) =y Vv x € d(¥)))) = (~atom(x) A

(3@ (atom(y) A a(x) =y) v) (atom(y) A y € d(x))))

() (atom(y) & a(x) = y) = atom(a(x))

nestpp”(x) =z (d(x) = 8 v (~atom(x) A

By P.C.

By P.C.

~atom(d(x)) A ~atom(a(X)) A ad(x) = da(x) A nestp(d(x)))) A

~atom(x) A (atom(a(x)) v Aly) (atom(y) Ay € d(x))

y € d(x) ® ~ atom(d(x))

. nestpp” (X) = (~atom(x) A (

(atom(a(x)) A d(x) =0) v

From Lines

From Line

13, 14 and 15 by P.C.

12

(~atom(d(x)) A ~atom(a(x)) A ad(x) = da(X) A nestp(d(X)) A

Hy) (atomy) Ay e d(x)))))

From Lines

16 and 17 by P.C.

nestpp” (x) = (~atom(x) A ({atom(a(x)) A d(x) =g) v

(~atom(d(x)) A ~atom(a(x)) A ad(X) = da(x) A nestpp~(d(x)))))

By Rule 6

nestpp (x) =: ~atom(x) A ((atom(@a(x)) Ad(x) =9)

v

(~atom(d(x)) A ~atom(a(x)) A ad(x) = da(x) A nestpp(d(x)))))

® > nestpp (x)

nestpred(x,y) =a(y) = x A nestpp(y)

By Rule 16

21.

22.

23.

24,

25.

26.

27.

28.

29.

30.

31.

32.

-227-

nestpred(x,y) = nestpred(x,y)

By P.C.

nestpred(x,y) = (a(y) = x A ~atom(y) A ((atom(a(y)) A d(y) =98) v

(~atom(d(y)) A ~atom(a(y)) A ad(y)=da(y) A nestpp(d(y)))))

Rules 7 and 6 and P.C.

nestpred(x,y) = (a(y) = x A ~atom(y) A ((atom(x) A d(y) =8) v

(~atom(d(y)) A ~atom(x) A ad(y)= d(x) A nestpp(d(y)))))

nestpred(x,y) = (~atom(y) A a(y) =x A

Via Axiom 7

((atom(x) A d(y) =8) v (~atom(x) A ~atom(d(y))

nestpred(x,y) > ~ atom(y)
nestpred(d(x),d(y)) > ~atom(d(y))

dly) =9) = a(y) *d(y) =x* ¢
y = aly) *d(y)

(~atom(y) A a(y) = x A d(y) =)

>

(aly) = x

~atom(y)

y=x*¢

A nestpred(d(x),d(y)))))

Rule 6

By P. C.

Rule 4 and 5
Property of =

Basic theorem for a § d

From Lines 27 and 28 by P.C.

nestpred(x,y) = ((atom(x) Ay = x * @) Vv

(~atom(x) A ~atom(y) A x = a(y) A nestpred(d(x),d(y))))

From Lines 24, 26, and 29 by P.C.

nest”(x) =: 1(y) nestpred(x,y)

H! (y)nestpred(x,y) = nestpred(x,1(y)nestpred(x,y))

Substitution into Axiom 14, plus Rule 6

d! (y)nestpred(x,y) > nestpred(x,nest”(x))

Rule 6

Thus nest” has been generated.

33.

34.

35.

36.

37.

38.

39.

40.

41.
42.

43.

44,

45,

46.

-228-

nestpred(x,x*y) = ((atom(x) a x*y = x * @) Vv
(~atom(x) A ~atom(x*y) A x = a(x*y) A nestpred(d(x),d(x*y))))
From Line 30 by Rule 4
(~atom(x) A nestpred(d(x),y)) D nestpred(x,x*y)
By P.C. & properties of * and ¢ .
nestpred(x,x*y) o UW(y)nestpred(x,y) By P.C.
(~atom(x) A nestpred(d(x,y)) > U(y)nestpred(x,y)
From 34 and 35 by P.C.
~atom(x) ® (H(y)nestpred(d(x),y) > HA(y)nestpred(x,y))
By P.C.
atom(x) D d(x) = x Already proved
atom(x) > (H(y)nestpred(d(x),y) > H(y)nestpred(x,y))
Via Axiom 7

V(x) (d(y)nestpred(d(x),y) 2 HA(y)nestpred(x,y))

From 37 and 39 by P.C.

atom(x) D nestpred(x,x * @) Put ¢§ for y in Line 33 and use P.C.
V(x) (atom(x) o HA(y)nestpred(x,y)) By P.C.
V(x) H(y)nestpred(x,y) From 40 and 42 via substitution

into induction rule corollary, Section 4.10.4
A(y)nestpred(x,y) By P.C.
(~atom(x) A nestpred(x,y)) > (nestpred(d(x),d(y)) A x = a(y))
From Line 30 via P.C.
(~atom(x) n nestpred(x,y) A nestpred(x,z)) o

(nestpred(d(x),d(y)) A nestpred(d(x),d(z)) A aly) = a(z))

By P.C. and properties of =

47.

48,

49.

50.

S1.

52.

53.

54,

55.

56.

57.

-229-

V(%2) ((nestpred(d(x),y) A nestpred(d(x),z)) D>y = z) D

((nestpred(d(x),d(y)) A nestpred(d(x),d(z)))>d(y) = d(z))

By P.C.

(~atom(x) A V(y,2z) ((nestpred(d(x),y) A nestpred(d(x),z)) oy = z)) D

((nestpred(x,y) A nestpred(x,2)) > (aly) = a(z) A d(y) = d(z)))

From 46 and 47 by P.C.
~atom(x) D (V(y,z) ((nestpred(d(x),y) a nestpred(d(x),z)) >y = z) D

V(y,z) ((nestpred(x,y) A nestpred(x,z)) >y = z))

By P.C. and properties of =
atom(x) > d(x) = x Already proved
atom(x) 2 (V(y,z) ((nestpred(d(x),y) a nestpred(d(x),z)) oy = z) D

V(y,2z) ((nestpred(x,y) A nestpred(x,z)) Dy = z))

Properties of =

V(x) (V(y,z) ((nestpred(d(x),y) A nestpred(d(x),z)) >y =12) D
V(y,z) ((nestpred(x,y) A nestpred(x,z2)) Dy = z))

From 49 and 51 by P.C.
(atom(x) A nestpred(x,y)) >y = x * {§

From Line 30 via P.C.
atom(x) > ((nestpred(x,y) A nestpred(x,z)) Dy = z

By P.C. § properties of =
V(x) (atom(x) D V(y,z) ((nestpred(x,y) A nestpred(x,z)) >y = z))

By P.C.

V(x) V(y,z) ((nestpred(x,y) a nestpred(x,z)) Dy = z)

From 52 and 55 via substitution

into induction rule corollary, Section 4.10.4.

V(y,z) ((nestpred(x,y) A nestpred(x,z))> y = z)

By P.C.

-230-
H! (y)nestpred(x,y) From 44 and 57 via substitution
into Axiom 13
A! (y)nestpred(x,y) o nestpred(x,nest”(x))
Repeat of Line 32
nestpred(x,nest”(x)) Modus ponens
(nestpred(x,y) A nestpred(x,z)) Dy = z From 57 by P.C.
(nestpred(x,nest”(x)) A nestpred(x,y)) > y = nest”(x) Rules 4 and 5
nestpred(x,nest”(x)) Repeat of Line 60
nestpred(x,y) o y = nest”(x) From 62 and 63 by P.C.
y = nest”(x) o (nestpred(x,nest’(x)) > nestpred(x,y)) Axiom 7
y = nest”(x) o> nestpred(x,y) From 63 and 65 by P.C.
nestpred(x,y) =y = nest”(x) From 64 and 66
(atom(x) A nest*(x) = x * #) v (~atom(x) A ~atom(nest-(x)) A
x = alnest” (X))A nestpred(d(x),d(nest~(x))))
From Line 30 and 60
~atom(x) ® (~atom(nest*(x))a x = alnest (X)) A nestpred(d(x),d(nest~(x))))
By P.C.
nestpred(d(x) ,dnest(x)))=z d(nest~(x))=nest*(d(x))
Substitution into Line 67
~atom(nest” (X))z nest”(x) = alnest”(x)) *d(nest~(x))
Properties of @ and d
. ~atom(x) 2 (neat”(x)= alnest”(x)) *d(nest”(x)) A alnest*(x)) = x A
d(nest~(x)) = nest”(d(x)))
From 69, 70, and 71 by P.C.
~atom(x) o nest” (x) = X *negt” (d(x))

Properties of = and P.C.

74.

75.

76.

77.

78.

79.

80.

81.

-231-

(~g(x)2 £(x) = x * £(d(x))) = (~g(x)> £(x) = [@® > x * £(d(x))])
Via Rule 11 with z =
(~atom(x) > nest”(x) = x * nest”(d(x))) = (~atom(x) > nest”(x) =
[@ > x * nest”(d(x))])
Rule 5
~atom(x) > nest”(x) = [@® + x * nest”(d(x))]
From 73 and 75 by P.C.
atom(x) > nest”(x) = x * § From 68 by P.C.
f(x) = [g(x) »x *@; @ »>x * £(d(x))] =
(X)) 2 f(x) =x * P A (~g(x)2 £(x) = [@ > x * £(d(x))]))
Rule 9 with z = @x) R ﬂ¢ > X * f(d(X)@

nest”(x) = [atom(x) > x* f; ® »x * nest”(d(x))] =

((atom(x) > nest”(x) = x * §) A
(~atom(x) > nest”(x) = [@ > x * nest” (d(x))]))
Rule 5
nest”(x) = [atom(x) > x * §; © > x * nest” (d(x))]
From 76, 77, and 79 by P.C.
nest(x) = [atom(x) > X * §; ® > x * nest(d(x))]

H(z) z = nest(x) From 80 by Rule 17 with

So nest has been generated!

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

maplist” (£f,x)

maplist” (f,x)

1]
e

-232-

maplistear(f,nest(x))

latom(x) » x; ® -+ f(alnest(x)))*maplistear(f,d(nest(x)))]

From Axiom 6 and Rules 4, 5, 7, § 6.

(atom(x) > maplist”(£,x) = x) A

(~atom(x) > maplist”(£,x) = [@ - f(a(nest(x)))*

maplistear(f,d(nest (x))) 1)

Via Rule 9 as before

nest(x) = [atom(x) - x * §; @ » X * nest(d(x))]

From Axiom 6 via rules 4,5,7, § 6.

(atom(x) > nest(x) = x * @) A (~atom(X) > nest(x) = [& » x * nest(d(x))])

~atom(X) > nest (x)

~atom(X) o nest(x) =

Via Rule 9 as before
[® > x * nest(d(x))]

By P.C.
X * nest(d(x))

Via Rule 11 as before

~atom(x) 3 (a(nest(x)) = x A d(nest(x)) = nest(d(x)))

Properties of ¢ , d,and = .

(atom(x) > maplist”(f,x) = X) A (~atom(x) >

maplist” (£,x) = [@ - £(x) * maplistecar(f,nest(d(x))])

From 83, 88, and Axiom 7 by P.C.

(atom(x) o maplist’(£,X) = x) A (~atom(x) 2

maplist”(£,x) = [@ » £(X) *maplist(f,d(x))])

Rule 6

maplist” (£,x) = [atom(x) + x; © > £(X) *maplist” (£,d(x))]

Via Rule 9 as before

maplist (f,x) = [atom(x) » x; @~ £(x) * maplist(f,d(x))]

d(z) z

maplist (f,x)

Via Rule 17 as before

-233-

If we wished we could go on to prove inductively such theorems as
maplist (£,x) = maplist” (£f,x)
and

maplistear (£,x) = maplist((A(x) f(a(x))), x)

we could similarly define

andlist’ (P,x)= andlistecar(P,nest(x))

andlist(P,x)= [atom(x) ~ ® ; ® - P(x) A andlist(P,d(x))]
and prove theorems

andlist (P,x) = andlist”(P,x) and

andlistear(P,x) = andlist((A(x) P(a(x))), x)

-234-

4.10.6 Example 6: The Predecessor Function

Suppose we have [S]defined as in Section 2.1.1.9, and suppose we have
as theorems the Peano axioms for[S], i.e.
A~ =[8] (x))
B [Slx) =Bl ox=y
C (@~ V) (P& DP(E(x))) DV P(x)

(Note: This does not give us enough power to prove the true statements

of form(S] (@) = . To prove these we would have to restore the ordering of
the atoms which we threw away in Section 2.1.1.10. One way to do this would
be to add back into the system the rules in the footnote near the end of
Section 2.1.1.9.)

We now consider the predecessor function whose ordinary name is
predecessor(x) = 1(y) ((x = P~y =x) v [S[(y) = x). We first want to
generate an algorithmic name of this form:

(A, (x), ((Qabel, £,(x(z, x) [[S](2) = x02; x = gox;0 >£([S] (2), x)])), @, X))

We use the dummy z to count up from zero to the predessor.

Our first job is to introduce the z. This is easy. Define
dummypred(z, x) = predecessor(x). Now dummypred is a complete function
of z and x. We easily prove H!(y) ((x = @~y =x) v[S] (y) = x) so by axiom
14 we get
1. (x = @A~ dummypred(z, x) = x) v (dummypred(z, x)) = x. We then
proceed as follows:

2. dummypred(z, X)= predecessor(x)
3. dummypred(z, x) = dummypred([S] (z), x)

[® + dummypred(|S] (z), x)] by Rule 11

n

4. ~x = @ Ddummypred(z, x)

5. x = @§Ddummypred(z, x) = x from line 1 and A above

¥

6. dummypred(z, x) = [x = § > X3 ® > dummypred([S] (z), x)] from 4 and 5

by Rule 9

-235-

7. ~[8] (2) = x D dummypred(z, x)= [x
8. (2)
9. @)
10. dwmmypred(z, x)= [[§](z) = x> z; x =0+ x3; © » dumypred([§] (z), x)]

g+ x; @ > dunmypred([S] (z), z)]

X D (dwnmypred(z, x)) = x from lines 1 and A above

X D dummypred(z, x)=2% from Lines 8 and B

Hence we can generate the algorithmic name
dummyalg(z, x) = [[S[(z) =x>2z; x =0 >x; @ > dummypred({S] (z),x)]

via Rule 17.

Thus from the ordinary name, dwmmypred we generate the algorithmic
name dummyalg.

Notice, however, that dummypred and dummyalg name different functions.
dummypred names a complete function, and dummyalg does not, the function named
by dummyalg being undefined for # < x < z , This algorithmic name, then,
contains less information than the ordinary name from which it is generated.
This is not unusual. Of course an algorithmic name cannot contain more in-
formation than the name from which it was generated. An ordinary name for
the function named by dummyalg might be given by dwmmyalg(z, x) =

ily) (x=¢0A~Ay=x)v(z<x ~A[S](y) =x)) if we had defined
¢ which we have not. Thus it is not immediately obvious how to generate
the algorithmic name dummyalg from an ordinary name like the one indicated
here. Might it be the case that there exists an algorithmic name for a partial
function which cannot be generated from any ordinary name of that function,
but which can be generated from an ordinary name o6f some more complete

function? I do not know the answer to this question.

Now define predalg(x) =: dummyalg (#, x). Note that although

dummyalg 1is not a complete function, predaly is a complete function.

-236-

Of course if[S]is constructed as in Section 2.1.1.9, we have a much

simpler way to generate predalg. In Section 2.1.1.9

(x) = gn’l (® @ (x)) holds, where g7 . is like gn andu is like gn

A

except that the substitutions of (qu, p) for P, (qu, 1) for 1, and (qu, 2)

for 2 have been made. Hence and |gn | are already generated algorithmic

names and we can define predalg(x)=: {gn (d((x))). We can also define

xlely = 4) ¢« 1 0.

4.10.7 Example 7: The u Schema

Here we shall sketch the method we use to generate an algorithmic name
for a function defined by the u schema of recursive function theory. In our
notation, such a definition would be of the form

() (Mly, x) A V() (II(v, X) D v =y)). Again we introduce

¢ (x)
a dummy z to get the algorithmic name
(A, (x), ((label, £, (A(z, x) [N(z, x) > z; &~ £ ([S](z) , X)])), @, x)).
We are tempted to define the partial function dummyphi(z, x) =:
1) z[s]ya ny,x)a V) ((z[€ VA I(v, x))D y[]v)), and generate an
algorithm for it. But we first need ~1(z,x) D dummyphi(z, x) = dummyphi([S] (z),x)
which does not necessarily hold when the z and x
range outside tne domain of definition of the function. The closest we can
come to generating our algorithmic name is

Aw) (z[g]w ~ T(w, x)) D dwmmyphi(z, x) = [1(z, x) > z; 0~ dwmmyphi ([S)z), x)]

If only we could prove
Ao ~dMW) (z[g]w A~ TWw, X)) D dummyphi(z,x) = dummyphi([S) (z), x) we could
prove dummyphi(z, x) = [1(z, X) > z; @ -+ dummyphi([5](2) , x)]. Then we
could generate
dummyphialg(z, x) == [I(z, x) > z; @ - dummyphialg((z) , X)], and we
could define phialg(x) = dummyphialg (@, x) as we wished. But we cannot

prove line A. It does not necessarily hold.

-237-

However, if we artificially complete the partial function dwmmyphi we
can do it. Instead of dummyphi, use dummyphicomplete, defined by
dummyphicomplete (z, x) = 1(y) ((~dW) (z[g]w A I(w, X)) Ay = @)

v(AW R ATW, 0) A Ry ALy,) A YW (2 [EV ATV,x)) D vay))))

, in the preceding discussion and then the generation works. Once again,
although dummyphialg gives an algorithm for the function dwmmyphi,we found
it most difficult to generate dwmmyphialg from dwmmyphi and found it more
convenient to generate it from dummyphicomplete which is quite a different
function. Notice also: we cannot prove
dummyphi (2, X) = dummyphialg(z, Xx) since we have no information on the
value of dummyphi when ~Hd(w) (z[glw A I(w, x)) holds. To prove that two
function names name the same function, it is not sufficient to prove that
they give the same values over their domains of definition. If the functions
are partial, the names may be regarded as incomplete descriptions of complete
functions (not necessarily recursive). In that case, the two descriptions
must give enough information for us to say that any two complete functions
that might be described by the two descriptions must give identical values
everywhere, though we might not be able to say what those values are. For

example, let us define

newdymmyphialg(z, x) == [AW)(z[g]w A~ I(w, x))> dummyphialg (z, x) ;© +
dummyphi(z, x)} . Then we can prove
dummyphi(z, X) = newdummyphialg (z, x) even though both functions

are partial, i.e., both descriptions are incomplete.

4.10.8 Example 8: T(x) D F(x)

We shall give only a very sketchy outline of the proof of T(x) D F(X) . We
can easily prove Proof(x) D (y e x > T(y))
We now induct on the length of proof as follows: Temporarily define

Ix) == y € xDF(y).

-238-

Then we can prove the following sequence.

1. (n(d(x) ~ Pfstep(x)) D N(x) by induction on expression named by x

2. Axiom(x) D F(x)
3. (MAx)Aaxiom(a(x))) D I(x) from 2.
4. ((Proof(d(x) D I(d(x)))A Proof(x)) D N(x) from 1 and 3.

wu

. Proof(x) D I(x) from 4 by induction theorem of Example 4.

o

T(x) D F(x) from S.

4.10.9 Example 9: Sketch of Proof of T(x) D T(apl(x))

We shall here give an outline of how one would prove T(x) D T(apl(x))

We can give no more than the barest outline because the proof is extremely
long and tedious.

We begin by developing alternative formulations of some rules of inference.

The mechanism we have in Rule 3 for handling bound variables is very in-
efficient. We need a predicate which says that two expressions are identical
except for alphabetic differences in bound variables. Such a predicate is

= (Table 9) . We will need a whole corpus of theorems incorporating
this which will allow us to automatically make alphabetic changes of bound
variables as needed. We shall not develop these theorems here.

By way of example we have the following theorem which is provable from
Rule 3 and equivalent to Rule 3. Alternative Rule 3:

(T(X) A x =y) DT(y)
The proof is rather tedious. Note also: = is an equivalence relation.

The form of Rules 4-7 is inconvenient for some purpose because in order
that freecheck hold where required we must, in general, do some preliminary
juggling of bound variables via Rule 3. We would like a recursive, legal,
way to do the juggling. To this end we have defined freefix and freefizlists .

in Table 9. Their most important properties are summarized by the theorems

-239-

below. (The proofs are rather tedious.)
z = freefix(x, y, z)
(x=yAaSnf(x, y, z) = 5nf(x, y, w)) Dz=w
freecheck (x, y, freefix(x, y, z))
z = freefixlists(x, y, z)
- andlista((A (u) freecheck(u, y, freefixlists(x, y, z))), x)
So that wé can also prove
andlista((A(v) ~ (Listbinder (V) v v =), y) D
andlistlista((A(u, v) freecheck(u, v, freefixzlists(x, y, z))), X, y)
Write B for @aa(y)@ ada(y)@ freefixlists (ada(y), d(y) adda(y)) @ * d(y) so
y=p8 and u = Snf(y, B, u) and v =51f(y,8,v) hold. Then we can make
the following substitutions into the theorem which is Rule 6.
for y put B
for u put Suf(y, B, u)
for v put Snf(y, B, V)
This gives, after some manipulation and replacement by equivalences,
(T (Snf(y, B, u))A expression(Snf(y, 8, V))Aaaa(y) = @
A andlistlista((A(x, z) freecheck(x, z, 4
freefixlists (ada(y), d(y), adda(y)))), ada(y), d(y))
A Snf(B, Ssffixl(ada(y), d(y), adda(y)), Snf(y, B, u)) =
snf(8, Ssffizl (ada(y), d(y), adda(y)), Snf(y,8 , v))
AN (B Snf(y, B, u) v (andlista ((A (z) ~ z e adda(8)), ada (B))
n andlistlista ((A (x, z) .S z D x Ladda(B)), ada(B), d(B)))))

2 T(Snf(y, 8, V))

-240-
Using this, we can prove
alternative Rule 6:
(T(u) A expression(v) A aa(y) =@
A Suf(y, Ssffizl (ada(y), d(y), adda(y)), u) =
Snf(y, Ssffizl(ada(y), d(y), adda(y)), v)
A newvarex(y, u) < Snf(y, newvarex(y, u), u)) D
T(V)
Likewise we can prove
alternative Rule 7:
(T(u) A expression(v) A a(y) = A ad(y) S add(y)
A Snf(y, Sffix (ad(y), y, add(y))yu) =
Snf(y, Sffix(ad(y), y, add(y)), v)) D
T(v)
alternative Rule 4:
(T(y) ~ variable(x) A Simplexpr(z) A type(x)= exprtype(z)) o
T(Sffix(x, z, y))
alternative Rule 5:
(T A T A zSu A (P(x) v Ifp(x)) A type(x) = expriype(z)) >

T(Sffte(x, z, y)

In these formulations, the bound variables take care of themselves
automatically. Except for the alternative Rule 6, the alternative rules
are as powerful as the original rules.

From the alternative formulations of Rules 6 and 7 used as theorems,
together with other rules, we can prove
(F(x) D T(x @oneapux))) A (Tm(x) D T(x@ oneapl(x)))

The proof is by tedious induction on the S-expression named by x. We shall not

-241-
reproduce this proof here.
From the above theorem,
T(x) D T(oneapl(x)) follows as a special case.

A glance at apl convinces us that it is a non-contradictory function
expression. It is even the name of a complete function. It may not be ob-
vious, however, just how this function is to be generated. The following
function expression names the same function.
apl” (x) =+ 1(y) (oneapl(y) =y~ H(z) (y = a(z) A

andlist((rx(v) (v =v v =©x@ va(v) = oneapl(ad(v)))), z))
(andlist is defined at the end of Section 4.10.5)

However, to prove the necessary recursion theorem on apl” to allow us to
generate apl via Rule 17 1is very complicated. It requires a set of list
handling functions and a corpus of theorems about them to allow us to prove
the required uniqueness of the z in the definition of apl” . Some of these
functions (e.g. maplist) and theorems were developed in earlier examples.
The methods referred to here have been illustrated on less complicated ex-
amples. These functions, theorems, and methods are necessary both to
handle proofs and to handle sequences of formulae like the z sequence above.
One use of these methods, induction on length of proof, was indicated in our
sketch of the proof of T(x) D F(x) in Section 4.10.8. A similar, but more
complicated, induction on the length of the z list of the apl” definition

gives us T(x) D T(apl(x))

-242-

4.11 Implementation Routines--Effector Algorithms Used in Section 3

4.11.1 Basic Functions and Notation. These algorithms utilize the

following basic functions described in Section 3.
1. Moving functions

derivations

rule

down

antecedents

derivativesusing

vartable

2. Explicit net-changing functions
Jjoin
constructderivation

constructparameterderivation

3. Node predicates
T-tagged

H-tagged

4. Node modifiers
T-tag

H-tag

Search functions

(93]

bestlist
bestproductinlist
bestnetrule
bestnetparameterrule

bestnetparametervalue

-243-

6. Implicit net-changing functions
erasepunish

punish

7. Hybrid moving function

Jumpback

8. Net-changing functional

operate

9. Timed LISP functions
result

requiredantecedents

10. LISP functions

pair

prog,

proj,

find

variablein
The notation for the following algorithm definitions is similar to the
notation of the ''definition" statements in Section 4.3, which, in turn, re-
sembles LISP m-notation. In the following definitions we also employ the
LISP PROG notation, together with the operate statements described in Section 3.4.3.
In these definitions we also use set theory notation to abbreviate sequences
the order of whose members is unimportant. E.g.
@ U {, @} U {y l y € @ A H-tagged (y)} names a sequence whose
members are: (1) the members of the sequence o ; (2) B and y ;

(3) those members of the sequence § on which H-tagged holds. The dummy

-244-

variables in the following algorithm definitions will not be restricted to

the variable symbols of Section 2, but may be any Greek or Latin letter. The
reader must be careful to not confuse, for example, the bug value £ with the
dummy variable (or bug) £ which ranges over bug values. It will be clear from

context which is meant.

4.11.2 Routines Which Return a Bug Value

refineproof (g, k) =« prog((A) ;
[T-tagged(g) - return(g) 1] ;
A := derivations(t) ;

return(refineproff(¢ , A, k)))

refineproff (g, A, k) = prog((s, m, p, ¢, T) ;

§:= bestlist(A, k) ;
[§ = @ > return(g)] ;
T = rule(s) ;
p = refineproof(w,+ k) ;
¢ := operate(p) ;
[T-tagged(p) v o = @ @@ >
return(refinederiv(¢(8) , k)) 1;
¢ := expandheuristic($(8) , p, k)
[T-tagged(t) - return(z)] ;

¢ = operate(punish(€, down(8))) ;

return (refineproff(¢(c) , () - {s} , v+ K)))

refinederiv(6,k) =: refinederivv (8, antecedents () , k)

-245-

refinederivv(s, T, k) =t prog((z, ¢)
[t = @ > return (T-tag(down(8))) | 5
¢ = refineproof (a(t), k) 5

[~ T-tagged(t) ~ return(down(s§)) 1
¢ = operate () ;
return(refinederiv (¢(8) , ¢(d(t)) , k)))

expandheuristic(s, p, k) =

expandheuristice(s, derivativesusing(p)- {6}, p, k)

expandheuristice(s,T, p, k) == prog((y , ¢, ¢)
y := bestlist(T, k) H
[y =9 > return(down(8))] ;
¢ := refinebyexample(§, vy, p, k) ;
[T-tagged(z) - return(z)] ;
¢ = operatel{punish(s,y)) 5
return (expandheuristice (¢ (8) , o(T - {Y}), ¢(p), ¥ K)))

In the definition of refinebyexample below, ¢ and © will stand for
functions which are described by the following paragraphs.

If § , vy , and & are bug values with@ the same as , with)
and ’«} derivation nodes, and with@ = d'own(@) holding, then @(@,@) names
a bug value n with these two properties: first,[q]may be formed from [£]
by erasure of nodes g and \/(\ and removal of all H-tags from € ; second,
7 is that node referred to above from which the H-tags were removed.
(Remember, we made ad hoc provision for saving all of a net if an erasure

splits it in two.)

-246-

Suppose now that [¢]may be formed from[n]by addition of certain nodes
and change of certain flags. Then we can imagine a net[w]which can be formed
from [7]by adding back those two nodes that were erased from[£]to make
Can we unambiguously state where these two nodes should be added back, or
are several such([w]'s possible? In most cases there is only one [w}
- possible which gives the added nodes the same position relative to other nodes
that they had in[f] . When more than one [w] is possible one can rely on the
fact that all these nets are part of the same patched net to determine the
unique "natural"[w], the which has the largest number of its nodes
"equivalent" to nodes in[E] (where we call a node in[w]"equivalent' to a node
in £ if the two nodes are the same node of the patched net). & and T are
to be the same nodes of the patched net. 0 is defined for bug values des-

cribed as above, so that © (£, n, ¢) names w

refinebyexample(s, Y, p, k) =prog((&, x, ¢,%, ¢, 8)

g = down () ;

X = down(y) ;

¢ := operate(¢(§, v)) ;

g :={@ xg g@, Qad’(paraneter(y)) @ ad (paraneter (6) @} U
pair (antecedents (y) , antecedents(s)) ;

g =prove($(g) , ¢(x), ¢(2), $(e), k) s

[vH-tagged (a(z)) = return(g)] :

6 = operate(0(g, n, ¥)) s

return(refineproof(6(a(z)), + k)))

-247-

4.11.3 Routines Which Return a Bug Value Paired With a Sequence of Pairs

prove (g, x, %, p, k) == prog((m, ¢, ¢, L)3
[H-tagged (€) » Treturn(g *¢)] ;
[x=0~>go(a)] ;
moe= {y |y et o~ oady) # &} ;

[x ¢ proj () »

¢ := operate(join(E , ad(find(x, m)))) 1]

(o)

[x e proj,(m) A £ = ad(find(x , m)) ~
return(prove ((&) , ¢(x) , ¢ () ¢(p) » K} 1

¢ = checkprove (§,X,%,p,k)

[H-tagged(a(y)) - return(z) | 5
AL o={y|y € paadly) = £} ;
r := checklistprove(g, L, &, p, k) ;
[H-tagged(a(z)) ~ return(z)] ;
return(randomprove (5, %, p, k)))

checkprove(g, X, ¥, p, k) =+ checkprovv(g, derivations (x) o 2, ps k)

checkprovw(g, A,% , p, k) =t prog((& ¢ v)

§t= bestlist(A, k) ;
[6§ =8 - return (¢ * %)] ;
¢ = parametergenerate(g, §, L, ps k) ;
[H-tagged(a(z)) - return(z) | ;

v = operate(punish(£ , Jumpback(g, §))) ;
return(checkprovv (p (&) , w(d(A)), v, y()s ¢+ K)))

-248-

checklistprove (§ , L, &, p, k) prog((y, ¢, Z,¥)

y := bestproductinlist(L, k) ;
[y = 8 > return(g *)] ;
¢ := operate(join(&, ad(y))) ;
g:= checkprove(¢(&) , ¢(a(y)) , ¢(2), ¢(o), k) ;
[H-tagged(a(z)) > return(z)] ;
Y := operate(punish(g, jumpback(E,a(y)))) ;

return(checklistprove (¥(g), V¥(d(L)) , ¥v(&), ¥(») + kK))

In the following definition it isimportant that@= bestnetrule(@,@)

never hold.bestnetrule can be modified so it never does.

randomprove(&€, %, o, k). == prog((e, ¢, ¢) ;
ps= bestnetrule(o, k) ;
[0 = #> return (£ * &)] ;
r:i= overallcheck(p, &, &, o, k) ;
[H-tagged (a(z)) - return(g)] ;
P i= operate (punish (¢ , Jumpback (£,0))) ;
return (randomprove (y(£) , ¥(&), ¥(0), ¥ k)))
parametergenerate(§, 8§, %, o, k) = prog((p,v,x, 9,z) ;
p := rule(§) ;
v = parameter (§) 5
X := antecedents () 5
[~ adv) ¢ proj (1) > gon)] ;
w = @a(v)@ ad(find (ad(v) , &))@ ;
[result(p, w, k) #E~+ go a1 >
¢ := parametercheckgen(p, w, &, %, k, 8§, v, x, 0) ;
[H-tagged(a(z)) » return (2)] ;

A return(parametertreegenerate(§,p,v,derivations (v),%,k,8,v,x,0)))

-249-

—
Note: In the above definition we must assume { is not @ .

parametertreegenerate (£, p, V, m, %, k, 6, v, X, o) =

prog ((¢, R, y, n, ¢, ¥))

e := bestlist(m, k) 3

[e = @ > return(overallcheck(p, &, &, o, k))] R

R == rule(e) 5

y := variable(e) 3

[~ad(y) ¢ proj (2) »go(A)] ;

n o= Qe g adl find(ad), o))@ ;

[~result(p, result(R, n)) =& > go(A)] ;

¢ := etacheck(p, R, n, &, &, k, €, y, 8, v, X, 0) ;

[H-tagged(a(z) - return(z)] ;

A V t= operate(punish(v, jumpback(v,e))) ;

return (parametertreegenerate (Y (£), v(p), Vv (v), ¥(n) - {w(s)hw(2),+ k,

(&), v(v), v, ¥(9))))

parametercheckgen(p, w, £, %, k, 8, v, X, o) =t

prog((v, ¢)
Y := constructderivation(p,w, requiredantecedents(p, w ,K), &) R
¢ := operate(Y) ;

return(completederiv (i, ¢(§),
¢(2 U pair (x,antecedents(y)), { @6 @y @, @ad(v) @ ad(w)@ }),
$(0), v k))

completederiv(Y, §, &, o, k) =

completederivv (Y ,antecedents (y) ,antecedents (§), %, o, k)

-250-

completederivv(vy, m, 1, &, 0, k) = prog((z, ¢) R
[r = ¢ > return(H-tag(down(y))) 1] ;
¢t = prove(a(m), a(1),%,0, k) ;
[~ H-tagged(a(z)) » return(down(y)) 1] R
¢ := operate(a(zg)) 5

return(completederivv (¢ (v), ¢(d(m)), ¢(d(1)), d(z), ¢(a), K)))

overallcheck(¢, £, &, o, k) == prog((R, 8, ¢, ¢) R
R := bestnetparameterrule(p , k) 5
[R =@ > return(g * 2)] ;
8 := operate(R) H
¢ = Rcheck(®(p), R, 8(£), 6(%), k, §, #, o) ;

[H-tagged(a(z)) » return(z)] !
¢ t= operate(erasepunish(p, jumpback(p, R))) R

return(overallcheck (¢ (p), ¢(8), ¢(R), ¢(0) , +k)))

Rcheck(P, R, €, Q, k: 5: V, X» O) = prog((ﬂ, g, ¢) 5

n = (({ variablein(R) g4 bestnetparametervalue(proj., (&) U {0t , k)
9 2

[ad(n) = # > return(g§ *2)] ;
¢ := etacheck(p, R, n, &, &, k, P, B, &, v, X, 0) ;
[H-tagged(a(g)) » return(z)] ;
¢ := operate(erasepunish(g, jumpback(&, n))) ;

return(Reheck (¢ (p), ¢(R), ¢(€), ¢(2), ¥+ k, ¢(8), ¢(v), ¢(x), ¢(0)))

L)

£

)

-251-

etacheck(p, R, n, &, &, k, ¢, y, 8, v, X, o) = prog((m, v, ¢, ¢) ;

m = %

1]

constructparameterderivation(R, n, @ad(n) @, result(R, n, k))
[e# #>m = ILU{@e@Y@ b
[e#0Ay # f>n = Q,U{@:q v@, @ad(y)@ad(n)@ b

¢ := operate(Y)
¢ = parametercheckgen($ (p), @a(v) G dovn (1) @ $(E), ¢(m),
k, 6(8), 6(v), 6(X), ¢(0))
[H-tagged(a(z)) » return (g)]

return(*))

we

REFERENCES

Amarel, Saul, "On the Automatic Formation of a Computer Program which
Represents a Theory" in Self-Organizing Systems, edited by Yovits,
Marshal C., et al., Washington, D.C.: Spartan Books, 1962.

Church, Alonzo, Introduction to Mathematical Logic, Princeton, New Jersey:
Princeton University Press, 1956.

Friedberg, R. M., "A Learning Machine: Part 1," I.B.M. Journal of Research
and Development 2, 1, 2-13 (1958).

Holland, John H., "Adaptive Plans Optimal for Payoff-Only Environments'.
To appear in Proceedings of the Second Hawaii International Conference
on System Science (1969).

Holland, John H., "A Logical Theory of Adaptive Systems Informally Described,"
University of Michigan Engineering Summer Conferences (1961), pp. 1-51.

McCarthy, John, Paul W. Abrams, Daniel J. Edwards, Timothy P. Hart, and
Michael I. Levin, LISP 1.5 Programmers Manual, Cambridge, Massachusetts:
Massachusetts Institute of Technology, Computation Center and Research
Laboratory of Electronics, 1962.

Mendelsohn, Elliott, Introduction to Mathematical Logic, Princeton, New
Jersey: Van Nostrand, 1964.

Newell, A., J. C. Shaw, and H. A. Simon, "Report on a General Problem
Solving Program,'" University of Michigan Engineering Summer Conferences
(1961), pp. 1-27.

Polya, Gyorgy, How to Solve It, Princeton, New Jersey: Princeton University
Press, 1945,

-252-

UNCLASSIFIED
Security Classification

DOCUMENT CONTROL DATA - R&D

(Security claseification of title, body of abstract and indexing annotation must be entered when the overall report ie classilied)

1. ORIGINATIN G ACTIVITY (Corporate author) 24. REPORY SECURITY C LASSIFICATION
LOGIC OF COMPUTERS GROUP Unclassified
611 Church Street 2b. GROUP
The University of Michigan, Ann Arbor, Mich.

3. REPORT TITLE

A Self-Describing Axlomatic System as a Suggested Basls for a Class
of Adaptlive Theorem Proving Machines

4. DESCRIPTIVE NOTES (Type of report and inclfuaive dates)
Technlcal Report

5. AUTHOR(S) (Last name, tirst name, initial)

Westerdale, Thomas H.

6. REPORT DATE 78. TOTAL NO. OF PAGES 7b. NO. OF REFS
March, 1969 266 9
8a. CONTRACT OR GRANT NO. 94. ORIGINATOR’'S REPORT NUMBER(S)
DA-31-124-AR0-D-483
b. PROJECT NO. 08226~T-T
c. . SJ.H.:‘:OI'\JPQRT NO(S) (Any other numbers thet may be assigned
d.

10. AVAILABILITY/LIMITATION NOTICES

Distribution of This Document is Unlimited.

11. SUPPLEMENTARY NOTES 12 SPONSORING MILITARY ACTIVITY

U. S. Army Research Office (Durham)
Durham, North Carolina

13. ABSTRACT

An explicitly self-describing axiomatic system is presented whose set of
rules of inference continally increases in size as new theorems are proved. A
proof of consistency relative to formal arithmetic is outlined. Modified LISP
programs are the function constants of the system. A class of possible adaptive
theorem proving machines is outlined. Such machines construct proofs by success-
ively refining proof "outlines' which employ heuristics. New heuristics are
generated by the same mechanism used to generate rules of inference and theorems.
In the notation of the axiomatic system, a heuristic or a rule of inference is
itself a well formed formula.

DD "%, 1473 UNCLASSIFIED

Security Classification

UNCLASSIFIED

Security Classification

14.
KEY WORDS

LINK A LINK B LINK C

ROLE wT ROLE wT ROLE wT

INSTRUCTIONS

1. ORIGINATING ACTIVITY: Enter the name and address
of the contractor, subcontractor, grantee, Department of De-
fense activity or other organization (corporate author) issuing
the report.

2a. REPORT SECUNTY CLASSIFICATION: Enter the over-
all security classification of the report. Indicate whether
‘‘Restricted Data’’ is included. Marking is to be in accord-
ance with appropriate security regulations.

2b. GROUP: Automatic downgrading is specified in DoD Di-
rective 5200, 10 and Armed Forces Industrial Manual. Enter
the group number. Also, when applicable, show that optional
markings have been used for Group 3 and Group 4 as author-
ized.

3. REPORT TITLE: Enter the complete report title in all
capital letters. Titles in all cases should be unclassified.
If a meaningful title cannot be selected without classifica-
tion, show title classification in all capitals in parenthesis
immediately following the title.

4, DESCRIPTIVE NOTES: If appropriate, enter the type of
report, e.g., interim, progress, summary, annual, or final,
Give the inclusive dates when a specific reporting period is
covered.

5. AUTHOR(S): Enter the name(s) of author(s) as shown on
or in the report. Enter last name, first name, middle initial,
If military, show rank and branch of service. The name of
the principal anthor is an absolute minimum requirement,

6. REPORT DATZI: Enter the date of the report as day,
month, year; or month, year. If more than one date appears
on the report, use date of publication.

7a. TOTAL NUMBER OF PAGES: The total page count
should follow normal pagination procedures, i.e., enter the
number of pages containing information.

7b. NUMBER OF REFERENCES: Enter the total number of
references cited in the report.

8a. CONTRACT OR GRANT NUMBER: If appropriate, enter
the applicable number of the contract or grant under which
the report was written

8b, &, & 8d. PROJECT NUMBER: Enter the appropriate
military department identification, such as project number,
subproject number, system numbers, task number, etc,

9a. ORIGINATOR’S REPORT NUMBER(S): Enter the offi-
cial report number by which the document will be identified
and controllied by the originating activity, This number must
be unique to this report.

95, OTHER REPORT NUMBER(S): If the report has been
assigned any other repcrt numbers (either by the originator
or by the sponsor), also enter this number(s).

10, AVAILABILITY/LIMITATION NOTICES: Enter any lim-

itations on further dissemination of the report, other than those

imposed by security classification, using standard statements
such as:

(1) *‘Qualified requesters may obtain copies of this
report from DDC."’

(2) “Foreign announcement and dissemination of this
report by DDC is not authorized.”’

(3) ‘““U. S. Government agencies may obtain copies of
this report directly from DDC. Other qualified DDC
users shall request thrcugh

"

(4) ‘‘U. S. military agencies may obtain copies of this
report directly from DDC, Other qualified users
shall request through

”
.

(5) ‘'All distribution of this report is controlled. Qual-
ified DDC users shall request through

"
B

If the report has been furnished to the Office of Technical
Seryices, Department of Commerce, for sale to the public, indi-
cate this fact and enter the price, if known.

11, SUPPLEMENTARY NOTES: Use for additional explana-
tory notes.

12, SPONSORING MILITARY ACTIVITY: Enter the name of
the departmental project office or laboratory sponsoring (pay-
ing for) the research and development. Include address.

13. ABSTRACT: Enter an abstract giving a brief and factual
summary of the document indicative of the report, even though

it may also appear elsewhere in the body of the technical re-
port. If additional space is required, a continuation sheet shall’
be attached.

It is highly desirable that the abstract of classified reports
be unclassified. Each paragraph of the abstract shall end with
an indication of the military security classification of the in-
formation in the paragraph, represented as (TS). (S). (C), or (U).

There is no limitation on the length of the abstract. How-
ever, the suggested length is from 150 to 225 words.

14. KEY WORDS: Key words are technically meaningful terms
or short phrases that characterize a report and may be used as
index entries for cataloging the report. Key words must be
selected so that no security classification is required. Identi-
fiers, such as equipment model designation, trade name, military
project code name, geographic location, may be used as key
words but will be followed by an indication of technical con-
text. The assignment of links, rules, and weights is optional.

UNCLASSIFIED

Security Classification

