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PREFACE

In the relatively short time during which the high speed digital
and analogue computers have been in use, many remarkable applications have
been made. Particularly in the area of simulated behavior of physical
systems the interest has been high and the utility great. While a great
many systems have been programmed and investigated, the general application
of the digital computer to system simulation has not yet been as widespread
as the applications of analog computers. This has been true for many reasons
despite the Inherently greater flexibility and more positive error control
offered by the digital machine. Perhaps the chief reason for this lies in
the more difficult encoding of the analysis. The need to reduce each
analysis to machine code has already resulted in several levels of machine
languages that are designed to assist the user in bringing his problem to
the machine.

Since many engineering problems, of which the system simulation
is a good example, require extensive analysis prior to the time at which
advanced languages can be of assistance, it may be expected that the need to
study a variety of simulations and large systems would result in the develop-
ment of methods to assist the analysis as well as the later computation of
results. The approaches to the assistance in analysis have been varied.

The range of methods extends from the. production of a generalized system
program from which a specific system of the same type may be approximated
by an interpretive selection to more truly analytical programs capable of
- producing other programs to simulate specific systems of rather specific

types.

ii



iii

This paper treats the development of twc techrniques to handle a
very generalized system simulation. The first ftiechnique; referred to here
as The Simulator Program, is a procedure; referred to as an algorithm, for
producing programs automatically on the digital computer that are simulation
programs for very general systems. The second technique; referred to here
as The Stepwise Regression Program with Simple Learning, is an algorithm
for producing analytical expressions and subroutines for use in represent -
ing the performarce of the components of systems. The subroutines may be
used by the programs produced by the simulator program or by other programs
as desired. Together these techniques provide a heretofore unavailable
method for urndertaking the study of large systems.

The cooperation and direction given me by the members of the
doctoral committee; Associate Dean G. V. Edmonscn as chairman, Professors
B. A. Galler, J. J. Martin, N. R. Scott, C. A, Siebert, G. J. Van Wylen
and Mr. R. D. Allen of Consumers Power Company in Jackson, Michigan, has
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BACKGRCUND OF THE STUZY

In order to establish an orientaticn of the developments pre-
sented in this paper, it may prove Zesiratie to review briefly the
developments of earlier workers in pertirent areas. The simulation prob-
lem has attracted the attention ¢f manv workers. The conventional approach
taken by most earlier efforts was the construction of a special purpose
program designed to encompass as general & description of the system to
be simulated as might be feasible. The solution of the simulation of a
specific physical system then dependied upon that system being representa-
ble by some subsection of the more general program. The specific system
was usually selected by means of cortrol parszeters from the more general
program. Experience with such techrinues made obvious the inherent 4if-
ficulty of representing accurately the many variations of the systems
that may be suggested for stuiy. ]

This deficiency led to thre consideration of programs(l> that

produced other programs which ir turn acccmplished the desired simulation.

N

ed as an analytical aid and

[

In this way, the computer began o ve =T
was enabled to generate programs frow s descripticn of the system and a
specified set of physical laws and reiationships with which the system
may be described. DYANA, for exampie, wus able to generate programs for
any system representable by a gereral network zri by the principles con-
tained in Kirchoff's laws an&/cr D'Alembertts principie,

The task of generalizirg the simula'lon problem remained and
the Simulator Program presented Iir this paper is a workable solution of
that problem. Specifically, The gereralization allowed by this technique
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extends the use of the computer for the analysis of any system describable
as a network and whose component parts may be characterized by the appli-
cation of relationships involving the parameters of the system as deter-
mined at the node, or interconnection, points of the network. The nature
of the physical laws and relationships required for the analysis does

not influence the logical structure of the Simulator. Thus; the programs
generated bty DYANA are, in effect, members of the set of programs that
may be generated by the Simulator. The relationships supplied by the

user to characterize the components of his system may then be time de-
pendent or time independent as desired.

The second development presented in this paper concerns the
production of expressions for the prediction of the behavior of physical
phenomena. The methods of "least squares" and multiple regression have
received much attention.(9floﬁll?lg) The stepwice regression technique
of Efroymson as extended by Dallemand offers a powerful technigue to
assist the Simple Learning developed in this paper to extend the treat-
ment of data representation problems to include all orders of interaction
between multiple functions of several independent variables. The step-
wise regression analysis provides the indepenient evaluation required by
the heuristic selection mechanism employed by the Simple Learning program
to generate the terms to be used in the prediction equation for the aata.
In this extension of the techniques of "artificial intelligence" many of
the objections tco the earlier methods of regression analysis have been
answered. Previous methods were often forced to make rather drastic
simplifications of the statistical models in order to allow the problems

to be solved in a reasonable time,; even on the largest and fastest computers.
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The incorporation of Simple Learning has allowed the regression analysis
to gain access to every possible term within the scope of the functions
allowed by the user for all orders of interaction in multiple independent
variable problems and still obtain the desired equations in practically
feasible time. Since the equations generated are often required by the
components of the systems treated by the Simulator, extensions of earlier
methods were made to cause the production of the resulting equations in
subroutine form ready to be used.

It is important to understand that the stepwise regression
portion of the analysis may be replaced by other techniques as improved
methods are developed and still retain the benefits offered by the Simple
Learning methods presented here. At present, however, the stepwise re-
gression analysis as extended here is regarded as g very suitable techni-
que. The extensions include a treatment of the truncation and roundoff
errors generated during the analysis and an improved treatment of the
constant term when the analysis is conducted with respect to the normal
coordinate axes.

The Simple Learning techniques presented are also extended from

(2’5’h’5) The basic principle may be regarded as analogous

earlier efforts.
to learning through reinforcement. By arranging to increment the proba-
bility of an action after encountering success and decrementing the proba-
bility after failure, earlier workers had indicated the potential ability
of a mechanism to simulate learning. Some interesting observations of

random mechanisms had also pointed up possible advantages of an initially

random mechanism that would gradually become more nearly stepwise in its
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action as the reinforcement process took place. Earlier workers also
pointed out some of the pitfalls awaliting learning mechanisms. By in-
corporating the experiences of earliers workers and introducing a "half-
life" concept of reinforcement, the mechanism presented in this paper
displays rather promising properties while retaining simplicity. The
learning mechanism employed by the program is termed "simple" because
the modification of each portion of the selecting mechanism is controlled
by a single parameter and each modification occurs individually when the
success or failure of each portion of the mechanism is determined. The
more complex problem of the interrelation of success and failure patterns
is not treated by the present mechanism.

Thus it may be observed that the contributions of many workers
in many rather diverse areas have served as the foundation upon which
the present work was built. In turn, the development and applications
of the methods and concepts presented here will serve to further extend

this area in the future.
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INTRODUCTION

The simulation of the behavior of physical systems is one of the
most economically promising uses of the digital computer because the simula-
tion process affords the user an opportunity to examine system performance
without requiring a capital investment in the actual hardware of the system.
The simulation of a system also is attractive theoretically because of the
opportunity extended to conduct controlled investigations and to avoid the
"noise" problems associated with actual systems. The simulation process.is
also attractive in those cases in which some degree of hazard is present
since an "explosion" occurs only on paper.

In spite of the obvious advantages of simulation on the digital
computer only & relatively small number of physical systems have thus far
been studied in this way. The reason for this state of affairs hinges
primarily on the difficulty of communicating general system problems to
the computer in the form of a procedure capable of producing the desired
results.

The work described in this paper attacks this problem by producing
two procedures of immediate use in helping to generate system simulation
programs for digital computers. The procedures have been coded and verified
for the IBM 704 computer but the techniques are more generally applicable.
The two procedures are the following:

1) The Simulator Program.

This procedure produces simulation programs

as algorithms in compiler language ready for
translation and execution by the machine.



2) The Stepwise Regression Program with
Simple Iearning.
This procedure produces predicting equations in
subroutine form for the description of the be-
havior of the components of the system being simulated.

Both procedures produce machine translatable programs automatically,
ready for immediate processing by the machine. Taken together the procedures
offercfor the first time a method of direct communication for general system
problems to the machine for analysis and production of algorithms for the
simulation of the system. The use of the machine for analysis as opposed to
calculation is not yet widespread. The implementation of the techniques dis-
cussed in this paper may be of much more general interest in this area.
Specifically, the machine must be presented with methods of proceeding with
a problem when the best available information is only capable of indicating
the relative possibility of success for the alternative paths. Methods of
probabilistic choide and mechanisms for altering the likelihood of choice
from ”experiencef also implemented in the development of the procedures.

The programs discussed contain workable implementations of these methods.
These methods are a first step toward more sophisticated "artificial
intelligence" techniques.

| In order to understand the problem encountered in the generation
of algorithms by a machine, consider the simulation process itself. If a
system is to be simulated, the behavior of each component of the system
must be related to the other components in such a way that the physical laws
and relationships pertinent to the problem are preserved. In the past, the

Preservation of this consistency was the responsibility of the human pro-

grammer. The result of his effort of analysis was a procedure or algorithm
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by which he, or the machine, could proceed step by step from the data sup-
plied to the results desired. In general, the analysis of the system to
\produce this algorithm depends on three kinds of information: 1) The Sys-
tem Definition, 2) The Given or Known Data, %) The Desired or Unknown
Results. The algorithm may be specialized to the defined system and
designed to accept the given data and from this information produce the
desired results. The algorithm must be so constructed that the solution
can proceed from step to step toward the result.

The Simulator Program is designed to produce these algorithms.
The same three basic classes of information are supplied to the Simulator.
The Simulator Program then carries out an analysis of this information
to produce an algorithm capable of the required performance (or, if it
should prove to be incapable of producing the algorithm due to insufficient
or otherwise inadequate information, error diagnostics are produced ).
Because of the possibility that several methods may exist that will yield
the desired results, some interesting heuristic methods must be employed
by the Simulator.

When the program for the particular system has been produced by
the Simulator, it is both printed and punched on cards ready for compila-
tion and execution. The produced program will, in general, require msny
special characteristics of the components of the system to be available
to the program. These characteristics are usually functions of one or
mbre pa¥ameters of the system. The Stepwise Regression Program with Sim-
ple Learning is an extension of earlier stepwise regression techniques
to allow consideration of all orders of interaction in multiple inde-

pendent variable problems.
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The classical approach to such a problem may be shown to be quite ynmanageable
on present (and even projected) computers without drastic simplification. The
Simple Iearning mechanism employed in this program avoids such a pitfall and
allows an accumulation of "experience" to be directed toward the acceleration
of the generation of the predicting equation for the desired characteristic.
The technique has been employed in many varied problems and haé been care-
fully verified in many known cases. The procedure produces the predicting
equation for a given problem together with a complete statistical analysis
and a punched card subroutine ready to be used with the simulation program
(or by any other program, as desired).

The Simulator Program together with the Stepwise Regression Pro-
gram with Simple ILearning allow the direct simulation of the performance
of ény system that may be characterized by a general'network? The use of
these programs to produce specialized programs of each system avoids the
loés of accuracy of representation sometimes suffered in attempting to use
a'general representation in an interpretive mode. Since the information
pfesented to both programs is designed to be falrly easily obtained, the
man-hour cost of programming system simulation problems can be greatly.
reduced. At the same time, revisions of'simulation programs to keep pace
wit@ design and operating changes in the actual system can be made economi-
cally feasible, Finally, the user of these programs during the design
phages can allow study of a greater number of possible configurations than

was previously practical.
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The feature of, perhaps, greatest importance is the opportunity
extended to the user to obtain increasingly accurate representations of
the actual behavior of a system while studying a simulation of the system.
The most recent information available on any part of the system may be
incorporated immediately in the simulation by the techniques described
here. Thus the problem of revising and correcting a former simulation

program becomes quite secondary.



SUMMARY OF RESULTS

Two programs have been produced for assisting the representation
of the performance of physical systems on the digital computer. The Simula-
tor Program is designed to produce the analysis of physical systems in the
form of an algoriihm in machine translatable language. The user of the Simu-
lator Program must supply: 1) The System Definition, 2) The Given or Known
Parameters, 3) The Deisred or Unknown Parameters. The Simulator Program then
attempts to construct the required algorithm for the problem. In doing so,
use is made of a Library of methods pertinent to the system. The library is
accessible to the use:r so that new :seihods may be easily inserted. The methods
are grouped under the heading of Element Descriptions. Thaﬁ is, each poss.ble
element that may occur in the sy:stem 1s described in the Library. New elements
may be easil added ani older descriptions may be revised within the structure
of ihe Simulator Program.

The second program, The Stepwise Regression Program with Simple
learning allows the generation of predicting eguations for the behavior
of the components of the system in a form required by the simulation pro-
grem produced by the Simulator. This program allows the consideration of
multiple independent varieble prorlems with interactions of all orders
allowed., Since the classical approach to this problem is of such megnitude
that opresen' and projected computers cennot adeguately cope with the
solution in many ceses, the Simple learning technique was developed to allow

g solution to be mede.
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The two programs thus allow the simulation of very general physical
systems from a rather basic set of information avaiiable 6n the systems.
The resulting reduction of man-hours of programming should allow the extension
of systems simulation techniques in meny areas not previously practical.
Furthermdre, the availability of these techniques should allow the study,
and thus lead to understanding, of more complicated systems and components

than those previously treated.



I, THE SIMULATOR PROGRAM
THE STRUCTURE OF A PROCEDURE TO GENERATE ALGORITHMS TO

SIMUTATE PHYSICAL SYSTEMS:

In order to understand a procedure that can generate algorithms
to simulate physical systems, first consider the néture of the problem. In
general, a physical system consists of a collection of components or elements
that are inter-connected to each other in various ways.

For example, a typical vibrating mechanigel system consistes of masses,
springs, dampers, levers and so on. These components or elements of the system
are inter-connected to each other to form the desired system. One:such inter-
connection might be the attachment between a mass element and a spring ele-
ment, as an‘illdstration,

The behavior of each component is determined by various physical
laws and relationships that are determined by the nature of the component.

In particular the behavior mey be expressed in terms of the values of para-
meters at the points of inter-connection of the component to the ather
members of the system.

For the general system tHere may be a very large number of differ-
ent components and associated with each component a large number of methods
and procedures that allow the performance to be calculated. In order to
select those procedures needed to produce a simulation of the system
additional constraints must be imposed. These constraints consist of
those parameters for which values will be supplied as initial and/or

boundary conditions.
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For purposes of discussion, suppose that the simulation of a system
is regarded as a method or procedure that will allow the calculation of the
values of the various parameters belonging to the system. .The task of the
simulator program is directed at the problem of determining the method of
calculation just mentioned. The actual calculations of the values of the
parameters will be produced by the program method produced by the simulator
program. The dimulator program enters the problem as an’analyticalbrather
than as a calculational method. It is this use of the coﬁputer on the level
of producing prograﬁs that in turn are used to produce calculations that
allows the most powerful applications of the technique. In so doing, the
program has assumed a very large burden in the solution of system simulation
problems. This in turn will allow the user to study more complicated and
more accurately represented systems.

Specifically, the task of the simulator is not bo be construed
as that of determining all possible values of all possible paresmeters but
rather that of determining the values of specific’ parameters subject to
specific initial and/or boundary conditions. If the procedure for defining
the algorithm can be made quite general then the parameters selected for
display and the conditions imposed can be made quite general. The problem
is always‘that of determining when a sufficient set of information has
been supplied and of producing the procedure when a sufficient set of infor-

mation is present,
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The information requirements are easily set down. The determination
of the sufficiency is most difficult. The requirements are: 1) The Definition
of the System. 2) The Definition of the Components of the System. 3) The
Specification of the Constraints to be imposed on the System.

The Definition of the Systeﬁ consists of the specification of the
elements or components of the system and the way in which these components
are inter-connected. For the purpose of this discussion let the Definition of
the Systembe complete when all of the components of the system are defined and
there are no possible inter-connection points of any component thét are not
connected to some other point. To secure the completeness it may be necessary
to define some components to act as sources, sinks or boundaries.

The Definition of the Components of the System consists of the
specification of the methods or procedures by which values of parameters at
the various inter-connection points of the components may be found in terms
of the values of parameters at the same and other inter-connection points
of the same component. Strictly speaking, completeness of the Definition
of the Components requires an exhaustive collection of all possible methods
of parameter calculation. In other words, every feasible method or technique
that can be applied to a given component must be made part of the collection.
Otherwise, it is always conceivable that a program will not be generated by
the simulator because a technique was omitted from the collection. This will
seldom, if ever, be achieved in practice. Usually the most the Definition

of Components can be expected to do is to embrace the most generally pro-

ductive methods.
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Since the decision of what constitutes general productivity is at
best highly subjective, a procedure charged with constructing a calculational
procedure from these methods must not be involved directly with this decision
or else its utility is almost certain to be limited by the decision. If
possible, the‘simulator procedure should.allow easy extension and/or modifi-
cation of the Component Definitions independently of. the: simulator procedure
itself. That is, the method of analysié.and.use of Component Definitions
should be independent of the contents of the Component Definitions.

The Specification of Constraints imposed on the System consists of
the values of the:.parameters to be constrﬁed as initial and/or boundary
(operating) conditions for the system.. Completeness of these Specifications
is generally dependent upon the completeness of the Component Definitions.

If very complete Component Definitions are available for the system
then it is possible that sevefal different sets of valués of the parameters
can be made to produce a given value of another parameter. For example, in
the superheat region for steam the enthalpy of the steam may be found if the
values of any two independent properties, such as pressure, temperature,
entropy, specific volume and so on, are known. If many methods are avallable
in the componenmtdefinition for the determination of enthalpy then almost
any combination of two. parameters will allow the calculation. If only a
few mqthods have been included in the component definition obviously the
parameters given as constraints must be so chosen that these methods apply.
in other wordsg if the Component Definitions are very nearly complete, then
calculation procedures can be found for almost any set of constraints that
may be given. If this is not the case, then the set of constaints must be

large enough to include those that are needed for the calculation using the
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available methods. In almost every case however there will be some minimum
set of constraints required for any given desired parameter.

The interaction between the Constraints and Component Definitions
for a given system is extremely complex. The determination of a minimum set
of constraints for a given set of component definitions and a given system
definition may be of interest in some cases but the general problem cannot
usually recognize whether a failure to yield an algorithm to produce a par-
ticular result is due to lack of constraints or deficiency in component
definitions. Furthermore, when several alternative calculational methods
exist at one or more points in a system it is possible that a valid pro-
cedure can be found before all possible procedures have been examined.

In addition to the three information requirements previously
mentioned, the generation of a specific program must be viewed as a selection
of a reduced collection of methods and their arrangement to yield specific
values for certain parameters. Otherwise the simulation of a system would
be required to be exhaustive and again this is, in general, not possible.

To be generally useful a procedure for generating a simulation program should
allow for unrestricted specification of desired information and be charged
with the task of establishing a method of calculating this information with-
in the framework of the previous three information requirements whenever
possible.,

The development of an algorithm to accomplish this generation must
be concerned with the recognition of conditions in which it can be established

that a method df calculation cannot be found. This may seem strange until
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it i1s considered that when a method cannot be found and the condition recognized
then it becomes possible to either terminate the attempt or restart the attempt
from another direction. These things could not be done otherwise. If the
situation can be recognized when further progress cannot be made in generating

a program it is then possible to formulate a simple procedure for generating

a program.

A program may be said to be "non-extendable" when there exists at
least one required parameter that satisfies the following conditions: 1) The
parameter is not given as a constraint and 2) there is no method in either
component definition of the two components directly involved with the parameter
that will yield the value of the parameter. For example, suppose that the
current flow is needed through a thermistor and that no method is available
that can produce the current flow value in this case. Then, if further direct
progress is to be made the value must either be given or an appropriate method
must be added to the Component Definition collection. If neither of these
things can be done then the progress depends upon finding an alternative chain
of methods that avoid the need for the current flow through the thermistor.

If there have been no points earlier in the work at which alternative paths
could have been chosen then there is no possibility of the extending the
method beyond this point. The program is said to be '"non-extendable'.

If a program is non-extendable and each previously established
required parameter could be found in no more than one way, then the prob-
lem may be sald to be not well posed. A problem is not well posed, in

general, when there does not exist any collection of methods to yield all
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of the requested information subject to the imposed constraints and the
definitions, It should be noted that a problem may be not well posed even
when several methods exist at previoﬁs stages. The determination of the
well posed condition when this occurs may require an exhaustive investiga=-
tion of all possibili-ies,
An algorithm that uses the definition of a non- extendable program
t0 generate a simulation program for a system is the following:
1) Check to be certain that the System Definition is complete.
That is, determine if th=re is a Component Definition available for every
element of the System I'efinition and if every attachment point is connected
to some other point. (A Complete System Definition may not be correct but
it is capable of analysis.)
2) {heck each attachment point in an ordered search to locate
any point at which there is requested information. A "request" for a parameter
may have occurred in one of two ways, a) the value of the parameter may have
been desired by the user of the program, b) the value of the parameter may
have been required as an input for a method selected previously. A "request"
cannot occur in any other way.
2A) If no such point can be found in the entire system an
algorithm for the simulation of the program has been found.
(If no such point were found in the first search, the problem
is trivial but the preceding statement is still valid.)
2B) When such a point is found, remove the request for
information by one of the following methods:
2Bl) Matching the request with a specified constraint.

That is, if a request result has been given as a
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constraint value then the value of the requested result

is known without any further calculation,

2B2) Finding a calculational procedure that applies

at this point that will yield the requested result,

If more than one method applies, pick one and indicate

that a choice has been made.
2C) Whenever the request is removed by matching with a con-
straint no new requests are created, Whenever the request is
removed by finding a method, the method may introduce new
requests for information, When this is true, cause the entire
step 2 to be repeated again after completing the current search.
2D) Whenever a request cannot be removed, the program may be non-
extendable, Test the choice indicator and a) if no previous
choices have been made, the program is not well posed, b) if
previous choices have been made, cause the program generation
to return to an earlier state, make another choice and try
again,

3) Repeat the search indicated by step 2 until 2A is satisfied
or until an upper limit of numbers of trials have been exceeded or until
the problem is shown to be not well posed.

L) Whenever step 2A is satisfied, the required algorithm consists
of the methods found by step 2B2 executed in the reverse order of their deter-
minetion, That is, the first method determined yields the last request
required of the program. The second yields the next to the last and so on.

If any method introduces new requests, these results must be found before
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‘the method can be used, This is precisely the situation that will be
obtained since the methods to determine these results will be found later,
the execution of the methods in reverse order will produce the results
before they are needed by the method requesting them.

An essential paft of the previous procedure lies in the technique
of picking a method whenever more than one method is available. Obviously,
if an inflexible selection is made, thet is, always choosing the "best"
method (no matter how "best" may be defined), repeating the generation when
a program has been found to be non-extendable would always lead back to the
same point. Therefore, the selection should be made flexible and, in
particular, allow equal chance of selection for equally promising methods
and occasionally the selection should allow choice of methods not locally
"best." Thus the technigue must set some scale by which the characteristic
"equally promising" and, in fact, the degree of "promise" can be measured._
Many such scales could be specified. One scale that is easily determined
and contains some measure of the "promise" c¢haracteristic is the ratio of
the number of useful results produced by a method to the number of new
information requests the method will make, Since the objective is to
eliminate the requests by finding methods that require only constraint
informatién, such a scale would place greater weight on methods that make
the smallest number of new reéuests,but would also consider the number of
useful results yielded,

For example, a method that requires one new result while yielding
one requested result is equally promising when compared to a method requir-

ing four new results to yield four requested results, However, a method
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yielding four requested results and requiring only two new results would

be scaled twice as promising as either previous method., On this scale, a
method that produces any results without requiring any new results would
automatically be selected., Also a method that produces no results is
automatically rejected. The important point to be understood is that

the selection cannot be fixed so that the method of greatest finite weight
is always selected since it is possible that one of the parameters that

this method would require may not be capable of calculation due to incomplete-
ness of Component Definitions or Constraint Specifications while a method of
less weight may avoid this difficulty., However, the methods of greatest
weight should tend to be selected if the program is ever to be finished.

The result of these considerations is to produce a selection method that
operates probabilistically in the choice,

The implementation of this procedure in the form of a program for
the digital computer requires two tasks to be performed: l) The creation
of an artificial language to allow communication of the information concern-
ing the system between the human user and the machine program, 2) the
preparation of the foregoing simulator procedure as a program capable of
accomplishing the translation of the artifical language into a simulation
program. Since the first of these tasks is strongly associated with the
human and his simulation problem, while the second task may, for the casual
user, be regarded as a problem removed from his immediate consideration, the
discussion of the implementation of the simulator is divided into two parts
along this division., Of course, the second part is vital to the use of the

first but its operation is of concern to a relatively small number of people
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by comparison. It must be understood, however, that the generation of the
simulation programs is accomplished by the translator. The translator is
thus the procedure of greatest importance in the solution of the simulation

problem on the machine.



IMPLEMENTING THE SIMULATOR

Communication of the System Information to the Program

Communication of the information concerning the system to be
simulated to the simulator program is the first, and for the simulator
user, the most important, step in the generation of a program to simulate
the system. This transfer of information is accomplished through the medium
of an artificial language that is designed to be reasonably like the user's
own and, at the same time, contain a structure that is recognizable by the
program so that the information content may be extracted. Thus the user
may expect toruse familiar alphanumeric characters and standard punctuation
symbols in all but a few cases,

Since the user is often not acquainted with the detailed operation
of computing machines, some effort has been made to remove restrictions in
the formats for source program preparation., (The source program is the
collection of punched cards containing the userfs system information. The
simulator program produces an QEQEEE program from the source program. The
object program is a machine translatable program from which the machine can
produce the desired simulation when supplied with data.) In general, the
source program may be punched anywhere in columns 1 through 72 on IBM cards.
Statements may run over from card to card without requiring special continu-
ation symbols, While most users will tend to place a single statement per
card for convenience in checking and correcting source programs, more than
one statement may be placed on a card, if the user so desires, OStatements

are terminated with a period (decimal point symbol) as in conventional

-19-
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writing. In a few cases, notably in Element Descriptions, where the user
wishes to convey a specific object program language to the simulator,

format restrictions will be imposed and emphasized at that place.

Structure of the Simulator Source language

Information must be transmitted to the simulator from three basis
areas and, if desired, further implemented by a fourth "utility" area. The
basic areas are 1) the System Definition, 2) the Input-Output Requirements,
and 3) the Characterization of Component Performance. In every problem, the
user will be involved with the first two of these areas directly, If the
problem requires modification or extension of the libraries on Component
Performance, the user will also be involved in the third area. The language
requirements for each area are inter-related so that the user may carry over

most of the structure from one area to the next.

I. The System Definition

In order to simulate a system, the specific system to be
considered must first be separated from the set of all possible systems
allowed by the simulator. This requires the communication of 1) the names
of the actual components that are found in the system, 2) the way in which
these components are attached (connected) to each other.

This information is transmitted to the simulator program by
statements occurring within the range of a CONNECTIONS declaration. A
Declaration does not perform any calculation but instead prepares the
program to receive the information that follows. The range of any declara-

tion begins immediately after the declaration and continues until terminated
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by any other declaration or by the end of input data cards,' The form of

the system definition declaration is: CONNECTIONS,

Connection Statements

Connection Statements are chains of symbolic nemes transmitting
the precise components and attachments and their interconnection to the
simulator. The symbolic names are of four types:

1., Element Name

Any six or fewer alphanumeric characters may be an Element
Neme, The Element Name used in a Connection Statement must either agree
exactly with the corresponding Element Description Neme for that component
or be made to agree by use of a synonym. There are no restrictions as to
the order of appearance of alphabetic or numeric characters.,

Examples of Acceptable Element Names

PUMP; TRBINL
6165 12ATT
MASS; SPRING; DAMPER

2, Element Identification

Since more than one element of a given.kiﬁd may be found
within a sysﬁem means must be provided to identify each different element,
Since the deéired effect is to convey uniqueness of the system, the user
may use any six or fewer alphanumeric symbols to identify the elements of
the system. If an element is identified, all occurrences of the same
element must exactly agree in identification., If an element occurs only
once in a system, the element identifier may be omitted,

Ixamples gi.Acceptable Identifiers

1; 25 3
A; B; C
Al; 2B; 3C6
MATIN; SCNDRY
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3. Attachment Name

Every element enters the system definition by the way in
which it is connected to the rest of the system. That is, an element
name cannot, except for unary and binary elements, occur without an
associated attachment name. The attachment name consists of six or less
alphanumeric characters and must agree with the attachment names given
in the Element Description for the element associated with the attachment
name. If the user desires the agreement can be obtained through the use
of synonyms.

Examples of Acceptable Attachment Names

INLET; EXIT

1l; 2

ENTRY%; OUTLET

GRID; PLATE; CTHODE; SCREEN

4, Attachment Identification

If more than one occurrence of an attachment name with its
identified element exists in a set of CONNECTIONS statements, an ambiguous
situation arises. The attachment, in effect, has been made to several
different places with but one physical contact point. The user has the
option of defining an element with branching or Jjunction properties to
resolve this problem or, if it is more convenient or desirable, the op-
tion of writing the element description of the component to allow for
attachment identification. The attachment identifier is any alphanumeric
name of 6 or less characters. A unique identified attachment of an iden-
tified element may occur only once in each program. The acceptable forms
are like those of element identifiers. As with element identifiers, the
user is free to create whatever symbolic attachment identifiers that may

be needed.
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The Connective, TO, and Connections Punctuation

The foregoing forms of symbolie names are sufficient to define
a wnique connection point in a system. Let the following generalized

symbolic names be defined:

Let ELL be any allowable element name.
E1DL be any allowable element identifier.
AT1 be any allowable attachment name,

AIpl be any allowable attachment identifiers.
The following forms of connection points are then allowed:

ELL(AT1) if there is only one element ELl and only one
AT1 on EL1 in the system.

ELl, EID1(AT1) if there is more than one ELl but only
one ATl on ELl, EID1,

ELL(AT1, AID1) if there is only one ELl but more than
one ATl on ELl,

ELl, EID1(AT1, AID1) if there is more than one ELl and
- more than one AT1L on ELl, EIDI1,

Let CONN be any of the connection point forms above,
ELl (AT1)
con - 22 ¥, 62
ELl, EID1 (AT1, AID1)
Then a CONNECTIONS Statement is of the form: CONN, TO, CONN.
The connectivé, TO, establishes the joining together of the connections,

The punctuation should appear as written in the definition,

Examples gf.Acceptable CONNECTIONS Statements

PUMP1, A23 (OUTLET, B), TO, HEATER, 5(INLETL).
616, 1(PIATE), TO, XFRM, OUTPUT (TAPl, 3).
SPRING, 15B (END1), TO, LEVER, 6C, (APT3).
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The Special Cases of Unary and Binary Elements

The unary elements (one attachment) and binary élements
(two attachments) allow special treatment‘in writing connections state-
ménts, These elements may be written without specifing attachment names
since the attachment is immediately:obtained form the context, If fhe
full connection statement notation is used, no error wiil result but_some
saving in programming will be lost. The simulator program will assign the
attachment names 1 and 2 to binary elements and the attachment name 1 to
unary elements. The user must take care to use these nemes if reference
is made to these elements using the complete notation.

Examples 9£ Connection Statements with Unary and Binary Elements

PUMPL, 16(OUTLET), TO, PIPE, 23, TO, HOTWEL.
2N133, 1(CLLCTR, 1), TO, CAP, 3, TO, 2N132, L(BASE, 1).

II. The Input-Output Requirements

In addition to the System Definition, the user must state the
information requirement to be imposed on the system. That 1s, the parsmeters
for which values will be supplied as data for initial and/or boundary condi-
tions and the parameters for which the user expects the program to produce
values must be stated to thé simulator. These parameters are listed under
one or the other of the input-output declarations: 1) INPUT PARAMETERS.

2) DESIRED RESULTS. The user must give the source program the appropriate
declaration followed by a list of the pertinent parameters. The list of
parameters consists of 1) the name of the parameter, 2) the symbolic loga-

tion of the parameter in the system,
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Parameter Names

Parameter names are 6 or fewer alphanumeric characters of which

the first character must be alphabetic. These nemes must agree exactly

with the parameﬁer names used by the element descriptions, Synonym ﬁodifica-
tion is not allowed.

Examples of Acceptable Parameters (with Assoclated Connections)

PRESS (SUPHTR, 1(EXIT)).
VOLTS (6SNT, 3(GRID)).

Specification of More Than One Parameter at a Point

More than one parameter may be specified at a point by giving a
list separated by commas and followed by the point designation. For example:
FLOW, PRESS, TEMP (TRHEIN 1, 1(INLET)).
FORCE, VELCTY, ACCIRN (LINK, 3(END1)).

Parameter Range

The range of the input-output requirements of a parameter is
established by the point designation, If the point designation is ELl,
EIDL (AT1, AID1) the parameter requirement will have the range of exactly
one point. If the designation is EL1, EID1 (ATl) and there is more than
one AT1 on’ ELl, EIDL in the system def'inition, the range will be for all
ATl on EL1l, EID)}. If the designation {s ELl (AT1), the range is for all ATl
on;all ElLl., In general the range is defined to cover every connection bear-
ing the . designation, This concept is very useful for writing parsmeter
input~output requirements but may trap the unwary user. (If for exsmple,
the user gave the designation EL1l, the effect is to place the parameter

requirement at every attachment on every occurrence of ELL,)
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IIT. Characterization of Components

The simulator must have precise information concerning the
way in which the physical laws or relationships are to be treated for each
component in the system. Fundamentally, the problem is one of allowing
the program analytical access to a large collection of possible methods.
The methods are catalogued as to the input information required and the
output results produced. The simulator program then searches the catalogue
for the most appropriate methods to use in the generated program.

If the library of component descriptions is complete for a given
system, the user will obtain a program to simulate the performance of the
given system after supplying only the System Definition and the Input-
Output requirements, If the component library is inadequate for any
reason the user must then supply additional information concerning the
component, This is done by using the declaration "ELEMENT DESCRIPTION."
followed by a collection of assertions and statements conveying the

information.

Assertions Within Element Descriptions

An Assertion, like a declaration, conveys special infarmation to
the simulator program but unlike the declaration does not terminate the
scope of the declaration., The "ELEMENT DESCRIPTION." language has four

assertions and two forms of statements.

Element Name Assertion

The element name assertion defines the six or less alphanumeric

symbolic name by which the description will be recognized. This is the true
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name of the element description. Let ELNAME stend for any symbolic
name, then the element name assertion is: NAME OF ELEMENT ELNAME.

Examples of Allowable Element Name Assertions

NAME OF ELEMENT PUMP.
NAME OF ELEMENT 2N133.
NAME OF ELEMENT SPRING.

Parameter Scope Assertion

So that an attachment may be identified, the concept of parameter
scope must be implemented. The parameter scope concept classifies parameters
into Broad Scope parameters and Narrow Scope parameters by applying the
following rules:

A parameter is a Broad Scope parameter if when considering
this parameter at an identified attachment it is true that when
the value of the parameter has been established at any one of
the identified attachment points it has automatically been
established for every other identified point of that attachment.

A parameter is a Narrow Scope parameter -otherwise. In
particular, a parameter is a Narrow Scope parameter when a
requirement for a value of this pérameter‘at an attachment
point automatically requires individual determinations of
the value of the parameter at each identified point of the
attachment,

The user may declare a parameter to be of Broad Scope with the

assertion: BROAD SCOPE PARAM1, PARAM2, PARAM3, where PARAM1, PARAMZ,
PARAM3 stand for any symbolic parameter names.

The simulator program will assume a parameter to be of Narrow

Scope unless otherwise specified in every component description using the
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parameter contained in either the Permanent or the Temporary Library.

A parameter not used by an Element Description is thus excluded from
this assumption. Failure to properly assert the scope of parameters may
result in failure to generate programs that should lie within the scope
of the simulator, but programs generated will yield correct results even
though redundant calculations were programmed.

Examples of Parameter Scope Assertions

BROAD SCOPE PRESS, TEMP.
BROAD SCOPE VOLTS,

Typical broad scope parameters are pressure, temperature, voltage,
since if these parameters are established at any identification of any
attachment all other identifications of the same attachment must have the
same value for the parameter. Typical narrow scope parameters are flow,
current and similar parameters since the value for the attachment requires

the values at every identification of the attachment.

Library Status Assertion

The elevation of an Element Description to Permanent Library
Status should be made only after the Element Description is throughly
checked and very generally useful. When the user feels that these require-
ments are met the status may be made permanent by giving the assertion:
PERMANENT.

After an ELEMENT DESCRIPTION is entered in the Permanent Library
it may be removed only by rewriting the entire Permanent Library. Once
entered in the Permanent Library the Element Description does not have to

appear with the source program deck to generate programs using the element,
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The preceeding three assertions may be made in any order but if
given, must follow the Element Description declaration, and preceed the

first Statement Collection assertion for a gifen element description,

Statement Collection Assertion

The assertion Statement Collection prepares the simulator so that
the statements following the assertion will be processed to form the element
description capability, The statement collection assertion has the form:

STATEMENT COLLECTION,

Collection Capability Statement

Immediately following the statement collection assertion, the
collection capability is stated. The capability language conveys the input
parameter requirements and the result capability of the'collection. The
parameters are glven in exactly the parameter language form of the Input-
Output requirements, The Collection Capability requirements add three

special words to the simulator language; 1) WITHOUT, 2) THEN, 3) ESTIMATE,

The Connection Implication Then

The word then set off by commas separates and identifies for the
simulator the output results of a statement collection, This may be best
illustrated by example,

Suppose the user wishes to convey to the simulator the capability
of an element description that would allow the determination of enthalpy at
& point if pressure and entropy were known, This capability might be

expressed: PRESS, ENTRPY(OUTLET), THEN, ENHIPY(OUTLET).
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A capability statement may involve any number of input parameters
and any number of output results but only one capability statement may be

given by the user for each statement collection.

The Restrictive Without

To avoid the problems associated with having many similar element
descriptions for components that are basically alike but have different
attachments the user is permitted to restrict a Statement Collection to
apply only to those elements of the type that are without certain attach-
ment points. For example, this allows one element description to be written
for a turbine stage and treat both stages with an extraction point and
stages without an extraction point. The collection handling.a turbine
stage without an extraction might use the capability statement:

FLOW (INIET), WITHOUT (EXPT), THEN, FLOW (OUTLET).

Clearly the word without conveys the information required to

prevent the use of the statement collection that would follow the capability

statement in the case of the turbine stage with an extraction point.

ESTIMATE, The ITterative Solution Collection Indicator

Often physical systems are simulated most conveniently through
iterative algorithms. That is, the program is so structured that an initial
estimate is improved by repeated calculation. If the user wishes to present
a collection of MAD statements to the simulator library to allow the use of
such a technique, the form is such that useful results are apparently
produced without requiring any input information. Such a collection EESEEQ

be used only if the parameter produced by the collection has been calculated
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independently by some other m.ethodn In order to inform the simulator that
8 statement collection is iterative in form the word ESTIMATE is given
followed by the list of parameters to be estimated (and later calculated).
When this is done, the simulator will allow the use of the iterative
collection only when the parameter has been calculated by some other means
later in the program.

An acceptable capability statement for the ESTIMATE control word

is: ESTIMATE, FLOW (EXTRCT).

Restricted Collections

Certain types of statement collections that are extremely useful
in writing element descriptions are such that if they occur in a program
they may not be used more than once at any given attachment point. As an
example of such a collection consider the continuity equation for mass flow
applied at a branching junction. Suppose, for illustration, that there is
a single inlet stream designated at the attachment INLET but five outlet
streams at the attachments EXIT, 1; EXIT, 2; EXIT, 3; EXIT, 4 and EXIT, 5.
If the flow were found at the inlet and at exits 1, 2, 4, 5 then continuity

allows the flow at 3 to be found by the relation:

i=1
i£3
Clearly this is a most useful collection form but its use must
be restricted to one occurrence at any given attachment. Of course, the
collection may be used once and only once at any pertinent attachment point

in the system and, therefore, the collection may appear several times in a

program, each time at a different attachment.
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The collection capability statement for this type of collection
uses an ildentified attachment name for at least one of the attachment names
that apply. The capability statement for the preceeding illustration is:

FLOW (INLET), FLOW (EXIT, i), THEN, FLOW (EXIT)
or the equally correct forms
FLOW (INLET), FLOW (EXIT), THEN, FLOW (EXIT,j)
or
FLOW (INLET), FLOW (EXIT, i), THEN, FLOW (EXIT,J)

Note that the symbols i and J are completely arbitrary and therefore
open to the user's choice,

Only one form is not recognized as meaningful by the simulator.
That form omits both occurrences of the identified attachment on the opposite
sides of the implication THEN, The previous illustration written incorrectly

is:
FLOW(INLET), FLOW(EXIT), THEN, FLOW(EXIT)

This form effectively says that the exit flow is known if the
exit flow is known. This is not meaningful to the simulator because of

the apparent redundancy.

The Collection of Statements

Immediately following the capability statement the user must
supply the program statements that will produce the results élaimedo
This simulator program adopts the Michigan Algorithm Decoder language
as the medium for the program statements. The user must write the
Statement Collection conforming exactly to the format and coding restric-

tions and conventions of that language. Complete details and manuals for
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the M,A.D, language aré evailable from the Camputing Center of The
University of Michigen. It is presumed here that the user is familiar
with the M,A.D. language.

The simnlﬁtor progrﬁm_allcws the complete structure of the M.A.D.
language to be employed in;implementing statement collections. Two special
symbols are the multiple punch symbols plus zero (3) and minus zero (§).

The plus zero 1s punched by deéressing and holding the multiple punch key

on the IBM 026 keypunch and then striking the plus sign and the nmumeric zero.
The resulting combination of holes in the IBM card is 12-0. (The egquivalent
12-2-8 cambination will not be read properly by the peripheral Tlk Card Reader.)
The minus zeré is produced by depressing aﬁd holding tﬁe multiple. punch key and
then striking the minus (not the dash) and the zero, The resulting combination
of holes is 11-0, (The equivalent,li~2~8 will not be read ﬁroperly by the

T14 Card Reader).

These symbols function as special brackets or parenthesises for
the simulator. Since the user should have no need far these symbols in his
M.A.D, statements their use 1s specifically restrictedbto convey information

from the M.A.D. statements to the simulator.

Meaning and Use of the Symbol O

The symbol D is used to delimit two types of staetement segments;
1) function substitutions, 2) floating statement labels,

The function substitution use allows modifications to be made in
the actual program generated by simulator at the time of the execution of
the geﬁeration¢ For example, suppose that the element description for the

element TRBINE; has need for the stage efficiency of the turbine stage and
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the different turbine stages require different functions to describe the
efficiency.

The statement collection might be written:

EFF=0ETAQ. (T) FLOW( INLET )JEJ')
and at execution of the program, if this collection were required archeck
would be made to determine whether a substitution of names was desired for
ETA. Thus the program might be made to produce ETAl for ETA when stage one
used, ETA2 for ETA when stage two is used, and so on. If no substitution
is given at execution time, the program will use ETA. The 0 symbols are
deleted from the object program.

The floating statement label allows the use of statement labels
in statement collections. Since an element may appear any number of times
in a system and the same statement collection might therefore occur any
number of times in a program simulating the system, the user must not use
fixed statement labels within a statement collection. If this were done
the program generated might be ambiguous., Floating statement labels allow
the simulator to generate unique statement labels and thus eliminate any
ambiguity in labels.

The user wishing to use a floating statement label writes:

O* XK
Where the X represent any six or less alphanumeric character statement
label the user may care to use in his statement collection. The floating
statement label is initiated by the § followed by two asterisks () and
i1s closed by the §. The simulator will generate a unique statement label,

replace the entire floating statement label by the unique label and use
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this unique label whenever the same floating statement label is found in
this local statement collection, Should the collection appear ageain in
the object program another unique statement label will be generated.

Example of Floating Statement label

THROUGH {**AZ, FOR I = 1, 1, I.G,10

WHENEVER T.G. TMAX, TRANSFER TO O%*AQ

0%¥*A0 CONTINUE

_l..
The Meaning and Use of the Symbol O

The symbol 6 is used to delimit the parameter and attachment
names for which the simulator must generate unique variable names of 6
or less alphanumeric characters, If it is possible to extract the first
three characters of the parameter name and produce a unique symbol, this
will be don¢, In this way the mnemonic significance will be preserved so
far as possible., If conflicts occur, the simulator will generate a unique
symbol for the parameter and use this symbol throughout the object program.
In generating the unique symbol the procedure is to first build up a three
non-blank alphabetic character symbol and if conflict still exists modify
this symbol with probability 0.10 of changing the first character to a
random alphabetic, probability 0.30 of changing the second character to
a random alphanumeric, and probability 0.60 of changing the third character
to a random alphanumeric. The process continues until a unique symbol is
generated, A maximum of TO different parameters may occur at eachattach-

ment in any system to be simulated.
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Let PARAM represent any true parameter name; ATTCH represent any
true attachment name; AID represent any attachment identifier, then the
+
following forms are allowed within the scope of a pair of O symbols:

+ +
0 PARAM (ATTCH, AID) O
5 PARAM (ATTCHE) &

5 (arTcH, ATD) &

+ +

0 ATTCH, ATD O

+

0 (ATTCH) b
6 ATTCH 6

No other formé are permitted within the scope of 65_

The attachment within the scope of the 6 will cause a unique three
digit attacq%ent point number to be determined from the System Definition,
The unique parameter name code and three digit attachment code are combined
to form a six character variable name for use by the M,A.D. translator. In
case no parameter occurs in the 6 scope, as in the latter four allowable
forms, the parameter code is generated as three blank columns, The user
may use this feature in whatever way may be logically useful in his state-
ment collection.

Because of possible ambiguity, the user may not use more than
one identified attachment with a given statement. Any number of occurrences
of the same identified attachment may appear with the same or different
parameter names within the same statement, When an identified attachment
is encountered, the simulator will produce a copy of the statement for

every identified attachment occurring in the System Definition for the

identified element concerned with this statement collection.
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The only exception to this rule occurs when a statement
collection involves an identified attachment name agreeing exactly with
the point of attachment in the system that caused the collection to be
chosen. For example, suppose that the point OUT is identified on some
element and that a parameter, say PRESSR, occurring at OUT has céused a
collection to be selected in which the flow at OUT is treated for identified
attachments named OUT. 1In this case, a copy of the statement will be pro-
duced for every identified attachment OUT except the current one for which
the parameter PRESSR was required. The "all except the current point"
rule thus becomes "all points" if the current point is not of the same
name, Furthermore, if the attachment name within the B scope 1s not
identified the rule is to use the current point designation if the name
agrees with the attachment name, otherwise use the first occurrence of the
attachment name on the current element encountered in the System Definition.

These rules allow the user of the Element Description Library
t0 write simple but very powerful statements involving identified attach-
ments, Summarizing, the user may:

1. Write a collection referring to all identified attachments
of an element.

2. Write a collection referring to all identified attachments
except the current one, if the current point name agrees with the
identified attachment.

3., Write a collection referring only to the first occurrence
of an attachment name or to the current point if it has the same name,

with priority awarded to the current point,
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+
Examples of the Use 9£ 0.

+ + +
EXECUTE TR BIN1, (OPRESS(INLET)O,OENHLPY( INLET)
=+ + F + - -
1 6, OPRESS ( OUTLET )0, OENHLPY (OUTLET ) O, OETAO
+
2 FLOW(OUTLET)O

The numeric 1 and 2 in column 11 are continuation marks exactly
as in the usual M.A.D. language.

The following group of statements might be used to sum the current
flow at an attachment that may be identified.

CURRNT =0,
+
CURRNT =OCRRNT(BASE, 1)0+CURRN T

If K other components were attached to BASE by using attachment
identification in the System Definition the result of the two previous
ELEMENT DESCRIPTION statements will be K+l object program statements that
will produce the total current flow at the BASE attachment.

All other characters occurring outside the scope of 0 and/or
6 symbols, including blanks, are automatically passed directly to the
object program. Correct M.A.D. card formats are automatically produced,
as are continuation cards if needed, Remark cards are automatically produced,

as in M.A.D. by placing a character R in Column 11,

End of Element Description Declaration

As many statement collections can be given as may be required to
completely state the performance characteristics of the component. When
the description has been completed the process is terminated by giving the

declaration: DESCRIPTION FINISHED.
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This declaration must be given, Failuyre to do so will cause

a simulator error that will finally throw the job off the computer.

Example of an Element Description

The following element description is intended to illustrate the
Element Description Language and would undoubtedly require more capability
to be of general use. The increased capability may be obtained by adding

as many more statement collections as needed,

ELEMENT DESCRIPTION. NAME OF ELEMENT TRBIN. BROAD
SCOPE PRESS, TEMP, PERMANENT,
STATEMENT COLIECTION,
FLOW (INLET), FLOW(EXPT), THEN, FLOW (EXIT).
FLOWL=0
FLOWL=FLOW1+0 FLOW (INIET, 1)0
FLOWL=FLOWL-D FLOW (EXPT,1)d
SFLOW(EXTPO=FL.OWL
STATEMENT COLLECTION.
PRESS{ INIET) FLOW(EXIT), THEN, PRESS(EXIT),PRESS(EXPT).
SPRESS (EXTT ) 6=OPRESS ( INTET) 0xBPRATIOO. (BELOWlﬂ(_EXII )0)
WHENEVER FIRST, READ FORMAT DATA(1), PDPOEXPTO
EPRESS (EXPT)0=(1. ~PDPOEXPTO ) «OPRESS (EXTT )5
STATEMENT COLIECTION,
PRESS, ENHIPY, FLOW (INLET), PRESS(EXIT),
THEN, ENHLPY (EXIT), KWH(SHAFT).
FLOW=0.
FOW=FLOW+OFLOW( INLET, 1)6
EXECUTE TR BINL, ( BPRESS(INLET 6, ey ( TNZET)
10, OPRESS EXIT)O OETAO. (FLOWL), FLOW, OENHLPY
> (EXTT)D, OKWE(SHAFT)0)
EQUIVAIENCE éﬁPRESS(INLET )0, SPRESS ( TNIET, 1)0)
EQUIVALENCE(SPRESS (EXTT )6, GPRESS (EXTT, 1)6)
STATEMENT COLIECTION .
FLOW(IN_LFET) WITHOUT(EXPT), THEN, FLOW(EXIT).
OFLOW(EXIT) =0,
OFLOW(EXTT)6=0F LOW(EXTT) S+ SFLOW( TNIET, 1)5
DESCRIPTION FINISHED.
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IV. Utility Declaration

The foregoing three areas of information constitutea
necessary and sufficient amount of information for the simulator program
to accomplish the generation of programs. There are some additional
features of the simulator language which are not strictly essential but
which allow the user to produce better programs in some cases and to
produce programs more easily in others, Still other declarations are
for use in "housekeeping", that is, for making the job of Library Main-
tenance easier. These declarations and their associated statements are
called the "utility" declarations., The declarations are:

1) FUNCTION SUBSTITUTIONS.
2) SYNONYMS.

3) NEW ELEMENT TAPE,

L) NEXT SET OF DATA,

FUNCTION SUBSTITUTIQNS. Declaration

When the author of the library Element Descriptions so desires
the descriptions may be written so that minor changes can be made at the
time of the program exscution., The proper method of writing this capability
into Element Descriptions was treated in that section. The remaining task
is that of allowing the user to exploit this capability in his programs.
This is done by giving a FUNCTION SUBSTITUTIONS. declaration followed by
function substitution statements. The declaration form is: FUNCTION SUB=-

STITUTIONS.,

Function Substitution Statements

The function substitution statements convey the substitution to

be made and the scope of the substitution to the simulator. Any six or



=47 -

less alphanumeric character word may be substituted for any other word
enclosed in 6 in a statement collection, The form of the statement is
defined as follows:

Let NUWORD De any six or less character new word.
OILDWRD be any six or less character old word.

Let EL be any symbolic element name.
EID be any symbolic element identification.

Then the allowable function substitution forms are:
NUWORD, OLDWRD.
NUWORD, OLDWRD(EL)..
NUWORD, OLDWRD(EL,EID).

The effect of this statement is to replace OLDWRD when it occurs
within 5, and at the element specified, by NUWORD. The scope of the sub-
stitution is controlled as follows:

1) For the statement form, NUWORD, OLDWRD(EL,EID).
The substitution will take place only for statements
generated for EL, EID.

2) For the statement form, NUWORD, OLDWRD(EL),
The substitution will take place for statements generated
for any occurrence of EL.,

3) For the statement form, NUWORD, OIDWRD.
The substitution will take place for any object program
statements generated.

If function substitution declaration is not used, the original
contents of the O in the statement collection will be used, If the user

misspells the OLDWRD, the substitution will not occur. If the user mis-

spells the NUWORD, the object program will contain the error.

Examples of Function Substitutions

Suppose that the element description TRBIN contains the state
= m +
ment: DELTAH=DELTAH*OETAO. ( BFLow( INLET)O)

and several components TRBIN occur in the system. The characteristics of
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each turbine may be different and the user may obtain different functions
to represent these characteristies by using the following shatements:
FUNCTION SUBSTITUTIONS,
ETAl, ETA(TRBIN,1).
ETA2, ETA(TRBIN,2).
ETA3, ETA(TRBIN,3).

When this is done the object program statements will use the

functions ETAl, ETA2, and ETA3 in place of ETA,

SYNONYM. Declaration

The synonyms declarstion allows the use of different symbolic
names in writing connection points. This declaration also may be used to
condense the connection point symbol strings to a single word or a few
words., Both of these uses are introduced for the convenience of the user.
It is not necessary to use synonyms to write programs, but the use of
synonyms may be of considerable assistance,

The form of the declaration is: SYNONYMS,

The synonyms declarstion is followed by any number of synonym

statements,

Synonym Statements

Synonym statements convey to the simulator the true symbolic
name or string and the symbols that are synomynous with the ftrue name or
string. The only restriction is that the true name or string must he first
part of the statement. Equal sign symbols are used to separate the true
part of the statement and any synonymous parts. If any portion of a
connection symbol string is written as a single zero (0) that portion

will be left untouched, Let the following symbols be defined:
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Let ELT be any true element name;
EIDT De any true element identification;
ATT be any true attachment name;
ATDT Dbe any true attachment identification;
ELS be any element name synonym;
EIDS Dbe any element identification synonym;
ATS be any attachment name synonym;
AIDS Dbe any attachment identification synonym.

Then the allowable forms of synonyms are:

ELT=ELS; =ELSo=- « «=ELS
0, EIDT—O EIDS,=0,EIDSp=" - +=0,EIDS,.
Type 1 (ATT)=(ATS 1—% Ts)2=---..(ATs)n.

(0,AIDT)= (o ATDS).=(0,AIDS) --na—-(O,AIDS)n.

1=(

The single zero must be punched as indicated. The substitution of

2

the true name will occur unconditionally for any synonym on the right.

ELT, EIDT=ELSy=*--=ELS,

ELT, EIDT(A'.I‘T%—ELS = o-ELS

ELT, EIDT(ATT,AIDT _Ele_m ELSn.
Type II ELT(ATT)=ELS1=- - +=ELS.

ELT(0,AIDT)=ELSy="* - =ELS.

(ATT,AIDT )=(ATS l:-”_(ATs)

In the preceeding group, the occurrence of the single synonym

symbol will cause the use of the entire true symbol string.,
ELT ATtpr: ATS)q=---=(ATS),.

Type IIT ELT(0,AIDT)=(0,AIDS ) =- “_(o AIDS)y.
ELT(ATT,AIDT )=(ATS)q=¢ e =(ATS),.

In the preceding group, the occurrence of the synonyms are re-
stricted to apply only to the true attachment names and/or attachment
identification associated with the true element name independent of element
identification,

0,EIDT ATT) (ATs)J(—»« -=(ATS)

Type IV 0,EIDT(ATT,AIDT )=(ATS) =m=?ATs)n,
0,EIDT(O, AIDT) (o, AIDS%]_-&“_ (o ,AIDS). .
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In the preceding group, the synonym stustitution occurs for all
elements identified EIDT regardless of the element,

Type V ELT, EIDT(ATT,AIDT)=ELS,EIDS(ATS,AIDS)l:° - »=EL,
EIDS(ATS,AIDS)

n°

In this types of synonym, the synonymous groups are replaced by
the true names in a one to one substitution,

No other synonym forms are allowed.

The utility of these groups is best illustrated by example,

1) Suppose the synonym statement is given: PUMP1=PMPl=PMP=P,

Whenever the user writes PMPl, PMP, or P as an element name in a
connections or input&mﬁ@@xnsumﬁméﬁt'Mﬂsname PUMP1 will be used as the true
name.

2) Suppose the synonym statement is given: PUMP1l, MAIN=PMPL.

Whenever PMPl is used as an element name in a connections or
input-output statement, the element name PUMP1l and the element identification
MATN will be used as the true names.

3) Suppose the synonym statement is given: PUMP1 ((OUTLET,PRIMRY j=(X1).

Whenever (X1) is used as an attachment with PIMPl, regardless of
element identification, the symbols OUTLET and PRIMRY will be used ~ true
names.,

As the user gains familiarity with the synonym cepability,
occasionally large reductlions in the amount of punching required for connec-
tions and inpubt=output requirements may be obtained, But it must be empha-
sized that this is completely a matter -of convenience and does not increase

the capability of the simulator.
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NEW ELEMENT TAPE Declaration

The declaration NEW ELEMENT TAPE, if given, must precade the
entire collection of Element Descriptions that are to be used in the
program, and in particular precedes the group of statements known as
the Prologue and Epilogue. In this way, new collections of elements
can be made and new prologue and epilogue statements can be produced.

The form of the declaration is: NEW ELEMENT TAPE.

Immediately following this declaration the user must give a
set of prologue and epilogue statements., This collection of statements
will be common to every program generated using this element tape, The
prologue is charged with bringing in the input parameters, making certain
initializations, testing for the completion of the calculation and printing
the desired results, The epilogue is charged with transferring the program
back to the prologue for testing. The epilogue section is entered automati-
cally at the end of the statements generated to simulate the system. The
prologue automatically precedes the statements generated to simulate the

system,

Rules for Writing Prologue and Epilogue Collections

The rules for writing the Prologue and Epilogue collections are
the same as for Element Descriptions with three exceptions:

1. The symbol 6 when enconnectered for the first and second time
triggers the repetative generation of statements containing the input param-
eters., Multiple copies of the statement will be generated, the copies will
differ only in the parameters and the parameters will be grouped by attach-
ment point. After the completion of this task, a complete dictionary of the

input parameters will be produced on Remark Cards.,
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The symbol s.when encountered for the third time triggers the
repetative generation of statements containing the desired results
parameters. Multiple copies of the statment are again generated, one
statement for each desired attachment point as before. On the completion
of this generation, a second dictionary of Remark Cards is produced for
the desired results,

This is the only permitted use of the symbol 6 and must ocecur in
the Prologue. The symbol 6 is not permitted in the Epilogue. The use of
three 5 symbols‘thus allows 1) reading in the input parameters, 2) printing
of the input parameters for verification, 3) printing the desired result
parameters as solutions.

The symbol 6 as used in the Element Description is not affected
in any way by the Prologue and Epilogue rules,

2, The minus sign occurring in Column 1 must appear twice in
the Prologue. The first occurrence marks the point after which the program
has completed testing and is ready to produce the desired results printing.
The second occurrence marks the end of the Prologue. Both minus signs in
column 1 must appear in the Prologue. The minus signs in column 1 must not
appear on Remark Cards.

5. The plus sign, occurring in column 1, must appear once at
the end of the Epilogue. The occurrence terminates the processing of the
Prologue and Epilogue. The plus sign is located on the last actual

executable statement card,'and must not appear on a Remark Card.
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Typical Prologue and Epilogue Collection

The following prologue and epilogue collection is offered as an
example of a generally useful collection, Many of the basic features of
this collection would be common to any collection of prologue and epilogue

statements. The statements themselves must conform to M.A.D, formats and

restrictions.
NEW ELEMENT TAPE,
Column
1 11

R SYSTEM SIMULATION PROGRAM
R PROLOGUE BEGINS
START READ FORMAT ICARD, NOTRYS
VECTOR VALUES ICARD=$7I10%$
TRYCNT=1
FIRST=1B
REPEAT=0B
INTEGER NOTRYS, TRYCNT
BOOLEAN FIRST, REPEAT
READ FORMAT WORDS, DATA(1)...DATA(12)
VECTOR VALUES WORDS=%1206*$
READ FORMAT DATA(1),
PRINT FORMAT DATA,
DIMENSION DATA(12)
VECTOR VALUES DATA=$1HO$
TRANSFER TO BEGIN
BACK WHENEVER TRYCNT, L,NOTRYS. AND, REPEAT
REPEAT=0B
FIRST=0B
TRYCNT=TRYCNT+1
TRANSFER TO BEGIN
END OF CONDITIONAL
WHENEVER REPFAT, PRINT FORMAT REMARK,
1 NOTRYS
VECTOR VALUES REMARK=$18HONO CONVERGENCE IN IS,
- 1 8H TRIALS. %$
READ FORMAT WORDS, DA‘gA(l),.GDATA(m)
PRINT FORMAT DATA(1),
TRANSFER TO START
R END OF PROLOGUE
~HEGIN CONTINUE
R END OF GENERATED SIMUIATION PROGRAM
R EPILOGUE BEGINS
TRANSFER TO BACK
R END OF EPILOGUE
+ END OF PROGRAM
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Program Continuation Declaration

If there is more than one system to be simulated in one approach
to the computer, a statement is needed to signal the end of one problem
and set signals to return for further problems upon completion of the
current one, The declaration accomplishing this signalling is: NEXT SET
OF DATA,

This statement must be contained on the card preceding the first
card of the next problem. Otherwise, the first card of the next problem
will be skipped in processing. If there is no next problem, there is no
NEXT SET OF DATA. declaration and return is made to terminate the simulator

program.

General Simulator Problem Considerations

The statements, assertions and declarations of the Simulator
Language may usually be presented without particular concern for ordering
and grouping of the statements. That is, CONNECTIONS declara£ions and
statements may be intermixed with INPUT PARAMETERS, DESIRED RESULTS,
FUNCTION SUBSTITUTIONS and SYNONYMS. Only those statements pertaining
to the Libraries are somewhat restricted in order. NEW ELEMENT TAPE must
precede the Prologue and Epilogue and all ELEMENT DESCRIPTION declarations,
assertions and statements. The statements in ELEMENT DESCRIPTION are
restricted somewhat. Reference should be made to that section of this
paper for the exact restrictions. Beyond this restriction it should be
noted that while no error will result to prevent execution of the simulator
considerable savings in time of processing can be made by placing all Element

Descriptions containing the assertion PERMANENT before those without this
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assertion. If this is not done, the Temporary Library must be saved,
the new Permanent Library entrymade axdthe Temporary Library restored after
each Permanent entry. This is not a fast procedure at best but will be
done if required for processing.

The current simulator is restricted in the size of system that
can be simulated. The version for TO4 Electronic Data Processing Machines
with 8192 word core storage, 8192 word drum storage and 6 tapes will
accomodate 200 connection statements., Simple revisions for 32768 word
core storage machines would accomodate 1000 connection statements, Each
connective TO produces one connection statement.

Provisions are made for 125 Element Descriptions. Each element
is allowed a maximum of 20 different kinds of attachments, If attachment
identifiers are used, no limit is placed on the number of identifiers for
each attachment. Each attachment and the system may treat up to a total
of 70 different parameter types. That is, each attachment is involved
with the same set of parameter types and the total number of different
types in the system may not exceed 70, The number of INPUT PARAMETERS
may not exceed 200, The same limit applies to DESIRED RESULTS. The
number of SYNONYMS may not exceed 400, The number of FUNCTION SUBSTITUTIONS
may not exceed 400. The number of card images allowed in one statement
generated for the object program is limitedby MsA.D.to the first card and up to
nine continuation cards. The number of statements in a statement collection
as well as the number of statement collections in an element description is
limited only by the length of a magnetic tape reel. No practical limitation

1s expected in this area for some time.
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There is no limit on the number of times an element may appear
in a system., The only restriction is that each unique element attachment
may be used only once. This is a restriction to prevent ambiguity in the
system definition and not a size limitation. |

The scope of a parameter is assumed to be narrow unless the
parameter is specifically defined to be a broad scope in every element
description in both libraries that refers to the parameter.

With the exception of the declaration NEXT SET OF DATA and the
statements for Element Descriptions the simulator statements may be prepared
anywhere within colums 1 through 72 of IBM cards and may run from card to
card‘or contain more than one statement per card. No continuation marks
are used but every simulator statement (but not the M.A.D, statements in
element descriptions), assertion and declaration terminates with a period
(decimal point, punched 12-3-8).

Remark Cards for M,A,D. that will be produced in every object
program carry an R in column 11. Remark Cards for the simulator current
job carry a division slash / in column 1. Any card with / in column 1 is

ignored, but printed, by the simulator.



THE STRUCTURE OF THE SIMUILATOR TRANSLATOR

After a language for communication of information concerning a system
to be simulated is established, the job of the simulator program remains.
That Jjob is the translation of the various statements allowed by the language
into an algorithm or solution procedure for the system simulation requested.

This is accomplished by several sections of program. The sections
and their function are:

1) Preprocessing

2) Desired Result Reduction

3) Program Generation

The preprocessing phase consists of decomposing, analyzing and re-
generating the information from the source program statements in a form more
easily handled by the machine. Input Parameters and Desired Results are
saved in a very condensed form. Since each attachment point may have up to
70 parameters and these may fall into two groups (inpuf parameters and desired
results), each point must retain information on 140 items. Thus 200
attachments require 28000 items to be stored. These items are, fortunately,
Boolean constants. In particular, the Boolean constant for an Input Para-
meter is 1(True) if the parameter has been stated to be given. The constant
is O(False) otherwise. For desired results, the constant is 1 if the para-
meter is required as an output and O otherwise, Since the 704 computer is

a binary machine it is possible to identify each of the 36 binary digits in

-51-
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the 704 word with a specific parameter and thus save the status of 36 para-
meters in a single storage location. The entire parameter status is compressed
into four words for each attachment by the Preprocessing section.

A second task of the Preprocessing section is to generate an image
of the system to be simulated within the machine. This is done by forming
a connection matrix. This array retains the nature of each attachment point.
Each attachment is entered as the joint between two elements. Four items are
required to specify uniquely an attachment on an element and thus eight loca-
tions specify a comnnection. The result is an8 xn matrix, where n is the
number of connections in the system. The matrix entries are the true names
of the elements, attachments and identifiers either as supplied directly by
the connection statements or as replaced by synonyms.

The ccnnectior matrix thus generated may be quite disordered so far
as efficient processing is concerned. After the matrix is completely entered
in the machine a sorting is done using an indirect list address array to
arrange the matrix in the order of occurence of the Element Descriptions on
magnetic taps. The indirect address lists allow the matrix to remain stationary
in memory while the effective order is completely changed. Since the finding
of information on magnetic tape is the most time consuming of all the opera-
tions every effort is used to save tape movement. The ordering also provides
for an effective method for locating all occurences of an element in the con-

necting array without searching the entire array. This is done as Tollows:
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ILet the connection array be denoted:

ELy yEID) [ATy 1AID) 1EIy REIDy pATy RAID,

EI? EID AT AID2IF12 EIDzRATgRAID

ELanID DnﬁELnﬁEID LATnLAID L

Where

EL is any true element name
EID is any true element identifier
AT is any true element attachment name
AID is any true attachment identification
and the subscripts iL and iR denote the attachment point
occurring to the "left" and to the "right" and the i-th
such attachment point.

The ordering procedure is thens

1) Order the matrix by the ELlL (and group each
EL and EID) according to the arrangement of
descriptions on the magnetic tape. Call this
ordering vector "L".

2) Order the matrix by the EL;g in the same way
and call this ordering vector "R".

Let i be incremented from 1 through the number of connections, say n.

o Whazagd wp A W e Lneh AR
Let ILi (R{) be the value f the %MW\ h location in the L\ﬁRl'vector Then the

i-th member of the EL; (Elg) is found in ELp; (Blg,). This type of list
addressing is known as "indirect" addressing.

3) Construct a vector for the vector L whose values
are the locations of the first occurrence of each
element addressed through L in the vector R. If
no such occurrenceexists in R, then insert the
negative of the first occurrence of the element
in L itself. Call this vector "L TO R".

M) Construct a similar vector for the vector R re-
lating the occurrences in R to L. Call this
vector "R TO L".
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With these vedtoré the task is simplified for finding the entlre set
of occurrences of any ldentified element. The location of all occurrences is
accomplished in the following way: (The method is given for L but 1s egqually
valid, with appropriste chenges; far R) |

1) If L TOR at & polnt is negative, the element does
not .oceur in Rs The first occurrénce in L is found
by taking the absolute value of L TO R.

2) Bach entry in L agrees with the first as lopg as
the corresponding L TO R corresponds to the first
L TO Re '

3) If L TOR is positive, the first L accurrence is
found by going first to the first occurrence of
the element in R and then back to L by using the
assoclated R TO L value, The same test as in 2
applies to equivalent identifled elements.

4) If L TO R 1s positive, the value glves the first
R occurrence. The succeeding values in R are for
the same identified element so long as R TO L for
each succeeding value agrees with the first R TO L
‘value,

The remaiqing task of Preprocessing 1s to sa¥e all inputecutput ree
quirements and function substitutions for the Program Generation, In
addition, should the library complement be lnoomplete, the Preprocessing
must construct the liBrary entries. Esch Element Description is saved
as two flles on the tape known as ELTAPE. The first saves the contents of
each collection capability in 80 word blocks. This allows two words for
input parameters and two words for desired results at eath of the 20 allow-~
able attahhmentsa The words are in the Boolean form previously described.
Since two words allow for 72 parameters and only TO parsmeters are allowedy
the remaining bits are avallable for special use. In particular, the last
bit in the desired result word is used to signal that thig capability must

apply to elements without this attachment.
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The second file contains the M. A. D. statements to generate the
capability contained in the first file. The first capability group in the
first file corresponds to the first collection of M. A. D. statements in the
second file and so on.

Upon completion of the Preprocessing, the status of the storage is
as follows:

1) The connection matrix is in and contains only true
names., The matrix is ordered and the input-output
requirements have been packed in Boolean parameter
words.,

2) The Element Descriptions are processed and saved in
groups of two files per description on tape ELTAFPE,
with all permanent descriptions first.

3) The function substitutions and input-output para-
meters in complete notation are saved for the pro-
gram generation phase on an erasable tape.

At this point, control is passed to the Desired Result Reduction
section. This section is charged with the actual generation of the algorithm
for simulating the system. The procedure for accomplishing this task is
almost the reverse of the usual procedure used by humans in attempting the
same task. The human approach, largely because of the extremely large
storage capacity of the human brain, is a search that proceeds from the
known parameters and i1s directed toward the desired results. This approach
could be implemented in the machine but because of storage limitations may
become quite unworkable. The difficulty is that the machine program cannot
reject a method until it can be shown to be unnecessary in the program to

obtain the desired results. Thus the program would be forced to enumerate

all the possible methods available from the input parameters plus the results



~56-

of the first set and so on. The number of methods available grows rapidly
and if the problem is well-posed the desired results will eventually be
encompassed. However, this constitutes an exhaustive search with only a
small fraction of the methods actually of use.

Therefore a different approach is used. .Essentially, the algorithm
is produced in reverse by working from the desired results toward the input
parameters. In this way every step generated is necessarily of use in the
program. The progrem is; of course, backward, in that the first statement
collection specified is the last one needed and so on but this is easily
ta%en care of by the Program Generation sed¢tion. The method of production
of the algorithm is the followings

1) 1Inspect the "Desired Result" Boolean words for each connection
point in the matrix. Whenever no Desired Result bits can be found in the
entire matrix the algorithm is completed.

2) Whenever a connection is found for which results are desired,
steps must be taken to satisfy the request for results.

2A) The requested results may be input parameters. If this

is so; remove the corresponding desired result bits.

2B) The fequested results may occur at any identified attach-
ment and be of broad scope. If this is so and the result (as
an input parameter,) can be found at any of the identified
attachments, remove the corresponding desired result bit.

2C) If requested results still remain after steps "24' and'2B",

L)

then some additional program must be added to obtain the results.
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2C1) Find all of the statement collections for both elements
that occur at this attachment point that are useful in ob-
taining the requested results. That is, ignore any collections
that are "without!' attachments specified for this element or
collections that do not happen to produce any of the desired
results.

202) Check each useful collection to determine its effective-
ness. The effectiveness is the ratio of the number of request-
ed results the collection produces to the number of new re-
quests for results the collection will produce. A new request
for results will occur if any of the parameters required by
the collection is not an input parameter or already request-

ed by previous statements.

If the number of new requests for results is zero, the
collection is always inserted in the algorithm. This col-
lection produces results without requiring any new information.

(The only exception to this rule occurs with the iterative
ESTIMATE collection. In this case, no new information re-
quest 1s apparent, however, the ESTIMATE collection is re-
strained from inclusion in the program until the parameter
in question is found by at least one independent calculation
method . )

Otherwise, retain the effectiveness ratio as the weight

of the collection.
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2C3. When all of the collections have been examined for
effectiveness and if desired results still remain, select

a set of the collections that will produce the requested
results.
At this point, the methods in which a‘parameter could
be found using a method only once at a given attachment
point are checked and discarded if already used. Otherwise,
these methods are simply placed in competition with any other
techniques available.
2C3A) First check to be certain that every requested
result can be found in at least one way. If any re-
sult cannot be so found, the problem may not be well
posed. The problem is not well posed if no "branches"
have occurred previously in the generation. A
"wranch" occurs when a choice is made between more
than one method of determining a requested result.
203B) Whenever there is exactly one method for pro-
ducing a result, this method must be included'at
this point in the algorithm. The method is ingerted,
the results produced by the method have the correspond-
ing bits removed and any new requests occurring any-
* where in the mé%rii have th? Qorresponding bits inserted.
2C5G) After éiiﬂsingle ﬁethod results are taken care
of there remein only results for which there are several

methods of calculation. Since only one method will be
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used for each result the selection will constitute
a "branch" in the algorithm generation, if the method
selected 1s not always forced to be the same one. |

If one considers the available methods;, each with
its associated weight, the simulator should tend to
choose the method of greatest weight. However, the
simulator should be allowed to select the method on
the basis of the probability of selection being propor-
tional to the weight. If this is not done; one may
anticipate that in some case the method of greatest
weight may contain a parameter that is incapable of
calculation (considering the input parameter) and
therefore the program could not be generated. If,
however, the simulator makes the selection probabi-
listically, the method of greatest weight is most
likely to be selected but other methods may be selected
in its place. The probabilistic selection is auto-
matically made and the "branch" Boolean constant is
set to one. In this way, if later there should arise
a case in which no method is available the simulator
may make another trial and possiblvaork out a satis-
factory algorithm by having the chance to choose an-
other method at this point. This is a situation in
which the locally "best" method is not always the

globally "best" but tends to be so.



-60-

3) The steps 1 and 2 are repeated over and over. Each time the
requested results are satisfied a new set of requests are generated ex-
cept when the request matches an input parameter. If the problem is well
posed then a sequence of methods may be found such that all desired results
are satisfied, through the sequence, by input parameters. When this has
been done, an algorithm for the simulation of the system has been produced.

The algorithm produced tends to be optimal since at each state
the method of greatest weight was most likely to be employed but the simu-
lator cannot, with limited storage, view the generation of the algorithm
beyond a single step. Thus occasionally the simulator may produce several
steps that might be condensed if more information were available. In par-
ticular, it may happen that identical sets of statements may be produced
in the algorithm at different stages of the generation. This redundancy
is easily detected and the final algorithm will contain only the first
occurrence of the set.

The method of probabilistic selection is also used to discard
the least likely method should there be found too many methods to apply
at a given point.

The method of probabilistic selection for picking an item from
a group of n weightéd items is the following:

Let Wy > O be the weight of the i-th item from a goup of

n total items.

n
W= .Zi Wi be the total weight of the group
l:
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Nw be a random number selected from a uniformly distributed set of
random numbers on the interval 0O, W.

Then the K-th member of the group of n items will be selected for

the smallest K such that

K >
X W= Ng
i=1

Ng is most likely to fall in the subinterval such that W; is maximum
but may fall anywhere in the interval. An modification of this method to
pick the least likely item (for discard, etc.) consists of defining a new set
of weights p = l/Wi and make the selection using p in place of W. In particu-
lar, it should be noted that equally probable alternatives receive egual
chances and every alternative, no matter how small its weight may be, re-
celves some consideration and may be chosen at any time. This method should
find many applications in future programs.

Since there is no way to predict either the number of parameters
that may be needed at a point or the number of methods available for any
parameter it is necessary to allow an extremely flexible storage assign-
ment so that the storage may be completely used. This is done by means
of an "associative memory" list for the storage region. This list functions
as follows:

1) Associated with each parameter at the attachment point is a
storage location whose value is:

1A) Zero if the parameter is not required.
2B) Minus one if the parameter is not required and no method

has yet been found to yield the parameter.
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1C) Otherwise, the value is a positive integer giving the loca=-
tion of the beginning of the list of methods for this parameter
in the "associative memory".

2) PEach entry in the associative memory list gives the location
of the next (associated) entry. The final entry is denoted by a minus sign.

3) DNew entries are made by consulting the associative memory list
beginning at the zeroth location. The value of this location is the next
available location in the memory. An addition to the end of any list is
made in the available location, the value that was in this location is stored
in the zeroth location and the former list end is changed to refer to the new
list end.

4) Whenever a result collection is selected, the storage space is
reassigned as available storage by placing the starting location for the list
in the zeroth location, and the value formerly in the zeroth location at the
end of the list being removed. In this way the entire list is made available
with only two storage reassignments.

5) If the capacity of the storage is exceeded before all the para-
meters have been treated space can be created by selecting the parameter
with the greatest number of methods and picking the method least likely
using the probabilistic section technique. The location thus chosen is
made available by giving its address to the zeroth location and reassigning
the preceeding list location to skip this location and refer to the next

item in the list.
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Upon completion of the removal of all the desired results and those
created during the removal of others, the algorithm is completed ard written
in reverse order on magnetic tape. This type of storage is used because it is
not possible to predict the storage required for a program in advance. This
is somewhat unfortunate since the program is generated in the form of a "push
down" list. A push down list is a list such that each entry occurs at the
beginning {rather than the end) of the 1ist and thus moves the former first
item to second place, the former second to third and so on. Thus the items
are "pushed down" on the list. Removal of items from the list occurs from the
beginning of the list with the last item entered. Thus the effective order
of the list is reversed. This is precisely the action that must occur in the
program generated since the last statement collection found must be the first
used in the program and the first collection found is the last one used in
the program. The difficulty is resolved by moving the tape backward two re-
cords and forward one working from the last record written toward the first.

As this process is begun after the completion of the algorithm the

simulator is at this point generating the simulation program using the

Program Generator. The first output of the Program Generator is the Pro-
logue and its associated input-output stafements. The Prologue is followed
by the program. The algorithm is: stored in a short code giving the con-
nection matrix row number and index in the L vector so that the unique con-
nection could be located by the program generator, the element description
name given by position in the element name vector and tagged with a plus(+}

sign if the element involved was the left most (and a minus{-) sign if the
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right most) and finally the statement collection number. The program generator
section moves to the second file in the desired element description and next
to the appropriate statement collection. Finally the statement collection 1s
processed and produced both on cards and in print to form the desired simula-
tion program. The rules by which the processing takes place have been stated
in the section describing Element Descriptions. Briefly, the M. A. D. state-
ments are written using floating statement labels, and special codes for
function substitutions and for parameter and attachment codes. The Program
Generator assigns unique fixed statement labels for the floating statement
labels. Any function substitution is checked for possible modification. If
a substitution has been requested, the substitution is made, otherwise the
original text is retained. The parameter and attachment codes are reduced
to a six character variable name code for each parameter-attachment combination
occurring. Some of the six characters may be blanks. Non-identified attach-
ment parameters are immediately coded and inserted in the output statement,
Identified attachments cause multiple copies of the statement to be generated,
One copy is made for each different identifier. To avoid possible embiguity,
only one attachment may be identified in each statement. However, this
attachment may occur any number of times with any number of parameters within
one statement. In this way the effect of a special junction element is pro-
duced without specifically requiring such an element.

As noted in the Collection Capability section, there is one exception
to this rule. Namely, when an attachment is identified and the current point

in the connection matrix agrees exactly with this attachment name, & copy of
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the statement is produced for all occurrences except the current one. Finally,
if an attachment 1s not identified the current attachment point will be selected
if the name agrees with the name occurring in the collection statement. Other-
wise, the first occurrence of the name is used in the code.

Upon completion of the program generation the control is returned
to the Preprocessing Section to process any other system simulation problems
that may be waiting. Since the output of this program is a program in M. A, D.
code and on punched cards the simulation program may be used as it is produced
or modified easily before using it to simulate the system. To use the program
as it is generated, the user need only supply the data and special subroutines
needed and the special cards needed by the executive system for the data pro-
cessing system. The program will be translated into machine code and executed

using the data supplied.



II. STEPWISE REGRESSION FROGRAM WITH SIMPLE LEARNING

The representation of the characteristic performance of the vari-
ous components of a system is vital to the simulation problem. It is not
sufficient to obtain a relation which merely fits the available data, if
the relation is to be used for predictive purposes, because such a relation
may bear only superficial resemblance to the actual performance at other
points., A much more desirable relaftion would consist of terms suggested by
the nature of the physical laws governing the component performance but
using only those terms which may be shown to be substantiated by the avail-
able data. The Stepwise Regreséion program was written to establish this
relation and produce, in addition to the analysis of the data as just
described, the actual M.A.D. statements needed for the predicting equation
subroutine,

The use of simple learning by the program allows the program to
deal with a much more general solution of the predicting equation problem
than has been previously possible. The usual engineering problem consists
of many independent variables (pressure, temperature, load, etc.) which
affect the behavior of the dependent variable (e.g., efficiency, loss, etc.)
that 1s 10 be predicted. In addition, these variables are usually found to
enter in nonlinear manners, {e.g., raised to powers or roots or even more
complicated forms)u Also, in the usual problem the dependent variable
performance is often affected by interaction between the independent
variables and functions of the independent variables. The simplest sort
of" example of such an interaction is the Perfect Gas relation:

PV = MRT

-66-
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In this case, the variables P and V interact so that T may not
be determined by a relation consisting of terms using P alone plus terms
using V alone but may be found by using a term involving the interaction
between P and V.

Thus the size of an engineering problem of several independent
variables, each of which may be represented by several functions, grows
very rapidly when ali possible interactions are allowed. An illustration
will indicate the magnitude of the problem.

A common selection of twenty functions for a single independent-
variable problem, that is, a problem which may be expressed:

20

Y = X biFi(X)

i=l
will require about 30 seconds to solve on the IBM 704 using conventional
stepwise regression techniques. If an apparently only slightly more
complicated problem involving three independent variables, each of which
has twenty functions, were to be attempted, considering all interactions,
the number of terms to be considered increases from 20 to 9260, the size
of the matrix involved grows from 21 by 21 to 9261 by 9261, and the IBM 704
time becomes approximately 2500 machine hours.

It is clear that, without a technique capable of reducing this
problem by several orders of magnitude, the general problems encountered
in engineering will have to be treated in strongly simplified terms.
Indeed, this has been precisely the motivation for earlier linearized

system models.
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The simple learning machanism develcped for use with the Stepwise
Regression Program has been used successfully to produce predicting relations
in ruch less time than required for more conventional methods. The following
discussion will describe, firsvt, the Stepwise Regression Program and,
second, the Simple.Learning mechanism employed by the program. This pregram
represents one of the first applications of "artvifieial intelligence" Zn. an

area of immediate practical interest,

Discussion of Stepwise Regression

Trhe following describes a computer program useful in determining
the relationships existing among a group of up to 60 variables or functions
of variables at each program pass. Taking one of the variables to be a
dependent variable, the program results in a linear predicting equation
using the current set of prediztor variables or terms and selecting from
this set a "minimal" set., The program allows simple learnirg to occur
concerning the most satisfactory typss of terms, thereby extending the
usefulness in determining equations that take account of possible variablie
interactions of all orders. The program further allicws the generation of
equations using either stepwise buildup or stepwise purification at the
discretion of the user.

This discussion concerns some extensions carried out by the
author of the work originated by Mr. M, A, Efroymscn of Esso Standard
Research and Engineering Co., ard carried forward by Mr. J. E. Dalliemand
of General Motors Research Staff, The problem considered is that of
determining a predicting equation from a collection of data. The method

of analysis deals with the siftuation which arises when data have been
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collected on many variables, of which one is regarded as a dependent or
response variable and the remainder of the set is regarded as a set of
&ndependent or predictor variables. It may be anticipated that the
method will be useful in experimental sitﬁations involving unknown
complicated interactions between meny variables and complicated relastion-
ships (functions) of the variables. In particular, when the data are
already available, or where it is difficult to control variables system-
atically, or where the conduct of a systematic experiment would disrupt
the normal operation of a system too severely, this method will be useful.

Specifically, this method is useful in obtaining answers to

questions like the following:

(1) What linear combination of the independent variables, or
functions of the independent variables, or interactions
(cross products) of independent variables and functions of
independent vardables best explains the data on the
dependent variable?

(2) How good is this relationship (obtained in (1))?

(3) What is the linear relationship between the "best" single
independent variableb(function of an independent variable,
or interaction) and the dependent variable? Also, what is
the relation for the "best" two, three, or other subset of
the possible predictor terms?

(4) For each subset 6f (3), how good(is the relationship?

(5) What is the smallest set of predictor terms that will meke
statistically significant contributions toward explaining
the statistical variation in the dependent varisble? (The

user may set the level of significance.)
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(6) How good is the relationship in (5) and how good is the
prediction?

(7) How much of the behavior of the dependent variable is still
unexplained by the equation? (This is the Standard Error of
Estimate.)

(8) If there is theoretical justification for suggesting certain
terms to explain the behavior of the dependent variable,
what is the "best" relationship for this set?

(9) How good is this relationship (8) and what can be done to

explain the behavior not explained by the present theory?

I. The Stepwise Regression Method

The Stepwise Regression analysis deals with a set of p
independent variables denoted Xj, Xp, ..., Xp and a single dependent
variable Y., Let N be the number of observations made on each of these
p+l variables yielding N*(p+l) data in all. The objective of the analysis

is to generate a relation of the form
Y = bo +b1Xp +boKp + cerre 4 Xy (1)

The by, 1 =0, 1, 2, =-- , p are the coefficiehts or multipliers
of the various-Xlo It should be clear that one could not distinguish
between the previous case of p independent variables and the case of p
linearly independent functions of a single independent variable or any
other combination of numbers of independent variables and function choices
for these variables totalling p terms in all. Therefore, the discussion
here treats the problem as if there were p independent variables without

loss of generality.
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To focus these statements on a physical problem, consider the
following: Suppose that measurements have been mede of the electrical
losses of a hydrogen cooled generator. Figure 1 shows the genéral behavior
of the variables and indicates that at least three factors must be con-
sidered. It ié assumed that measuréments or observations are avallable of
(1) gross eleCtriéal load on the generator, (2) hydrogen pressure, and
(3) power factor as well as the corresponding electrical loss.,

The formal relation (1) might be interpreted as the linear

relation:
GENLOS = by + by * GKW + bp * HPRESS + b3 * PFCTOR
where
GENLOS = generator electrical loss
GKW = gross generator load
HPRESS = hydrogen pressure
PFCTOR = power factor .

However, Figure 1 indicates that such a linear relation may not
represent the actual behavior., More complicated analytical models may be
suggested to the Stepwise Regression Program by making appropriate defini-
ﬁiOns of some pseudo-variables.

Suppose that the pseudo-variables X4 are defined:

X = GKW

Xo = GKWR
X3 = GKW3
XL = HPRESS
X5 = HPRESS®
Xg = HPRESS3
X7 = PFCTOR
X8 = PFCTORZ
Xg = PFCTOR3

and, of course, the list may be longer and as complicated as needed to

describe the physical problem. The "standard" types of terms automatically
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available to every problem include integer powers, integer roots, and the
reciprocals of these terms. Provision is made to insert any other special
terms desired as well (such as logarithms, exponentials, etc.). Then a
relation of the form (1) is:
LOSS =bg + by * X1 + bp ¥ Xp + coo + bg * Xg
or its equivalent
LOSS = bo + b1 * GKW + bp * GKW® + <« + bg * PFCTOR3

Again, it often happens that interaction may occur between the

variables and the functions of variables. Once again a relation of

form (1) may result by defining:

Zy =Xj = GKW

Zo = Xp = GKW2

Zg = Xg = PFCTOR3

210 = X1 * X4 = GKW * HPRESS

Z11 = X1 * X5 = GKW * HPRESS2

Z36 = X6 * Xg = HPRESS3 * PFCTOR3

Z37 = X1 * Xl * X7 = GKW * HPRESS * PFCTOR

Zg3 Xg * Xg = GKW3 * HPRESS3 * PFCTORS3

Il
>

w
*

The formal relation (1) is now
IOSS =Dbg + by ¥ Z] + bpo * Zo + <o+ + b63 * 263
or its equivalent
LOSS =Dg + D) * X3 + bp * Xp + =++ + bg3 * (GKW3 * HPRESS3 * PFCTOR3).
The problem consists of finding those Z's which contribute to the
explanation of the dependent variable (LOSS) with sufficient importance, as

indicated by the measured data, to allow their retention in a predicting



equation. And, having found the set of Z's meeting the importance criteri-
on, the problem continues to the determination of the best possible esti-
mates for the bs. In this way, a mirnimal relation is generated which may
be used to predict LCSS for given values of GKW, HPRESS, PFCTOR., This
relation is automatically generated by the Stepwise Regression Program.
In addition, the Stepwise Regreésion Prcgram produces on punched cards the
M.A.D, function corresponding to the gererated relation and having any ar-
bitrary function name desired. Iup this case, suppose that the desired
fucction name is GENLOS. The program would produce the M.A.D. External
Function
GENLOS. (X1, X2, X3)
where X1, X2, and X3 are now symbolic names for the arguments GKW, HPRESS,
PFCTOR, in machine translatable form ready for inclusion as part of a sim-
ulation program (or any other applicatior). Thus ore may later write the
relation
NETKW = GKW - GENLOS. (GKW HPRESS PFCTOR)-MECLOS

as a M.A.D, statement to be used in a simulaticn program, and the result
will be the net power generated (NETKW). It is clear that ro loss of gen -
erality has resulted by considering the formal relation (1). It should
also be clear that the X terms in (1) may represent either the actual
measurements of the independent variables or that they may represent func-
tions of these measurements without requiring any charge in technique.
In the remainder of this discussicn, the symbol ¥ will be used and the
meaning may be understocd in its most general sense.

The by in (1) are determined in such a way that, if one forms the
sum of the squares of the differerices between the observed values of Y and

the predicted values of Y arising from the use of (1), then that sum will
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be minimum. Notice that the process of squaring the differences insure that
all errors, pdsitive and negative, contribute toward increasing the sum.
This is commonly referred to as the method of "least squares."

The importance of the Stepwise Regression method lies in the process
of "building" the expression (1) a term at a time, always insisting that the
terms be inserted in order of their relative importance to the explanation
of the behavior of Y. Furthermore, checks are made continually regarding
the continued importance of terms in the equation and only those terms will
be inserted into (or removed from) the equation (1) that meet certain
significance tests which can be controlled by the user. Thus the final
equation will comprise a "minimal"” set of terms. Since terms may be removed
from the equation as well as inserted into the equation, the method of
Stepwise Regression also allows the generation of a relationship by "purify-
ing" an initially large set of terms with very little added burden to the
user. Experience indicates that the purification process occasionally
produces valuable additional information in certain problems.

A number of statistics are computed before the task of building
the predicting equation begins. These statistics may be printed out to help
give further insight into inter-relationships in the data and are used by
the program for executing the task; Included among these statistics are
the mean (average value) for each variable, the standard deviation (a measure
of variability) for each variable and the correlation coefficient for each
pair of variables. The correlation coefficient measures the linear relation-
ship existing between the pair of variables, and ranges from +1.00 (perfect
direct relationship)‘to 0.0 (no relationship) to -1.00 (perfect inverse

relationship).
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Figure 2 shows the interpretation of the standard deviation ard
the mean. If the scatter of data is due to random uncontrollable error;
then the Gaussian distribution will model the variability with respect to
the predicting equation. Taking the mean or average value t0 he that
indicated most likely by the data, the width of plus and minus one standard
deviation will embrace an interval about the mean within which the expecta-
tion of fhe true value is 68%, As indicated by the figure, if the interval
is doubled, the expectation grows to more than 95%, and if the interval.
triples, the expectation is 99.8%. In other words, based on the data
measured on the physical component in question, one may expect to encounter
a true valve of the dependent variable lying more than three standard
deviations away from the predicting relation value with a long term frequen-
cj of 1 in 500,

Figure 3 illustrates this discussion with respect to a predicting
equation, If the predicting equation produces the estimate of the true
valué of the predicted variable indicated by the central heavier curve,
thén the bands to either side may be understood to indicate the range within
which the true value may be expected to lie with the stated frequencies.
Thus a predicting equation with very small standard efror of estimate will
more accurately represent the true behavior of the variable than will a

predicting equation with large standard error of estimate.

I. Generation of a Predicting Equation

Consider a simple example; suppose that an experiment has
been made consisting of a set of observations of six variables. Regarding

one of fthe six as a dependent variable and the remaining five as predictor
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or independent varisbles, the analysis determines the minimal" set of
variables which may be used in a relation of form (1), where, in this
case, p = 5.

The first step is to find that variable X; which bést predicts
Y. This is done by correlating each of the X; to Y and the selecting that
X; which has the greatest "correlation coefficient"* in absolute value,
If more than one X; shéres the largest %éiué?ftake the Xy with the lowest
subscript 1.  That is, take the first such X; encountered, Suppose that in
this instance that best i is 4. The first predicting equation is then

Y = bo + byXy . (2)

The by and b), satisfy the least—séuares criterion,

Succeeding steps are of sllightly different form., First, the Xy
- are sorted into two subsets Xj j and Xj ». The set Xi,1 coﬁsists of all
those variables that are in the predicting equation at the fime of sorting.
The set Xj o consists of all those variables that are not yet 1n the

predicting equation.

* The correlation coefficient is defined as the product-moment coefficient

of correlation: Let
( % WeXyg) ( %thjt)_

XiX5 = L WeXieXge -
t

L Wy
where t = number of obsgrvations
n = number of independent varidbles
J =1, i+l, i+2, +«+, ntl
i=1, 2, »++, ntl
Then let
a3 =vy¥XiX; 1 =1, 2, +«¢, ntl
and the correlation coefficient r is then
GG
with the properties
Tyl = Tij i, 3 =1, 2, »+-, ntl
ryq = 1.000

"lgrijgl .
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For each of the members of Xi,l the analysis computes an "impor-
tance factor'"** which is a measure of the relative contribution of the
variable to the predicted equation.. The smallest of these importance factors
is isolated. If the variable associated with this factor is less important
than the user requires for the variable to be retained in the equation, then
that variable is removed from the equation before continuing.

The scale used to determine whether a variable meets the "impor-
tance" criterion is simply the probability or chance that the user is willing
to take that a variable may be left in the predicting equation that should
have been removed. Figure 4 illustrates the nature of this "importance"
scale. The F-test measures the extent to which a variable will contribute
toward explaining the dependent variable behavior, and teststhis contrihp-
tion against a purely chance correlation by comparing the variance with and
without the term. The hypothesis tested is that the variance is equal in
both cases and that any difference is due only to chance, Thus, the term
will beuused only when the difference in variance cannot be explained by
chance alone. Thus, in Figure L, if one selects a probability of committing
an insertion error (that is, inserting a term into the predicting equation
that really does not belong in the equation) and finds the number of degrees
of freedom (roughly the number of weighted observations), the value of F
indicated by the surface is such that if the value of F displayed by the
hbest” term exceeds the value on the surface, then the risk is less than the
probability chosen. As might be expected, the value of F on the "threshold"
surface goes to zero as the probability goes to 1 (certainty of committing
an error). In that case, any nonnegative value of F equals or exceeds the

"threshold" and the result would be to insert every term whether correlated
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or not, Conversely, if one goes “oward zero probability {certainty of not
comnitting an error) the threshold vaiue grows, apprcaching infinity in the
case of zero probability. Thus no value of F can exceed thié threshold and
80 no terms cen be inserted. For any reasonable probability, the effect of
the number of data can be assessed. As the number of data grows large, the
"threchold" value approaches a constant dependent only on the probability.
As the number of data approach zero, the risk of error is held constant by
reqyiring larger and larger F values with infinity as the value correspond-
ing to "no data." With such a test, the Stepwise Regression Program can
control the generation of a predicting equation so that each term possesses
a maximum risk of appearing incorrectly. Of course, many, perhaps most,
terms sctually appearing in the final equation exceed the threshold by

substantial amounts and thus represent greatly reduced risks. The fest

insures that every term is at least as good as the risk specified.

NOTE: If 7; > 0, then X; is not yet in the regression equation and the
Vs >0 may be regarded as the relative contribution by the respective
X; in explaining the as yet unexplained variance ir the dependent
variable Y.

If Vy <0, then X4 ig currently in the regression equation. The ]Vil
for all V; < O may be regarded as the relative contribution by the
respective X5 to the regression prediction of Y.

As each term is added or deleted from the regression equation, the
regression matrix 813 is modified to contain the corresponding effect.

¥*¥ The "importance factor" is found by using the variance confribution for

each variable. Initially, the correlation matrix Ty defined earlier is

equal to the regression matrix aij
e T

a3 i35 1, =1, 2, eo0, ntl

Then the variance contribution for the i-th variable is:

Vs

84 vavyi
;= YL 3 o1, 2, sve, n

aii
and where the subscript y is understood to be the dep=andent variabple
subscript (n+l). '
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If the user takes a probability of erpor for removing variables of
0.05 then the odds are 1 in 20 that a term may be left in the predicting
equation incorrectly, Obviously, if the user wants to make this error very
rarely, he may set the probability of that error very low, say 0.01 or 0.001l.
This situation requires one additional remark. When one asks that the chance
of committing an error be made small, the chance of committing the converse
error must become large. In this case, one increases the risk of removing
variables that really belong in the equation by decreasing the risk of
leaving variables that do not belong in the equation. If the chance of
leaving a variable incorrectly were set by the user at 1 in 10000, it is
also possible that insufficient data may have been accumulated to allow the
retention of any variables in the equation, and the analysis can do no more
than predict the average value of the dependent variable Y by the appropriate
bo. The remedy is clear: if one wishes to set high standards, the price is
additional experimentation to produce additional evidence to support the case.

If and when all the importance factors exceed the minimum value
required for retention of the set Xi,i’ the analysis then examines the set
Xi)2o For each element of this set a "potential importance factor" (as
defined earlier), is determined and the largest of these isolated. These
factors measure the relatiwve contribution which each variable not presently
in the predicting equation might make to the equation if it were put in. The
largest of these is associated with the "beét" variable at this stage. Once
again a comparison is made to insure that the risk of inserting a variable
incrorectly is in agreement with the significance of the "best" variable
before the insertion is allowed to occur. Again, the user specifies the

risk he is willing to take of a variable being incorrectly inserted into the
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predicting equation, understanding .05 to mean 1 chance in 20 of the error
occurring and recognizing that reducing the chances of incorrectly inserting
variables increases the changces of omitting correct variables from lack of
evidence,

Suppose that, in the example considered, X), has been retained, and
that of X3, Xp, X3, X5, the variable X1 Best explains the behavior of Y not
explained by X4 . If there is sufficient evidence to support the insertion

of Xq, then a new predicting equation is formed by least squares:

(1) (1)
Y = bg + b1X] + biX} (3)

The superscripts on by and bl indicate that these coefficients have undergone
one modification in the process and are new values. At this point the
variables are again sorted and checked for importance and the procedure
repeated., The analysis ceases when either all the X variables have been
inserted into the predicting equation or none of the X variables that remain
as possible candidates for the equation is sufficiently important to allow
insertion.

Continuing the example, suppose that on the third step X5 is
introduced, yielding:

(@ @ (@
Y = b + b1X] + bYX), + bsX5 . (4)

Further suppose that Xj; and X5 behave together in such a way that
the results is like havipng X) in the équation twige. In such a case, the
importance of X) might be considerably reduced. Suppose that this is the

case and that the importance of X) falls below the limit set by the user.

Then X), is removed and the equation becomes:

(3) (&) (1)
Y = bg + byX) + bgXs . (5)
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In step (5) suppose tha® X, is added giving:

(&) (3) (2)
Y = bg + b1¥] + boXp + b5X5 (6)

Now suppose that neither ¥3 vor XL are sufficiently significant to
allow their insertion. The final prediction equation produced is (6). The
analysis makes available a number of statistics at each step which may be

interpreted as a measure of goodress of fit or prediction as well as the b

vaiues and the importance level for the term considered at that step.

2, The Statistical Model

Suppose that the physical system giving rise to the preceding
egample wag such that it could be hypothesized that the system could be
characterized or described by the mathematical model:

Y = By + ByX; + BgXp + B3X3 + BUXL + BoXs + B, (7)
where the Bi{imo, 1, 2, ..., 5) are urknown and possibly some of them may be
zero, E is a random error variable term which accounts for the inability to
obtain strictly reproducible data when obsevving the physical system. Setting
acide the consideration of E for the moment, the problem is that of obtaining
the best estimates of the Bj. I may be observed immediately that this is
the problem just considered, resulting ir Bquation [6), and that the B; are
estimated by by, respectively., The kest estimates of B3 and B) are zero.

Turning attention once agair to E in (7), it is -~lear that Equa-

6) is not quite romplete. The rardomness of E makes *he prediction of

;
1
\

tion
E impossible. What is possible ig the determiration of the likelihood of E
being inside a range of values., In other words, because of E the measure-

ments obtained are not exactly repeatable even if all the X's could be set
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at exactly their former values. Therefore, the estimates are possibly, but
not necegsarily, in error due to the influence of E. A more nearly coﬁplete
treatment of (7) would

(1) estimate the By as before;

(2) estimate the possible errors in the B;; and

(3) estimate the varisbility of E.

The Stepwise Regression Program sutomatically estimates each of
the three items desired. The estimate of the By has alreédy been discussed.
The possible errors.in the Bj are indicated by quantities Spy called the
"Stendard Error of the Coefficient" for each 1., These values are such that
1f one forms the interval

By - Spy SB SBj +8py (8)
then the "true" value of B may be expected to be included by this interval
in about 68% of all cases (see Figure 2). If one extends the interval to
form

Bj - 25py B By + 28 (9)
then this interval should include the true value in about 95% of all cases.

The variability of E 1s nmeasured by a statistic called "Tbe
Standard Error of Estimate." This is roughly the standard deviation of the
E. Adding additional terms to the predicting equation usually results in
reducing the standard error of estimate. The amount of reduction is a
measure of the contribution made by that variable toward the explanation of
Y. When the analysis is completegi this statistic measures the behavior of
Y not explained by the predicting ;quétion and reflects the remaining
Observational errors and, of course, possible errorsin the hypothetical

model, The precision of the predicting equation is reflected by the
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magnitude of the Standard Error of Estimate (Sy) such that if one uses the
predicting equation {6) to estimate ¥ and then forms a band about the curve
predicted by {6) of plus and minus Sy (i.e., the band is 2Sy in width and
centered on the curve from {6)}, then the "true" value of Y may be expected
to be included by this band in about 68% of all cases (see Figure 3). Again,
doubling the band width to + 28y raises the expectation to about 95% of all
cases, In other wordé, when enough experimantal observations of a physical
system are made accurately on good instruments so as to minimize observation-
al errors, and when the hypothetical model correctly describes the physical
system, then Sy will be small and the predicting equation may be used to
estimate Y with a measure of the precision of this estimate interpreted as
indicated.*

The analysis produces two other valuable statistics at each step of
the estimation process, The "Coefficient of Determination'"** is interpreted
as the proportion of the total variation in Y that is explained by the
predicting equation. The possible values lie in the r ange from +1.00 {perfect
prediction) to 0.0 (no prediction). Statisticains familiar with the "Multiple
Correlation Coefficient," which is the positive square root of the Coefficient
of Determination, will find it displayed also.

1I, Artificial Intelligence Applied to the Stepwise Regression
Method

T

Section I of this discussion treated the use of the Stepwise

Regression Method as it applied to those cases in which the entire set of

* It should be mentioned in passing tha® the interpretation of Sy and Spy
should be as stated here and that i%f is not correct to say that about %8%
of all observed values wiil lie within the intervals indicated for + S
and so on., a

*¥* The Coefficient of Determination (Rg) is found by subtracting the re-
gression matrix element Byy (which measures the dependent variable
variance) from unity. That is, R2 =1, = Byy o
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variables and functions of variables can be represented by a single collec-
tion of small enough size to allow complete retention within the memory of
the machine. In the case of the IBM 704 with 8192 word core storage, the
size of the problem is limited to 60 variables, which require, in addition
to several linear arrays of 60 elements, a matrix 61 by 61 or 3721 locations.
While some expansion might be realized by adroit programming, a little study
of the nature of the problem indicates that an expansiOn in capacity of
several orders of magnitude together with a new concept of programming will
be required to handle problems of the types commonly encountered in research.

To understand the nature of the problem encountered, consider the
following exeample. Suppose that, as in the example of Section I, an
experiment has been made consisting of a set of observations of six varia-
bles. Once again we regard one of the variables as a dependent variable and
the remainder as predictor or independent variables. Assuming for the
moment that only linear behavior is to be expected from any variable (a
drastic simplification), it is apparent that the formal relation (1)

Y = by + b1Xy + ... + bpXp (1)
is not completely descriptive of even this simplified case. This is because
of the possible existence of interactions between variables. Extending the
example proposed to include interaction requires the inclusion of sets of
terms of the forms 1) Xj, 2) XiXj, 3) XiXjXk, 4) XiXjXkXy and in this
case the single term X; Xp X3 X), X5 as possible candidates for the predict-
ing equation, The number of such terms is found in the following way.

Let there be K groups of n; distinct objects (i =1, 2, ..., k)

and let there be selected j objects

< K
j= Zl’ll
i=1
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at a time to form combinations. The aumber of such combinations is readily
obtained for the case o5 =1 for all I (the present example case). The
number is (for n, = 1)

N; = Ki/(K - 3)% gs

and the case of K = 5 producss the tabls

TABLE OF N; FOR £y = 1 AND K = 5

3 M, 2N
i ; 5
2 0 15
3 10 25
I 30
5 1 31

Tnz table shows tnat even the simp.: example chosen has expanded
the required storage capacity from a 6 + 1 square matrix of 49 locations to
a 32 + 1 square matrix of 1089 locations. Furthermore, the usual problem

doeg rnov permit the assumption of ny = 1. The more gsneral case may be

1) n; is constant for all 3;

(2) selection occurs always between groups and not within groups.

Then

Ny = [Ki/(K ~ §)! jilngd (13)
Condition (1) is not unreascnable and condition [2) simply requires
that ny; be large erough to include whatever terme might be desired generated
within the smaller group. That is, if one considers X° and X3 and wighes

also to consider X° = X2 * X3, ther condition (2) requires that X° be made

a member of the n; (and not generated from X° and X3).
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Suppose that in the example 10 function choices are suggested for
each of the five variables (the use of 20 or more is not uncommon in prob-
lems concerning a single independent varisple). Neglecting interactions
the problem requires 52 * 52 locations, Considering interactions and using

(13), one obtains the table:

TABLE OF Nj FOR nj = 10 AND K = 5

N. N

C.

) J
1 50 )50
2 1000 1050
3 10000 11050
L 50000 61050
5 100000 161050

Obviously this is outside the range of even projected computers
since the matrix now requires (161052)2 locations. The cost of solution by
conventional methods is also prohibitive since the solution Qf a 3-variable
problem with 20 function choices per variable (which requires (9260)2
locations) has been estimated to require 2500 hours on the TOL.

Conventionally, work has progressed in this field by the expedient
of setting the coefficients of all but a very few of these terms identically
equal to zero. The formal relation (1) is such a reduction. This method,
while enabling some attack to be made on otherwise nearly hopeless problems,
suffers greatly for several reasons. First of all, the.choice of omitted
terms is a process of discarding thousands of terms to retain one. Secondly,

the usual practice of relying on apparent fit to select terms before the
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regression process begins may result in the omission of exaatly the terms
needed.*

A procedure is reeded to conduct a search through thousands of
Possible terms engaging oniy a few dozen at a time to produce the predicting
equation. To be as effective as possible, it would be very desirable to use
each experience with the problem, whether successful or not, to learn more
about, the nature of the terms +hat are generally useful and thereby acceler-
ate the search. Such %techniques as "learning" and the "acquiring of

experience”

are generally associated with nonmechanistic organisms. Since
it i1s proposed that theses techniques be simulated by the 704 computer, this
is the application of artificial Intelliigence to the probliem,

The program has been written so that the machine is rot presented
with the condensed subset, as usually happens, but instead is given access
to all possible "erms and interactions within the bounds of the number of
variables considered and the number of function choiceg per variable allowed.
As usual in problems of this *ype, no straight-forward procedure can be
given to proceed to the solution that do=zs not also appear =conomically

prohibitive. It is not a matter of instructing the machine how to solve

the problem, but instead of insitructing the machine how to "learn" to solve

-

\
the problem, Specificaily, the machine must "learn” how to select terms so

* Experience with the regression program on single irdependent variable
problems indicates that the terms added successively to the predicting
equation bear little relation after the first step o their partial
correlation cosfficients with respect to the dependent variable. This is
because the added terms are always charged with explaining the as yet
unexplained variation in the dependent variable., Consequently, if the
first term entered explains the depsndent variable behavior quite well,
the next term may be of quite different character in order to explain
what is left by the first term.
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that the set of terms chosen contain those terms needed to produce predicting
equations of high precision. Much remains to be done in this new and vital
area, Thé present effort contains only the most rudimentary learning but is
written in such a way that more sophisticated learning models can be inserted
fairly easily. Experience with the simple learning mechanism has been
extremely encouraging.

Turning to the example of 5 variasbles and 10 functions per varia-
ble, the following discussion describes the nature of the learning scheme
used by the program. Suppose that ro knowledge of the nature of the more
likely terms nor of the relative importance of the various term classifiers
are known a priocri, A "term classifier" is one of the set of (1) inter-
action order identifier, (2) variable identifier, or (3) function identifier,
and is used to classify terms as to the degree of interaction, wriables
involved, and functions of variables involved in the term. If such knowledge
is presumed known before commencing the solution, means are provided to
suggest either the initial set of terms to try or the initial distribution
of weight among the term classifiers or both or neither., 1In the present
case, neither are assumed to be supplied so the discussion may be understood
for any other case where more information is given initially.

Since term classifiers are not assumed to be supplied, the program
assumes no previous experience with the problem and accordingly sets the
relative likelihood of all terms equal. This is accomplished by considering
each of the classifiers as an array the elements of which are the lengths of
the components of a vector. Each component is initially set to a unit

length.



-92-

Next the initial set of terms must he generated by the program.
Each of the 161050 possibie termg in this example are equally likely at
this stage. The program uses a pseudo-random number generator to select
(1) an interaction classifier, (2) variables to satisfy the interaction
selected, and {3) a functior for each variable chosen fcr the interaction.
As each term is selected, a check is made to be sure that it is not a
duplicate of an earlier *erm chosen for the current pass. When the number
of terms (less than 60) requested by the user for each pass have been
chosen and entered in a term matrix, the program calls upon an editor
progfam to examine the data and the term matrix and thereby generate the
set of edited data required by the regression analysis program. The edit-
ing process consists of operating on the raw data by referring to the term
matrix for the definitions of the terms and to subroutines to carry out
the generation of the terms. ZEach raw obserwvation 1s converted into the

edited data and a magnetic tape recording of the result is made., When all

Program to carry out the analysis exactly as before with respect to the set
of terms chosen by the program. Upon completion of the Regression Program
for this selection of terms, a check of the generated predicting equation
is made to see if:
(1) the Coefficient of Determination is as large as the user
specified,
(2) the Standard Error of Estimate is as small as the user
specified,
(3) the number of passes executed have not exceeded the limit

hy the user.
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If further work is allowed as the result of these checks, the
program proceeds to examine the results of the pass Jjust completed and in
so doing acquires '"experience" conerning the types of terms most suitable
for future use.

This "experience" is acquired by the student program as follows.
Each term is checked against the list of terms included in the predicting
equation. If a term has been successfully used in the relation, the
student (1) retains the term to be used again, and (2) increases the
probability of trying similar terms by incrementing the lengths of the
vector components of the classifier arrays that chose the term., If the
term was not successful, the student decrements the lengths of the vector
components that selected the term. By modifying the vectors by amount
proportional to their current size, no term will ever be reduced to zero
probability but may have its probability made arbitrarily small but posi-
tive. In this way the arbitrary setting of huge blocks of coefficients to
zero is avoided and any term may at any ftime be used successfully and there-
by become a member of the predicting equation until supplanted by a still
better term.

After the student program completes the study of the previous
run, the "experience" gained is utilized to select a new set of trial terms
for the next pass. That is to say, the previously successful terms are
retained from the former pass and the term matrix is filled out with terms
chosen by using the modified classifier arrays and the random selection
process. Since the classifier arrays have been modified, the selection of
new terms no longer occurs with equal probability for all interactions,

variables, and functions. Thus the search is less random and becomes more
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nearly stepwise as success and failure direct the modification of the
clagsifier arrays. So long as it is possikle to retain terms used success-
fully on the previous pass and still select some additicnal term or terms,
the program retains the previously successful terms. In this way, the new
pass will always be at least as "successful" as the last pass., If, however,
a new pass is called for and there ig no room for additional terms, the
program has encountered a "traffic jam" since a new pass would rot be
requested if the old selection had been good enough, In this situation,
a fresh start is needed but old "experience" may stiil provide valuable
assistance in the selection of terms. The student program discards the old
selection of terms (printout of the discarded set is automatic so that
human study can be made of it} and selects a complets new set while retain-
ing the "experience" imbedded in the classifier arrays. In this case the
machine is completely able to handle the "traffic jam" without outside help.
Ancther pitfall which might be encountered by the program concerns
the case in which the solution has progressed to a locally meximally success-
ful predicting equation. In this case, any change appears to make the pre-
dicting equation less useful and yet the present predicting equation is not
good enough. An interesting property of the Stepwise Regression method for
choosing the most desirable terms results in the ability of the program to
work 1tself out of such a situvation., In fact, several instances have been
observed in which the program accepted somewhat poorer overall fits for one
or two trials in order to retain particularly good terms and on a succeeding
trial found the fitted predicting equation to be several times better than

the best previous equation.
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In any case the process repeats itself, studying, grading, select-
ing, editing, fitting, until the conditions on the goodness of fit are met
or until the desired number of passes have been used whichever comes first.,
While one cannot be certain that the very best predicting equation possible
has been found after any predetermined number of passes (a characteristic
of iterative processes generally), the procedure insures that the best
solution to date is preserved and that all trials contribute to the improve-
ment of the selection process.

The learning scheme employed by the student program embodies many
of the principles discussed by Friedburg, Dunham, and North in their

articles on "Learning Machines" in the I.B.M, Journal. The student program

extends these ideas and incorporates the advantages of both random search

and stepwise search. Initial passes search rather randomly looking for

promising leads. As evidence accumulates, the mode of search becomes

increasingly stepwise as the number of "good" terms retained drow, Thus the

search narrows itself into promising areas and progress is made toward solu-

"tion until either a solution is found or the allowable number of passes is

exceeded or until either a solution is found or the allowable number of

passes is exceeded or until a "traffic jam" forces the random search to

begin again. Random searching of the early stages is most promising since

a podr start does not inhibit progress. Later stages have experienced

some success and therefore the modifications are less drastic to allow the

previous leads to be followed as far as they may prove to be profitable.
During the solution of any particular problem, it may happen

that, when the data are operated upon by the editor program to produce

the edited data, the size of the numbers generated may overflow or under-

flow the size of the IBM 704 word. In floating point arithmetic this may
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occur whenever the editor produces & non-zero number with absolute value
outside the range 10“18‘to 10*18 because of a later production of the sums
of the squares and cross products of the terms by the Stepwise Regression
Program., Iﬁ these circumstances, the student program cannot experience
"learning " for those terms of correct size since they have not yet been
tried for the actual curve fitting, but the student program must "learn"
about the selection of terms acceptable to the 704, Occasionally, it has
been observed that the terms suggested by the curve fitting process and the
terms acceptable in size to the 704 may not agree. The present learning
mechanism is capable of correcting itself in this case without requiring
human intervention,

Some final remarks may be of assistance in understanding the
analysis. First of all, a given set of data may result in more than one
predicting equation of a specified goodness of fit., This corresponds to
the existence of several mathematical models of the system. Classically,
this situation leads to the development of experiments capable of distin-
guishing between the models and the retention of those models which best
describethe greatest variety of consistent. circumstances accurately. By
randomly restarting the problem this possibility may be investigated. If
the program produces different predicting equations upon random restarting,
more evidence is needed. Failure to produce different equations, however,
does not guarantee freedom from such difficulty but decreases the probabili-
ty of this difficulty. Secondly, if previous experience with a préblem is
available, prudence usually dictates that the initial pass make full use of

it. The program provides ready means for saving previous results and for
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restarting with any or all of the previous classifier arrays and term
selections intact. This same philosophy may be extended to initial runs in
which the user's training and experience or previous encounters with similar
problems may serve to generate an initial selection and/or weighting. The
penalty for a poor guess is an increased number of passes, but a good guess
results in considerable saving.

The Stepwise Regression Program with Simple Learnimg has been used
successfully on many test problems and actual physical component modeling
problems. In addition, interest in this technique has been generated in
many diverse areas of the physical and social sciences. The ability to
know precisely the worth of each and every term in a predicting equation, as
well as the worth of the equation as a whole, as it 1s supported by actual

evidence, should enable extensions of knowledge in many fields.



IMPLEMENTING THE STEPWISE REGRESSION PROGRAM

WITH SIMPLE LEARNING

Communication of the Problem to the Program

As it was in the case of the Simulator Program. the immediate concern
of the user of the Stepwise Regression Program is to communicate the problem
to be solved to the program. Since the problem is essentially computational,
the link is established through the use of a set of control cards.

The program is designed to be very flexible in the analysis of the
problem. Thus, the user must select the specific operations to be performed
and the constraints to be imposed. The user must supply. in addition to the
observed data, the following control cards:

Title card

Problem control parameter card
Solution control parameter card
Output control card

Simple Learning control card

Core and Tape layout card
Initial Random Number card

—~3 O\ W D

N
T :;.&,»»w}("x.,,.

Depending on the contents of the Problem control parameter card,
one, several or all of the following groups of cards may be reguired:
8. Ordered Term Insertion cards
9. Data deck
GA. Format specification card
9B. Observed data deck
= 9C. ©TEnd of data card
10. Accumulated Learning deck
11. Initial pass terms deck
12. Output Function Name card.
In the foregoing list, items 8, 10, and 11 may be present or absent
from the input deck depending on the contents of the Problem control para-

meter card. The remainder must be present in every input deck. The order

of the deck follows exactly the order of the list.
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Title Card

The title card allows the user to present any title that may be de-
sired to be printed at the Veginning of a new problem. Only one card may
be used and the title may appear anywhere within columns 1 thru 72. Ordinarily,
the user will place the number one in column one so that the printing for the
problem will begin on a new page. Whatever appears in column one is the
printer carriage control character. If a blank card is used, the printer will
simply single space the paper.

Problem Control Parameter Card

The function of the parameters on this card is to allow the specific
problem being treated to be handled in accordance with the user's wishes.

The format of the card is (I5, 3F10.5, ‘715 I2). The parameters, in order,
are:

1) Problem Number, an integer modulo 32768. (cols. 1 thru 5)

2) Tolerance for division and round off error. A floating point
bound such that if the magnitude of any divisor is less than this value .no
division will occur. This value is also used to limit round off error in the
matrix manipulation. Typical values are 0.0001 to 0.0005. (cols. 6 thru 15)

3) Probability of insertion error. A floating point number in the
open Interval fromO. to 1.. The value is the probability allowed hy the user
that the least significant term inserted into the predicting equation is
erroneous. A value of 0.05 represents a risk of 1 chance in 20, a value 0.01

represents a risk of 1 in 100 and so on. (cols. 16 thru 25)



~100-

L) Probability of a deletion error. A floating point number in the
open interval from O. to 1.. -The value is the probability allowed by the
user that a term removed from the predicting equation for lack of support
should have been allowed to remain in the eguation.

The probability of a deletion error must not exceed the probability
of an insertion error. If it does, the program may reject every term offered.
(cols. 26 thru 35)

5) Number of independent (predictor) variables. An integer less than
or equal to 59. {cols. 36 thru 40). This value plus one is the total number
of variables in the problem;

| 6) Number of functions to be considered for each independent variable.
An integer less than or equal to 60. (cols. 41 thru ”5)} The choice of
functions to be used by the program is determined by the subroutine PFNCT in
the Editor Program Core {{No. 4) and the output section of the Program Generator
Core (No. 8) should obviously be made to agree with thése functions). The
user is free to replace PFNCT if the need arises in any particular problem.
The "standard" version provides automatically integer powers, integer roots

and their reciprocals. The extent of the set so generated depends on the

number of functions. The order of these functions is: ( in MAD notation)

Function No. 1 vovevvnevnnennonenns X(1).P.1
D e X(1).P.-1
B e X(1).P.2
b e e X(1).P.-2
D e X(1).P.1/2
I x{1).P.-1/2

and so on, repeating the pattern of functions 3, L, 5, and 6 above for each

increasing integer.
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Typical values for this parameter are; 10 (yielding functions thru
X(I).P.-1/3), 22 (yielding functions thru X(I).P.-1/6), 38 (yielding functions
thru X(I).P.-1/10).

7) DNumber of terms to be tried at each solution pass. An integer
less than or equal to 59. (cols. 46 thru 50)

8) Number of terms whose order of insertion is specified in the in-
put data. An integer less than or equal to the item (7). TUsually this vari-
able is set to zero, but may be set positive and thus force complete control
over the order of insertion of terms by the user. (cols. 51 thru 55)

9) Number of terms initially defined by the user. An integer less
than or equal to item,(Y). Defined terms under this control will be used
subject to the statistical analysis of the program unless overridden by item
(8). If less than the total terms in (7) are defined by the user, the program
will attempt to generate enough new terms to satisfy (7). (cols. 56 thru 60)

10) Parameter controlling the type of regression analysis executed
by the program. An integer (cols. 61 thru 65) operating as follows:

10A) If greater than zero, the data is treated with respect

to the coordinate axes and the constant term is always sup-

pressed to zero.

10B) If equal to zero, the data is treated with respect to a

set of axes translated to the means of the variables. The con-

stant term is not suppressed.

10C) If less than zero, the data is treated as in (A) but the

constant term is not suppressed. The constant term is treated
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Jjust 1like every other term. except that the constant is always
inserted as the first term the relation and held until the next
term is tried. After this point, all constraints are removed.
(The type C is most useful in dealing with physical data. Type A
is most useful when other information dictates a zero constant. Type B is
most useful when dealing with data that tends to group itself about the means,
(Biological and sociological problems). )

11) Parameter indicating whether the data is all of unit weight (para-
meter value not equal to zero), or weighted individually (parameter value equal
to zero). f{cols 66 thru 70). If the parameter is zero, each set of data must
carry a value of its weight.

12} Parameter indicating whether the program has previous "experience"
with the problem. If not equal to zero €r blank) the program assumes that the
accumulated learning deck is present. Integer variable in columns 71-772.

Solution Control Card

The solution control card communicates to the program the conditions
under which the program is to cease calculation. The format is (2F10.5, I5).
The parameters, in order, are:

1) Estimated Coefficient of Determination. Floating point variable
in the range of 0. to 1.0. This parameter is the uéer's estimate of the
expected goodness of fit between the predicting equation surface and the data.
Perfect agreement is represented by 1.0, no agreement is represented by 0.0.

Typical values for physical problems run from .95 to .999. (cols. 1 thru lO)
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2) Standard Error of i&dependent Variable. Floating point variable
whose value is the user's estimate of the standard error of the #mdependent
variable represented in this data. The value reflects the probable errors
present in the data in units of the same kind as the data. (cols. 11 thru 20)

3) Number of Passes allowed for this problem. Integer variable
whose value is the allowed number of complete passes to be made on the problem.
Typical values run from 1 to 10. (cols. 21 thru 25)

The program will run until both conditions (1) and (2) are met, or
until the passes are used up, which ever comes first. Condition (1) is met
when the program has found an equation whose Coefficient of Determination
exceeds or equals the specified value. Condition (2) is met when the program
has found an equation whose Standard Error of the Independent Variable is
less than or equal to the specified value. Both conditions must be met in
order to terminate the prdgram before the allowed number of passes are used.

Output Control Card

The program must perform a variety of subsidiary calculations during
the equation generation process. The output control card allows the user to
suppress those extra calculations and printing for which he has no need. If
a blank card (no suppression) is used, all calcudations will be printed.
Since, for most problems, this represents a very sizeable volume of printing
the user is cautioned to select only those items of real interest. Punching
a numeric 1 in the column corresponding to the item number given below will
suppress printing of the calculation. Either a numeric O or a blank allows

the printing to occur.
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Column No. Raw Sums of Squares andCross Products

Average (Mean) values

Residual Sums of Squares and Cross Products
Stapdard Deviations

Partial Correlation Coefficients

Intermediate Steps in Regression process
Predictions using the intermediate step equations
Predictions using the final equation

Values of terms for each set Qf observations

S e S S S S S e S

1
2
5
in
p)
6
7
8
9

If all of the above are suppresssd, the output will consist of:

1) Ilisting for verification of all raw data.

2) Definitions of terms used for each pass.

%) Final equation found for each pass, with pertinent statistics.
That is; the F level of the last term treated, the standard error of the in-
dependent variable, the ccefficient of determination, the multiple correla~
tion coefficient, the constant term, if any, and the coefficients and their
standard errors for all terms finally retained in the equation.

M) The diagonal elements of the regression matrix.

5) The equstion produced by the last pass in M. A. D. subroutine
form both printed and punched on cards ready for processing.

6) The final status of the "learning" mechanism punched on cards
for use in restarting future problems.

7) The terms to be used for the next presentation of the problem
to the program (on cards).

8) A pseudo-random number card to allow the random number generator

to continue the sequence.
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For most applications, the automatically produced output is sufficient.
The next most generally interesting results are the items (6) and (8) in the
first group. If (4), (7) and (8) are suppressed, some calculation is also
suppressed thus speeding execution time.

The user is cautioned again that the request for all of this printing
will, in general, produce a very sizeable output.

Simple ILearning Control Card

The user may, at this stage in the development of artifical intelli-
gence programs, control the characteristics of the learning mechanism. Use
of the external function structure for the program allows fairly easy modi-
fication of the various parts of the program. With the "standard" learning
mechanism as it is now used, data is accumulated concerning three kinds of
selections:

1) Order of Interaction

2) Variables Entering Interaction

5) Functions of the Variables.

.A term is generated by selecting an interaction order, next the
variables to be concerned in the interaction and finally the functions of
the variables selected. The term is the cross product of the functions
of the variables selected. The program must "learn" which interactions/
are most useful in explaining the data, which variables are most useful;
and which functions of these variables are most useful. The program 'learns"
by trying to use terms selected by the program to explain the data. If the

mechanism has selected a term which is supported by the data and retained

by the regression analysis, the meachanism that selected that term is
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modified so as toc be more likely to select terms cf a similar character. On
the other hand, if a term is not supported by the data and is, thus, of no
apparent utility in the eguation it is cast out and the mechanism is adjusted
to be less likely to select terms of similaf charactér. Since the probability
of selection of any component of any allowed term shculd be bounded positive,
the program uses a "half-life" constant to modify the probabilities. In this
way, the relative probability of any term may be made arbitrarily small but
remains positive. The usual card is of format (I5, 4E16.8). If the mechanism
is modified to require more constants, succeeding cards (up to 2) are of for-
mat (E21.8,3F16.8).

The parameters are:

1) Number of constants used by "learning" mechanism. Integer in
cols. 1 thru 5. (The standard mechanism uses 3 cqnstants. The numeric % is
punched in col. 5.)

2) The Constants used by the "learning" mechanism.

The standard mechanism uses:
2A) The "half 1life" of the Interaction selector. Typical
value is 3.0E0O. This means that three consecutive successes
will double the present probability (or conversely, three
consecutive failures in halving of the present probability).
2B) The "half life" of the variable selector. Typical value
is 3.0EQO0.
2C) The "half 1life" of the function selector. Typical value
is 1.5E00. Since any function may be used relatively in-
frequently it is somewhat desirable to take more powerful action

on each encounter.
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A great deal of work remains to be done in exploring "learning"
mechanisms. It should be observed here that as the constants are made
larger, the mechanism "learns" more slowly. In fact, for very large values
of the constants the mechanism is essentially'deactivated. Very small
values of the constants, on the other hand, may caﬁse'wildly:erratic be-
havior of the mechanism since each encounter so strongly distorts the re-
lative probabilities.

The vaiues given have received much use and appear to give quite
stable operation although not necessarily optimum convergence.

The user will ordinarily duplicaté this card and the next one from
run to run.

Core and Tape Layout Card

In order to allow easy extension of this program in the future, the
multiple core program arrangement can be changed and tape layout changed
without disrupting the entire program by using this card. Present core
arrangement and tape layout is the following: (Users‘wishing to modify the
layout are advised to study the program flow charts carefully.)

1) Starting Program is in two consecutive core loads. The first
core of the Starting program is now core 1. Punch 1 in column 5.

2) The Student Program is one core load and is now core 3. Puhch
% in column 10.

5) The Editor Program is one core load and is now core 4. Punch 4
in column 15.

4) The Regression Program and Program Generator Program are three
core loads, the first two of which are the Regression program. These must

be consecutive core loads. Punch 5 in column 20.
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5) The Processed Data erasable tape is noy tape 3. Punch 3 in
column 22.
5A) The Selector mechanism is now stored as the first recqrd
on tape 3. Punch 1 in column 24.
5B) The Raw Data after processing into terms values is now
stored beginning as the second record in tape 3. Punch 2 in
column 26.
5C) The Terms selected for eachpass are now stored as the
second record on tape 3. Punch 2 in column 28.
6) The Raw Data erasable tape is now tape 4. Punch L iﬁ column 3k4.
6A) The raw data is now stored on tape 4 in binary beginning
as the first record on tape. Punch 1 in column 36.
Space is allocated in storage for five tape record assignments for
each tape. At this time, the only assignments are the above.

Initial Random Number Card

The random number subroutine used by the Simple lLearning Mechanism
may be reset arbitrarily at the beginning of each problem.  Since the program
will produce one of these cards at the end of the problem the sequence may
be continued easily. The format is 3I10. The first number 1s any odd in-
teger modulo 327681y. The second number is any integer modulo 5276810.

The third number is any integer modulo 5210. The subroutine combines these
integers to form ohe 35 binary digit odd integer. This integer serves as
the first member of the pseudo-random number sequence generated by the

library subroutine RAMZ2.
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Ordered Term Insertion Card(s)

If the parameter (8) of the Problem Control Parameter Card is non-
zero, the user must supply a set of cards to define the order in which terms
are to be inserted. Thus allows an arbitrary equation may be generated with-
out regard to the statistical analysis after which the statistical analysis
may be used to discard those terms that are not sufficiently important to
meet the deletion error eriterion. If a theoretical relation is available
for which a study is being made to determine how the relation may be improved,
this feature may be useful. Otherwise, one must assume the risk that some of
the theoretical terms will be displaced in the search. The user must be aware
that the use of these term order cards is a severe constraint on the analysis
and treat the results accordingly.

The format is 14I5. Each five columns contains a integer whose
value 1s the number of a term to be inserted. The first number is the first
term to be inserted, the second number is the second term and so on. For
example, 1if parameter (8) on the Problem Control Card were three and column
five on the Ordered Term Insertion Caré were six, column ten were three and
column fifteen were one, the effect would be to irsert term six, then term
three and then term one after which the Stepwise Regression Program would
examine the equation to be sure that these terms meet the deletion error
criterion. If any of these terms fail the test they will be discarded.

When all of the terms in the equation meet the deletion error test, the re-
maining terms not yet in the equation will be tested for insertion. From

this point on, the standard analysis is followed.
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Data Deck Preparation

1. Format Specification Card
Since the data may come from various sources, the data deck allows
the data format to be specified at execution time. This is done by using a
standard FORTRAN format statement beginning with the word FORMAT (beginning
in column seven and ending in column thirteen, followed by any allowable for-
mat specification that can be placed on one card and terminating with a ")"
rightvparenthesis in or before column 72. For example, the following format
statements would be acceptable:
Column
7
FORMAT (5F10.2,E16.8)
or
FORMAT (4E16.7, F10.1/L4E15.8)
This card must immediately preceed the data deck, and is known as the
Format Specification Card.
2. Data Cards
Following this card are the data cards. Arbitrary formats are allowed
as described above. The data must be listed for each observation in the
following order however. (All values are floating point numbers)

1) Observation Number. There must be a positive observation

number for every observation. Run number one must appear once and only once.

2) Independent Variables. These values are listed in order
following the observation number. The values must correspond to one observa-
tion group.

%) Dependent Variable. The variable whose value is to be predicted

must follow the predictor or independent variables.
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4) Welght of this Observation group. The weight of the group may
be specified or can be assumed to be unity depending on the parameter (ll) of
Problem Control Card.

5. End of Data Card

The actual data is then followed by a complete blank data set which
acts as a termination for the data. ‘If any Observation Number is blank or
less than or equal to zero, the data input is terminated at that point.
Therefore, the user must take care in preparing the data deck so that the
entire set of data will be read into machine storage.

The pfogram automatically counts the welghted data sets to establish
the degrees of freedom for the analysis. In this way, new data can be added

to the data deck and/or old data can be deleted very easily.

The Accumulated Learning Deck

Whenever a multiple independent variable problem occurs in which
a large number of functions are allowed for each independent variable and
interactions of all orders are admitted, the result is the generation of a
very large set of possible terms that may appear in a predicting equation,‘
Since the most desirable equation consists of a "minimal" set of these terms
comprising those terms most significant in explaining the dependent variable
behavior, it becomes apparent that the analysis must usually perform a
selection process while dealing with a segment of the entire set of terms

at each encounter.
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If it is possible to verify the validity of terms independently
from their method of initial selection then it becomes feasible to allow
the machine to select the terms using some heuristic method. The terms so
selected will not always be the correct ones or even the "best" ones al-
though the method of selection should certainly tend to operate in this
way. The important point to observe is that the validity of the term is
tested by the regression analysis independently of the selection and the
regression analysis is, therefore, not affected in any way by the heuristic
method of selection. Because of this, the heuristic term selection method
is free to select terms using any convenient scale for choosing the terms.
If the terms so selected are shown to have validity by the regression
analysis then the heuristic method that selected the valid term 1s mod-
ified so as to be more likely to select similar terms. A converse action
occurs whenever the term is shown to be invalid.

At the completion of each solution pass the current status of the
selector mechanism is represented by a set of values which give:

1) The relative probability of each Interaction Order

2) The relative probability of each Independent Variable

3) The relative probability of each function of each variable.

Whenever no accumulated learning deck is available, parameter (12)
of the problem control parameter card is set equal to zero. The result is
that the program will then assign equal unit relative probability to all

interactions, variables and functions of variables.
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If previous encounters with similar problems have occurred, however,
the program has already had "experience" with a similar problem and can be
allowed to take advantage of these encounters by providing the accumulated
learning deck that was automatically produced at the conclusion of the former
problem together with the new problem data. If the user desires to transmit
this information to the program, parameter (12) of the problem control para-
meter card is set equal to one and the accumulated learning deck is placed
after the data deck.

The user can also suggest his own experience to the program by pre-
paring an accumulated learning deck. The format is 5E14.7. The relative
probabilities are inserted in the following order:

1) Relative Probabilities for Interactions from first order to the
maximum order for the problem.

2) The sum of the preceeding probabilities (1).

3) Relative Probabilities for Independent Variables, from the first
to the last in the same order as they appear in the data deck.

L) The sum of the preceeding probabilities (3).

5) Relative probabilities for each function of the first variable
followed by the sum of these probabilities.

6) Relative probabilities as in (5) for the second, third, etc.
variables.

The preceeding items are punched successively in the available
fields as specified by the format. No blank fields are permitted between

groups since every field is interpreted consecutively.
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The accumulated learning produced by the machine program has each
relative probability normalized so that the mean relative probability 1is
unity. In this way, a problem may be easlly expanded to more varlables,
functions, etc. and still retain previous "experience" by meking all new
entries of unit value.

Because of the independent regression analysis of the terms chosen
from the accumulated learning it must be emphasized that this mechanism can~
not force the adoption of ingorrect terms. Rather, such an ingorrect set
of "experience" would be modified progressively by the progrem. If the
"experience" éupplied is valid for the current problem the result is to
speed the generation of the desired equation but invaelid "experience" can
only temporarily delay this generation.

In general, i1f good experience is avallable from previous similar
problems or from the user's background the user is strongly advised to make
use of it.

Initial Pass Terms Deck

The user may suggest any initial terms that may be desired for the
first pass. If the suggested terms stem from theoreticel consideration and
the theory is in agreement with the data, such a suggestion will speed the
generation of the predicting equation by insuring an early treatment of
likely terms  Any number of terms may be given initially up to the total
number of terms allowed for each pass. The number of terms to be so de-
fined by the user 1s given by the parameter (9) on the problem control

parameter card. If fewer than the total number of terms to be tried at
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each pass (parameter (7)) are given initially by the user, the machine program
will generate the remainder of the set by using the accumulated learning and
the selector mechanism.

At the end of each problem and immediately following the production
of the accumulated learning deck, the program produces a set of terms to be-
gin the next encounter with the problem. If the problem is continued later
these terms may be supplied by simply including these cards following the
accumulated learning deck.

If the user wishes to suggest terms the procedure is the following:
(The card format is 14F5.0)

1) Produce a term card (or cards if sufficient variables are
present) for each term desired.

2) Treat each consecutive field in the above format specification
as in one to one correspondence with the independent variables in the problem.:

2A) Insert the appropriate function number in the field corres-
ponding to the desired variable.

2B) leave blank (or zero) every variable field not associated
with the term.

3) 1Insert the interaction order in the field immediately following
the last variable field.

For example, suppose the user is dealing with two independent
variasbles and the "standard" PFNCT subroutine and desires to form the term:

. x(;) P.3%X(2).P.-1/2.
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The term is specified by punching seven in column five, six in column
ten and two in column fifteen. See "standard" functions in PFNCT as defined
by number. The seven selects the function integer power three and the appear-
ance in column five assigns this function to variable one in this term. The
two in column fifteen declares the term to be a second order interaction and
thus produces the desired multiplication of the previous functions of the
variables. In this way any desired term allowed by the subroutine PFNCT (and
hence allowed by the user) can be specified as an initial term. This is true
even when the function numbers in the initial term specification exceed the
value of parameter (6) on the problem control card. Of course these terms
are, in this instance, excluded from automatic generation but will, neverthe-
less, be used correctly and preserved from pass to pass correctly so long as
they are in agreement with the date. Once discarded from the set of terms
only those terms allowed by parameter (6) can be regenerated.

Output Function Name Card

At the conclusion of each problem the program produces, in printed
form and on punched cards, the external function subroutine for the last
regression equation found by the analysis. This function is ready for
immediate translation by the MAD translator and may be used in any program
as the user may desire. The OQutput Function Name Card assigns a name to
this subroutine. If a blank card is supplied at this place in the input
deck the function name will be left blank. Otherwise the desired name is

entered somewhere in the columns 1 thru 72 on the Output Function Name Card.
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The program will use the last six non-blank alphanumeric characters as the
function name. If a total of fewer than six non-blank alphanumeric characters
appear in columns 1 thru 72, these characters are taken to be the function
name. The rules for allowable function names are those of the MAD translator.

If the desired function name consists of exactly six alphanumeric
characters, the user is then free to insert any desired comment before the
desired name. The comment will, in this case only, be ignored.

Examples of allowable function names:

ETA17; PRATIO; TORQUE; EFF23



The Structure of the Program

The Stepwise Regressibn Program, like the Simulator, is structured
in several sections. Each section performs certain tasks which cause, as a:
result of the performance, a selection of a new section of the program to
be performed. There are seven basic sections:

Input Section

Initial Term Section

Student Section

Editor Section

Regression Statistics Section
Stepwise Regression Analysis Section
. Program Generation Section

° °

o

2

°

-~ O\ Ew
°

The input section brings into the program all of the data associ-
ated with a given problem. The control parameters and data are all entered
at one time so that if any data set encounters trouble the input tape will
be properly‘positioned for the next problem. As discussed in the section
on communicating the problem to the program, the initial terms may be
supplied by the user or chosen by the machine as desired. If sﬁpplied, the
input section will then bypass the Initial Term Section and the Student
Section,

If the initial terms were not supplied, the program calls the Ini-
tial Term Section to choose the terms for the firs’é«rpasso The selection is
based on the Accumulated Learning supplied by the user. If no Accumulated
Learning is given, the program assumes initially that all possible %erms are

equally probable and proceeds with this assumption. The terms are selected
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by choosing:

1. Interaction Order

2. Variables for the interaction

3. Functions of the Variables.

After sélecting the initial terms,; the control passes to the Editor
Section. In this section, the terms defined earlier are evaluated for every
data point. If an eminent overflow or underfldw of the machine register
capacity is found, the faulty term is rejected and the problem is passed to
the Student Section so that the Accumulated Learning may be adjusted to tend
to avoid such a recurrence. If no such machine limitation is found, the con-
trol passes to the Regression Statistics Section.

The Regression Statistics Sections computes raw sums of squares and
cross-products, means, standard deviations, sums of squares and cross-pro-
ducts adjusted to means, and simple (product-moment) correlation coefficients.
Since these statistics are generated in a conventionallmanner reference is
made here to sultable texts for elaboration(llslgﬂlg}gifThe important item
of interest is that all of these statistics are available for the study of
the data. Upon completion of these tasks, the results in the form of the
regression matrix are passed along with the éontrol to the Stepwise Re-
gression Analysis Section.

In the Stepwise Regression Analysis Section the techniques of Efroymson
and Dallemand are employed but modified slightly to allow more flexible
manipulation of the analysis by the user. Four baéic analyses may be per-
formed:

‘Analysis for fit of data about means,

Analysis for fit of data with respect to the coordinate planes
with constant term suppressed.

3. Analysis for fit of data with respect to the coordinate plants

using constant term
4. Controlled term insertion order analysis.

N
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