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A NOTE ON THE MOTION OF INERTTIAL WAVES ON THE SPHERE

by

A, Wiin-Nielsen
Department of Atmospheric and Oceanic Science
The University of Michigan

Abstract

The motion of inertial waves on the spherical earth is found as a function
of the zonal wave number by using a perturbation method with a basic state of
no motion. The speed of the waves is compared with the elementary wave for-
mula, derived under the assumption of a constant Coriolis parameter. The iner-
tial waves can be investigated as a special case of a more general investiga-
tion, conducted earlier by the author, of transient waves in the wtmosphere.



1. Introduction

The motion of inertial waves is generally described by the well-known for-
mula * fo/k where f, is & constant value of the Coriolis parameter while k is
the wave number. It is obvious that the formula is valid formally for short
waves only because no variation of the Coriolis parameter is permitted. Iner-
tial trajectories on the spherical earth have recently been investigated by
Wiin-Nielsen (1973) showing marked deviations from the inertial circle for
large initial wind speeds and/or initial positions in the very low latitudes.
It would appear worthwhile to investigate if corresponding differences are
found between the simple wave formula given above and speeds computed without
the simplifying assumptions.

The author (Wiin-Nielsen, 1971) has investigated the general problem of
the motion of the vertical modes of transient waves in an atmospheric basic
state characterized by no motion, but an arbitrary thermal stratification. It
was found that the speed of the waves is determined by three coupled, ordinary
differential eduations involving the streamfunction, the velocity potential
and the geopotential for a given vertical mode of the perturbation. The iner-
tial waves are characterized as the waves which would exist if there were no
Pressure field. It follows therefore that we may obtain the equations govern-
ing the motion of inertial waves by simply disregarding all reference to the
geopotential of the perturbation. In this way we obtain two coupled equations
which can be solved by using a numerical technique analogous to the one em-
ployed in the earlier investigation.

2. Problem and Procedures

The perturbation equations for inertial waves on a basic state of no mo-
tion are

M
T fv
%vg - -y (2.1)

where £ = 2Q0sin ¢@. (u,v) is the horizontal velocity vector, u the zonal ve-
locity, v the meridional velocity, t time, Q the angular velocity of the earth,
and ¢ latitude.



The system (2.1) is replaced by the vorticity and the divergence equa-
tions:
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in which a is the radius of the earth, A the longitude, { the vorticity, V - v
the divergence, ¥ the streamfunction, and x the velocity potential. Note, that

1 o 1o
a cos ¢ O\ T o) (2.4)

We notice that all the dependent variables can be expressed in terms of
the streamfunction and the velocity potential. The perturbations are expressed
in the form

im(A - ct
Vo= v (o) & )
m
) im(A - ct
x = ix (¢) e ( ) (2.5)
Introducing the nondimensional phase speed s by the relation
v me
s = =55 T "oy (2.6)

where v is the frequency, we find after substitution of (2.5) in (2.2) that
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in which p = sin o.

The problem is now to solve the eigenvalue problem presented by (2.7) in
which s is the eigenvalue. We obtain a numerical procedure to find the desired
eigenvalues by expanding Vp and x, in series of Legendre functions, i.e.,

R
am(li) = L /a\;(m: m+2r) P(m, m+2r, p)
I':
or
R
%ﬁu) = ¥ a(m, m+t2r+1) P(m, m+2r+1, p) (2.8)
r=0

in which R = rp,, denotes the truncation in the series (2.8), and where the
first and second forms are used for even and odd functions, respectively, (2.8)
are substituted in (2.7). Making use of a number of identities for the set of
Legendre functions we can reduce the resulting equations to the following pair
for each value of r:

(2r +1)(m+2r)
T (mtor+1)(m+hr+1

) Q(m} m-+2r)

+{(m+2r+l;n(m+2r+2) i S} Um, m2r 1)

(m+2r+3)(2m+2r +2) A _
T (mtor+2)(onthr+5) X(m, m+or+2) = 0

or(m+2r-1)
T (m+2or)(om+hr-1)

V(m, m+2r-1)

(m+2r+2)(2n+2r+1)
T (m+or+1)(om+hr+3)

V(m, m+2r+1) = 0 (2.9)

We notice from (2.9) that even functions for the streamfunction afe
coupled with odd functions for the velocity potential and vice versa. For a
given value of m the parameter r will run through the values 0,1,2,...,R. We



have thus 2(R +1) equations which leads to finding tne eigenvalues in a stan-
dard eigenvalue matrix. It is not obvious at the outset how large R must be
in order to determine tne largest eigenvalues with sufficient accuracy. This
‘problem was solved experimentally by gradually increasing R in steps of 1 un-
til no change was found in the largest eigenvalues. Experience showed that R
in no case needed to exceed 20.

5. Results

The system (2.9) was solved as described above for a fixed value of m,
selecting R in such a way that we have a good accuracy for the largest eigen-
values. Using this procedure we can repeat the calculation for a set of values
of m and thereby get the phase speed as a function of the zonal wave number.
These calculations were carried through for the values m = 1,2,...,15. For
each value of m we have determined the first six eigenvalues. As one would
expect from the simple theory with a constant Coriolis parameter the eigen-
values appear in pairs witn approximately the same absolute value, but of oppo-
site sign. Table I gives the numerical values of c, expressed in the unit:
deg day‘l, for the first six eigenvalues. The computed values of s were con-
verted to ¢ using (2.6) and a value of Q = 360 deg day~t. It is seen that c
decreases in absolute value as m increases for each of the six eigenvalues.

TABLE I

NUMERICAL VALUES OF THE FIRST SIX EIGENVALUES

(Expressed in the unit: deg day™1)

m cl 02 05 c:llr 05 06

1 ~720.1k 716.76 -714.15 708. 27 -703.97

2 -=359.58  357.20  -356.43  352.25  -351.51  345.57
3 -239.05 237.27 -236. 4L 233,54 -232.69 228.73
L -178.72 177.27 -176.k42 17h.17 -173.30 170.31
5 -1ko.kg 141.23 -140.3%8 138.52 -137.68 135.25
6 -118.30 117.19 -116.35 114.75 -113.92 111.89
7 -101.00 100.00 - 99.16 97.77 - 96.96 95.20
8 - 88.01 87.10 - 86.27 85.03 - 84,23 82.69
9 - T77.89 T7.06 - 76.24 75.12 - Th.3h 72.97
10 - 69.79 69.02 - 68.22 67.20 - 66.43 65.19

11 - 63%.16 62. 4l - 61.65 60.71
12 - 57.63 56.96 - 56.18 55.31
13 - 52.94 52.31 51. 54 50.Th
14 - 48.93 48.33 47.58 46,83
15 - ks.b5 LL.88 L, 1k L3 Ll

59.97 58. 8k
5h.58 53.55
50. 03 49,08
46.13 45,25
Lo, 76 L1.94




One of the first problems to investigate is if the values in Table I
agree reasonably well with the simple formula * fb/ku In order to make such
a comparison we write

fo 2Qsin cpo 2Qsin P
c = — = — . ] = . =

k 2n an m m

720" sin P

(3.1)

where we have expressed the wavelength in degrees of longitude and Q = 2x
day”l. It is obvious that if (3.1) shall give values in agreement with the
numerical values in Table I we must select @, = 1/2x. The solid curve in
Figure 1 displays the relation c = 720/m, while the circles give the values of
cg from Table I. It.is obvious that the values [cll,lczl,...,|c5l would be
even closer. We have therefore shown empirically that the phase speed of iner-
tial waves are well approximated by a formula where the phase speed is in-
versely proportional to the zonal wave number. This relation is of course not
exact. If it were, we would, according to (2.6), have s = 1 as the eigenvalue.
The numerical determination of s shows, however, that the largest eigenvalue
s1 deviate only slightly from unity as shown in Table IT.

TABLE II

THE LARGEST EIGENVALUE s; AS A FUNCTION OF m

m 1 2 3 L 5 6 T 8

sy 0.9978 0.9964  0.9936  0.9905 0.9871 0.9834 0.9795 0.9755

9 10 11 12 13 1k 15

0.9713 0.9670 0.9626 0.9581 0.95%36 0.9490  0.94L45

L. Concluding Remarks

The speed of inertial waves on the sphere has been calculated. The re-
sults show that the various eigenvalues, ordered according to their absolute
value for the same value of the longitudinal wave number, decrease relatively
little. It is also shown that the phase speed of the inertial waves is, for
practical purposes inversely proportional to the longitudinal wave number.
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Figure 1. The curve shows the relation c = 720/m while the circles
indicate the values cg taken from Table I.



It is naturally possible to calculate the functions Yy (p) and X (p) by
summing the series (2. 8) after having found the eigenvector W(m, m+2r) and
%(m, m+2r) from the solution of the system (2.9). Such calculations have
been made, but the results are not reproduced here because no significant con-
clusions have been drawn from the results.
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A NOTE ON BAROCLINIC INSTABILITY AS A FUNCTION
OF THE VERTICAL WIND PROFILE

by

A. Wiin-Nielsen
Department of Atomspheric and Oceanic Sclence
The University of Michigan

Abstract

The note provides an additional example of a solution of the quasi-
geostrophic, baroclinic stability problem in an atmosphere with adiabatic
stratification. The main purpose of the example 1s to consider wind profiles
in which the maximum may vary in position. For each profile it is possible to
determine the region of instability in a dlagram with the meximum wind as or-
dinate and the wavelength as abscissa. In additon, the degree of instability,
measured by either the imaginary part of the wave speed or by the e-folding
time, can be calculated.



1. Introduction

A few years ago the suthor gave a solution of the quasi-geostrophic,
baroclinic stability problem in an atmosphere with adiabatic, vertical strati-
fication with a arbitrary vertical profile of the horizontal wind in the basic
state (Wiin-Nielsen, 1967). Several examples were given in the original paper.
The purpose of this note 1s to provide an additional example using a wind pro-
file which is rather general.

2. Review of the Solution

The eigenvalue problem for the adiabatic, quasi-geostrophic stability
question maey be stated by the following equation for the (complex) amplitude
of the perturbation "vertical velocity" @ = Q(p*), where p,_ is a nondimensional
pressure, p, = p/po, p 1s pressure and po = 100 cb:

2
Gl dg 4

E(E—c)——g—(ZE-c)--E—'j- = 0 (2.1)
dP2 dp* dp*

where E = U(py) - ¢, U = U(p,) the glven wind profile, ¢ the (complex) phase
speed, Cn = B/k2, B the Rossby parameter, k the wave number and where the per-
turbations are of the form

w = Q(p*) exp[ik(x - ct)] (2.2)

The solution to (2.1) was given in the previous paper by the expression

1
1 2 2.2
= - = + - + = - 2.
c (Il 5 cR) I (Il I2 L cR) (2.3)
in which
I, = fl U dp (2.4)
1 o) *
and
I = fl U~ dp (2.5)
2 o) *

10



3. A New Example

We shall prescribe the vertical profile of the horizontal wind by the
expression

_ (n=-1)! r-1
UN(p*) - (I‘ _ l)'(n -7 - l).’ p* (l = P*) (3‘1)

where Uy = U/Uy, Uy is the vertical average of the wind, i.e., Uy = Iy, Py is
the nondimensional pressure, while r and n are parameters which determine the
shape of the wind profile. It is seen that (3.1) is closely related to the
well-known beta function, and that the expression in the first fraction guar-
antees that

[u (p,)dp, = 1 (3.2)

Some selected examples of the vertical wind profiles given by (3.1) are
shown in Figure 1. It is seen that the parameter n, for a fixed value of r,
determines the position of the meximum in such a way that increaging values of
n corresponds to a maximum wind at lower values of the pressure. As seen from
Figure 1 it 1s possible to produce many shapes of the wind profile by select-
ing r and n in a suitable way. For example, n = 2r will produce a wind pro-
file which has its maximum at py = 0.5 and 1s symmetric around this level.
(r,n) = (2,4) (3,6), (4,8), and (5,10) are examples of such profiles. We note
furthermore that if we in (3.1) replace r by n - rys but keep n the same we
get a profile

(n-1)! n-ry-1 -1

r
- Di(r, - 1)! P (1-pJ"

u(p,) = (3.3)

(n-r

1 1

Introducing for convenlence the variable p, =8 + 1/2 we find (3.1) to be

(s) = (n-1)! 1, )r-1(1 n-r-1 Y
UN 8 = (r-1)!(n-1r-1)!\2 & o (3.

while (3.2) becomes

B (n-1): 1 n-r -4l 1ot
Uy(s) = (n-rl'l).'(rl'l)-'<2+; ' 1<2'>1

(3.5)

11
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nondimensional basic current as abscissa.
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The variable s goes from the value -1/2 at the top of the atmosphere, 0
at p, = 1/2, to the value +1/2 at p, = 1. Replacing s by -s in (3.5) it is
seen that (3.5) goes into (3.4). The profiles’ (3.1) and (3.2) are therefore
symmetric around p, = 1/2, and they have the same values of I; and I, which
implies that the complex phase speed is the same for the two profiles. 1In
particular, we have shown that the rate of instability 1s the same for wind
profiles which are symmetric around the middle of the atmosphere. The result
would apparently not be true if the stratification was different from the
adiabatic structure in the present model. The profiles shown in Figure 1 show
several examples of such symmetric profiles such as (r,n), = (2,5) and (r,n) =
(3,5), (r,n) = (2,6) and (r,n) = (4,6), (r,n) = (2,7) and (r,n) = (5,7) and

seversal others.

The nondimensional phase speed, ¢ = c/Um, for the profile (3.1) can be
evaluated from (2.3). We find that I;/Uy, = 1 and, after a simple integration,

2

I
- (n - 1)! (or - 2)!(2n - 2r - 2)!
F(r,n) 02 " Yr -1 n-r-1)! (2n - 3)!
m
(3.6)
The result is
1/2
2 2 4
_ _B L )+ - g L
Ce = |1 Uy, 81{2 - {1-7F(r,n) + Ur% 61+n:’+ (3.7)

When the quantity under the square root is negative, we have instability.
In thls case we find

c,. = 1- éi-éf; (3.8)
and
52 Lh 1/2
C,, = F(r,n) - 1 - ;E Eﬂ;ﬂ (3.9)

which shows that the speed of the unstable waves are independent of the param-
eters r and n, but dependent on the verticelly averaged speed U . (3.8) gives
the well-known result that the speed of unstable waves in the present model is
very similar to the speed of Rossby waves in a barotropic, nondivergent atmo-
sphere.

(3.9) shows that sufficiently short waves are always unstable. The crit-
ical wavelength below which the waves are unstable is

15



U
L = 2V2 n(—é@)l/g (F(r,n) - 1)l/h (3.10)

which mey also be written in the form

. B _1 2
Um - 8,2 c*i(O) Lc (3.11)

where

¢,;(0) = (F(r,n) - 1)1/2 (3.12)

is the Ilmaginary part of the phase speed at L = 0. It is seen from (3.11)

that the region of instability is inside a parabola in a diagram with I as the
abscissa and U_ as the ordinate. The region of instability is large if the
coefficlent to Lg is small. The largest region of instability will be obtained
for the maximum value of c*i(o).

Because of the fact that the instability is the same for two profiles
which are symmetric around p*=:1/2 we need consider only those profiles for which

the maximum occurs at a nondimensional pressure p, < 1/2. It is found by dif-
ferentiation of (3.1) that

4au '

N (n - 1)! r-2 -r-2
dp = (r_l)l(n_r_l)l {(r-l)-(n-2)p*} p* (l'P*)n

* . AN .

(3.13)
which shows that UN has 1ts maximum at a value of p, equal to
r -1

L = (3.1k)

We find p_ < 1/2 when r < (1/2)n in agreement with the examples shown in
Figure 1. It is of course common practice to illustrate the region of insta-
bility in a diagram with the windshear as ordinate and the wavelength as ab-
scissa. We may define a windshear Ug by the formula

Un

au. U
1 N n
oo <_>dp - U (p, 2 (3.19)
] 1l- Py,m P*,m dp* * 1- p-x-,m N

14



Using (3.14) and the definition of Uy we find

Hg B (n - 1)! (r - l)r-l (n - r - l)n-r—2 (5.16)
Uy, (r - 1)/ (n -1 - 1)! (n - E)n_3 .
and (3.11) becomes
A (3.17)
A A 3.17
where
(r,n) = (n-1)! (r - l)r_l(n -r - l)n-r-g (3.18)
7 (r - 1)n-r-1)! (n - g)n-j ’
LB 1
87f2 c*i(o)

A calculation of y(r,n) for various values of (r,n) shows the general re-
sult that the region of instability in a (L,US) plane becomes larger the closer
the wind mexlimum is to any one of the boundaries p, =0and p =1. For a glven
value of r we find therefore the smallest region of instability when n = 2r,
i.e., for the wind profile which is symmetric around P, = 1/2. On the other
hand, among these symmetric profiles we find the largest region of instability
when n = 2r 1s the largest, i.e., when we have the sharpest maximum. This result
1s in agreement with those obtained in the previous investigation.

In order to illustrate the degree of instability we have prepared Figure
2 which shows the e-folding time as a function of wavelength for the selections
(r,n) = (2,4), (2,5)...,(2,8). These curves show that the degree of instabil-
ity increases as the maximum of the wind profile approaches the upper boundary.
Similar curves are naturally obtained if we let the wind maximum approach the
lower boundary.

Figure 3 illustrates the degree of instability, measured by the e-folding
time as a function of wavelength, for the wind profiles which are symmetric
around P, = 1/2. It is seen that the degree of instability increases as n = 2r
increases, 1.e., the sharper the wind maximum becomes.

15



T.days

(2,4)(2,5)(2,6) (2,7)
| -(2,8)
3h—
2—
"—_
Y \ \ I ! ] \ A \ 1
02 3 4 5 6 7 8 9 10 Lio6m

Figure 2. The e-folding time in days as a function of the wavelength
in 100m for the values (r,n) = (2,4),(2,5),...,(2,8).
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Figure 3. As Figure 2, but for the values (r,n) = (2,k4),

(3,6), (4,8), and (5,10).

N



4. Concluding Remarks

The purpose of this note has been to investigate the region and the de-
gree of instabllity as a functlon of the vertical profile of the horizontal
wind. In the quasi-geostrophic model with adiabatic stratification 1t is

found that
(a) the instability is the same for two wind profiles which are symmetric
around the middle of the atmosphere. A low level jet will thus show
the same instability as a high level Jet;

(b) the instability becomes larger the closer the jet is to either of the
boundaries; and

(c) emong the symmetric wind profiles those with the sharpest maximum
will be the most unstable.

Reference
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A NOTE ON FJPRTOFT'S BLOCKING THEOREM

by

A. Wiin-Nielsen
Department of Atmospheric and Oceanic Science
The University of Michigean

Abstract

The changes of kinetic energy and enstrophy in a three-component system
in a barotropic, nondivergent fluid are analysed in detail. For a given change
of kinetic energy or enstrophy on the intermediate scale, the changes on the
large and the small scale components are calculated. The conditions under
which the change on the large-scale component is larger than the change on the
small-scale component are found for both enstrophy and kinetic energy as a
function of the latitudinal scale parameter.
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1. Introduction

Fidrtoft's (1953) theorem states that kinetic energy must be transferred
toward both larger and smaller scales in a two-dimensional, nondivergent flow.
This property is due to the conservation of both kinetic energy and enstrophy
in a barotropic flow. The theorem is most easily proven for a low-order system
consisting of three components only. For such a system one can easily calcu-
late the changes in the kinetic energy of the largest and the smallest scales
for a given change of kinetic energy on the middle scale as it was done by
Fjgrtoft (loc. cit.).

In atmospheric flow we have on the average a maximum conversion of avail-
able potential energy to kinetic energy on a scale around longitudinal wave
number 5-8. If Fjﬁrtoft's theorem is applicable to the baroclinic atmospheric
flow, one should expect a nonlinear transfer of kinetic energy from this scale
to both larger and smaller scales. Data studies, summarized by Steinberg et
al. (1971), show that such transfers can be computed from atmospheric data
with a result'in agreement with the theorem.

It has on occasion been stated that Fjértoft's theorem implies a larger
transfer of kinetic energy to the large scale than to the small scale. This
implication is perhaps due to a printing mistake in the original paper on the
subject or to an erroneous use of a mechanical analogy suggested by Charney
(1966). It appears that observational studies (Steinberg et al. (1971),
Saltzmen (1970), Saltzman and Teweles (1964)) verify the statement, but it
must be kept in mind that these observational studies are arranged according
to the longitudinal wave numbers, while the theory is developed for spherical
harmonics, and that rather arbitrary divisions in three wave groups have been
used in these studies.

In view of the facts mentioned above it seems desirable to investigate
the conditions under which a larger transfer of kinetic energy goes to the
larger scales than to the smaller scales. The question can be answered by
elementary calculations as long as we restrict ourselves to a three-component
system. Such an analysis is given in the following section combined with a
similar analysis for enstrophy changes.

2. Three-Component System

Let us assume that we consider an interactive three-component system. By
this we mean that the longitudinal wave numbers m satisfy the selection rule
as given by Platzman (1960), and that the meridional scale parameters n; < np
< Nz satisfy the selection rule

20



n,-n <mn, <n + n,. (2.1)
or, equivalently,
-n. < < +
n n n n5 < n +n (2.2)

Denoting @ = n(n+1) we may express the conservation of energy and en-
strophy by the relations

1
o

+ +
AKl AKQ AK3

(2.3)

1l
(@)

+ K +
qlAKl qu 5 qBAK3

Assuming a change 0K, of kinetic energy on the intermediate scale we may
find AK; and AKz from (2.3) giving

q, - q
AK1 = - aé—:f—g AK2
5%
q,. - q
2 1
AK, = - ————= AK (2.4)
3 q5 4 2

Since each of the fractions in (2.4) is positive because g < dp < gz we
find that AK; and AK5 have the same sign, opposite to the sign of AKo. It is
easy to show that

9, - 4
0 < =—2 <1
q§ ql
and
a, - g
0 < *g—:-ai < 1 ' (2.5)

showing that |aK| < |aKp| and [aKs| < |8Kp|. We shall next investigate the
conditions under which AKl/AK5 is larger than 1. We find from (2.4) that

21



AK q, - 4
1 2
® T oTu (2:6)
3 2 1
and it follows therefore that
AK
1
t——— l .
i, > (2.7)
if and only if
< + =
a, (1/2)(ql q5) a, (2.8)

where g, is the arithmetric mean value of qq and q5.

We may also express (2.3) in terms of the enstrophy for the components.
We have then

B
=
+
[
=
I
]
(o
=

1 3 2
1 1
— AE, +— AE, = - — AE (2.9)
q, 1 a5 3 a, 2
which may be solved giving
q a, - 4
AEl = - al . q3 - q2 AE2
2 3 1
q a, - Q
1
AE5 - -2 ag—:ji— AE2 (2.10)
Qo 93 7%

(2.10) may naturally be obtained directly from (2.4) by using the rela-
tionship AE = gqa™2 AK where a is the radius of the earth. (2.10) shows that
AE; and AE5 have the same sign, opposite to the sign of AE2. We should now
like to consider the conditions under which AEl/AE5 is larger than unity. We
find that this is the case if and only if

2
ql q§ 9
q,< = — (2.11)
27 (1/2)(q, *a,) o
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where qg, the geometrical mean, is defined by the relation q; = (qlq3)1/2.

It is well-known that qy > e From this relation it follows that q, >
qé/qA. In view of this relation it is seen that if AEL/AE3 > 1, then it is
also true that AKl/AK3 > 1. Conversely, we may say that if AKl/AK5 <1 it
follows that_AEl/AE3 < 1. The condition which corresponds to the results of
observational studies, i.e., AK]/AK5 > 1 and AEl/AE3 < 1, will take place in
a three-component system only when qé/qA <qp <qy.

These selection rules can easily be used to test any three-component sys-
tem which has been selected for integration. If the system shall be active by
which we mean that the interaction coefficient has & non-zero value we must
also according to Platzman (1960) have

n,-n, <n.<n (2.12)

Suppose that we want to find the active systems for which AEl/AE5 > 1.
Denoting'q* = qé/qA we require

.
9, <aq, motn,-q <O (2.13)

which is satisfied if

n. <n,_ = (1/4 + q*)l/2

o < By - 1/2 (2.14)

In addition, we must satisfy (2.12). It is straightforward to show that
n, <ns in all cases. The final condition for AE;/AEs > 1 is therefore

n3 -0, < n, < n, (2.15)

(2.15) gives the lower and upper limit for N, necessary to insure that
more enstrophy goes to the larger scale than to the smaller scale. These
limits are easily calculated for a given pair (nl,n3). It is, however also
seen from (2.15) that in order to find suitable values of np, it is a necessary
condition that

n, -n. < n (2.16)
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(2.16) shows that the choice of (nl,nB) is restricted to a certain region
in the first quadrant of the (nl,n ) plane. We shall next determine this re-
gion. Substituting from (2.14) in (2.16) and using the definitions of q,, ay
and qz we may after considerable algebraic menipulations show that (2.16) is
equivalent to the following inequality:

F(nl,nB) < 0 | (2.17)

where

F(nl,n5) = ni(nl-Fl)(nl-2n5-l) - n3(n3-+1)2(2nl-n ) (2.18)

To determine the region in which (2.17) is satisfied it is most convenient
to find the roots of F(nl,n3) = 0 in the region nz >nj. This was done by
writing F(nl,n ) as a LUth degree polynomial in n:, determine the roots.of the
polynomial for a fixed value of Dy, and repeat the process by selecting a suf-
ficient number of values of ny. The results of these calculations are shown
in Figure 1 in which the area between the curves n; = Nz and F(nl,ni) is the
region in which F(n ,n5) < 0. For any pair of values of n; and nz selected
within the region we can calculate the lower limit, i.e., Nz - nj, and the
upper limit, i.e., n,, for no necessary to obtain AEl/AE > 1. It should be
kept in mlnd that n, has to be an integer. nz - nj and n, may be so close to
each other that no integer can be found between them. Table I shows all the
triplets (nl,ne,n5) for which AEl/AE5 > 1. For each entry (nl,n5) for which
1<ny<1l7and 1< nz < 20 we have listed the permissible values of n, for
which AE)/AEz > 1.

Let us next turn our attention to the kinetic energy and find the triplets
(nl,ng,n ) for which AKl/AK5 > 1. We know that all the triplets listed in
Table I W1ll be included because it was shown earlier that if AE /AE > 1 it
follows that AK /AK3 > 1, but it is likely that additional trlplets will be
included in the sample for which AKi/AKB > 1. (2.7) and (2.8) show that the
condition is fulfilled if

2
qa < q,, n,+n,-q <0 (2.19)
which is satisfied provided

1/2

n. <mn,, = (L/k+ qA) - 1/2 (2.20)
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Figure 1. The necessary condition for the position (nl,n5) is between the
curves ny = ng and F(nl,n5) = 0 in order to provide a possibility for satis-
fying the condition AEl/AE3 > 1.
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TABLE I

OF np, FOR GIVEN VALUES OF ny AND n3, FOR WHICH AE)/AEs > 1

9 10 11 12 13 14 15 16 17 18 19 20

N O\
@ =1 O\
3
-~

g8 8 8 9
9 9 9 9 910 9,10 10
0 10 10 10 10,11 10,11 10,11 11
11 11 11 11,12 11,12 11,12 11,12 11,12
12 12 12 12,13 12,13 12,13 12,13
13 13 13 13,14 13,14 13,1k
14 1k b 14,15 14,15
15 15 15 15,16
16 16 16

17 17
18
As before we must satisfy the selection rule
ng = 0y <n, < n5 (2.21)

but it is straightforward to show that n , < nz which indicates that AKl/ AK3 >1
if and only if

n, -0, <n, <mn, (2.22)

5

*

The necessary condition restricting the choice of (nl,nﬁ) is found, as in
the previous case, by the inequality

n. -n < n (2.23)
leading to

G(nl,nj) = n? - (Lml-l)n3 + (ni-Bnl) <0 (2.24)

26



which is straightforward to solve. Figure 2 shows the region in which
G(nl,nB) < 0. We find as expected that this region is somewhat larger than
the region in which F(nl,n ) < 0, see (2.17)." As in the previous case we cal-
culate from (2.22), with the definition of n,, in (2. 20), the lower and upper
limits of no for each pair (nl, 5) satlsfylng G(nl,n ) < 0. The results are
given in Table IT where the entry of a single number indicates that n, can
have this value only. On the other hand, an entry of a pair indicates that
n, can teke all values between the smaller and the larger number. For example,
it is seen from Table II that if ny =9 and nz = 18, n, may take the values
10, 11, 12, 13, 14 all of which will results in AKl/AK5 > 1.

In order to summarize the present investigation we have prepared Figure 3.
The circles show those triplets for which AKl/AK3 > 1. For each pair (nl,ni)
we have listed the minimum and meximum values of np below the circle. Those
circles for which AEl/AE5 > 1 have been filled, and the corresponding values
of n, are given above the circle. The open circles indicate the triplets for
which AKl/AK5 > 1 and AE /AE3 < 1l. 1In the sample given on Figure 3, i.e.,
1 <n) <18,"1 < n3z < 20, there are 229 triplets for which AK /AK5 > 1, but
only 86 with aK /AK3 > 1 and AE;/AE; > 1, giving 143 cases with AKl/AK >1
and AE /AE5 < 1l. It is thus seen that the latter category contains the major-
ity of the cases.

3. Concluding Remarks

The main purpose of the present note has been to analyse a simple three-
component system in a barotropic, non-divergent fluid with respect to energy
and enstrophy transfers. Using the reasonable restriction that we consider
active systems only we have found general conditions which determine the ratios
of energy and enstrophy transfers to the large and the small scale for a given
change on the intermediate scale. It cannot be concluded that there is always
more energy transferred to the large scale and more enstrophy going to the
small scale, but the investigations provide the formulas necessary to determine
the ratios for any given three-component system.
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A NOTE ON THE ANGULAR MOMENTUM BALANCE OF THE ATMOSPHERE

A. Wiin-Nielsen
Department of Atmospheric and Oceanic Scilence
The University of Michigan

Abstract

The vertically averaged merldional transport of momentum of the atmosphere
is calculated under steady state conditions from a simple perameterization of
the surface stress. The primary purpose of the calculation is to demonstrate
that the major features of the momentum transport as derived from atmospheric
data can be reproduced by the simple model.
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1. Introduction

The qualltative aspeets of the required meridional momentum transport of
the atmosphere can easily be derived by a consideration of the surface stress
which reduces the westerly momentum in the reglons of surface westerlies and
increase the westerly momentum (decrease the easterly momentum) in the region
of surface easterlies. 1In order to maintain the momentum balance in a zonal
ring extending from the surface of the earth to the top of the atmosphere it
1s necessary to transport westerly momentum from the the regions of surface
easterlles to the reglons of surface westerlies as first suggested by Jeffreys
(1926) and later used by many authors. The fact that the surface stress may
be calculated by a vertical integration of the equations of motion or, alter-
nately, from the vorticity equation has been used to obtain information on the
geographical distribution of the stress from upper wind information.

Adopting a relation between the surface zonal stress and the surface
zonal wind as is generally done in models of the large-scale atmospheric cir-
culation it is equally possible to calculate the vertically averaged, merid-
ional transport of momentum. It is thus possible to ask if it is possible to
reproduce the momentum transport as derived from atmospheric winds from the
observed distribution of the surface zonal winds. The calculation of the zonal
stresses from calculated momentum transports has been carried out by several
authors (see, for example, Wiin-Nielsen et al. (196k4)).

In the following sections we shall give a particularly simple example
which may be used for educational purposes because it can be solved in a
straightforward manner by analytical methods, but the general method may also
be used to compute the meridional transport of momentum from a representative
meridional profile of the zonally averaged wind.

2. Formulation of the Problem

It is well-known that the zonally averaged form of the first equation of
motion may be written in the form

2
du, ) 1 N uv), cos<o . a(uw)z - fy 4T (2.1)
ot a cos2® P 3p z 2

in which u, v, and w are the three components of the three-dimensional velocity
vector, a is the radius of the earth, ¢ is latlitude, p is pressure, and Fx,z
is the zonal average of the zonal component of the frictional force per unit

3L



mass. The subscript z denotes a zonal average, defined by the relation
2
(), == 7 () a (2.2)

The zonally averaged form of the continuity equation is

dv, cosp A,
1 zZ 3
a cosQ X ¥ X 0 (2.3)

Adopting the boundary conditions w, = 0 at p = 0 and p = Py, = 100 cb
where the last condition is the common approximation and introducing a verti-
cal average by the definition

p
(g = 7 L°C) a (2.4)
(o)

it follows from (2.3) that

VZ,M = 0 (2.5)

Using (2.5) and the boundary conditions stated above it follows by apply-
ing (2.4) to (2.1) that

BuZ’M L1 uv)y cos2g _

= F (2.6)
ot a cos2gp o NsZsM
We shall now adopt the following expression for Fx
OTx,
F = - — 2'.
N = (2.7)

where g is the acceleration of gravity and Tx the zonal component of the stress.
It follows then from (2.4) that

F =

g
- £ . 2.8
NyZyM P ANyZ,0 ( )

where the subscript o denotes the value at p = Py We shall now further adopt
the parameterization, common in large-scale models that
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T>\.,z,o - po cd Vo uzo (2.9)

where Py i1s the density, cy the surface drag coefficlent, and Vo the windspeed
at p = p,. Introducing finally a steady state assumption in (2.6) we get

1 oM cosem

g
= =—=p ¢,V u 2.10
a cos2y ) p, © d o zo ( )

where we have introduced the notation M = (uv)Z,M. It is (2.10) which normally
is the basis for a qualitative discussion of the requirements for the momentum
transports in the atmosphere. (2.10) says that there must, under steady state
conditions, be a convergence of the momentum transport when u, > O and a di-
vergence when u, < 0. If we can get a numerical estimate of the coefficient

to uys in (2.10), and if u,, is specified in some fashion we may use (2.10) to
calculate M by integration of (2.10).

3. A Simple Example

Tt is generally recognized that cy and V, are variables to which we have
to assign typical values. We shall be using a normalized form of M when com-

puted, and it is therefore of no great concern which numerical values we assign.
Let us denote

ngV
g 0

=p eV = —— (3.1)
P, © d o RTO

-1

b4

- o .
Using g = 9.8 m sec™2, cg =3 x10 3, Vo =10 m sec™l, R =287 n" sec 2deg
and T, = 288°K, we find g = 3.56 x 1076 sec-l.

The meridional distribution of u;,, applicable to steady state conditions,
1s characterized by easterlies in the low latitudes, westerlies in the middle
latitudes, and weak easterlies in the high latitudes. A simple expression
which behaves in thls fashion is :

u,o = - Up cos ko (3.2)
We shall now calculate M from (2.10)using (3.2) for uyo. We obtain

M cosgm = - eal é:/z cos( ko) cosz¢ dop (3.3)
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which upon integration gives

A sin(2p) (3-ksin‘g) (3.4)

=
i

where

(l/6)ean = 18.9 m2 sec-e (3.5)

o=
]

-1
adopting Uy = 5 m sec .

Figure 1 shows M calculated from (3.4) and normelized in such a way that
the maximum value is unity (left side). The same figure shows Uyo (right side)
normalized in the same way. A comparison between Figure 1 and similar figures
based upon observed winds prepared by Starr et al. (1970), shows that the sim-
ple example depicts the major features of the "observed" distribution of M
although 1t should be noted that the figures given by Starr et al. (lgg. cit.),
shows M cos2p. This difference accounts for the much smaller values shown in
the negative transports in the very high latitudes in the study based on ob-
servations. |

We shall next calculate M from a representative profile of uz(@). For
this purpose we have calculated the profile from the climatological data for
the Southern Hemisphere givenby Van Loon et al., (1971). The annual average of
Uzo, computed as the mean of the data given for the four months: January,
April, July, and October, is shown in Figure 2. M was computed by a numerical
integration of (2.10). The values of M, normalized in such a way that the min-
imum value is -1, are shown in Figure 3 as the solid curve. The agreement be-
tween the momentum transport from our simple example shown in Figure 1 and
Figure 3 1s obvious indicating that our example is quite representative.

The circles entered on Figure 3 is the total momentum transport for the
Southern Hemisphere calculated on the basis of Obasl's (1963) investigation
which used IGY data for the calendar year 1958. The general shape of M from
these data is the same, but the northward transport in the high latitudes is
considerably larger in 1958 than in the climatological average.

L. Concluding Remarks

The principle used in this note has been used several times to calculate
the surface stress from upper wind statistics. We have emphasized that a
parameterization of the surface stress in terms of the surface winds permits a
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Figure 1. The right part shows the specified zonally averaged wind at the
surface (upper scale) as a function of latitude, while the left part shows
the meridional momentum transport, both normalized with respect to their
maximum value (lower scale).
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Figure 3. The meridional, vertically averaged momentum transport computed
from the data given in Figure 2. Circles are obtained from Obasi (1963).
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calculation of the total meridional transport of momentum. Such calculations,
using a simple analytical example and statisitics of the surface wind, have
been carried out with falr agreement with other direct calculations of the
vertically averaged, meridional momentum transport.
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