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To Eduard Kechs In Memoriam



ABSTRACT

0f central importance in topology and its applications have been the man-
ifolds of various dimensions. In 1936, in a paper published in the Proceedings

of the National Academy of Sciences, Eduard Kech proposed for study a type of

manifold which embodied a condition theretofore not used, to wit, that every
point have a neighborhood whose one-point compactification is an orientable
closed manifold. In the present paper, the chief question studied relates to
the implication of this condition if applied to arbitrarily small neighborhoods
of a point. This necessitates a search for conditions under which a locally
compact space, which has a given type of local connectedness, will preserve
this under compactifications. Necessary and sufficient conditions are. obtained
which apply to both the one-point and to the Freudenthal compactifications. In
particular, it is found that if a manifold satisfies the gech condition for
arbitrarily small neighborhoods of a point x, then x has arbitrarily small neigh-
borhoods that are r-acyclic (in terms of compact homology) in all dimensions r.
The question. which then obviocusly arises, whether all manifolds of the type in
current use have such neighborhoods, is answered by providing an example of one

which doeg not.
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INTRODUCTION

This work was origirally inspired by a paper of E. gech [2] in which he
proposed a definition of generalized closed manifold('"absolute n-manifold")
according to the following procedure: (1) One first defines the concept of an
orientable n-dimensional generalized closed manifold; (2) the n-dimensional
generalized closed manifold, orientable or nonorientable, is then defined as a
compact space in which each point has a nelghborhood whose one-point compact-
ification 1s an orientable n-dimensional generalized closed manifold. In con-
sidering this mode of definition, one notes that condition (2) does not st;te

that each point is to have arbitrarily small neighborhoods of the type de-

scribed, so that in the case of the orientable closed manifolds, the entire
manifold may be taken as the required neighborhcod. This raises the question
whether one could replace (2) by the following: (2') the n-dimensional gen-
eralized closed manifold is a compact space in which each point has arbitrarily
small neighborhoods whose one-point compactifications are orientable n-dimen-
sional generalized closed manifolds.

Now manifolds are locally connected in all dimensions and simple examples
show that the one-point compactifications of locally donnected, locally com-
pact spaces are not generally locally connected. For example, the subspace of
the coordinate plane constituted by the set of points {(x,y)lx a positive
ihteger, y 2 O}u((x,o)lx 2 0) is a connected, 1l-lc space, but its one-point
compactification is not 1-lc. We shall show that the requirement in condition
(2') would imply the existence for every point of arbitrarily small neighbor-
hoods that are r-acyclic for all r (in terms of homology with compact carriers).
Since it is well known that spaces which are lcn, n > 0, do not generally have

such acyclic neighbrohoods, the question arises whether manifolds must possess



them. We give an example of a manifold in which such neighborhocds do not exist
for a certain point. Consequently, since the construction given can yield a
manifold either orientable or nonorientable, to use cordition (2') would imply
an inconsistency (more precisely, the orientable case is defived in (1) without
imposition of acyeclicity on neighborhoods, while (2') would impose it). This
brings out the fact that the difference noted between (2) and (2') is quite
essential.

We shall begin with an investigatiorn of conditions under which local, and
related medial, properties of a locally compact space extend to compactifica-
tions therecf. Iun particular, inljl we find comditlons on a space which ensure
that local connectedness properties extend to certain types of compactifications,
such as the one-point and Freudenthal "end" compa@tifigations.l ln‘{2, analogous
problems concerning medial properties are treated; such medial propérties have
been systematically discussed in [10]. And, of importance for the study of man-
ifolds, corditions obtained which ensure that the local Betti rumbers p%(x)
shall be = w in the compactifications. In {5 some applications are indicated
for continuous mappings and in.{h applications are made to the matters discussed
above.,

We shall take p = 0 in éech’s definition of "n-manifold of rank p" [2],
since it is din this form that the resulting manifolds become a subclass of the
generalized manifolds currently employed under a pumber of equivalent defini-
tions (see for instance'[ég VIIT]) ineluding Yech's earlier definitions (see
references in [2]). For purposes of the present paper only, we designate the
former by the term "Sech manifolds"jand as for the latter, we use the symbol |
"nmgm”r to denote "n-dimensional generalized manifold" ard "n-gem" to denote

"n-dimensional generalized closed manifold."

1
For the classical type of local connectedness, this was treated by L. Zippin
[11]. :



1. EXTENSION OF LOCAL CONNECTEDNESS PROPERTIES TO COMPACTIFICATIONS

Since the case of the common one-point compactification is so simple, we
dispose of it separately, saving generalization for subsequent treatment. We
employ éech homology and ecohomology with coefficients in an arbitrary alge-
braic field; the ordinary homology and cohomology groups are indicated by use
of the capital H—thus "H,(X)" denotes homology group of X. Since we make

"compact" groups (based on compact carriers of chains

such frequent use of the
and cycles), we indicate these by the lower case "h"—as in "hn(X)." By

"p.(X)" and "p"(X)" we denote the dimensions of h (X) ard n*(X), respectively.

Lemma. If X is compact and M a closed subset of X such that both pn(X)
and pn_l(M) are finite, n > 0, then p (X;M) is finite.

Proof. Immediate consequence of the exactness of the homology sequence
of the compact pair X, M.

Corollary 1.1. If X is compact and 1cn, n >0, and M is a closed subset

of X such that py.1(M) is finite, then p,(X,M) is finite.

Proof. Immediate consequence of the complex-like character of X (see
[6; 180]) and the lemms.

Corollary 1.2. If X can be imbedded as an open subset of an 1c? compact

ot s e————— s oamnts

space S, n > 0, so that 5 - X is compleXx—like in dimensions O to n - 1, then

X is complex-like in its compact cohomology in dimensions 1 to n.

Proof. We recall pp(X,M) = p%¥(X - M) for a compact pair X, M.
Remark. That pO(X) is not necessarily finite under the hypothesis of
o0
Corollary 1.2 is shown by the example in E- of X = \~4)Xi where X; = {(x,y) |
i=1
X = l/i, 0=y <w}, and S is the one-point compactification of X.

Theorem 1.1. In order that the one-point compactification X of a con-

nected and lc™ space X should be lcn, it is necessary and sufficient that X

be complex-like in compact cohomology in dimensions 1 to n.
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Proof of necegsity. A consequence of Corollary 1l.2.
. . AN Ao
Proof of sufficiency. Since Hr(@) = 0 for all r(where p = X - X),HP(X) ~
AN N r
H.(X, p) ® h¥(X) for r = 1, ..., n; and p.(X) is finite since h'(X) is of finite
2 N )
dimension. Then by Theorem 4 of [5] if X were not lcr, it would fail to be
1cn at a nondegenerate set of points.
If by "1c®" we denote possession of the r - lc property for all r, then
we can state a similar theorem for 1c” spaces.

A
Theorem 1.2. In order that the one-point compactification X of the con-

nected and lc space X should be 1cw, it is necessary and sufficient that the

compact cohomology groups of X be finitely generated in all dimensions greater

than O.
| Proof of necessity. As above.

Proof of sufficiency. The proof of Theorem 4 of [5] can be applied to
show that the property of being 1c® is expansive (220 933,) relative to the
class of compact spaces that are complex-like in all dimensions. The proof of

Theorem 1.1 is then adaptable to the present theorem.

2
Although the results of [5] were stated only for metric spaces, their exten-
sion to the nommetric cases presents no difficulty.



2. RELATIONS OF MEDIAL PROPERTIES OF A SPACE TO ITS
COMPACTIFICATIONS AND OTHER TYPES OF EXTENSION

We recall (see [8]) that a subset M of a space X is said to have property
(P, Q) if for every canonical pair of open sets P, Q (i.e., Q@ is compact and
PDQ), the group hp(MAQ[MAP) is finitely generated. (By h,(U[V) we denote
the image of h'(U) under the inclusion mapping U—3 V). Property (P, Q)r is
similarly defined in terms of cohomology.

Of equal interest are medial properties defined in terms of bounding (or
cobounding): Thus a subset M of X Ims property (P, Q) if for every canonical
pair P, Q of open subsets of X, the image of 10 in the sequence of homomor-
phisms

h (M, MNQ) —2 5 n.ne) —L n(unP)

where i is induced by inclusion and O by the boundary operator, is finitely
generated. The corresponding cohomology property is denoted by (P, Qp)T.

It is clear from their definitions that these medial properties, as applied
to subsets’of a space, are positiomal or relative in character, inasmuch as
the sets P and Q are taken as open in the "parent space." However, as applied
to a space X and its topological images, they are topological invariants, since
here the sets P and Q are open relative to X (or its images). Consedquently in
discussions where the medial properties of a space X and those of 1ts compact-
ifications are concerned, it becomes necessary to distinguish between those
which are relative to X itself (and hence topological) and those properties of
X which are relative to the compactifications (and hence positional); we shall
call the former intrinsic and the latter extrinsic. The following example will

make this distinetion clearer:



Example: In B, let A = {{x,y)]|0<x =1/x, y = gin (1/x)}, B = {((%,7) ]
Xx=0, -1 £y =1}, and let C be an arc joining (1/x, 0) and (0,-1) in the
fourth quadrant of EZ but not meeting AUR otherwise. ILet X be the bounded
domain having AuUB UC as boundary, and % = X (each with the subspace topology
induced by the topology of EZ). Then X, as a subspace of gﬁ does not have
intrin-

property (P, Q), extrinsically; however, it does have property (P, Q),

sically, since X is homeomorphic with the open circular disk bounded by x2 +

Remark. Clearly if X, as a subset of a SpaceAQ, has one of the medial
properties defined above extrinsically, then it has it intrinsically.

To indicate these medial properties over a range of dimensions k to n
inclusive, k < n, we use pairs of indices; thus ", (P, Q)n” indicates property
(P, Q) for r =k, k +1, ...,n.

Since many of our conclusions hinge upon certain groups being finitely
generated, we shall use the abbreviation "f.g." to denote "finitely generated."
"Tmage of f" will be abbreviated to "Im f" and "Kernel of f" to "Kern f."

Theorem 2.1. Let.g be a locally compact space, T a closed, totally dis-

A
connected subset of X, and X = X - T. If X has property (P, Q,~), intrin-

A N
sically, then X has property (P, Q,~),. Conversely, if X has property (P, Q,

~),, then X has property (P, Q,~), both extrinsically and intrinsically.

N

Proof. Let P, Q be a canonical pair of open subsets of X; we may assume

- A - A /A
that P is compact. Iet T = (X - P)UQWUT. Thern T is closed, and X - P and
Q are disjoint closed subsets of 6{ We assert that there exists an open subset

/\ : —
R of X such that (1) PDRDQ and (2) TAF(R) = 4.

N

To see this, we note that since T is g locally compact subspace of X and
— N\ A A
@ is a compact subset of T there exists a decomposition T = TV T> separate,

N~ AA
where T3 2Q and Tos2X - P. (See [6; 100, Th. 1.3]). For each Xi@l there



A - - A A
exists an open subset Uy of X such that U,CP and UxnT- = P. As Ty is compact,
A ,
a finite number of such sets Uy covers T; and their union, R, is a set of the
type desired.
. A . ),
Since T is closed, there exist open sets P; and Qi such that (1) Pf§>Pl
A —
RDQDQand (2) TN(Py - Q1) = f; and open sets Uy and V, such that (1)
A — - = —
U1DF(P1), ViDF(Qu), (2) TN(ULUVL) = §, (3) U:CP - R, T.CR - Q.
Now suppose Q contains an infinite collection {Z;} of compact ﬁ~cycles
A
that are lirh in P and bound on X. Then there exists, for each 1, a cycle

i i

i = = i i, '
Z,4q, mod QUF(Py) on Py such that aZn+l = Zy - 7,, where 7, is a cycle on F(Pq).

The portion of Z%+l on P, - Q1 is a relative cycle Zi+l such that 62i+l = 7% -
wﬁ, where wi is on F(Qi); and since X has property (P, Q,”), intrinsically,
there exists a homology Zéiyi - Zaiwifuo in U;¥V;. But the sets Uy, Vi are
disjoint, so that this implies a homology ZaiyinJO in Uy. But the 7ifmust be
lirh in P since the Zi are, so the existence of the cycles Zi must be impos-
sible.

To prove the converse, let P, Q be a canonical pair as before, and select
R as above. Since X is open, there exists an open set U such that P - Q22U D
F(R) and UCX. This time we suppose the Zi lie in XNQ and bound in X. They
are therefore homologous in PAX to cycles 7% on F(R), and using the (P, Q,~),
property of gl we find that the 7; are not lirh in U. But as UCX, this implies
the Zi not lirh in PANX. We conclude that X has property (P, Q,’von extrin-

sically and hence intrinsically.

N
Corollary 2.1. With X and X as in Theorem 2.1, if X has property (P, @~

intrinsically, then it has property (P, Q,”J)n extrinsically.

Remark. That Theorem 2.1 fails if "(P, Q)n" is substituted for "(P, Q,~),"
is shown by the following example: Let Q be the space of [6; 341, 5.19], con-
sisting of a denumerable set of circles Cn successively tangent and converging

to a point p. Let T consist of p together with a point x, of each C,, which



may as well be distinct from the points of tangency with C,_1 and Cn+lo Here
the set X = % - T has property (P, Q)i even extrin$ically, yet % does not.
This example also shows, ircidentally, that property ”O(P, Q)n” cannot be
substituted for "(P, Q,) ."

.

Corollary 2.2. If X is a locally compact space having property (P, Q,’V)n,

_ A
is a compactification of X such that X - X is a closed, totally discon-

A A ,
nected subset of X, then X has property (P, Q,’vﬁﬁo

Corollary 2.2a. If X is a locally connected, locally compact space having

property (P, Q,AJ) ; then the Freudenthal compactification [3] of X has prop-

n

erty (P, Q)"’)n-

A

Theorem 2.2 Let X be a compact space and T a closed, totally discornected

a
A A\ \
subset of X such that X = X - T has property (P, Q,), intrinsically, is

n-+l (X) .

A
(n +1) - le, and has finite p Then X is (n + 1) - lec and, moreover,

has property (P, Q),q-

n+l (

Proof. Since Hn+1(Q’ T) ~ h X) and p™*(X) is finite, the group

AN
Hp+1(X, T) is f.g. And since T is closed and totally disconnected, Hp4+1(T) = O.
A}
X

A
It follows, from the homology sequence of the pair X, T, that H . (X) is f.g.

A} N
And since X is compact, X is semi-(n + 1) - connected.

Since X has property (P, Q,~/).. and is (n + 1) - le, X has property

1L

A
(P, Q;~)p4y [10; Th ITI 1], By Theorem 2.1, X has property (P, Q,ar),,;- Hence

by [10; Lemma II 1], X has property (P, Q) and is a fortiori (n + 1) - lc.

n+l

Corollary 2.3. If X is a locally compact, (n + 1) - lc space having prop-

4
erty (P, Q,”), and X is a compactification of X such that the set T = Q - X

i Ar—

is a closed, totally disconnected subset of Q, then a sufficient condition that

/\ .
Xbe (n +1) - lc is that p™™(X) be finite. And if either (1) n > 0 or (2) T

is finite, then this condition is necessary.




/
Proof. For the necessity, X has property (P, Q,—»On‘by Theorem 2.1 and
N . A
together with the fact that X is (n + 1) - lc this implies that pn+l{X) is

finite [10; Cor. III 2]. Hence if n > 0 or T is finite it will follow from

m+l(

/ A
the homology sequence of the pair X, T that pp+1(X; T) = p X) is finite.

That the necessity fails when n = O and T i1s not finite is shown by the

familiar examples of derdrites having a closed, infinite set of endpoints; de-

4 A
noting such a dendrite by X and the set of endpoints by T, p™(X - T) is infinite.

m

Corollary 2.4. If X is a locally compact, lep

space, n < m = «, having

A
property (P, Q,"), and X is a compactification of X such that the set T = X - X

is a closed, totally disconnected subset of X, then a sufficient condition that

X be lc$+l is that the numbers p*(X), r =n + 1, ..., m all be finite. And if

either (1) n > O or (2) T is finite, then this condition is necessary.

Proof of sufficiency. By [10; Th. III 2], X has property ,,q(P, Q), and
a fortiori property n+l(P’ Q,fVQmo Hence by Corollary 2.3, X is 1e§+l.

Corollary 2.5. In order that the one point compactification of a locally

m

compact, lcn+l

space X having property (P, Q;“J)q should be lc2+l

it is necessary and sufficient that the numbers PFX) r=n+1, ..., mall be

,y 0 <m = oo,

A
finite. In particular, if X is lcm, then for X to be 1c™ it 1s sufficient that

" the numbers p*(X), r =0, 1, ..., n, all be finite.

Proof. For the 1lc™ case, we recall that the 0-lc and (P, Q), condition
are equivalent. And if p°(X) is finite, X has only finitely meny components
so that the proof of sufficiency for 0 = le reduces to an apﬁeal to the fact
that no continuum can fail to be 0-lc at one point. That X is also lc% follows
from Corollary 2.3.

That pO(X) is not of necessity finite, in general, is shown by such an example

as that in the Remark following Corollary 1.2,



A
Corollary 2.6. In order that the Freudenthal compactification X of a con-

nected, locally connected, lcg%l, n<m s o, locally compact space X having

property (P, Q,~), should.?g}lc§+l, it i& necessary and sufficient that the

numbers p¥(X), r =n + 1, ..., mall be finite. In particular, if X is 1c",

A
then for X to gg’lcm it is sufficient that the numbers pP(X),n=1..., m

all Eg finite.

Let us turn now to the cohomology case. Here we can expect substantial
differences, inasmuch as r-colc at a point x is equivalent to pr(x) = 0, while
the range of possible values of pY(x) is infinite. (See [6; 19O,J{6.6])0 On
the other hand, in the case of. homology the corresponding numbers gr(x) have
only two possible values, O and «, the former corresponding toc r-lc at x (see
[6; 192]1). However, corresponding to Theorem 2.1 we have:

A
Theorem 2.3. Let X be a compact space, T a closed, totally disconnected

A A
subset of X, and X = X - T. If X has property (P, QjﬂJ)n intrinsically, then

N ’ A
X bhas property (P, Q,~)". Conversely, if X has property (P, Q,~)", then X

has property (P, Q,f“)n both extrinsically and intrinsically.

Proof. By the fundamental duality between homology and cohomology of
"(p, Q,~)" properties [10; Th. II l],:if n > 0, X has property (P, Q;xon_l
intrinsically, so that by Theorem 2.1, § has property (P, Q;‘ﬁn_l and, by
duality, property (P, Q,’V)nq When n = 0, and P, Q form a canonical pair, evefy
cobounding O-cocycle of QfWQ is in the same cohomology class of Q(\Q as a 0-co-
cycle of QNX, so that the (P, Qyv)° property of X yields the desired result im-
mediately. Conversely, if % has property (P, Qs)", X has (P, Q,~)" intrinsically
since X is open. However, to show the property is extrinsic we proceed as in the
converse of Theorem 2.1, this time letting U, and U, be opensets such that P - 9D
U1 DU2DF(R), XDU; and Usis compact. Then Uy, Uz form a canorical pair in

N
X; and if z-

; are cobounding cocycles of X in Q; they are cohomologous in XNP

10



to cogyecles 7?‘in.U2 which are related (because of the properties of Q} by co-
i
homologies in Uy, hence in PANX.

A
Theorem 2.4, Iet X be a compact space, T a closed, totally discomnected

>

" and p{x) = & for

A
subset of X, and X = X - T. If X has property (P, Q,)

all x£X, n =21, then in order that pn\x) = o for xE,}Q it is sufficient that

p™(X) be finite. Ard if n >1 or T is finite, this condition 1s also necessary.

Proof of sufficiercy. By [10; Th. VI 2], X has property (P, Q,N")Zl and

i

hence by Theorem 2.%, ¥ has property (P, Q,~)". And if p(X) is finite, it

follows from the exactness of the sequence

3

E X)) e—d ¢ et omxm et wldy

A -
and the fact that h™(¥X, X) = O for n = 1, that p‘”’(é) is finite. Hence by

)l’l

A
[10; Lemma II 2] X has property (P, Q) and a fortiori that pn(x) £ w for all

xsﬁﬁe

Proof of necessity for case n > 1 or T firite: We are given that X has

\nt+l n
) (

A .
property (P, Q,~ x) £ o for all x£X, and must show that p (X) is

)

- A n+l |
finite. Since, by Theorem 2.3, X has property (P, Q,”) , it follows that

Q has property (P, Q)n [10; Th. VI 2]. Hence pn(g) is finite. It then fol-

lows from the above exact sequence that if n > 1 (in which case hn'l(Q, X) =

hn'l(m) =0 = hn(}/%, X) is finite) or T is finite then p™(X) is finite.
Remark. In the sufficiency proof of Theorem 2.4, we also proved:

Theorem 2.l4a. If Q, X and T are as in the hypothesis of Theorem 2.4, then

A
X has property (P, Q)™.

The extensions of the preceding two theorems by induction are obvious.
In particular, we have:
Theorem 2.5. ket X be a compact space, T a closed, totally disconnected

N ‘ .
subset of X and X = X - ©. If k and n are positive integers such that k = n

+ .
and X has property (P, Qgﬂd)n l, p-(x)

1A

w for all x€X and p"(X) finite for

11



A \ A n
r=%k, k+1, ..., n, then X has property ]“:(I-‘é7 Q)%. Moreover, X is ley .
That % i ley follows from [10; Th, VI 10].

A
Theorem 2.6. If X is the compactification of a locally compact space X

by the addition of a point set T which is a closed and totally disconnected sub-

) B+l

N
set of X and X has property (P, Q,~ and pr(x) £ at all x¢X, r =k, k + 1,

A

A
..., nwhere 1 s k = n, then for p'(x) to be = w at all points of X (for the

same range of r), it is sufficient that pr(X) be finite. And if k >1 or T

is finite, this condition 1s also necessary.

12



3. APPLICATIONS TO CONTINUOUS MAPPINGS

e
Generally, the image of an lo™ space, n > 0, under a contlrmuous mapping
is not lc™. For instarce, if on the cirele ¢ = {(x,y)|x® + y2 = 1}, the points

1)/n are identified

Pys 4, obtained by intersection of C with the line x = (n

o+

for n =1, 2, 3; ..., the resulting configuration C' is not le*, although ¢ is.
It is therefore of importance to krow under what conditions a mapping pressrves
the 1z property (see [3} VIII], for instance). From the theorems Qf1§2 we can
obtain conditions of this nature.

: n
Theorem 5.1. ILet X be a locally compact, 1z space (n £ ), and T a

closed, totally disconrected subset of ¥ such that the groups n'(%x -m), r sn,

are g&% finitely generated. Then the space Y formed by identifying all points

of T is le.

Proof. Denoting by y the point of Y formed by identficatiocn of the pointe
of T, we have h¥(Y - y) ~ h¥(X - T), r = n, so that the groups h'(Y - y) are
finitelyvgeneratedn But ¥ can be considered as the one-point compactification
of Y -y, so that Y is len by Corollary 2.5.

m
Theorem 3.2. Let U be an le,,; open subset, n < m, of a compact space X

such that U has property (P, Q,~), intrinsically and p"(U) is finite for

r=n+1, ..., m. Then if £f: X —> Y is a coufinuous mapping of X onto a

locally compact space Y such that £|U is a homeomorphism, f(U)NE£(X - U) = @,

m
n+l-

and £(X - U) is a closed, totally disconnected subset of ¥, then Y is lec

m

Procf. The set V = £(U) has property (P, Q,f»&n intrineically, is le,_ .
& LN 9

and the numbers pf(V), r =n + 1, ..., m are all finite. Accordingly, by

Corollary 24, Y is lcﬂ}l.

13






i, APPLICATIONS TO THE CECH MANIFOLDS

- . o 3 v 'y
.We return now to the discussior of the Introduction concerning Cech meni-

folds,

Theorem 4.1, Iet M be an n-gm and x a point of M having arbitrarily small

nelghborhoods Uk whose one-pcint compactifications are orientable n-gems., Then

x has arbitrarily small neighborhcods Vi which are orientablie n-gms for which

\ =1 .
n(v) =h (V) =0,15rSn-1,

X
Proof. Since an n-gm is r-lec for all r, we may limit ocur attention to
A
U,'s such that hT(UXIM) = 0, Let Uy denote a one-point compactification of
such a Uy, forming an orientable n-gem by the addition of an ideal point %0
We assert that U, is a V, of the desired type.
Let Zr be any compact r-cycle of Uy, r Sn- 1; it is carried by a compact
A A X . . A )
subset K of Uy - p. Let N be a neighborhood of p in Uy such that NAX = ﬁa
Since ﬁk'is an orientable n-gem, it is completely r-avoidable [6; 229] at P for
rSn -2, and locally (n - 1)-avoidable [6; 218] at 8. Herce there exist
A — -
neighborhoods P and Q of fi in U, such that N2P3P2Q>Q, and such that every
(4 <
r-cycle of F(P) bounds on Uy - Q, r Sn - 1,
Since hr(UklNO = 0, Z#¥0 on M, Hence Z,/~0 mod M - Uy, and accordingly
— A
Zﬁ‘JO mod P on U, (we continue to use the same symbols for subsets and cycles
A
of U,, whether considered as a subset of M or of Ux)ﬂ It follows that there
exists a cycle C,. on F(P) such that ZfV(Cp om.@&;- P. And since C£,2C on
G -Q=U~- Q, somust Z¥0 on a compact subset of U, Hence hr(U) = (0; and

n-r
(

since U 1s an orientable n-gm, h U, = 0 by duality [6; 260, Lemma 5.16].

X

Tt is interesting to note that Theorem 4.1 has a converse:

Theorem 4.2. Let M be an n-gm and x a point of M having a neighborhood U

which is an r-acyclic, orientable n-gm, r Sn -1, Then the one-point compacti-

o
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fication of U is a sphereiike n-gcm.
A
Proof, Iet U denote the compactification of U by an ideal point 60 Con~-
sider the exact sequence
T, r,A rA
{1) o 0w m‘% h (:U,) "'_-} h (U> 'm"—9 h (Gj U) -—ma—-? o 0o
Since h.(U)&# K'7T(U) [6; 260, Lemma 5.16], and n" (T, U) &2 0T (p) = 0,

r A
1SrS$n-1, it follows from (1) that b (U) = 0. Hence by duality, h.(T) =G,
so that h;(ﬁ) =0 forall r Sn - 1.

Iet P be any neighborhood of % inAG, and let Zr’ 1Sr §'J - 1, be a cyele
A A . a, ., . A
of Umod U - P, Since hP(U) = 0, there is a cycle C,. of U such that, for some
A
neighborhood Q of %, Cy~ Zp mod U - Q. And since hr(ﬁ) = 0, we have CrAv 0 on
A . A r, N B i
U and accordingly Z, s O mod U - Q. It follows that pﬁ(Uﬁ = 0, By Theorem
r A
2,6, p°®) Swrforr =1, veo, n - 1, and by [7; Th. 4], p (§) = pg(U) = 0.
It remains tc show that pn(%) = 1.
Since U is orientable, it carries a nonbounding infinite cycle Cno let P
. A A = \ A, n=-3
‘be a neighborhood of p such that U - P % ﬁa Since by Theorem 1.1, U is le¢™ 7,
there is a neighborhood Q of § such that Q€P and hn-1(Q|P) = 0. As ¢, is a
cycle mod EL its boundary BCn is a cycle of‘ﬁ, and since 5Cﬂ*w¢o in P, there
— A
ig an absolute cycle Zn of ﬁ such that Cnf\izn mod P, Now Zy~ O mod U - Q
else (since U is n-dimensional) Z, = Cp = O on Q = 6

n , implying Cp is carried

by the closed proper subset U - Q of U and hence isas O on U, We conclude
A
that Zﬁgﬁﬂo mod U - Q and that pnjg) 2 1., Finally, suppose Zé, Zi are cycles
A A
of Umod U ~ P for some neighborhood P of %o Since hn-1(U) = O, they are ex-

A
tendible (as was Zr) to cycles Cﬁ, Ci, respectively, of U in such a way that

5

When this paper was completed, we noticed that what is really proved here is
that the one point compactification of an r-acyclic, orientable n-gm,

r<n - 1, is a spherelike n-gem; and that the latter result has recently
been established by F. Raymond in a paper to appear in the Pacific Journ.
Math, Since our proof 1s evidently quite different from Raymond's, as well
as for reasons of completeness, we include it here,

. ’ A
b This is the dimension of the Alexandroff group H%(U); [7: 21,
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Giﬁv’Zi mod @‘_ Q for some neighborhood Q€P, 1 = l,.2o But U is an orientable

n-gm, so there must be a relation aCifhﬁbCi mod %, impiying that aCi = bCz mod

D= qQ We concivde that p(P) S 1, and, with the above relation, thai.pn(%) =1,
That U is orientable follows from the sequence (1), which gives h'(U) A

¥ (f.

Example of a 3-gem having a point p which does not have arbitrarily small

l-acyclic neighborhoods. lLet A denmote the solid Alexander horned sphere in S?;

i.e., the "wild" sphere of [1] together with its (tame) interior. ILet S denote
the quotient space resulting from identifying all points of A,vand p the point
of 8 corresponding to A, Then S ig an brientable 3-gem of the same homology
type as S° (see [8]), We shall show that p does not have arbitrarily small
l-acyelic neighborhoods, or, which is equivalent, that A does not have arbi-,
trarily small l-acyclic neighborhcods in S5

Referring to the Alexander construction [1], let E denote the totally dis-
connected, closed set of "endpoints" needed to complete the "horns", and sup-
pose U is a l-acyclic neighborhood of A. Define stages of construction of the
horned sphere such that: (1) At stage 1, there are just two "interlocked"
horns; (2) at stage 2 there are just four new "interlocked" horns, emanating
in pairs from the horns of stage 1; ...; (n) at stage n there are ot new "in-
terlocked" horns, ete,

Clearly there exists n such that all 2n horns of the n'th gstage lie in U;
moreover, we may assume (see the Figure) that the connecting cylinders Gé, Ci,

n

eoay o (which do not form part of the hornmed sphere, of course) all lie in U,

n
1 1 2
Let C be the commecting cylinder Cp.-; of stage n - 1, containing C, and Cy
(see the Figure). The curves J; and Jo, lying as shown on the n'th stage horns
1
and running through C, and Gi lie in U.

Consider Ji; let Zj denote its fundamental l-cycle. Since U is l-acyelic,

Zarv 0 in U, Then Zi is homelogous in oAl to a cycle Z4 on F(C)—see [6; 203,



1.13]. We may assume that there exists a chain ¢% in CAT such that ZiAv 74

2
.

5
on HCZH irreducibly, so that K = ‘H

¢ = 74 - Z4q| is zonnected {see [k; 299,
Lemma 5]), However, since Z8As0 on F{C)}, it follows that K must meet Jo, inas-
much as J: and Jo are linked, This implies that the arc A, on the parent horn
(see the Figure) can be extended through I over to a simple closed curve A% in
U; and similar situetions prevail in regard to each of the 2n-1 parent horns
of the other horn-pairs of stage n.

Now consider the pair Aﬁ, Aé of zlosed curves cbtained by extensiong of
A; and As as described above, As these lie in U, the fundamental l-cycle on
A} bounds in U, and we can proceed as before to show that corresponding to the
associated parent horn of the Eﬂﬁzth stage there exists a simple closed curve
analogous to Ji and A%, And this process can be continued back to the first
stage.

But U, when taken as a sufficiently close approximation to A, will not

permit bounding of the curve indicated at the first stage.

> If D is a chain, then by ||| we dencte a carrier of D.

i8
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