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Abstract

Pollen dispersal is a critical process that shapes genetic diversity in natural populations of
plants. Estimating the pollen dispersal curve can provide insight into the evolutionary
dynamics of populations and is essential background for making predictions about
changes induced by perturbations. Specifically, we would like to know whether the dis-
persal curve is exponential, thin-tailed (decreasing faster than exponential), or fat-tailed
(decreasing slower than the exponential). In the latter case, rare events of long-distance dis-
persal will be much more likely. Here we generalize the previously developed 

 

TWOGENER

 

method, assuming that the pollen dispersal curve belongs to particular one- or two-parameter
families of dispersal curves and estimating simultaneously the parameters of the dispersal
curve and the effective density of reproducing individuals in the population. We tested
this method on simulated data, using an exponential power distribution, under thin-tailed,
exponential and fat-tailed conditions. We find that even if our estimates show some bias
and large mean squared error (MSE), we are able to estimate correctly the general trend of
the curve — thin-tailed or fat-tailed — and the effective density. Moreover, the mean distance
of dispersal can be correctly estimated with low bias and MSE, even if another family of
dispersal curve is used for the estimation. Finally, we consider three case studies based on
forest tree species. We find that dispersal is fat-tailed in all cases, and that the effective
density estimated by our model is below the measured density in two of the cases. This
latter result may reflect the difficulty of estimating two parameters, or it may be a biological
consequence of variance in reproductive success of males in the population. Both the simu-
lated and empirical findings demonstrate the strong potential of 

 

TWOGENER

 

 for evaluating
the shape of the dispersal curve and the effective density of the population (

 

d

 

e

 

).
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Introduction

 

Pollen dispersal is an important component of gene flow in
plants (Ennos 1994; Oddou-Muratorio 

 

et al

 

. 2001), facilit-
ating connections between individuals or populations.
Until recently, the standard method of estimating gene

flow from genetic data was through measures of genetic
differentiation among populations (Wright 1951) or indi-
viduals (Rousset 2000) sampled from a single generation. If
we assume discrete populations at evolutionary equilibrium
and an island model, Wright’s (1951) 

 

F

 

ST

 

 provides an esti-
mate of the product 

 

N

 

e

 

m

 

e

 

, where 

 

N

 

e

 

 is the effective population
size of each deme, and 

 

m

 

e

 

 is the effective migration rate among
populations. Alternatively, if the species exhibits isolation
by distance, linear regression can yield an estimate of 

 

N

 

e

 

,
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where  is the effective variance of gene flow (Rousset 1997).
If the species constitutes a continuous population, where
individuals mate preferentially with their neighbours, 

 

d

 

e

 

can be estimated instead, where 

 

d

 

e

 

 is the effective density of
individuals (Rousset 2000).

Indirect methods have the drawback that they do not
readily distinguish between seed and pollen flow. If nuclear
loci are used, the estimated migration rate (

 

m

 

e

 

) in the island
model will be a composite of the effective migration rates
of seeds (

 

m

 

Se

 

) and pollen (

 

m

 

Pe

 

), with 

 

m

 

e

 

 = 

 

m

 

Se

 

 

 

+

 

 

 

m

 

Pe

 

/2
(Ennos 1994). Similarly, in the isolation-by-distance model,
Crawford (1984) showed that the dispersal parameter ( )
is comprised of a seed and pollen dispersal component

. However, it is possible to gauge the relative

contributions of seed and pollen flow by using maternally
or paternally inherited cytoplasmic markers, which yield
separate estimates of seed- and pollen-mediated gene
flow. Paternally inherited cytoplasmic markers estimate
the product 

 

N

 

e

 

m

 

Pe

 

 or 

 

d

 

e

 

 in gymnosperms. Studies of
angiosperms utilize maternally inherited cytoplasmic
markers, in combination with nuclear markers, to separate
the seed and pollen contribution to gene flow (McCauley
1997; Oddou-Muratorio 

 

et al

 

. 2001).
Using cytoplasmic markers to study gene flow is not

without its problems. First, in plants, mutation rates are
relatively low in organellar genomes (Wolfe 

 

et al

 

. 1987), so
there is often little within-population variation in chloro-
plast haplotypes, relative to nuclear markers. Second, since
cytoplasmic markers are uniparentally inherited and
nonrecombining, they must be treated as a single locus.
Because cytoplasmic markers provide only one repetition
of the process of genetic transmission, the estimation vari-
ance is large, whereas independently segregating nuclear
loci yield several replications and a smaller estimation var-
iance. Moreover, the absence of recombination accentuates
any selective effects involving the entire cytoplasmic genome,
which will strongly bias the dispersal estimates, all of which
assume adaptive neutrality.

Indirect methods have a few additional drawbacks. They
do not provide an unambiguous separation of the demo-
graphic parameter (

 

N

 

e

 

 or 

 

d

 

e

 

) from the dispersal parameter
(

 

m

 

e

 

 or ). A recently proposed method provides separate
estimates of these two parameters (Vitalis & Couvet 2001a,b),
but this method requires incompletely linked loci, and thus
cannot be applied to cytoplasmic genomes to disentangle
seed from pollen flow. Finally, indirect methods provide a
measure of the historical gene flow, i.e. an average of this
value over at least a substantial portion of the population’s
past (Hudson 1998; Sork 

 

et al

 

. 1999).
In cases where the population structure has been dis-

rupted recently, historical structure may have such a short
temporal memory (Smouse 

 

et al

 

. 1991; Smouse & Long
1992) that it will be quickly erased by further evolution.

Moreover, the averaging process renders the estimation of
more than one parameter almost hopeless. No method has
been proposed thus far to estimate the shape of pollen or
seed dispersal curves from genetic differentiation, some-
thing that would be very helpful for extrapolation or gen-
eralization. Indeed, key elements to the study of dispersal
are the distance of dispersal and the variance in dispersal,
since they have a high impact on the evolutionary process,
conditioning (for instance) the rate of spread of a favour-
able gene or the effective population size.

A more direct approach for estimating pollen dispersal
is provided by paternity analysis, which relies on a sampling
of mother plants, along with a sample of their offspring, as
well as an enumeration and genetic characterization of
the surrounding males. Paternity analysis methods (e.g.
Devlin & Ellstrand 1990; Marshall 

 

et al

 

. 1998) attempt to
detect (for each offspring) whether paternity of the seed
can be attributed significantly to one of the males present
at the study site. Then, for the subset of offspring for which
a credible on-site father has been found, the position of the
mothers and the fathers can be used to estimate the para-
meters of the pollen dispersal function chosen (S. Oddou-
Muratorio, E. K. Klein and F. Austerlitz, in preparation).
This method relies on an exhaustive sampling of the males
in the vicinity of the sampled females, requiring substan-
tial effort, since pollen can come from males that are far
from the sampled site (for a review, see Slavov 

 

et al

 

. 2002).
Moreover, it is necessary to use highly polymorphic
genetic markers to eliminate paternal ambiguity.

An alternative strategy is the 

 

twogener

 

 analysis of
Smouse 

 

et al

 

. (2001), based on the differentiation among the
inferred pollen pools of a sample of females, spread across
the landscape, and encapsulated in a synthetic parameter

 

Φ

 

ft

 

 that is analogous to 

 

F

 

ST

 

, but which relates only to a
single bout of pollination. The virtue of this method is that,
unlike the paternity method, it does not require exhaustive
sampling of the adults of the population. The global
estimate of 

 

Φ

 

ft

 

, computed from the entire collection of sam-
pled mothers, is easily translated into an estimate of 

 

d

 

e

 

,
from which we can infer the average distance of pollina-
tion (Austerlitz & Smouse 2001), provided that we use a
one-parameter pollen dispersal distribution (e.g. a normal
or exponential distribution) and that adult density is
estimated independently from demographic data.

As an extension of 

 

twogener

 

, we can use the computa-
tion of pairwise 

 

Φ

 

ft

 

 between the pollen pools sampled by
all pairs of sampled females to estimate multiple para-
meters jointly, among them the adult density and the average
distance of pollen dispersal (Austerlitz & Smouse 2002).
With this method, we can fit several families of two-
parameter dispersal functions, and (at least in principle)
estimate all the parameters simultaneously. So far, this
approach has been performed for a single family of
exponential power distributions, characterized by two
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parameters, 

 

a

 

 and 

 

b

 

, which determine the average pollina-
tion distance and the shape of the distribution, respectively
(Tufto 

 

et al

 

. 1997).
We used this method on empirical data from one tem-

perate tree species, 

 

Sorbus torminalis

 

 (L.) Crantz (Rosaceae)
(S. Oddou-Muratorio, E. K. Klein and F. Austerlitz, in pre-
paration), and one tropical tree species, 

 

Dinizia excelsa

 

 Ducke
(Fabaceae) (Dick 

 

et al

 

. 2003). The estimated dispersal curve
was strongly fat-tailed in the case of 

 

S. torminalis

 

, but only
moderately so in the case of 

 

D. excelsa

 

. Dispersal distributions
are considered to be fat-tailed when they decrease more
slowly than would the exponential distribution at long
distance (Clark 1998), and thin-tailed if they decrease more
rapidly. The probability of long-distance dispersal is much
higher for the fat-tailed than for the thin-tailed distributions.
This tendency toward fat-tailed distributions is rather
strong for 

 

S. torminalis

 

, but is less pronounced for 

 

D. excelsa

 

.
In addition, high average pollination distances, greater than
several hundred metres, were found for both species, rela-
tive to exponential predictions. Finally, these two studies
revealed that when effective density is estimated jointly
with the other parameters, that estimate is below the observed
density of flowering males, probably a consequence of
variance in male reproductive success, which we confirmed
with paternity analysis in the case of 

 

S. torminalis

 

.
In these two studies, we used a specific family of disper-

sal curves, the exponential power family. However, other
families of dispersal curves can be used. For instance Tufto

 

et al

 

. (1997) conducted a study, based on Bateman’s (1947)
data on physical dispersal of pollen describing fat-tailed
distributions, and concluded that the Weibull family of
dispersal distributions (Weibull 1951) provided a closer
fit to the data than did the exponential power family. The
Bateman study, however, is based on the physical disper-
sal of pollen, rather than the analysis of successful pollina-
tion. Retrospective studies of pollination distance are all
based on pollen that has both arrived and been successful
at fertilization. Whether the better performance of the
Weibull family of distributions will carry over to pollina-
tion studies remains unclear.

In this paper, we extend the previously designed method
of estimation of the dispersal curve to other families of dis-
persal curves. These curves are the Weibull, geometric and
bivariate Student’s 

 

t

 

 (2

 

Dt

 

) (Clark 1998) distributions. While
the Weibull distribution shows a decrease at long distance
that mimics the exponential power distribution, the geo-
metric and 2

 

Dt

 

 are power-law functions that are fat-tailed
for all the values of their parameter space. Our aim was to
study the impact of the assumed dispersal family on the
estimation of three parameters of interest: (i) the mean
dispersal distance, (ii) the shape of the curve, and (iii) the
adult reproductive density. First, using simulations that
assume that pollen dispersal follows an exponential power
function, for three sets of values of the parameters (

 

a

 

, 

 

b

 

) of

the distribution, we determined the precision of the para-
meter estimates from the 

 

twogener

 

 analysis, provided
that the same family of dispersal curves was used. Then using
the same data sets, simulated with the exponential power
function, we performed the analysis under the assumptions
of the other families of dispersal distributions, to determine
the extent to which the estimation of these parameters was
affected by the choice of the dispersal family.

Finally, we performed the same analysis on four experi-
mental data sets, the two of 

 

S. torminalis

 

 and the one of 

 

D.
excelsa

 

 mentioned above, and an additional data set devel-
oped on 

 

Quercus lobata

 

 Neé (Fagaceae) (C. Dutech and V. L.
Sork, in preparation). We performed a 

 

twogener

 

 analysis
on all four data sets, and extracted estimates of both the
effective densities and parameter(s) of the selected families
of dispersal distributions. We then determined which fam-
ily of distributions provided the best fit to the data and for
the simulated data sets, whether the estimates of average
pollen distance, shape of the dispersal curve and adult density
were much affected by the choice of the dispersal family.

 

Materials and methods

 

Families of dispersal distributions

 

Normal family.

 

One of the two reference groups of dispersal
distributions was the normal family, characterized by a single
parameter, 

 

a

 

, such that

(1)

where 

 

r

 

 = 

 

√

 

(

 

x

 

2

 

 

 

+

 

 

 

y

 

2

 

) is the pollination distance, and where

 

a

 

 = 

 

σ√

 

2, with 

 

σ

 

 defined as the standard deviation of the
normal. This is the standard reference distribution used for

 

twogener

 

 analysis because the mathematics conveniently
articulate with those of the least squares variance components
methodology (Austerlitz & Smouse 2001, 2002; Irwin 

 

et al

 

.
2003) and can easily be manipulated in closed form. In spite
of its mathematical convenience, however, the emerging
data (Dick 

 

et al

 

. 2003; S. Oddou-Muratorio, E. K. Klein and
F. Austerlitz, in preparation) suggest that it is much too
thin-tailed to be ideal for natural populations.

 

Exponential family

 

. The second group of distributions to
be examined was that of the exponential family, also char-
acterized by a single parameter, 

 

γ

 

 (Austerlitz & Smouse 2001)

(2)

where 

 

r

 

 is defined as above and 

 

a

 

 = 

 

γ

 

, the traditional
exponential scale parameter. Although less convenient
mathematically than the normal family, the exponential
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family better captures the leptokurtotic features of the
pollination distribution, and is analytically tractable. The
variance of the distance of successful pollination is greater
for the exponential than for the normal family (Austerlitz
& Smouse 2001).

Exponential power family. The first two-parameter group of
dispersal distributions to be examined with regard to the
pollen dispersal curve was the exponential power family,
characterized by the parameters a and b (Clark 1998)

, (3)

where r = √(x2 + y2) is the pollination distance, and Γ is the
classically defined gamma function (Abramowitz & Stegun
1964). The parameter b is the shape parameter, affecting the
‘fatness’ of the tail of the dispersal distribution, and a is
a scale parameter. For b = 2, equation 3 degenerates to the
normal distribution, equation 1, with a = σ √2. For b = 1,
equation 3 degenerates to the exponential distribution,
equation 2, with a = γ. When b < 1, however, the dispersal
kernel is fat-tailed (Clark 1998), i.e. the long-range decay of
probability is slower than for the exponential distribution,
and considerably slower than for the normal distribution.
Conversely, when b > 1 (for sub-Gaussian and Gaussian
models, for example), the dispersal is thin-tailed, with
a rapid decrease of the dispersal function, implying few
long-distance dispersal events.

Weibull family.  We next considered the Weibull family
(Weibull 1951; Tufto et al. 1997), also a two-parameter
group of distributions, which takes the form

, (4)

defined for any positive real numbers a and b. The distri-
bution is fat-tailed when b ≤ 1 and thin-tailed otherwise. As
for the exponential power function, when b = 2, the Weibull
degenerates to the normal distribution, but when b = 1, it
does not degenerate to the exponential distribution.

Geometric and 2Dt families. We also considered the classical
geometric family of dispersal distributions, defined by two
parameters, a and b

, (5)

which is defined for all values of a > 0 and of b > 2, and the
bivariate Student’s t (2Dt) distribution (Clark et al. 1999)

(6)

which is defined for all values of a > 0 and of b > 1. It is of
interest to consider the geometric and 2Dt distributions,
which, while both power-law functions, will behave quite
differently from the exponential and Weibull distributions.
They show a fat tail, whatever the value of the shape para-
meter (b), and the distributions become increasingly fat-tailed
as b declines toward ‘1’. The 2Dt distribution was shown to
be the best-fitting for seed dispersal for several tree species
(Clark et al. 1999). The Weibull distribution shows the most
leptokurtic shape, with a high peak at zero and a long tail;
the exponential power and geometric distributions are inter-
mediate, and the 2Dt distribution shows less leptokurtic
shape, and is concave near the origin (Fig. 1).

The parameters a and b are specific for each family of curves.
For a given data set, it is therefore meaningless to make a com-
parison for these parameters between the different families
of curve. On the other hand, the moments of the different
curves can be compared, the general formula for which is

(7)

as in Clark et al. (1999), except that we take the power 1/n
so that every moment is expressed in metres. µ1 corresponds
to the mean dispersal distance (δ; see, e.g. Austerlitz
& Smouse 2001) and µ2 to the root-mean-square dispersal
distance (Lande & Barrowclough 1987). These moments
characterize the shape of the curve and thus allow us to
compare the estimates obtained with different families of
curves. They can be computed for the normal, exponential,
exponential power, Weibull, geometric and 2Dt distribu-
tions, respectively.

, (8)

(9)

p a b x y
b

a b
r
aep

b

( , ; , )  
( / )

exp= −
















2 22π Γ

p a b x y
a b r

a
r
aw

b
b b

( , ; , )  exp=






−



















−
−

2

2

π

p a b x y
b b

a
r
ag

b

( , ; , )  
(   )(   )

  =
− −

+







−
2 1
2

1
π

p a b x y
b

a
r
aDt

b

2 2

2

2

1
1( , ; , )  

  
   ,=

−
+








−

π

Fig. 1 Example of curves from the different family used, exponen-
tial power (black line), Weibull (red line), geometric (blue line) and
2Dt (green line), with shape parameter b = 0.5, 1.5, 3.5 and 2, and
scale parameter (a) adjusted so that in all cases δ = 100 m.
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, (10)

, (11)

(12)

(13)

While the moments of the normal, exponential, exponential
power and Weibull distributions are always finite, they
can be infinite for the geometric and 2Dt distributions.

TWOGENER analysis

The twogener analysis is described in great detail by
Smouse et al. (2001). In short, the method consists of geno-
typing a sample of mother plants, along with a sample of
seeds harvested from each of these plants. Knowing the
maternal genotype, it is possible to extract the paternal
gametic genotype for each seedling. This can be done with-
out ambiguity in all cases for gymnosperms, by assessing
separately the megagametophyte. In the case of angiosperms,
the absence of this megagametophyte makes the unambigu-
ous assessment of the paternal gamete impossible in the
case where both mother and seedling show the same hetero-
zygous genotype at one or several loci. In this case, instead
of categorically inferring the paternal gamete, the posterior
likelihood of each possible male gamete is computed.

Once these male gametes have been inferred (either un-
ambiguously or as posterior probabilities), it is possible to
compute the differentiation among the pollen pools ferti-
lizing the sampled females by performing an analysis of
molecular variance (amova, Excoffier et al. 1992), using the
females as strata. This yields an estimate of the differenti-
ation between the pollen clouds (Φft), similar to the estimate
of differentiation between populations (Φst), classically com-
puted in an amova.

The relation between Φft and dispersal distance has been
derived for normal and exponential dispersal distributions
(Austerlitz & Smouse 2001), allowing the development of
various estimates of average pollination distance (Austerlitz
& Smouse 2002). Some of the estimates are based on the
global Φft, measured on all the females in the population.
Since we only compute one Φft value, we can only translate
it into one parameter, usually the scale parameter of either
the normal or exponential distribution, both of which are

single-parameter models. That scale parameter can, in
turn, be translated into the average distance of successful
pollination, δe, via equations 8 or 9, respectively. For two-
parameter families, we cannot jointly estimate both scale
and shape parameters from a single value of Φft.

We can, however, extend the pairwise estimation method
that we designed for the normal distribution (Austerlitz &
Smouse 2002) and the exponential power function (S. Oddou-
Muratorio, E. K. Klein and F. Austerlitz, in preparation;
Dick et al. 2003). This method is based on the computation
of the observed Φft values between each pair of females, i
and j, denoted , a function of the physical distance (zij)
between those females. Assume a particular family of dis-
persal curves, p(θ; x, y), where θ is the set of parameters for
this family [e.g. θ = (a, b) for the exponential power family].
It is possible to derive the theoretical relation, Φft(d, θ; z),
relating the Φft value for two females, a distance z apart,
where d is the adult density on the landscape.

The formula for Φft(d, θ; z) can be derived, whatever the
chosen family of dispersal distributions, and it follows
from the relation given in Austerlitz & Smouse (2002) that:

(14)

where Q0(d, θ) is the probability that two male gametes
sampled from the pollen cloud of the same female were
drawn from the same father, and Q(d, θ, z) is the prob-
ability that two male gametes, sampled from two separate
females (a distance z apart), were from the same father.

It follows that Q0(d, θ) can be computed directly, using
equation 10 from Austerlitz & Smouse (2001):

(15)

and the results for the six families are given by:

Normal (16)

Exponential (17)

Exponential power (18)

Weibull (19)

Geometric (20)

2Dt (21)

µn
ep

n

a
n b
b

  
((   )/ )

( / )

/

=
+





Γ

Γ
2

2

1

µn
w na n b  ( (   / )) /= +Γ 1 1

µ

µ

n
g

n

n
g

a
n b n

b
b n

b n

  
(   ) (     )

(   )
      (   )

       (   )

,

/

=
+ − −

−






> +

= ∞ < ≤ +










Γ Γ
Γ
2 2

2
2

2 2

1

if

if

µ

µ

n
Dt

n

n
Dt

a
n b n

b
b n

b n

2

2

if

if

=
+ − −

−






> +

= ∞ < ≤ +










Γ Γ
Γ

( / ) ( / )
( )

    ( / )

( / )

.

/
2 1 1 2

1
2 1

1 2 1

1

φij
obs

Φ ft d z
Q d Q d z

Q d z
( , , )  

( , )  ( , , )
  ( , , )

θ
θ θ

θ
=

−
−

0

2

Q d
d

p x y dx dy0
21

( , )  ( , , ) ,θ θ=

−∞

∞

−∞

∞

� �

Q d a
da

n
0 2

1
2

( , )  ,=
π

Q d a
da

e
0 2

1
8

( , )  ,=
π

Q d a b
da b

ep
b0 1 2

1
4 1 2

( , , )  
(   / )

,
/

=
+π Γ

Q d a b
b b

da
bw

b

0

2 3

2

2 2 2
1( , , )  

(   / )
       ,

/
=

−
>

− Γ
π

for

Q d a b
b b

b da
g
0

2

2

1 2
4 2 1

( , , )  
(   )(   )

(   )
,=

− −
− π

Q d a b
b

b da
Dt

0

2

2

1
2 1

2 ( , , )  
(   )

(   )
.=

−
− π



942 A U S T E R L I T Z  E T  A L .

© 2004 Blackwell Publishing Ltd, Molecular Ecology, 13, 937–954

Now, Q(d, θ, z) can be computed analytically for the
single-parameter families, by solving the numerical formula
(Austerlitz & Smouse 2001)

(22)

explicitly, where p (x, y) stands for any of the formulae
given in equations 1 to 6. Equation 21 can be evaluated
analytically for the normal distribution but can only be
evaluated numerically for the other distributions (the
exponential and the two-parameter distributions).

We also note that Q0(d, θ), and thus Q(d, θ, z), cannot be
computed for the Weibull distribution over the entire
range of its shape parameter (b). This difficulty follows
from the fact that the approximation used in Austerlitz
& Smouse (2001) to obtain equation 15, following Wright
(1943), becomes invalid for this distribution when b < 1. As
a practical matter then, we will only consider the Weibull
distribution for b ≥ 1.

We estimated the various parameters by minimizing
the squared-error loss criterion for the choice of those
parameters,

(23)

For our first set of evaluations, we set the effective density,
de, to the field-measured density of adults in the population,
and for each of the dispersal families indicated above, found
the best-fitting collection of pollen dispersal parameters (o),
choosing parameters for θ that minimized C(d, θ). For our
second set of trials, we set the shape parameter (b) to the
value estimated with fixed de, and then re-estimated the
effective density (de), along with the scale parameter (a), to
determine how far effective density diverged from
measured density. For our final series of trials, we tried to
estimate the three parameters (a, b and d) simultaneously.
All these estimates have been included in the famoz program
available at http://www.pierroton.inra.fr/genetics/labo/
Software/Famoz/index.html. Dos and Unix executables
and sources codes are also available from F.A.

Simulations

Because these methods of estimation are extremely time
consuming (several days for one replicate), it was impos-
sible to perform an exhaustive series of simulations. We
therefore restricted attention to a small number of contrasts,
and used the simulation program developed by Austerlitz
& Smouse (2002) (available from F.A.). We simulated a
population of 10 000 individuals, with a density of 1.6 trees/
ha, from among which we sampled 40 mothers, at distances

ranging from ∼20 m to ∼3 km. A population size of 10 000
individuals is large, but we used it to avoid border effects.
The numbers of effective males expected to fertilize the
sampled females was much smaller. We assumed three
particular models of pollen dispersal: (i) a normal distribution,
(ii) an exponential distribution, and (iii) an exponential
power distribution with b = 0.5. In all cases, the parameter
a was adjusted so that the mean dispersal distance (δ) was
100 m.

Under these conditions, we simulated data sets composed
of mother and offspring genotypes. We assumed a sample
size of 40 offspring per mother and that mothers and off-
spring were genotyped for 10 polymorphic loci, each locus
with 10 alleles, all at frequency 1/10. Each parameter set
was replicated 10 times. For each simulated replicate,
we performed a twogener analysis, assuming either an
exponential power, Weibull, geometric, or 2Dt distribution
of pollination distances. For each estimated curve, we com-
puted the first four moments, as well as the bias and mean
squared error (MSE) for these moments over the 10 repli-
cates, as well as for the estimated density. For evaluation
with the exponential power function, we also computed
the bias and MSE of the estimated curve parameters a and
b. We did this for the Weibull analysis when the normal
dispersal was assumed because, as we pointed out, the
normal distribution is a particular case of the Weibull dis-
tribution. For the other two cases, because the dispersal
curves used here do not belong to the Weibull family, there
was no true value for a and b when this family was used for
analysis, so neither bias nor MSE could be computed. This
was always the case for the geometric and 2Dt families.

Consider first the case where a normal distribution was
used in the simulations (Table 1), but the twogener procedure
assumed an exponential power distribution, setting den-
sity at its real value of 1.6 trees/ha yielded slightly inflated
estimates of a and more strongly inflated estimates of b, but,
as a result, the average dispersal distance (>) and the higher
order moments were almost unbiased. Also, â and b showed
quite large MSE values, but — again by a compensation
process — MSE for > and higher order moments was more
limited (compared to the true value of these moments).

When density (d) was estimated along with a, setting b at
the previously estimated value, this yielded a downward
bias for d but an upward bias for a. MSE-values were in all
cases rather high, compared with the parametric mean.
Again as a compensation process, the estimated moments
showed much less bias than the estimated curve para-
meters. This was also true when all three parameters (d, a
and b) were estimated jointly. They all showed some bias
and a rather high MSE, but the moments were rather well
estimated (limited bias and MSE).

Using the Weibull distribution in the analyses yielded
much more limited bias, and smaller values of both stand-
ard deviation and MSE for the estimation of d, a and b. This

Q d z
d
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remained also true to a lesser extent for the estimates of
the moments of the distribution. When the geometric distri-
bution was used, the estimates of the moments showed much
more bias and MSE than when the Weibull or exponential
power distributions were used. The estimation of d and the
scale parameter a did not even converge. The 2Dt estimates
did not converge in that case, even when density was fixed.

When the dispersal curve used in the simulation was
either the exponential distribution (Table 2) or the expon-
ential power distribution with b = 0.5 (Table 3), and the
exponential power distribution was assumed for two-
gener analysis, the parameters (d, a and b) showed some
bias and MSE, while the average distance of dispersal (δ)
was better estimated, except for the case when b = 0.5 and
all three parameters were estimated jointly, which yielded
large biases. The bias and MSE increased when higher
order moments were considered, but remained lower, rel-
ative to their expected values, than the bias and MSE of the
curve parameters a and b. When the true dispersal distri-
bution was exponential, using the Weibull or geometric
analyses yielded similar values of bias and MSE for the
estimate of the moments (Table 2). However, when the
true dispersal curve was the exponential power distribu-
tion with b = 0.5, the Weibull and geometric analyses

yielded much larger bias but slightly smaller MSE than
when the exponential power distribution was used, except
when all three parameters were jointly estimated, in which
case they always behaved better. However, in several
cases, the moments estimated by the geometric distribu-
tion were infinite and thus had to be removed from the
computation of the bias and MSE. Again, 2Dt estimates did
not converge at all when b = 1. It behaved like the geometric
distribution when b = 0.5 (data not shown).

Looking at the simulations globally, when the expon-
ential power distribution was used, the estimated values
of the shape parameter (b) were below 1.0 when the true
value was 0.5 in nine cases out of 10. Thus, even if the level
of bias and MSE were rather high, the fat-tailed character
of the curve was correctly detected. Conversely, when the
true value of b was 2.0, the estimated values were always
> 1, indicating that the thin-tailed character of the curve
was also well detected.

Real world case studies

We applied these estimation methods to a trio of real world
case studies in an effort to estimate the average distance of
successful pollination and the shapes of the dispersal curves.

Table 1 Bias and mean squared error (MSE) of the parameter estimates and the estimates of the moments of the dispersal curve for the
simulations performed with a normal distribution of pollination distance, but evaluated under exponential power, Weibull, and geometric
models for twogener analysis. The parameters used in the simulations were d = 1.6 trees/ha, a = 112.8 m, b = 2, which yields δ = 100 m,
µ2 = 112.8 m, µ3 = 124.0 m, µ4 = 134.1 m

Assumed 
dispersal 
function

Fixed 
parameter

Estimated parameters Estimated moments

d a b > µ2 µ3 µ4

Exponential d bias — 8.93 1.28 −3.29 −5.30 −7.22 −9.03
power √MSE — 25.12 1.77 8.01 12.61 17.50 22.44

b bias −0.18 17.17 — 2.97 1.61 0.24 −1.09
√MSE 0.27 32.76 — 11.01 14.14 18.10 22.47

none bias −0.22 5.89 1.04 8.79 11.08 13.55 16.22
√MSE 0.36 38.28 1.89 21.29 31.09 41.73 52.88

Weibull d bias — −5.11 0.44 −4.37 −8.14 −11.5 −14.5
√MSE — 7.12 0.53 6.26 10.05 13.72 17.15

b bias −0.24 6.84 — 6.24 −6.27 −19.3 −32.8
√MSE 0.45 17.91 — 16.01 17.06 25.8 37.55

none bias −0.28 12.87 0.33 12.02 −17.8 −31.7 −45.9
√MSE 0.52 26.18 0.62 23.96 18.77 32.5 46.78

Geometric d bias — n.a.* n.a. 10.95 −7.37 −32.3 −63.4
√MSE — n.a. n.a. 12.46 10.15 33.35 64.15

b bias ???† ??? — ??? ??? ??? ???
√MSE ??? ??? — ??? ??? ??? ???

none bias −0.55 n.a. n.a. 33.02 22.41 6.95 −11.8
√MSE 0.70 n.a. n.a. 37.62 34.00 39.07 60.00

*n.a., not applicable: the dispersal curve used in the simulations does not belong to the family of dispersal curves assumed for the twogener 
analysis. Thus no bias and consequently no MSE can be computed for the shape parameters.
†???, the fit did not converge here, probably because of the high value taken by the b parameter.
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Table 2 Bias and MSE of the parameter estimates and the estimates of the moments of the dispersal curve for the simulations performed with
an exponential distribution of pollination distance, but evaluated under exponential power and Weibull models for twogener analysis. The
parameters used in the simulations were d = 1.6 trees/ha, a = 50 m, b = 1, which yields δ = 100 m, µ2 = 122.4 m, µ3 = 144.2 m, µ4 = 165.5 m

Assumed 
dispersal 
function

Fixed 
parameter

Estimated parameters Estimated moments

d å b > µ2 µ3 µ4

Exponential d bias — 20.84 1.01 −7.99 −13.18 −18.46 −23.78
power √MSE — 36.46 1.90 13.91 23.70 34.16 45.08

b bias 0.11 23.47 — −8.45 −11.85 −16.66 −21.52
√MSE 0.56 42.45 — 14.96 19.99 27.02 34.88

none bias 0.16 28.68 1.44 12.79 29.65 48.59 73.64
√MSE 0.88 43.80 2.22 86.98 156.73 240.03 342.18

Weibull d bias — n.a.* n.a. −8.32 −15.79 −24.20 −33.26
√MSE — n.a. n.a. 14.13 23.95 34.17 44.70

b bias 0.14 n.a. — −8.78 −16.62 −25.36 −34.74
√MSE 0.63 n.a. — 17.25 25.55 34.98 45.06

none bias 0.16 n.a. n.a. 22.39 −15.79 −24.20 −33.26
√MSE 0.91 n.a. n.a. 114.63 155.45 193.78 230.49

Geometric d bias — n.a. n.a. −1.33 2.11 8.18 19.22
√MSE — n.a. n.a. 6.64 12.57 25.21 51.07

b bias 0.17 n.a. — 1.83 −3.24 1.21 9.95
√MSE 0.29 n.a. — 22.02 7.00 14.16 34.30

none bias 0.09 n.a. n.a. 0.09 4.96 7.85 11.38
√MSE 0.66 n.a. n.a. 17.04 20.84 25.44 30.41

*n.a., not applicable: the dispersal curve used in the simulations does not belong to the family of dispersal curves assumed for the twogener 
analysis. Thus no bias and consequently no MSE can be computed for the shape parameters.

Table 3 Bias and MSE of the parameter estimates and the estimates of the moments of the dispersal curve for the simulations performed
with an exponential power distribution of pollination distance, but evaluated under exponential power and Weibull models for twogener
analysis. The true values of the parameters used in the simulations were d = 1.6 trees/ha, a = 5.0, b = 0.5, which yields δ = 100 m,
µ2 = 144.9 m, µ3 = 196.2 m, µ4 = 253.9m

Assumed 
dispersal 
function

Fixed 
parameter

Estimated parameters Estimated moments

d å b > µ2 µ3 µ4

Exponential d bias — 16.21 0.24 −1.17 −4.75 −6.49 −5.04
power √MSE — 20.90 0.33 37.70 81.48 145.54 233.40

b bias −0.14 19.73 — 6.99 3.57 0.59 −0.87
√MSE 0.70 25.27 — 30.80 60.34 106.52 171.06

none bias −0.19 12.96 0.18 928.4 2542 5 859 11 989
√MSE 1.60 17.32 0.46 1788 5040 11 850 24 622

Weibull d bias — n.a.* n.a. −13.74 −38.12 −70.83 −111.1
√MSE — n.a. n.a. 20.39 44.10 76.53 116.70

b bias 0.08 n.a. — −5.23 −27.95 −59.19 −98.17
√MSE 1.10 n.a. — 28.75 45.56 73.27 110.20

none bias −0.12 n.a. n.a. 240.21 307.93 307.93 362.82
√MSE 1.54 n.a. n.a. 586.47 795.60 795.60 991.81

Geometric† d bias — n.a. n.a. −4.19 107.20 −49.78 −99.01
√MSE — n.a. n.a. 25.36 292.73 70.46 102.54

b bias −0.22 n.a. — 8.51 136.78 −27.18 −70.25
√MSE 0.50 n.a. — 30.63 345.01 59.66 82.08

none bias −0.16 n.a. n.a. 138.24 −62.16 −97.40 −138.8
√MSE 1.63 n.a. n.a. 370.28 65.04 100.08 141.41

*n.a., not applicable: the dispersal curve used in the simulationsdoes not belong to the family of dispersal 
curves assumed for the twogener analysis. Thus no bias and consequently no MSE can be computed for the shape parameters.
†In several cases one or several moments were infinite and could thus not be included in the averages.
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Sorbus torminalis

Sorbus torminalis (L.) Crantz (Rosaceae), the wild service-
tree, occurs in a scattered distribution across a landscape. It
produces hermaphroditic flowers, visited by a wide range
of generalist pollinators. The study site, located in the large
Rambouillet forest near Paris, covers a 475 ha mixed stand
of oak and other broad-leaved species. Within this site, we
found 185 potentially reproducing wild service-trees, all
of which were genotyped for six microsatellite loci. We
sampled and genotyped seeds from mother-trees in two
consecutive years. In 1999, fruits were collected in the
crown of 14 identified fruiting trees. A total of 653 seeds
were extracted from the harvested fruits (11–100 seeds/
tree, mean = 46.6, SD = 21.1). In 2000, fruits were collected
either in the crown or near the trunk of 60 identified
fruiting trees (total = 1075 seeds; mean number of seeds/
tree = 17.9, SD = 3.9).

For the 1999 data set, analysed with the twogener
method (Table 4), fixing the density at its observed value
(d = 0.33 trees/ha), the exponential distribution (b = 1)
provided a better fit than the normal distribution (b = 2), in
terms of squared error C(d, θ), but when the exponential
power distribution was used, the fit was even better, yield-
ing an estimated b-value of 0.565, associated with an esti-
mated dispersal distance of 209 m, slightly more than
when the normal or exponential distributions were used,
where the estimated distance was ∼150 m. The fits with the
other two parameter curves yielded estimated distances
∼200 m, like the exponential power function.

When density was jointly estimated with the scale para-
meter (a), setting the shape parameter (b) at the value pre-
viously estimated, leaving aside the case of the Weibull
distribution, the estimated density (d) ranged from 0.021 to
0.093 trees per ha, substantially below the measured den-
sity of 0.33 trees/ha. This discrepancy was even stronger
for the Weibull distribution, where the estimated density
reached an excessively low value of 0.0005 trees/ha.
Conversely, the estimated dispersal distance was higher
than in the case where density was fixed: from 249 m to
713 m, except for the Weibull distribution where it reached
a value as high as 3687 m. When the three parameters were
jointly estimated, the algorithm converged to unrealistically
low values of d and b, and conversely to unrealistically high
values of δ. In some cases, the algorithm failed to converge.

The fits to the 2000 data set (Table 5) with density fixed
at its observed value, yielded similar estimated dispersal
distance for the normal (> ≅ 150 m) and exponential distri-
bution (> ≅ 170 m), but higher values when the other dis-
persal models were used (> = 478 m for the exponential
power distribution, 360 m for the Weibull distribution, and
∞ for the geometric and 2Dt distributions). The exponential
power function showed a stronger tendency toward a fatter-
tailed distribution (b = 0.285) than observed for the 1999

data set. When density was jointly estimated with the scale
parameter (a), the estimated de values were again much
below the observed density, except for the normal and
exponential distributions, offset by a higher estimate of
the average dispersal distance, except for the normal and
exponential distributions. As for the 1999 data set, the estima-
tion algorithm did not converge properly when all three
parameters were included in the model.

Dinizia excelsa

Dinizia excelsa Ducke (Fabaceae), endemic to the Amazon
basin, is one of the largest Neotropical rainforest trees,
attaining heights of over 55 m (Ducke 1922). It has very
small (calyx 1–1.5 mm) hermaphroditic flowers held in
racemes (10–18 cm) that attract diverse small insects (Dick
2001b). Owing to its value for timber and shade, large D.
excelsa are commonly left standing in pastures and forest
fragments in Brazilian ranches, thus providing an experi-
mental design with which to study the effects of habitat
fragmentation on gene flow in rainforest trees. Our study
was performed in the forest reserves of the Biological
Dynamics of Forest Fragments Project (BDFFP) (Laurance
et al. 2002) north of Manaus, Brazil (S 2°30′, W 60°). In the
BDFFP reserves, stingless bees (tribe Meliponini) are
important pollinators of D. excelsa in undisturbed forests,
whereas exotic African honeybees (Apis mellifera scutellata)
are the primary pollinators of D. excelsa located in pastures
and forest fragments (Dick 2001b). A microsatellite-based
paternity analysis of seeds from pasture trees previously
showed extremely long distance pollination flow (≤ 3.2 km)
mediated by the African honeybees (Dick 2001a). Dick et al.
(2003) performed a twogener analysis on the same ranch
population and on an additional population in undisturbed
forest (site km41).

The km41 site, on which we focus here, is part of a vast
tract of biologically diverse rainforest, containing up to 300
tree species per hectare (De Oliveira & Mori 1999). The
study population consisted of 50 adult individuals (≥ 40 cm
diameter at breast height) at a population density of
0.17 individuals/ha. Field observations indicated that most
of the mapped trees flowered synchronously (Dick 2001a).
For the twogener analysis, we scored microsatellite geno-
types at five highly polymorphic loci in 241 seeds from 13
maternal trees, representing an average of 21 seeds per array.

When the normal or exponential distribution was applied
to the km41 population, we obtained estimated values for
the average dispersal distance (>) of ∼200 m (Table 6). When
density was jointly estimated along with the dispersal para-
meter, we obtained estimated values for this effective dens-
ity that were slightly below those observed. Conversely, the
estimated pollen dispersal distance was slightly higher. When
the exponential power function was used, the shape para-
meter was estimated as b = 0.821, indicating a distribution
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with a thinner tail curve than was the case for S. torminalis.
This same tendency was true for all of the two-parameter
families, which all showed a fatter tail for S. torminalis. For
D. excelsa, the average pollination distances inferred from
the two-parameter distributions were all consistent, rang-
ing between 205 m and 245 m when density was fixed at its
observed value, and between 240 m and 388 m when density
was jointly estimated with the scale parameter (a). This
estimated density was slightly lower than the observed
density in all cases, but the discrepancy was much smaller
than for S. torminalis. Again the joint estimation of the three
parameters provided no realistic results.

Quercus lobata

Valley oak [Quercus lobata Neé (Fagaceae)] is one of Cali-
fornia’s most distinctive oak species. Its massive size
and majestic canopy, combined with its longevity, make
it a signature element of California’s foothills, valleys
and floodplains (Griffin 1971). It typically occurs in oak
savannah, which is the habitat of our study site. The study
described here was conducted at the Sedgwick Reserve
(N 34°42′, W 120°2′), 10 km northeast of Santa Ynez, Cali-
fornia, USA. Sedgwick Reserve is a 2380-ha area, managed
for research, education and conservation of native bio-
diversity by the University of California Natural Reserve
System and University of California Santa Barbara. The
study trees were located on the valley floor and surround-
ing hill slopes in a broad, shallow basin, ranging in eleva-
tion from 360 m to 405 m above sea level. This area was
sampled in 1999 (Sork et al. 2002a,b), but in 2001, acorns
were collected from 40 Valley oak adults during a year
of very low acorn production. The twogener analysis is
based on 33 adult trees, 288 progeny with 5–12 progeny

per adult, and six microsatellite loci (C. Dutech and V. L.
Sork, in preparation).

The estimated average pollination distance (Table 7)
was ∼100 m for the normal and exponential distributions,
if density was set at its observed value (1.19 trees/ha). The
exponential power distribution showed a slightly fat tail,
as for D. excelsa, with an estimate of b = 0.847. All families
of distributions yielded a similar estimate for the average
pollination distance, > ≅ 120 m.

When density was estimated jointly with the shape
parameter (a), setting the shape parameter to the estimated
value, we obtained in all cases an effective density de ≅ d/10,
except for the geometric distribution, for which the
estimated effective density was quite a bit closer to the
observed density. The estimated average pollination
distance (> ∼300 m for all distributions) was higher than we
have reported elsewhere (Sork et al. 2002a), obtained with
the assumption that de ∼ d. For Q. lobata, it was also possible
to estimate the three parameters jointly (last line for each
distribution in Table 7), yielding de ≅ d/10 average pollina-
tion distance of > ∼300 m, and a mildly fat tail (b = 0.713 for
the exponential power distribution).

Distributional overview

Comparing the fits obtained with the different functions,
we observed in all cases the same order, starting from the
best fitting function: Weibull, exponential power, geometric,
2Dt, exponential, normal. The general shape of the dispersal
curves was rather similar for Q. lobata and D. excelsa, but
the curves were more divergent for the 1999 and 2000
collections of S. torminalis (Fig. 2). Similarly, the estimated
moments were more similar in the cases of Q. lobata and
D. excelsa than for S. torminalis (see Tables 4–7 ).

Fig. 2 Best fitting curves for the four experi-
mental data sets, Sorbus torminalis 1999 (A)
and 2000 (B), Dinizia excelsa (C) and Quercus
lobata (D), for the four families of curves
studied, exponential power (black line),
Weibull (red line), geometric (blue line) and
2Dt (green line) They correspond to the
case where the shape parameter (b) was set
to a fixed value and density was jointly
estimated (second line of Tables 4–7).
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When density was estimated jointly with the scale
parameter a, assuming a fixed value for the shape para-
meter (b), the estimated effective density (d) was always
lower than the field measured adult density (d ), except for
the normal and exponential distribution for S. torminalis in
2000. The ratio d : d varied between the species (Table 8):
being ∼0.1 for Q. lobata, whatever dispersal function was
assumed (except the geometric); from 0.064 to 0.158 for
S. torminalis in 1999, except for the Weibull distribution
where it took a very low value of 0.0016; and from 0.472 to
0.835 for D. excelsa. The results were quite variable for
S. torminalis in 2000, but for the best fitting functions, the
Weibull and the exponential power families, d : d was also
quite small, 0.00038 and 0.036, respectively.

Paternity analysis comparisons

We also performed paternity analyses on Sorbus torminalis,
for which we have substantial genetic information on
the males for a considerable distance around the sampled
females (Oddou-Muratorio et al. in press), using the
program cervus (Marshall et al. 1998). Then the best-fitting
dispersal curve was determined, using a maximum-
likelihood method (see details in S. Oddou-Muratorio, E.
K. Klein and F. Austerlitz, in preparation). As with the
less-detailed twogener analysis, the fits show a tendency
towards fat-tailed dispersal curves (Table 9) when the
exponential power distribution was used with estimated
values for b of 0.25 and 0.35, respectively. When the fits
with other curves were compared, the Weibull distribution
provided the poorest fit for both years, the best fitting
curve was the geometric for 1999 and the exponential
power for 2000, but the difference between the likelihood
of the two curves was very small in both cases.

Discussion

Our results indicate that it is possible to approximate
the shape of the dispersal curve, a critical element of the
estimation of gene flow parameters. The simulation study
showed that twogener can infer the shape of the dispersal
curve, even if the estimations show some bias and large
MSE. We always used the exponential power distribution

for simulated data sets, and when this same family was
used for estimation, all values of b but one were < 1.0, when
the true value of b was 0.5, as expected of a fat-tailed
distribution. Conversely, when the true value was b = 2, all
estimated values of b were substantially above 1.0, as
expected of a thin-tailed distribution. Thus, the exponential
power distribution was effective at determining whether
the dispersal curve was fat- or thin-tailed.

Of course, the accuracy of the estimates will increase
with the amount of data available. In a previous study
(Austerlitz & Smouse 2002), assuming a normal dispersal
for the twogener analysis, which is the only case for which
many simulated data sets can be analysed, we have shown
that increasing the number of sampled mothers or increas-
ing the number of loci used in the twogener analysis were
the best way to reduce the MSE of the estimates. The
impact of the amount of data available should also be studied
in the future for the case of the more realistic curves that we
studied here.

Another interesting result is that we obtained no more
bias and no larger MSE in the estimation of average pollen
dispersal distance and adult density if we assumed another
family of dispersal curves (here the Weibull or the geo-
metric distributions) than that used in the simulations (the

Dispersal 
function

Sorbus torminalis 
(1999)

Sorbus torminalis 
(2000)

Dinizia 
excelsa

Quercus 
lobata

Normal 0.282 6.909 0.835 0.101
Exponential 0.158 4.636 0.665 0.091
Exponential power 0.064 0.036 0.585 0.093
Weibull 0.002 0.00038 0.472 0.084
Geometric 0.122 0.260 0.765 0.981
2Dt 0.172 0.506 0.712 0.099

Table 8 Ratio of estimated density over the
measured density (d/d) for the three species
studied and the six families of dispersal
curves assumed

Table 9 Fit obtained with the maximum likelihood method based
on paternity analysis

Dispersal curve
-log 
Likelihood å b >

1999 data
Normal 835.24 448.11 397
Exponential 753.68 158.45 317
Exponential power 700.40 0.10 0.25 648
Weibull 705.99 398.77 0.87 429
Geometric 699.50 22.35 2.06 ∞
2Dt 703.35 27.56 1 ∞

2000 data
Exponential 1196.31 215.86 432
Exponential power 1150.42 4.21 0.35 847
Weibull 1159.72 588.72 1.21 553
Geometric 1150.99 67.17 2.10 ∞
2Dt 1155.50 67.16 1.0000426 ∞
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exponential power distribution). This remained also true
for the higher order moments for the Weibull distribution,
and also for the geometric distribution, except that we
sometimes obtained dispersal curves with infinite moments.
This general congruence is important because, for experi-
mental data sets, the assumed dispersal curve is unknown
and it is thus helpful that these estimated values are not
strongly affected by the choice of dispersal curve. All things
considered, we recommend the use of the exponential power
distribution, which is sufficiently flexible and has the added
attraction of encompassing the normal and exponential
as degenerate special cases, and the moments are always
finite. The Weibull distribution becomes advantageous
only when the distribution is thin-tailed, because the shape
parameter is estimated with more precision. Thus, the best
strategy might be to start first with the exponential power,
and in the case that a thin-tailed curve is obtained, to per-
form a subsequent analysis with the Weibull distribution.

The frequency of thin-tailed pollen-mediated dispersal
may not be high in the real word. We need more studies of
pollen dispersal to verify the overall tendency, but the
cases studied so far suggest a trend towards fat-tailed dis-
tributions of pollen dispersal. Indeed, when the exponen-
tial power function was assumed, the twogener method
yielded estimates of b that were close to 1, or even smaller,
i.e. a distribution that decreased more slowly than the
exponential distribution at long distance. For the case of
Sorbus torminalis, for which we had data sets for two con-
secutive years, it is interesting to note a consistent pattern
of strongly fat-tailed curves over both years for that spe-
cies, and this is confirmed by paternity analysis. However,
the level of precision of our estimates does not allow us
to draw any conclusion from the fact that we obtained a
lower b-value in 2000 than in 1999, especially since the
paternity analysis yielded the opposite result.

Another consistent pattern was that the estimated adult
density on the experimental data sets was always below
the observed density, but since our estimates are affected
by bias and have large MSEs, we must be cautious with our
interpretation. On the one hand, this result might indicate
that it is preferable to have an estimate of adult density to
insert into the model, stabilizing the other parameter esti-
mates. Notably, we are estimating several parameters
simultaneously, and the variance in the data around the
curve is great. It is important to understand whether our
estimate of low density has validity, because otherwise our
method also estimates larger dispersal distances than indi-
cated by estimates based on measured density.

On the other hand, it is not unexpected that the effective
adult density is less than the demographic estimate, given
the many factors (e.g. uneven reproductive output, asyn-
chronous flowering phenology) that reduce the effec-
tive size of the reproductive population. For example, for
S. torminalis and Quercus lobata, we obtained estimated

effective densities that were ∼1/10 of the observed density.
From what we know from the simulation study about the
precision of the estimates, we can conclude here with
reasonable certitude that the effective density is lower than
that observed. By contrast, the estimated density was about
half of the observed density for Dinizia excelsa. Considering
the level of MSE observed in our simulation study, we can-
not conclude clearly for that case that effective density is
indeed lower than that observed in this last case.

Low effective density may be an indication of a variance
in reproductive success among males, which is illustrated
by paternity analysis in the case of S. torminalis (S. Oddou-
Muratorio, E. K. Klein and F. Austerlitz, in preparation).
This variance in reproductive success can be a consequence
of variation in phenology of the species under study.
Indeed, if the flowering periods of some individuals are
completely nonoverlapping, the probability of a mating
event becomes nil, and it is reduced considerably when
these periods overlap only partially. It is interesting that
we observed this phenomenon for S. torminalis, but not
for D. excelsa. Also, large variations in pollen or pistillate
flower production among trees could be a cause of vari-
ance in reproductive success.

We need many other experimental studies to confirm all
the tendencies that have been observed in the experimental
data sets studied here. The species studied here are
scattered, with low-density spatial distributions; two are
insect-pollinated (S. torminalis and D. excelsa), and the other
is wind-pollinated. More data are needed, both on these
types of species and on species with different life histories.
In particular it would be interesting to study densely
packed wind-pollinated species. A similar study was per-
formed on Fraxinus excelsior (Morand-Prieur 2003), a tem-
perate wind-pollinated species that occurs in much higher
densities (48 trees/ha in the study plot) than studied here,
but we found a similar pattern, a very fat-tailed dispersal
curve (b = 0.240, if the exponential power function was
assumed) and an effective density slightly smaller than
that observed. Also, it would be interesting to repeat the
study for the same species over several years, as we did for
S. torminalis, which showed us that the same trend toward
a fat-tailed curve was observed for both years. Also repeti-
tions in different places, subject to different environmental
conditions, would be useful to assess the extent to which
the curve estimated during one year and in one place can
be extrapolated to results observed in other years and other
places.

From a theoretical point of view, it would be useful to
perform a more detailed study to determine the best sam-
pling strategy to estimate all the dispersal parameters. This
information would probably help determine the optimal
way to estimate all of the parameters of the dispersal curve
effectively. More generally, it would provide useful informa-
tion about the best strategy of how to choose mothers
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on the landscape and the sample allocation needed to per-
form the estimation properly. Ultimately, information on
the distance and shape of the dispersal function will yield
insight into the scale of the evolutionary neighbourhood
size and about the dynamics of gene movement in man-
aged populations.

As already mentioned in previous works (Austerlitz &
Smouse 2001) several factors may affect the estimation
process. For instance, a degree of selfing higher than what
is expected at random, will increase the differentiation
of the pollen clouds (Φft), by increasing the proportion of
self-gametes in each pollen cloud. Our method, which does
not account for this effect, would thus provide a down-
wardly biased estimate of the distance of dispersal for
the outcrossing pollen. A reduction of selfing will have
the opposite effect. Similarly, for animal-pollinated species,
correlated dispersal of male gametes will decrease the
effective number of pollinators of each female and thus
increase Φft, again yielding a downward bias in our esti-
mates of dispersal distance. In all cases, the impact on the
estimation of the shape of the curve is less predictable.
Such processes should be integrated in future studies.
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