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NOMENCLATURE

a, a', 815 8y a‘l, a'2 constants

b, b’ constants

Cp constant pressure specific heat

Cy constant (i = 0, 1y..vvuve.....10)

F (1) function of similarity parameter m, u = UF'(n)

G (n) function of similarity parasmeter 7, w = WG'(7)

g(x,z) function of coordinates, x and z

K’ thermal conductivity

m constant

n, n' constants

Pr Prandtl number, Pr = EEE

r constant "

s constant

T* scaled surface temperature, T*(x,z) = T - T,

Ty temperature of mainstreem

TW temperature of surface

Uy V, W boundary layer velocity components in x, y, z directions
respectively

ﬁ; ;; W boundary layer velocity components in X, Y, Z directions
respectively

U, W mainstream velocity components in x, z directions respectively

Xy YV, Z skew-linear coordinate system

X, Y, Z rectangular coordinate system
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NOMENCIATURE (continued)

similarity space variable,

coefficient of kinematic viscosity
coefficient of absolute viscosity
density

angle between X and x in surface plane
dimensionless temperature, 6% = I - T

TW - Tm

function of similarity parameter n, 6% = @ (q)

susperscript prime denotes differentiation with respect to 7
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INTRODUCTION

Exact solutions of the laminar, incompressible boundary-layer
equations are generally obtained by the use of similarity transformations.
By means of such transformations, the equations of the boundary layer
as well as the associated energy equation are reduced to ordinary differ-
ential equations which can then be solved by standard numerical methods.
The price that is paid for obtaining such solutidns is that the method
is applicable only for rather restricted classes of mainstream flows
(Reference 1). This might well be expected since one of the character-
istics of similarity solutions is that the computed boundary layer velocity
profiles are allowed to vary only in scale along coofdinate directions.
This limitation is reflected at oﬁce in the permissible types of main-
stream flows which give rise to the boundary layers. It can be stated,
therefore, that the choice of the coordinate system is one of the key
factors in obtaining physically significant similar solutions of the
boundary layer equations. Unfortunately, there are also restrictions on
the type of coordinate systems which may be employed in similarity analyses.
For example, if flow over a plane surface is considered, the permissible
orthogonal coordinate systems are rectangular, polar, and spiral (Ref. 1).

In the analysis which follows, it will be shown that a con-
siderable degree of generalization can be achieved in formulating sim-
ilarity solutions of the boundary-layer equations by the simple expedient

of relaxing the requirement that the coordinate system be orthogonal.



The system to be considered will be a linear skew system. It will further
be shown that similar solutions of the boundary layer referred to a rec-
tangular coordinate system are carried over directly as solutions in the
linear skew systems.

Anglysis of the Boundary Layer Equations

in Linear Skew Coordinates

Consider a linear skew coordinate system embedded in a surface

as shown in Figure 1. The skew coordinates x, z are related to the rec-

tangular coordinates X, Z by the equations.

X sec 6 X = x cos 6

>
1]

(1)

N
I

Z -~ Xtan 6 z + xsin 6

N
1]

The y-coordinate remains normal to the surface and hence is
unchanged by the above transformation.

If mainstream velocity components in the x- and z- directions
are designated by U and W, respectively, and the velocity components of
the boundary layer in the x-, z- and y- directions by u, w and v respec-

tively, the three-dimensional boundary-layer equations become (c.f. Ref. 2

Chap. 18).
2
u@. +v@+w.a£ = .a£+w.§y.+va_121. (Ea)
Ay oz ox oz dy’
2
u@_w_ +v§i+wi - Uﬁ+wg+va_‘i (2p)

x dy d  xXx  x  »
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Figure 1. Orientation of skew coordinates



The continuity equation is

%+5V+%—O : (2¢)
Equations (2a) - (2c) are clearly identical to the equations
which one would write for a system of rectangular coordinates. It follows
that solutions of the boundary layer equations in rectangular coordinates
are valid for the equations expressed in linear skew coordinates.
The requirements for similarity solutions of the boundary

layer equations in rectangular coordinates have been determined in Ref-

erence (l). The results can be summarized as follows.

ﬂ=ﬁ-d&ﬂ (32)
%= F' (n) (3b)
W= G (n) (3c)
W

v :?_[%EF +Ua—‘-£§-(nF'-F) + g’—i{; + wa—grzli (nG'-G):l (3a)

Substitution of expressions (3b) - (3d) into Bquations (2a) -

.

(2c) gives _
(ka)
F'" - C{F'? + (Cy-Co)F"F + (C3-C),)F"G - C5G'F' + Cp + C5=0

(4b)
g"t - C5G'2 + (CB-Cu)G”G + (C1-C2)G"F - CgF'G' + Cg + Cz =0



where
o - L W c. - _U ding
1 o W ding
C DD e—— — C) == e e——
3 2 Xx + 2 &z
g g
2 Ug® Oz Wge Oox
The boundary conditions on F and G are
F(0) = a(0) =0
F' (0) = 6'(0) = 0
Lim F*' () = Lim G' (q) =1
> M- ®
If it is now required that the Ci (i = 1, 2,...,6) be constant,

(in order that Equations (4a) and (4b) become ordinary

equations in (n) four sets of solutions for U, W and g°

they are: (Reference 1)

Case I
U = aet¥ M1 U =
W = beX™ W =
g2= cU = C_&Vl- g2=

differential

can be found,



I

Case TIT

Case IV
U= ae™
W = be™
g2= cU

(Four other cases could also be listed by obvious symmetrical inter-

change of variables)

It is interesting at this point to investigate the differences

between the requirements on the mainstream flow as referred to rectangular

coordinates and those referred to the linear skew coordinates.

This can

be done readily by expressing the results for the two systems in terms

of rectangular coordinates by use of Equations (1).

pressions for mainstream velocity components and streamlines:

Table I lists ex-

Table I - Comparison between mainstream characteristics

in rectangular and skew-linear coordinate systems.

Case I

Case II

Rectangular

Skew-Linear

Rectangular

Skew-Linear

Streamlines

m-1
Y aelXym-1 aen'X(Z-Xtaneﬁnél aXan-l a'Xn(Z-tanGX)
: , : il
W belXzm el ' X(2-Xtand)" pxp-lzm b'X0-1(Z-tan6Xx)
Mainstream i
Z = alea‘g’X Z=aleaéX+Xtan6 Z = aan+ ao Z=aiX? +Xtanb
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Table I (continued)

Case IIT Case IV
Rectangular Skew-Linear Rectangular Skew-Linear
U aXx™ a'x? aet ' ael X
W RS b'X" pe™™ bt
giiﬁ;ﬁf; Z-g x(5-0+1) kaixm-qiétane 75, e(mn)X Z=ale(m‘ ;)régﬁne

In order to illustrate more completely the distinctions between
-solutions expressed in rectangular and skew-linear systems the following

example has been chosen from Case III. Let U = U, = const and W = 2be.

The corresponding mainstream streamlines are then given by

z = x° + const (5)

The similarity equations for the boundary layer are

"
FE_ 4+ 5" = 0 (6a)

G"'" +G'F -F'G'+1=0 (6b)

'r]._;oo T\-—) oo}
Solutions for Equations (6a) and (6b) are given in Reference (3). The

functions F'(n) and G'(n) are plotted in Figure 2. It is shown in
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Reference (3) that the so-called "limiting streamline" (i.e. the envel-
ope of boundary layer streamlines as y - 0) is given by

z = x2¢"(0) + const. = 4.270x° + const. (7)

F"(0)

Plots of Equations (5) and (7) appear in Figures 3a - 3c for
a rectangular system and linear-skew systems in which the angle inclina-
tion of the x-axis and the X-axis is 30° and 60° respectively. It can
be seen from these plots that when rectangular coordinates are employed
the mainstream flow crosses the surface leading edge at right angles
while in the skew system the mainflow crosses the leading edge at the
angle of inclination of the x-axis. In the latter cases, the surfaces
can be considered as inclined to a uniform flow.

The relationship between boundary-layer velocity profiles can

be obtained readily from Equation (1):

u=1ucos 6 (8a)
v=v (8b)
w=w+usin 0 (8c)

where E, v and w have been used to denote the boundary-layer velocity
components of a flow in a skew system referred to the X%,7 - axes. Sub-
stituting the relations for u and w from (3b) and (3c) into (8a) and
(8c) gives

Ucos 8 F'(q) (9a)

c
1l

w=WGe'(n) + Usin 6 F' () (9b)
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The velocity component normal to the surface remsins identical to that
of the orthogonal coordinate system. Thus it is seen that the velocity
profiles for a skew system exhibit similarity in the X-direction but not
in the Z-direction unless W = U.

Requirements for Similar Temperature Profiles

Requirements for similar temperature profiles in a skew-linear
system can be determined from an analysis of the boundary-layer energy
equations under the assumption of constant fluid properties, (c.f. Ref-

erence 4). The equation in terms of the skew system variables is:

d . dr, T duy® | e %
pCp(ug;'+ VS; + wg;) = kg;g'+ p[ 5;) + (55) + 2 gin © 8; 5;] (10)

A non-dimensional temperature ratio is now defined as (c.f. Reference L)

T -T T-T
o% = e .

T* T =T

where

=1
i

temperature in the boundary layer

=]
8
1l

temperature of the mainstream

]

surface temperature

T,

T* = T%(x,z) =T =-T

W co

1]

If 6% is expressed as a function of the similarity variable 7,
6% = 8(n) Equations (%a), (3b), (3c), (3d) and (11) can be used to trans-

form Equation (10) into the form

©"-C7F'® -CgG'®@ + Pp.(C1-Cp) O'F + Pp(C3-Cy)8 'G + CgF" 2

H2 Mt —_
108 + C;F'G" =0 (12)

® (0) =1 Lim®e (n) = 0

N -

+ C
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Figure 3a. Streamlines of flow in skew-linear coord.
o = 0°
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where
P U dbT* P U°
C7 = —r-— C9 = r
“ g® X - TG
p
2
o = P W OinT* o = PW
8 F= 10 mo

‘ P
CH_=2sh19—i; U = 2 sin 6NC{oy~NC
T*Cp 9

In order that Equation (12) be an ordinary differential equation
07, C8> 09 and ClO(and hence, Cll) are required to be constant. From the
expressions for Cg and C10 it is readily seen that U must be proportional
to W, i.e. the streamlines of the mainstream are straight. However, the
coefficients 09 and Cyg arise from the viscous dissipation term in the
energy equation and if it is assumed that viscous heating is negligible,
the requirements imposed by C9 and C1p can be disregarded. If it is also

assumed that T* = constant, Equation (12) becomes
@ " + Pp(C1-C2)@ 'F + Pp(C3- Cy)0 'G = O (13)

Thus the requirements for similar temperature profiles are precisely

those given for the mainstream velocity components and the function g.

A similar result is given in Reference (5) for two - dimensional flows
over a body of revolution rotating in a fluid at rest and a body of revol-

ution in a rotating fluid.



-15-

If the case of negligilhle viscous heating but variable wall

temperasture is considered, the two equations

PU OT*
C7 = const. = g _
g T* ox
P W
Cg = const. = T oT*
ng* oz

constitute_ a system of eguations. for T¥.
The solutions for T¥* corresponding to the four sets of require-

ments on U, W and g are as follows:

Case I: T%¥ = (const.) eF¥z8
Case II: T* = (const.) xTzS

Case III: T* = (const.) x¥eSZ
Case IV: T* = (const.) e¥¥eS%

(Again, four additional cases can be obtained by appropriate interchange
of independent and dependent variables in all expressions of any of the
four cases)

At present solutions of Equation (12) corresponding to computed
functions F and G have not been carried out by the authors. Obtaining
such solutions should be a rather stralghtforward numerical procedure.

In conclusion, it can be said that the requirements for all
possible similarity solutions of the boundary layer and energy equations
in skew-linear coordinates have been found and presented. The usual Car-

tesian system is simply a special case.
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