AUTOMATIC DISASSEMBLY AND TOTAL ORDERING
IN THREE DIMENSIONS

Tony C. Woo
Department of Industrial & Operations Engineering

The University of Michigan
Ann Arbor, Michigan 48109-2117

Technical Report 87-9
March 1987

Automatic Disassembly and Total Ordering in Three Dimensions

Tony C. Woo
Department of Industrial and Operations Engineering
The University of Michigan

Ann Arbor, Michigan 48109-2117

March 1987

ABSTRACT

Generating a sequence of motions for removing components
in a three-dimensional assembly, one at a time, is considered
-~ the robot motion being strictly translational. We map the
boundary representation of an assembly to a tree structure
called Disassembly Tree (DT). Traversing the DT in in-order
yields a minimal sequence for disassembly. Traversing the DT

in pre- or post-order yields a minimal sequence for assembly.

In this paper, an assembly is classified by the logical
complexity of its DT (as ordered graphs whose nodes are com-
ponents in the given assembly) and by the geometric complexity
of the nodes in DT (in terms of the number of motions needed
to remove a single component). Whether a component can be
removed in one motion is next described as a predicate. Then,
the predicate is used in an algorithm for constructing a DT.
For a class of assemblies that exhibit total ordering, the
algorithm decides whether all the components can be removed in
a single motion by constructing a DT in O(N) time, on the
average, where N is the total number of mating faces in the

assembly.

1. INTRODUCTION

Automatic assembly may be studied from the point of view of
disassembly. If we visualize the process of assembly as having
a finite number of "states", each being captured by a single
frame on film, then rolling the film backward corresponds to
disassembly. The process of assembly/disassembly is reversable,
if the components are rigid and there is no internal energy
stored. (Such would not be the case with components of variable

geometry such as a spring or a clip fastener.)

Given a collection of components, a goal in automatic assem-
bly is to arrive at a logical sequence with preferably the short-
est total travel between the component bins. Reversing the
process, we are given a finished assembly and are to arrive at a
minimal sequence for disassembly. A possible approach may be an
"Onion Peeling" procedure -- one starts from the outside and

works inward, by exploiting the given structure of an assembly.

While we are appealing to the intuition that automatic
disassembly may be more feasible than automatic assembly, it is
useful to examine the inherent structure of assemblies that is
independent of the approach. We shall introduce three measures

of complexity -- geometrical, logical, and dimensional.

The "Sofa Moving Problem" [5] is an instance of a geometri-
cally complex assembly/disassembly problem in which an object

(possibly non-convex) is to be navigated through corridors and

obstacles without collision. If we associate a sofa to a single
component being removed, then motion planning is concerned with
the generation of a geometric solution (the shortest path, for

instance) under constraints (that the obstacles are immobile and

that collision is to be avoided, for example).

Assembly planning, on the other hand, is concerned with the
generation of a logical sequence of steps, each of which may be a
geometrically simple motion plan. The "Tower of Hanoi" is an
instance -- its solution is well-known [1]. For less structured
instances, such as stacking blocks given a non-unique initial
configuration, more powerful reasoning mechanisms employing
artificial intelligence may be needed[8]. Indeed, when the
problem is logically and geometrically complex, it can be very
difficult. The "Warehouseman's Problen", in which sofas are to

be unstacked and removed, is known to be PSPACE-complete [2].

The degrees of freedom permitted in planning is another

measure of complexity -- that of dimensionality. When the motion
is restricted to translation only, and the domain is in the
plane, the solution for the Sofa Moving Problem is reduced from a
doubly exponential time algorithm [6] to one that is of
polynomial time. If N is the number of walls, the motion for a
circular disk can be planned in O(NlogN) time [3] and for two

disks in O(N°) time [7].

While there are other parameters influencing the complexity

of the assembly/disassembly problem, such as the number of jigs

and fixtures, and the number of robots simultaneously performing
the task, they will be incorporated into these three measures --
geometrical, logical and dimensional, in the following

characterization. First, we identify the notion of "clearing" a

component from a subassembly. The criterion may be:

Cl. that the convex hull of the component in question does

not intersect the convex hull of the subassembly; or

C2. that the component can be translated and rotated to
the perimeter of a sphere of sufficiently large

radius; or
C3. that the component can be translated to infinity.
For simplicity, we adopt C3 as the criterion in this paper.

By allowing three degrees of freedom for translation in
three dimensions, we have specified the domain of our problem, as

illustrated by Figure 1.1, along the axis of "Dimensionality".
<Insert Figure 1.1>

Next, we specify the "Logical" complexity of our problem.
Let the solution to disassembly be represented by a tree, the
nodes of which represent the components. In Figure 1.2 (a), the
assembly A has four interlocking components. It can be disas-
sembled not individually but only by removing a subassembly

(alaz) first.

4 Geometry

(Disassemblability)
>2 1
1
t >
otal Partial Logic
(Ordering)
2
3
Dimensionality
(Degree of Freedom)

Figure 1.1 Complexity of Assemblies

Definition 1.1 An assembly is k-parallel if the disassembly of

a component requires the immediately prior clearing of k com-

ponents in parallel.

A k-parallel assembly is one that requires k robots working
simultaneously. Alternateively, it may be viewed as one
requiring a special jig that "joins" the k components under
consideration, while using one robot. (The trade-off between an
active processor, such as a robot, and a passive one, such as a

fixture, while interesting, is not within the scope of this

paper.)
<Insert Figure 1l.2>
Now consider the component bn in Figure 1.2(b). The tree in

Figure 1.2 (b) shows that disassembly of bn is possible after k

of its neighbors have been cleared, not necessarily in parallel.

Definition 1.2 An assembly is k-sequential if the disassembly of

a component requires the prior disassembly of k other adjacent

components.

(It may be noted that parallelism is a necessity while
sequentialism is sufficiency. 1In other words, a k-sequential
assembly, though requiring only one robot k times, can be dis-
assembled by using k robots operating in parallel, once. How-
ever, a k-parallel assembly cannot be disassembled using one

robot k times.)

(a) Parallel Assembly

b1

b

bs

000

000

Figure 1.2 Partially Ordered Assemblies

(b) Sequential Assembly

O

(a1 az)

/\

ay

TN

b, b,

\4

b

b

(

k

k+1bn-1

Thus, observing the number of "parents" of a node in a
disassembly tree, we have a characterization of assemblies by

"Logical" ordering.

Definition 1.3 An assembly is partially ordered if the

disassembly of a component requires an immediately prior
disassembly of k components. If k < 2, the assembly is

totally ordered.

In this paper, we consider assemblies that are totally ordered.
Corresponding to each component, a node in the disassembly tree

has exactly one parent.

Finally, we examine the Geometric complexity of assemblies
as prescribed by Figure 1.1. Consider the assembly shown in
Figure 1.3 (a). The clearing of component a, requires two
translations. Recalling the general "Sofa Moving Problem", in
which multiple motions are required, we have a characterization
for the nodes in a disassembly tree (whose structure is

characterized by partial or total ordering).
<Insert Figure 1.3>

Definition 1.4 A component is m-disassemblable if m motions are

needed to clear it.

While a k-parallel assembly differs from a k-sequential one in
the number of processors, an m-disassemble component differs from
an n-disassemblable one by the amount of storage. By Definition

1.4, an m-disassemblable component requires (m-l) temporary

(a) 2-Disassemblable

(b) 1-Disassemblable

Figure 1.3 Totally Ordered Assemblies

locations before it reaches its destination. Viewed as a
program, a motion plan for an m-disassemblably component requires
(m-1) assignments or temporary variables. (While the trade off
between the number of processors and the amount of storage is an
issue, we shal return our focus to characterization.) 1In this
paper, we consider assemblies that are totally ordered, for which

each component is l-disassemblable with three degrees of freedom.

Constructing a disassembly tree for three dimensional,
totally ordered, l-disassemblable components is not entirely
trivial. One of the difficulties comes from the observation
that improper ordering of the components affects the m-disassem-
blability of each component. Consider Figure 1.3 (b) in which
there are L components on the left and R components on the right.
If removed first, each of the L components are 2-disassemblable.
However, after all R components are first removed, the L com-
ponents become l-disassemblable. To determine which one of the k
= (L + R) components is l-disassemblable suggest a decision
procedure that could take k + (k-1) + (k-2) + ... steps leading
to an 0(k2) time algorithm. 1In this paper we give a linear

time algorithm.

The remaining sections are organized as follows. Section 2
discusses the determination of l-disassemblability. Section 3
presents an algorithm for ordering the components in the form of

a disassembly tree.

2. COMPONENT DISASSEMBLABILITY

In this paper, we assume that components in an assembly
"touch" each other, i.e. they are not disjoint nor do they
intersect (occupying the same space). For simplicity, we shall
first consider assemblies with only two components -- one being
the component under consideration for removal and the other
representing the subassembly (the rest of the assembly). Compare
the two examples in Figure 2.1 (a) and (b), whose exploded views
are given by Figure 2.1 (c) and (d), respectively. It is clear

that component ¢, is disassemblable with respect to subassembly

1

5, while component c,

We can distinguish these two types by computing a range of

is not disassemblable with respect to Sy

directions along which a component can be translated such that
it does not interfere with the subassembly.

< Insert Figure 2.1 >

Definition 2.1 A component c is l-disassemblable (or just dis-

assemblable, for short) from a subassembly S in the direction d

if, for all points p in ¢, a RAY (p,d), which is a semi-infinite

line from p in the direction d, does not intersect S.

If a robot can "see" all points p of component ¢, from
infinity, in the opposite direction of RAY (p,d) then an
interference-free disassembly is ensured. We illustrate the
notion of disassemblability by RAY (p,d) in Figure 2.2. (For

ease of illustration, a two-dimensional cross-section is given.)

\]
]]
P N e QR I
------------- S

. K VARt >,

\g. ““““““““““““““““ ". \
l‘ N O\
\ N
| Ceccceenn~n vl
Ci C2

S1 S,

(c) (d)

Figure 2.1 Disassemblability

In Figure 2.2(a), directions d, and d, satisfy Definition 2.1,
for all points p in component c,. By contrast, directions d3

and d4 do not, for all p in c In Figure 2.2 (b), there does

1
not exist a direction d such that RAY (p,d), for all p in Cyy
satisfies Definition 2.1. While Ray (pldl) seems satisfactory,
the same direction d1 applied to point p, causes interference.
Similarly, RAY (p3,d2) does not satisfy disassemblability though

d2 is satisfactory for Py-
<Insert Figure 2.2>

The crucial test for disassemblability, according to
Definition 2.1, is that the direction d must yield a non-inter-
secting RAY (p,d) for all points p in the component under con-
sideration. As there are uncountably many points in each com-
ponent, we need to identify a finite set based on which we com-

pute disassemblability.

In the following sections, we compute the directions for

disassembly from the normals of the mating faces, a subset of

the boundary shared by a component and the subassembly. (Readers
with intuition may choose to go directly to Section 2.2 in which
the procedure is given.) For completeness, we need to show that
consideration of mating face normals is not only necessary but

also sufficient.

2.1 Mating Faces

Disassembly, according to Definition 2.1, involves two

10

(b)

Figure 2.2 Direction of Disassembly

entities: a point and a direction. For a given direction, we
need to verify that it satisfies all the points in the component
under consideration. The following lemma shows the sufficiency

of considering only the boundary.

Lemma 2.1 For a given direction d, component c is disassemblable
if RAY (p,d) does not intersect subassembly S, for all points p

on the boundary of c.

[Proof] Let a point p be in the interior of component c.
The RAY (p,d) makes an odd number of intersections with
the boundary of c. Let the intersections by Pyr Py

Py +ov Ppyqe where n is an even integer starting at

0. Since p is in ¢, it is necessarily outside S. The
RAY (p,d) makes an even number of intersection with the
boundary of S, possibly none. Let these intersections
be dys Qs +oe Qg where m is an odd integer starting
at 1. Referring to Figure 2.3, we see that it is not
possible to have q between p and Py and in general

between Pe

ven and Poggr 1N the direction of RAY (p,d).

Thus, there is no loss of generality by treating p as P,
and as being on the boundary of c, since p lies between

p and Podd and intersection with S cannot occur in

even
that interval.

<Insert Figure 2.3>
While Lemma 2.1 provides the basis for computing

11

Figure 2.3 Proof of Lemma 2.1

disassemblability (by replacing the interior by the boundary), we

still need to show that only the portion of boundary in common

between the component and the subassembly is necessary for

computation.

Lemma 2.2 Disassembly in the sense of Definition 2.1 can be

determined if and only if there is a common boundary between

component ¢ and subassembly S.

[Proof]

Divide the boundary of c into two disjoint sub-

sets, one of which may be empty. In Figure 2.4, we

denote the subset in common with that of the subassembly

!
S by Bcs and the other B cs® We show that Bcs

dominates B'cs by the following case analyses.

Case 1.

Case 2.

Case 3.

[Ray from a point in B'cs does not intersect S.]
1 !

Let P, be in B cs® Suppose RAY (pl’dl) does not

intersect S. But a ray in the same direction

from a point in Bcs’ P for example, will

intersect S.

[Ray from a point in B'c intersects S.]

s
i i '

Let P, be a point in B cs® Suppose RAY(pZ,dZ)

intersects S. A ray in the same direction from

any point in B.g/ Py for example, must also

intersect S.

[Ray from a point in B g does not intersect S.]
Suppose RAY (p3,d3) does not intersect S, where

Py is in Bog: BY the same reasoning in the

12

Proof for Lemma 2.1, a ray in the same direction

from another point in B! for example,

cs’ P1
cannot intersect S.)

Case 4. [Ray from a point in B.g intersects S.)
Suppose RAY (p4,d4) intersects S, where P, is
in B,g+ A ray in the same direction from a
point in B'cs does not have to intersect S --

RAY (pl,dl), for example.
<Insert Figure 2.4>

2.2 Monotonicity

Having identified the mating faces as being necessary and
sufficient for computing the direction for disassembly, we

proceed to describe the procedure.

Suppose the unit normal of a face point inward (towards
the material side of the component). We can map the unit normals
of the mating faces to the origin of a coordinate system. This
idea is illustrated (using the same two assemblies) in Figures
2.5 (a), (c), and (e) for the one that is disassemblable.

Figures 2.5 (b), (d) and (f) illustrate the one that is not
disassemblable. The notion of montonicity [4] of faces enables

the determination of disassemblability.

<Insert Figure 2.5>

Definition 2.2 A set of faces {fi} with unit normals {di} is

13

3CS

Fig 24 Proof of Lemma 2.2

S, S,
(a) (b)
eyt TRLRT
(c) (d)
. $Y
dAmin
dmax dmm ’x dmax >x

() ()

Figure 2.5 Monotonicity of Mating Faces

monotone if all the normals lie on one side of a plane.

As shown by Figure 2.5 (e), the unit normals of the

mating faces of the component in Figure 2.5 (a) lie on one side

of the plane containing the x-axis, for example.

are only two delimiting normals -- dmi

n

Note that there

d NIt
an dmax’ where "min" and

"max" denote the minimum and the maximum of the Euler angles.

The following procedure determines monotonicity as well as a

range of directions for a given set of mating faces.

Function Disassemblable (c)

1.

2.

End

(£)

e

mating faces of c

unit normals of {fi}

MIN ((d;
MAX ({d;

Apin 2 18

return 'false!

return {d

})
})

OO

min’

d

max

}

The following lemma asserts the linear time behavior of the

procedure for determining component disassemblability.

Lemma 2.3 The disassemblability of a component ¢ with respect to

a subassembly S can be determined in O(n) time, where n is the

number of mating faces in c.

[Proof]

Let the cardinality of {fi} be n.

Clearly,

steps 1 and 2 in Function Disassemblable take O(n) time.

14

Steps 3 and 4 also take O(n) time since no sorting is

required.

We are ready to consider the generation of DT with more than two

components.

15

3. DISASSEMBLY TREE

The input to the algorithm consists of two data structures.

A face mating graph FMG contains nodes that are faces of each

component and arcs that denote mating. Each face belongs to
exactly two mates. If one of the two mates is the background,
then the face is a boundary face. Otherwise, it is a mating
face. FMG is used as input to Function Disassemblable. 1In
Figure 3.1 (a), faces of two mating components are shown. The L-
shaped face is split into two faces -- fi is a mating face and fj
is a boundary face. In Figure 3.1 (b), a mating face is denoted
by a circle and a boundary face by a square in FMG. A second

data structure, component mating graph CMG, is a weak dual of

FMG. Its nodes are components and its arcs denote mating. CMG
is used in determining the ordering. Figure 3.1 (c) shows two
components a and b mating at face fi' Mating with boundary B is
denoted likewise. Both FMG and CMG can be constructed from a
boundary representation of a solid model such as [9] in linear

time.
<Insert Figure 3.1>

Our strategy is to begin from the outside. We take a
component with a boundary face and test it for disassemblability.
If it is disassemblable, we delete its boundary faces from FMG,
change its mating faces to boundary faces, delete the component
from CMG and insert it in DT. Next, we exploit the adjacency

relation in the CMG. If a component is found to be disassem-

16

component a

o
-t
K
K3
-
) -
N 0
-t
0
-t
R

\

AN
AR
~
\\\\\
AR
R

fi
N

(a) Faces of Two Components

d

component

fx
faces of 3 other faces
component b fit of component a
f j
O . mating face
(b) Face Mating Graph + boundary face

other
componets T f1:f ;

(c) Component Mating Graph

Figure 3.1 Data Structure

blable, its mating components are the next candidates. If each
component has m mates then the algorithm would run in O(mk) time.

We need to show that m, on the average, is a constant.

Lemma 3.1 Each node in the component mating graph CMG with k

nodes has, on the average, (3 - 6/k) nodes that are adjacent.

[Proof] The CMG with k nodes is a three-dimensional poly-
hedron P with k vertices. If the faces of P are tri-
angulated three are a maximum of (3k - 6) edges in P[10].
Averaged over k vertices, each vertex has (3 - 6/k) edges in
CMG. Hence, each component has, on the average, (3 - 6/k)

mating components.

Thus, the first "layer" of components disassembled are the ones
with boundary faces. The second and subsequent layers are the

mates of the ones that have been disassembled. We are ready to

illustrate the algorithm.

3.1 Single Disassembly

For ease of visualization, we shall take the cross-section
of a three-dimensional assembly and combine it with FMG. 1In
Figure 3.2 (a), we see five components: a, b, ¢, d and e. Face
f17 is a mating face between a and b. Face f14 is a boundary
face belonging to a. The CMG in Figure 3.2 (b) shows the mating

of the components with each other as well as with background B.

<Insert Figure 3.2>

17

V15 V14

©
O

D
A\ 4

f17

(a) Face Mating Graph

B

f14

V13

ackground

',
' ""o
W ‘s,
...s “,
0
o
0
&
)
K
&
N e
S
L)
\J
.V
)
h)
4
i
J
)
8
R
)
\)
§
N
\
5
{ ¢ d
\
3 \
H
A
v
; %, R
[(/)
’, ¢/)
(3 [/ \
[} (/ \J
% %, o
(N %, >
*, ’ \J
) ?, o O
*, %, S 0
’, () N RS
. , \ Cd
%o, % &~ 4
*, () 34
s, ’, 5 R
s, s 5 o
e, %, Q o
o, () » 0Ny
", \) 03
ey, ())

(b) Component Mating Graph

Figure 3.2 Example

The generation of a disassembly tree for the example is
illustrated in Figure 3.3. The empty disassembly tree DT is
initialized with a root node A (denoting the entire assembly).
From FMG, we find four candidate components a, b, ¢, and 4 that
have boundary faces as shown in Figure 3.3 (a). Each of the
candidates is tested for disassemblability with respect to a
subassembly. (For component d, the subassembly is A - d.) It is
found to be false after calling the function Disassemblable,
therefore, not attached to the tree as illustrated by a shaded
circle. The total number of attached nodes, not counting the

root node A, is recorded in an integer variable NODES.
<Insert Figure 3.3>

We next expand the tree by retrieving from CMG the mates of
each of the leaf nodes and by testing their disassemblability.
If a retrieved mate occurs elsewhere in the tree, it is discarded
from further consideration. In Figure 3.3 (b), the component a
has two mates b and d. Since b occurs previously, it is marked
by a circle and not considered for further testing. The mate d
has not occurred previously and is tested for disassemblability.
Following the example, it is found that d is disassemblable,
hence inserted in the tree, and NODES is incremented by 1. Next,
the mates for component b are retrieved. They are shown as a, c,
d, e in Figure 3.3 (c). Since a, ¢, d, has occurred previously,
they are excluded from further consideration. The mate e is
tested and is found to be disassemblable. At this point, the

count for NODES equals the total number of components in the

18

a b ¢
d
Nodes = 3 Nodes = 4

(a) (b)

A A
r/b[\c a/b C
OIOCIOK d e

Nodes = § Nodes = §
(c) (d)

: not disassemblable

O : occurs previously

Figure 3.3 Generation of a Disassembly Tree

assembly and the process terminates. The resulting tree is shown

in Figure 3.3 (4).

It is useful to show that the DT thus constructed yields
a minimum number of removals (motions)in order to have access to
a certain component. For example, suppose component e in Figure
3.2 (a) is to be removed. According to the DT generated in
Figure 3.3 (d), only component b has to be removed (rather than
components a and d, for example). The following lemma which
asserts the minimality of the number of removals is shown by

induction on the height of DT.

Lemma 3.2 The disassembly tree DT is optimal in that the path
from the root of DT to any node is the shortest possible when

traversed top-down (in in-order).

[Proof] At initialization, DT has a root node and its
height is 0. The first layer of components with boundary
faces gives DT a height of 1. Now, suppose the height

of DT is (h - 1). We examine the cases in which a new
node (corresponding to a component c) is to be inserted

in DT.

Case 1. [Component c appears elsewhere in DT]
If the component appears elsewhere in DT, it will
not be considered again, by construction. Hence
the number of removals to disassemble component c

is no greater than (h - 1).

19

Case 2. [Component c is not yet in DT]
If the component has not appeared before, its

position in the tree can be at most height h.

Since a node appears exactly once in DT and since its
position is as near the root as possible, the number of

removals is minimum. Hence, DT is optimal.

3.2 Multiple Disassembly

The DT generation illustrated previously gives an optimal
solution in storage. However, if multiple components are to be
removed from the assembly, it may not give the optimal solution
in time. Consider the assembly in Figure 3.4 (a) and suppose
that two components ¢ and d are to be removed from it. (This is
quite conceivable in a repair and maintenance application in
which there are multiple defective components.) The DT with root
A requires the removal of three components a, d, and c. On the
other hand, if the components to be removed (c and d) are in the
same path in the DT with root B, as shown in Figure 3.4 (b),

only two removals are necessary.
< Insert Figure 3.4 >

To generate all optimal sequences for multiple component
removal, two modifications are necessary. First, disqualifying a
retrieved mate from disassemblability test should be postponed.
Second, the termination condition for the algorithm should not be

the total number of components. 1In other words, if none of the

20

(a) One Disassembly Sequence

B
a b c
d d d

(b) All Disassembly Sequences

Figure 3.4 Multiple Disassembly

retrieved mates at that level are added to the tree then the

algorithm should terminate.

We now present Algorithm Multiple Disassemble reflecting the
two modifications. It is made compact by treating the first
level of the tree as components that mate with the boundary.

Thus, the root (the first new leaf of an empty tree) of the DT

is B.

Algorithm Multiple Disassemble
input: FMG and CMG

output: DT with multiple occurrences of components

[Initialization]
1. 1Insert boundary B as NEW_LEAF in DT
2. LEVEL <=-- 0
[Grow tree]
3. While NEW_LEAF at LEVEL is not empty do
For each NEW_LEAF at LEVEL
retrieves its mates from CMG
LEVEL <-- LEVEL + 1
For each mate M of NEW_LEAF at LEVEL
If M is not at level < LEVEL and M is Disassemblable
then insert M as NEW_LEAF in DT

else return 'failure'.

As a component can now appear more than once at the same level in

the tree, Algorithm Multiple Disassemble performs more work than

21

in the case of single disassembly. However, by Lemma 3.1, the
average number of edges per node in CMG is bounded by 3. Since
each mating face is tested at most twice (for its two mating
components), the total work for Algorithm Multiple Disassemble is
at most 6N or O0(N), where N is the sum of n mating faces over k

components. This proves our next theorem.

Theorem 4.1 All minimal sequences for multiple disassembly can

be constructed on the average in O(N) time, where N is the total

number of mating faces in the assembly.

22

4. CONCLUSION

We have presented an algorithm for computing disassembly
sequences by generating a disassembly tree DT. Traversing a DT
in in-order yields a disassembly sequence. Traversing it in pre-

or post-order yields an assembly sequence.

If there are k components each with m mates, it is possible
that in the worst case it takes 0(mk) time to construct a DT.
Since the expected value of m is bounded by a constant, our
algorithm runs in O(k) time on the average. To compute
disassemblability, we involve n, the number of mating faces for
each component. Summed over k components, the time complexity
for constructing a DT is O(N), where N is the total number of

mating faces in the assembly.

23

REFERENCES

1. Aho, A.V., Hopcroft, E., and Ullman, J.D. Data Structures
and Algorithms, Addison-Wesley, 1983, pp. 306-306.

2., Hopcroft, J.E., Schwartz, J.T. and M. Sharir, "On the com-
plexity of Motion Planning for Multiple Independent
Objects: PSPACE Hardness of the Warehouseman's Problem",
Int. J. of Robotics Research, Vol. 3, No. 4, 1984,
pp. 76-88.

3. O0'Dunlaing, C. and Yap, C., "A Retraction Method for Planning
the Motion of a Disc", J. of Algorithms, Vol. 6, 1985,
pp. 104-111.

4. Preparata, F.P. and Supowit, K., "Testing a Simple Polygon
for Montonicity", Information Processing Letters,
Vol. 12, No. 4, 1981, pp. 161-163.

5. Reif, J., "Complexity of the Mover's Problems and Generaliza-
tions", Proc. 20th IEEE Symp. on Foundations of
Computer Science, 1979, pp. 421-427.

6. Schwartz, J.T. and Sherir,M., "On the Piano Mover's Problem:
II. General Techniques for Computing Topological
Properties of Real Algebraic Manifolds", Advances in
Appl. Math, Vol. 4, 1983, pp. 298-351.

7. Schwartz, J.T. and Sharir, M., "On the Piano Movers' Problem:
III. Coordinating the Motion of Several Independent
Bodies: The Special Case of Circular Bodies Moving
Amidst Polygonal Barriers", Int. J. of Robotics
Research, Vol. 2, No. 3, 1983, pp. 46-75.

8. Winston, P.H., Artificial Intelligence, Addison-Wesley,
1977, pp. 157-164.

9. Woo, T.C., "A Combinatorial Analysis of Boundary Data
Structure Schemata", IEEE Computer Graphics &
Applications, Vol. 5, No. 3, 1985, pp. 19-27.

10. Woo, T. C. and Wolter J.D. "A Constant Average Time and
Linear Storage Data Structure for Three-Dimensional
Objects", IEEE Trans. Systems, Man and Cybernetics,
Vol. SMC-14, No. 3, 1984, pp. 510-515.

24

IIIIIIIIIIIIIIIIIII

LTIV

3 9015 03994 8537

