A COMBINATORIAL ANALYSIS OF
BOUNDARY DATA STRUCTURE SCHEMA

T. C. Woo
Department of Industrial & Operations Engineering

University of Michigan
Ann Arbor, Michigan

Technical Report 84-12

April 1984

A COMBIRATORIAL ANALYSIS OF

BOUNDARY DATA STRUCTURE SCHEMA

T. C. Woo
Department of Industrial and Operations Engineering
University of Michigan
Ann Arbor, Michigan

April, 1984

Keywords: Data Structure, Data Base, Solid Modeling, Time and

Storage Complexities, Optimal Design

List of Figures

Figure 2.1 Schema for Boundary Data Structures

Figure 2.2 Indirect and Reverse Relations

Figure 4.1 A Cg Data Structure Design and Implementation

Figure 5.1 Additional Time Efficiency from Fixed Storage Cost
Figure 6.1 Cz Data Structures

Figure 6.2 C? Data Structures

Table
Table
Table
Tablé
Table

Table

List of Tables

Time Complexity for C3

9

Storage Complixity for the Nine Relations

9

Storage for C; Data Structures

Time for CZ Data

Time for C? Data

Comparison of Cz

Structures
Structures

and Cg Data Structures

The best way to design a geometric algorithm is to invoke a

1 5o that its implementation runs faster than any

powerful insight
of the existing algorithms for the same problem. But such a wish
does not always come true. There is no guarantee that, for a
given problem, ome cam arrive at an insight of the "Aha" qualityz.
For the sake of argument, suppose one does. Furthermore, suppose
the insight does not quite fit the problem. There may be a
temptation to alter the original problem to fit a better solu-
tion. Short of these two stumbling blocks, the prospect of
designing an efficient geometric algorithm can still be fairly

discouraging. Consider the time-storage tradeoff in which one

faces the "rob-Peter-to-pay-Paul" dilemma.

From a given data structure, one can design an algorithm
whose run-time efficiency can be analyzed with techniques in

computational complexity3’4.

To make a given algorithm with a
known time complexity run faster, the guaranteed way is to modify
the data structure, without changing the problem, by pre-storing
the result of some of the intermediate steps which would need to
be computed otherwise. Clearly, the net result is a speed-up at
the cost of additionmal stcrage. The questions are: (i) How much
does one gain? and (ii) Can the escalationm continue without

bound? This paper attempts to answer these two questions in the

context of three-dimensional (3D) data structures.

1. 1Introduction

While the design of an "optimal" 3D data structure5 may be
of theoretical interest, its real reward resides in the software
speed-up in geometric algorithms for solid modeling, computer
aided design, computer aid manufacturing and robotics. Consider
solid modeling as a 3D data structure synthesizer whereby a
complex solid in some sort of user description is transformed
into an internal representation by a set of geometric algorithms

that perform, for example, Boolean operations on simpler solids

6,7

such as cubes and cylinders One can then perform 3D triangu-

lation on the data structure for finite element preprocessings’g,

ray tracing to extract mass propertieslo’ll, tool path genera-

tionlz’13 algorithms for numerical control, and collision avoid-

ance14 algorithms for robot path planningls. Thus, the speed-up

may have an N-fold advantage where N is the number of application

algorithms.

There are three major schemes for representing 3D objects16

-- spatial occupancy of cells in an Octréel7, Boolean combination

18, and topological relationship of ver-

of solids in a CSG-tree
tices, edges and faces in a boundary graph19. The domain of this

paper is the boundary representation.

A curious phenomenon exists in the community of 3D geometric

algorithm developers using the boundary representation. While

20 is widely used by solid modeling

21,22

the winged-edge data structure

16

researchers”", the theoretical basis of relational topology

has not received equal attention. Furthermore, in its twelve
years of existence, there has been little analytic rationaliza-
tion on its time and storage efficiency by users of the winged-
edge data structure. A "Catch-22" scenario follows. Indeed, the
design of a new data structure may require a powerful geometric
insight. The justification of its superiority over the current
champion would require analytic measures. Without the measures,
it would be difficult to compare data structures convincingly.
Without a new challenger, there would be little motivation to

develop tools for measuring performance.

It is the objective of this paper to provide techniques for
designing new boundary data structures to benefit 3D geometric

algorithm developers. Specifically, it shows that:

(1) there is a set of nine data structure accessing and
updating primitives common to many 3D geometric algo-
rithms and

(ii) there are over five hundred data structure designs
for linking vertices, edges and faces. But,

(iii) there are lower and upper bounds for both the storage
requirement and the run-time performance which are
established in this paper, and, in particular,

(iv) it is possible to get the most out of run-time
performance of a 3D data structure at a fixed storage

cost.

2. Relations, Combinations and Other Basic Concepts

A boundary data structure can be thought of as a set of

23,24

relationships among topological entities Let a relation be

denoted by

X-=->Y
where X, Y can be vertices (V), edges (E), faces (F) and holes
(H). A relation E-->V, for example, stores the two vertices for
each of the edges. Hence, given an edge, its associated vertices

can be retrieved or updated.

Consider the number of possible boundary data structure
designs. Suppose the topological entities are V, E, and F. (A
hole can be implicitly represented by the directions of its edges
and its surface normals.) A graph with three nodes and nine arcs
is shown in Figure 2.1(a). It is clear that it takes a minimum
of two arcs to connect the three nodes. There are

C = (9! * 81 *71) [(21 * 71) = 36
combinations, some of which are not valid because of disconnect-
edness. It is also possible to store three relations in a data
structure. Of the Cg or 168 combinations, some are again inva-
l1id. In general, there are altogether:

¢ +cd+c)ecdecdscdecdecd =02

20, with an edge

combinations. The winged-edge data structure
pointing to its two vertices, two faces, and four of the possibly
many edges, while a face or a vertex points to one of their many

edges, is shown in Figure 2.1(b). It is but ome of the five

hundred or so combinations.

<Insert Figure 2.1>

Having stated the scope of the problem, it is useful to
outline the basic concepts for evaluating the storage and time
complexities. They are: query on relations and expressing a

reverse relation indirectly. The issue is storage versus time.

Using counting formulas discussed in Section 4, each rela-
tion can be assigned a storage cost in terms of the total number
of edges in the object. Hence, a set of relations represents the
"static" view of the data structure with a storage cost. By
defining basic queries for accessing and updating, a relation
that is not directly stored in a given data structure can be
expressed as a procedure in terms of relations that are stored.
Hence, the "dynamic" view of a given data structure is presented

by the way it is accessed directly or indirectly.

Consider the data structure shown in Figure 2.2(a). It
corresponds to one in which a face is linked to all of its edges
and an edge is linked to both of its vertices. The dashed arrow
in Figure 2.1(b) corresponds to the query of : "Given a face,
find all the vertices around it." Clearly, F-->V can be expressed
indirectly as F-->E and E-->V., Consider the example in Figure
2.2(c) where the dashed arrow E-->F corresponds to a reverse
relation. If a relation V-->F existed in the data structure then
E-->F could be computed indirectly as E-->V and V-->F. Other-

wise, it would require a "file inversion” to reverse the stored

relation F-->E. Such an operation can take up to order N time
while incurring order N intermediate storage, where N is the
number of faces F in the stored relation F-->E for this example.
The notion of storage-dependent time complexity of a data struc-
ture design may be illustrated in another example as shown in
Figure 2.2(d). The data structure has two relations E-->V and
E-->F. Notice that there is no arc entering E. Answering amy of
the queries of the type X-->E would require exhaustive search

through all vertices or all faces which again is of order N.

<Insert Figure 2.1>

The observations made in the preceeding paragraph will be formal-
ized in the subsequent sections. They serve as the basis for

designing and evaluating data structure schema.

3. Terminologies

The storage complexity of a data structure is measured by count-
ing formulas and the time complexity of a data structure is measured
by a set of primitive queries and update routines. To facilitate the

discussion, the following nomenclatures are used.

v : total number of vertices
E : total number of edges

F : total number of faces

Vi . a vertex

E. . an edge

10

F. : a face

i

vy, : number of vertices around a vertex v
EVi : number of edges connected to vertex Vi
FV, : number of faces intersecting at V;

VE, : number of vertices per edge E;

EE; : number of edges conmected to edge Ej
FE; : number of faces intersecting at E;

VF; : number of vertices around face F;

EF; : number of edges around face Fi

FF, : number of faces around face F;

It may be noted that the storage complexity of a relation X->Y can be

computed by taking the sum of:

YXi

e g <

where X, Y can be V, E or F and i is summed over all X. For example,

the total storage for E=->V is

VEi

14 m

The enumeration of V, E, and F induces nine data structure

access primitives AP and update primitives UP,

APl: Given V find all the VVi vertices connected to it.

i’
Tl :
UPl: Given Vi link it to all the VVi vertices.
AP2: Given V., find all the EV, edges connected to it.
T2

UP2: Given V link it to all the EVi edges.

11

AP3: Given V find all the Fvi faces around it.

i:

T3

UP3: Given Vi, link it to all the FV, faces.

AP4: Given Ej, find all the VE; vertices connected to it.
T4

UP4: Given E;, link it to all the VE; vertices.

APS5: Given Ei’ find all the EEi edges connected to it.
TS5

UP5: Given Ej, link it to all the EEi edges.

AP6: Given Ei’ find all the FEi faces intersecting at it.
T6

UP6: Given Eis link it to all the FEi faces.

AP7: Given Fi’ find all the VFi vertices around it.
T7

UP7: Given F.oo link it to all the VFi vertices.

AP8: Given F., find all the EFi edges around it.
T8

UP8: Given Foy link it to all the EF; edges.

AP9: Given F., find all the FF, faces around it.
T9)

UP9: Given F link it to all the FF, faces.

For convenience, both‘APiand UPi will be referred to as a topo-
logical query Ti’ for i=1, 2, ...9. Hence, there are nine such
queries Tl - T9, corresponding to the time complexity measures for the

nine relations V-->V, V-->E, ... F-=->F,

4. Storage and Time Complexity

The purpose of this section is two-fold: (i) to introduce the
techniques for counting storage cells and for evaluating the time

required for answering Tl - T9, and (ii) to establish the lower bound

12

and the upper bound for both storage and time for all data structures.

It is clear that the eight classes of data structures C9, k =
2, 3,... 9, vary by the number of relations stored. Correspondingly,
they vary by the time required to answer all Tl - T9, The two extreme
9
9

classes Cg and Cy will be studied with the stated dual-purpose in

mind.

4.1 The cg Class

Consider a Cg data structure as shown in Figure 4.l1. Imple-
mented as arrays, the storage for the two relations E-->V and E-->F
require 2E + 2E = 4E cells. This is because each edge E; has two
vertices, FRONT-V‘and REAR-V, as well as two faces, LEFT-F and
RIGHT-F. As there are E such edges, the total storage is 4E

cells.
<Insert Figure 4.1>

The time complexity for the data structure shown in Figure
4.1 can be analyzed as follows. Since the two relations stored
are E-->V and E-->F, the two corresponding queries T4 and T6 can
be answered in constant time C as the arrays allow direct access.
To answer any of the other seven queries, however, a "file inver-
sion" must take place. For example, to answer T2 for V-->E, the
following procedure can be written, where Vi is the given vertex

and <E:> is the set of edges connected to V

] i’

13

Procedure T2 (V,, <Ej>)
E-(—-
i 0
for n <--1, E do
for m <--1, 2 do

if ARRAY(n,m)

Vi then <Ej> {== n + <Ej>

end

if ARRAY(n,m) V. then <Ej> == n + <Ej>

i
end

end procedure T2
Since the outer loop indexed by n is executed E times and
the inner loop is executed 2 times, the time complexity for T2 is
2E or O(E). It is not difficult to construct similar procedures
and arrive at the summary given in Table 4.l.
<Insert Table 4.1>

4.2 The CJ Class

If all nine relations are stored, the time complexity for
all Tl - T9 is clearly constant. The storage cost for all nine

relations are analyzed as follows.

Figure 4.1 shows that the relations E-->V and E-->F cost 2E

each, hence leading to the following lemma.

14

Lemma 4.1 \4 F
s VEi = ; FE1 = 2E
i i

Next, consider the relations V-->E and F-->E. To store a V-->E
relation, all the EV, edges from a vertex V., must be stored; for
all V vertices. Effectively, all the edges are stored exactly

twice. Hence, the storage cost for V-->E is 2E, Similarly, the

storage cost for F-->E is also 2E. This proves the next Lemma.

Lemma 4.2 E F
; EVl = % EFl = 2E
i i

v
The storage cost for relation V-->F is Z FV;. Summed over V,

=

the number of faces per vertex FV, is exactly the same as summed

F
over all F the number of vertices per face VFi, z VFi. Simi-
v F i
larly, Z VVi = Z FFi. To evaluate these two pairs of sums,
i i
the following lemma is needed.
Lemma 4.3 \Y F v F
z FVi = ¥ VF. = 2E, T VV. = I FFi = 2E
i i i i

[Proof] At each vertex Vi, the number of vertices VVi, the
number of edge EV; and the number of faces FV, are identical. By

Lemma 4.2,

15

Similarly,

F F F
Z VF; = } EF; = z FFi = 2E
i i i

As the storage cost for eight of the nine relations are
established, the cost for the last relation E-->E is given by the

following lemma.

Lemma 4.4 E

[Proof] The relation E-->E stores all the EE; edges around
an edge Ei. Since Ei has two vertices Vi and Vj, EEi can be
broken into two groups of edges: EV, ¢+ (EVj - 1). Hence, by

Lemma 4.2,

E \ \s
z EEi = ; EV1 + z EVj -1
i i]
= 2E + 2E - V=4E-YV 0

b}
A summary of the storage cost can now be given as Table 4.2,
<Insert Table 4.2>
Two observations may be made from Table 4.2. First, there
are four pairs of symmetric relations about E-->E. Second, all

the relations cost 2E xcept E-->E which costs (4E - V).

16

As the two extreme classes Cg and Cg have been analyzed, the

lower and the upper bounds for storage and time for all nine

classes of data structures may be stated without proof.

Theorem 4.1 For all eight classes of data structures, the

lower bound for storage is 4E and the upper bound is (20E - V).

Theorem 4.2 For all eight classes of data structure, the lower

bound for time is 9C and the upper bound is (8E + 2C) when all

pine queries Tl1-T9 are interogated.
5. Reducing Combinatorial Complexity

To effectively analyze the storage and time complexities of
each of the CE data structure designs, where k = 2, 3,...9,
two techniques are employed. They are reduction and equivalence.
The results in this section provide the basis for reducing Cg to
Cﬁ, where 9 > m and k > n. (As demonstrated in the following
section, CZ is reduced to C% which in turn is reduced to Cé by
invoking the results from this section.) The Cg combinations can

be further grouped into equivalence classes via symmetry hence

yielding a manageable number of designs to evaluate.

Observe that some of the relations involve a variable number
of cells for storage. The relation V-->E, for example, requires
EV, cells, where EV, is the number of edges per vertex V;. In

the best case, EVi = 3 for an object with trihedral vertices.

17

In the worst case, EV, = E/2 for an n-sided pyramid where the
apex has E/2 edges. Designed for the worst case, the data struc-
ture for a variable relation is expected to be sparse. By con-
trast, there are relations that involve a constant number of
cells for storage. E-->V, for example, involves exactly two
vertices for each edge, 1i.e., VEi = 2 for both the best and the

worst case. Based on this observation, the following lemma

establishes the criterion for minimum storage.

Lemma 5.1 Store the relation X-->Y, if the number of cells required

is constant for the best and the worst cases.

As there are two relations to which Lemma 5.1 applies, the

following theorem permits a reduction in combinatorial complexity.

Theorem 5.1 0f the Cﬁ possible designs, only Ci_z are storage

efficient designs, for k > 2.

(Proof] By Lemma 5.1, only E-->V and E-->F are constant relations.
For k > 2, storing these two relations reduces the number of choices

from 9 to 7 and k to (k - 2). 0

The consequence of Theorem 5.1 is that, for any design Cg, the
two relations E-=>V and E-->F must necessarily be a part of the data

structure.

Consider the addition of a relation at a fixed cost of 2E and the

gain in time for answering Tl - T9. As illustrated in Figure 5.1(a),

18

the addition of F-->E to a Cg design costs 2E in storage but gains a
two-fold advantage in answering not only TS but also T5. As shown in
Figure 5.1(b), Tg can be answered indirectly through Ty, Ty and Tg.
Compare this with the addition of a self-loop relation Ts. The data
structure as shown in Figure 5.1(c) has an additional cost of 2E but
does not have an additional gain in query time other than for the
relation stored. This example prompts a lemma for the type of rela-
tions not to store.

<Insert Figure 5.1>
Lemma 5.2 Avoid storing relations of the type X-->X,

As there are three relations of the type prescribed by Lemma

5.2, V-=>V, E-->E, and F-->F, Theorem 5.2 follows immediately.

Theorem 5.2 0f the Cz possible designs, only Cﬁ_z are time

efficient designs, for 2 < k £ 6.

[Proof] A reduction of Cg to Cz_z comes from Theorem 5.l. By Lemma
5.2, there are three self-loop relations among the seven not to choose
from. Hence, Ci_z is reduced to Cﬁ_z. However, if k > 6, one of the

self-loop relations must be used. Hemce 2 < k < 6. 0

Though Lemma 5.2 urges the avoidance of relations of the
type X-->X, at least one of the three self-loop relations, V-->V,
E-->E, or F-->F, must be used if k > 6. In other words, in a Cg

design, for example, two of the three X-->X type relations must

19

be stored. It is clear from Table 4.2 as to which one of the

three not to store.

Lemma 5.3 Avoid storing E-->E.
6. Examples

Though it would be useful to examine all eight classes of
data structures Ca, k =2, 3, ... 9, two classes are illustrated
in this section reflecting the techniques discussed in the

preceeding two sections. They are: CZ and C3.
6.1 The Optimal Cz Data Structure

As there are four relations among nine to be stored, there
can be CZ or 126 possibilities. However, by Lemma 5.1, E-->V and
E-->F must be stored. By Theorem 5.2, the choice is reduced to
C% or 21 possibilities. The intermediate result is illustrated
in Figure 6.1(a). By Lemma 5.2, relations of the type V-->V, E-=>E,
and F-->F should be avoided. This reduces the available choices
from seven to four. These four choices are shown as dashed
lines in Figure 6.1(b). The six designs, as obtained from Cg are
shown in Figures 6.1(cl) through (c6). By symmetry, designs in
Figure 6.1(c2) and (c5) are equivalent. Similarly, designs in
Figure 6.1(c3) and (cé) are equivalent. Dropping the equivalent

ones, there are only four to compare. They are shown in Figures

6.1(cl),(c2),(c3), and (chb).

20

<Insert Figure 6.1>

The storage for the four designs are summarized in Table

6.1.
<Insert Table 6.1>

The time for processing Tl - T9, as summarized in Table 6.2,
however, is not entirely the same for the four designs. Design

cl isclearly the fastest in the entirecz class.

<Insert Table 6.2>
6.2 The Optimal Cg Data Structure

As there are seven relations among nine to be chosen, there can
be C? or 36 possibilities. However, four of the seven are already
determined by the solution to the Cz problem. This leaves five to
choose from or Cg. They are V-->V, V-->F, E-->E, F-->V, and F-->F.
By Lemma 5.3, E-->E is not to be chosen as k =7 < 9. Hence, the

possibilities are deduced to Cg as shown in Figure 6.2.

<Insert Figure 6.2>

By symmetry, Figures 6.2 (cl) and (c2) are equivalent.
Again, by symmetry, Figures 6.2(c3) and (c4) are equivalent.

Thus, there are only two designs to compare =-- (cl) and (c3).

21

Using 8E for CZ as the base, the storage increase for (cl)

due to the relations V-->V, V-=->F, and F-->V costs an additional
2E + 2E + 2E. The storage increase for (c3) due to V-->V, F-->V,
and F-->F, costs an addition of 6E also. Consequently, the

designs in Figure 6.2 have identical storage costs of 14E.

The time complexities as summarized in Table 6.3 shows no

significant differences either.

<Insert Table 6.3>

A comparison of CZ and C? is now in order. By symmetry, EF

is of the same order as EV. The time complexity for Cz is,
therefore, 4EV + 5C, while that of C? is EV + 8C. Ignoring the
constant access time C, C? is approximately four times faster

than CZ while doubling the storage cost.

<Insert Table 6.4>
7. Summary and Conclusion

It is established in this paper that the lower bound for storing
a three-dimensional object is 4E and the upper bound is (20E - V),
where E is'the total number of edges and V the total number of
vertices. As the response of a data structure can be measured by the
low level topological queries for accessing and updating, the lower

bound is constant time while the upper bound is linear time.

22

Between the lower bound and the upper bound there are over
five hundred possible designs arising from the eight combina-
torial classes CE, k=2,3, ... 9, where k is the number of
relations stored in a data structure. By observing symmetry and
the relationship between time and storage; it is shown that the

combinatorial complexity of a data structure design problem can

be reduced drastically. Two examples, one for reducing CZ to Cg,
the other for reducing C? to C§, are used to demonstrate the
9

techniques. An incidental surprise is that by going from Cy to
CZ, the storage doubles. But, the response time drops from E,
the total number of edges, to EV, the number of edges per vertex.
The gain in time is, in general, more than double. The same

phenomenon is again illustrated by going from CZ to Cg.

It should be noted that no a priori distribution is placed on the
utility of Tl - T9., If such a distribution is available, the techni-
ques shown in this paper can be applied to obtain a constant time data

Sstructure.

23

Acknovledgement

The author acknowledges IBM, Data Systems Division, Kingston, New
York and the Air Force Office of Scientific Research for their
support, S. Baksh and K. Nguyen, University of Michigan, for

their analysis of CZ Cg and Prof. T. Kumii, University of Tokyo,

for encouragement.

24

10.

References
J. L. Bentley, "A Case Study in Applied Algorithm Design", IEEE

Computer, Vol. 17, No. 2, February 1984, pp.75-88.

M. Gardner, "Aha! Gotcha: Paradoxes to Puzzle and Delight", W. H.

Freeman and Co., San Francisco, 1982.

A. V. Aho, J. E. Hopcroft and J. D. Ullman, The Design and

Analysis of Computer Algorithms, Addison-Wesley, Reading

Massachusetts, 1974.

M. R. Garey and D. S. Johnson, Computers and Intractability: A

Guide to the Theory of NP-Completeness, W. H. Freeman and

Co., San Francisco, 1979.
T. C. Woo and J. D. Wolter, "A Constant Expected Time, Linear
Storage Data Structure for Representing 3D Objects", to

appear in IEEE Trans. on Systems Man and Cybernetics,

— =

Vol. 14, No. 3, 1984.

I. C. Braid, "The Synthesis of Solids Bounded by Many Faces",
Comm. ACM, Vol 18, No. 4, April 1975, pp.209-216.

H. B. Voelcker and A. A. G. Requicha, "Geometric Modelling of
Mechanical Parts and Processes", IEEE Computer, Vol 10, No.
12, December 1977, pp.48-57.

B. Wordenweber, "Automatic Mesh Generation of 2 and 3 Dimension
Curvilinear Manifolds", University of Cambridge, Computer
Laboratory, Tech. Report No. 18, November 1981.

T. C. Woo and T. Thomasma, "An Algorithm for Generating Solid

Elements in Objects with Holes", Computers and Structures,

Vol 18, No. 2, 1984, pp.333-342.
R. B. Tilove, "Extending Solid Modeling Systems for Mechanical

Design and Kimematic Simulation", IEEE Computer Graphics and

25

11.

12.

13.

14,

15.

l6.

17.

18.

19.

Applications, Vol. 3, No. 3, May 1983, pp.9-19.
S. D. Roth, "RAy Casting for Modelling Solids", Computer Graphics
and Image Processing, Vol. 18, 1982, pp.109-144,

A. R. Grayer, "The Automatic Production of Machined Components
Starting from a Stored Geometric Description", in Advances in

Computer—-Aided Manufacture (D. McPherson, ed.), North-Holland

Publishing Company, 1977, pp.137-152.

T. C. Woo, "Computer Aided Recognition of Volumetric Designs", in

Advances in Computer-Aided Manufacture (D. McPherson, ed.),
North-Holland Publishing Co., 1977, pp.121-136.
T. Lozano-Perez, "Spatial Planning:. A Configuration Space

Apprcach", IEEE Trans. Computers, Vol C-32, No. 2, February

1983, pp.108-120.
M. A. Wesley, T. Lozano-Perez, L. T. Lieberman, M. A. Lavin, and
D. D. Grossman, "A Geometric Modelling System for Automated

Mechanical Assembly"”, IBM Journal of Research and

Development, Vol. 24. No. l, January 1980, pp. 64-74.

A. A. G. Requicha, "Representations for Rigid Solids: Theory,
Methods and Systems", ACM Computing Survevs, Vol. 12, No. &,
December 1980, pp.437-464.

D. Meagher, "Geometric Modeling Using Octree Enmcoding", Computer

Graphics and Image Processing, Vol 19, 1982, pp.129-147.

A. A. G. Requicha and H. B. Voelcker, "Comstructive Solid
Geometry", University of Rochester, Production Automation
Project, Tech. Memo 25, November 1977.

I. C. Braid, "Six Systems for Shape Design and Representation”,

University of Cambridge, CAD Group Document No. 87, May 1975.

26

20.

21.

22,

23.

24,

B. G. Baumgart, "Winged-edge Polyhedron Representation", Stanford

University, Computer Science Department, Report No. CS-320,
October 1972,

K. Weiler, "Adjacency Relationships in Boundary Graph Based
Solid Models", General Electric Corp. Research and

Development, Schenectady, New York, June 15, 1983.

P. Hanrahan, "An Introduction to Relatiomal Topology", New York
Institute of Technology, Computer Graphics Laboratory,

October 1983.

A. Baer, C. Eastman, and M. Henrion, "Geometric Modelling: A

Survey", Computer-Aided Design, Vol. II, No. 5, September

1979, pp.253-272.
I. C. Braid, "On Storing and Changing Shape Information",

Computer Graphics, Vol. 12, No. 3, August 1978, pp.252-256.

27

,//'\\

— O

(a) Nine and three entities

72\

(b) Winged-edge data structure

Figure 2.1 Schema for Boundary Data Structures

28

\Y F
(a)
E\
V @------- F
(b)
E\ E
\' \‘F VA F
(¢) (d)

Figure 2.2 Indirect and Reverse Relations

29

V
v F
FRONT-V REAR-V LEFT-F RIGHT-F
EDGEl
EDGE,
EDGEg

Figure 4.1 A Cg Data Structure Design and Implementation

30

Figure 5.1 Additional time efficiency from fixed storage cost

3l

7\

(cl)

/ N\

(cé&)

/N

(a)

N\

(c5)

Figure 6.1 CZ Data Structures

32

s

(c3)

/N

(cb)

33

where C: constant time

E: time linear in E, in the worst case

Table 4.1 Time Complexity for Cg Data Structure

34

RELATION

SUMMATION I VV,

STORAGE

V==>V

v

2E
Table 4.2

V-->E V=->F E-->V E-->E E-->F F-->V
v v E E E F

T EV; L FV; I VE; £ EE; X FE; & VF;
2E 2E 2E 4E-V 2E 2E

Storage Complexity of the Nine Relations

35

F-->E F-->F

2E 2E

cl

c3

cb

V=-=->V V-->E V-=>F E->V E-<->E

2E 2E 2E
* t 3
¥ * *
* *

¥ x

Table 6.1 Storage for Cz

36

E-->F F-->V PF-->E F-=->F

2E 2E 2E
* *
*

X 3

* *

Data Structures

TOTAL

8E

8E

8E

8E

cl

Cc2

C3

Cé6

T3 T4
EV C

C C
ZV C

C C
Table 6.2

Time for CZ Data Structures

37

VF

E

2EV + 2EF + 5C
3E + EV + 5C
E + 2EV + VF + 5C

SE + 4C

cl

c3

Table 6.3 Time for Cg Data Structures

38

STORAGE TIME
8E 4EV + 5C

16E EV + 8C

a (@]
~Nw o

Tables 6.4 Comparison of Cz and Cg Data Structures

39

