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Accuracy assessment methods are necessary for functional data used in simulation-based 

design optimization to ensure model and optimal solution validity.  Although many error 

metrics exist and perform well for one-dimensional (1D) applications, the suitability of such 

metrics for higher dimensional functional data, such as two-dimensional (2D) performance 

maps, have been largely unexplored.  This paper examines the extension of the 1D accuracy 

assessment method AVASIM to 2D applications, in support of decomposition-based 

multidisciplinary design optimization (MDO) coordination strategies that require 

measurement of the consistency of functional data exchanged among subproblems through 

error metrics.  Specifically, AVASIM is used as a consistency measure in the coordination 

strategy of analytical target cascading that requires functional data consisting of 1D torque 

curves and 2D power loss maps from motors to be exchanged among subproblems in electric 

vehicle design optimization.  Results indicate that a generalized AVASIM formulation is an 

effective consistency measure for accuracy and consistency in a computationally efficient 

manner. 

I. Introduction 

any engineering applications utilize computer simulations to model the physical characteristics of new 

products and systems.  Engineers must typically validate these models against some physical, experimental 

data to ensure that the simulations are capturing the behavior of the system accurately.  Among the quantities 

required for validation are functional data, and their accuracy is usually assessed using some error metric, such as 

mean-square error (MSE) or root-mean-square error (RMSE).  Most of these error metrics have been developed for 

one-dimensional (1D) functional data and perform well for many applications.  However, the performance and 

suitability of these metrics is largely unexplored for higher dimensional functional data, such as the two-dimensional 

(2D) performance maps used for engines, motors, and pumps.  Inability to assess effectively the accuracy of such 

representations can lead to erroneous predictions of system performance and poor design decisions.  The accuracy 

assessment problem for higher dimensional functional data is not limited to the validation of simulation models 

against physical, experimental data; it may also occur in the validation of functional data approximations against 

previously validated functional data from high-fidelity simulations.  One particular area of interest in this latter case 

is multidisciplinary design optimization (MDO) coordination strategies, such as analytical target cascading (ATC).  

Effective error metrics are necessary to assess the discrepancy between coupled quantities, including functional data, 

which are derived from two different sources to facilitate MDO convergence.  It is therefore necessary that a suitable 

error metric be implemented to help engineers select physically realizable optimal designs. 

 The application domain that motivates the present paper is electric vehicle (EV) powertrain design using ATC.  

Specifically, approximations of 1D motor torque curves and 2D power loss maps generated by the system level 

optimization problem must be matched to their high-fidelity versions generated by the subsystem level optimization 

problem to facilitate ATC convergence.  Section II provides a brief background on various 1D error metrics and 

identifies AVASIM
1
 as a suitable candidate for extension to 2D problems.  Section III describes AVASIM in detail, 

including the adjustments necessary for 2D problems, and demonstrates the algorithm’s effectiveness in assessing 

functional data approximation error offline (i.e., not during optimization).  ATC is then reviewed in Section IV 

along with its problem formulation for EV powertrain design.  Section V describes the results for implementations 
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using RMSE and AVASIM as measures of consistency between functional data.  Finally, Section VI offers 

conclusions regarding the usefulness of this method and implications for other possible metrics. 

II. Background 

The literature on the accuracy assessment of 1D functional data through error metrics is vast.  Sarin provides a 

comprehensive list and description of these methods, along with key error measures such as magnitude, phase, and 

shape
2
.  Because the current application deals with the validation of functional data approximations against 

functional data from high-fidelity simulations, the phase error measure is not as significant.  Instead, error metrics 

that are robust and primarily address magnitude and shape error measures are considered here.  Vector norms, for 

example, form the basis of many error metrics, such as MSE and RMSE, and are relatively simple to use
2
.  Average 

residuals and their standard deviations are also straightforward in their implementation, but have the disadvantage of 

cancellation for comparisons containing positive and negative residuals
2
.  The coefficient of correlation and 0

th
-2

nd
 

order relative difference of moments are slightly more advanced than vector norms and, in the absence of significant 

phase error, possess effective measures of magnitude error
2
.  Sprague and Geers’ error metric

3-5
 and the similar 

Russell’s error metric
6-7

 possess a measure that specifically addresses magnitude error; however, neither of these 

metrics can address shape error.  Conversely, the normalized integrated square error
8
 does possess measures of 

magnitude and shape error, but cannot account for the shape error in the overall metric.  Dynamic time warping
9-13

 

and the error assessment of response time histories metric, also known as EARTH
2
, are advanced methods that 

effectively measure the magnitude and shape errors, but have the disadvantage of extensive computational time as 

they both require the solution of a dynamic programming problem.  Although any of the aforementioned techniques 

can be selected in an initial experimentation of accuracy assessment for 2D functional data, it is preferable to start 

with the simplest meaningful approach to gain some early understanding.  Of particular interest are error metrics that 

systematically, objectively and efficiently provide a clear indication of local and global functional data accuracy 

with respect to preset thresholds
14

.  With these in mind, the metric selected for an initial study in this work is the 

Accuracy and Validity Algorithm for SIMulation, or AVASIM
1
. 

III. Accuracy and Validity Algorithm for Simulation 

AVASIM
1
 is an accuracy assessment tool that characterizes the local and global error between baseline and 

approximation functional data through l1-norms and residual sums.  Using these measures, error indices are 

constructed such that nonnegative values denote valid functional data approximations with accuracy levels between 

0 and 1, and all negative values generally denote invalid functional data approximations.  Validity is defined by 

functional data approximations that lie within some predetermined threshold value; therefore, a value of 0 indicates 

that a functional data approximation is at the threshold and valid, whereas a value of 1 indicates that a functional 

data approximation is completely accurate. 

A. Algorithm 

The algorithm begins by selecting points of interest, known as target points
14

, from the baseline functional data.  

These target points are used to calculate the local error index between the baseline and approximation functional 

data through an l1-norm indirectly.  In addition, a percentage error tolerance toli must be assigned to each target 

point based on its desired accuracy level.  The local error index between the baseline and approximation functional 

data for a single target point is therefore 

 

                
ii

ii

ilocal
toly

yy
E

ˆ
1,


                (1) 

 

where yi and ŷi denote target point values from the baseline and approximation functional data, respectively.  

Observe that the above formulation degrades when yi ≤  0 as this would either lead to division by zero or index 

values greater than 1.  On a practical level, the division-by-zero issue may be resolved by setting yi = , where  is a 

small, positive number.  The index value issue can be alleviated by simply taking the absolute value of the 

denominator in Eq. (1).  With these problems addressed, an overall measure of the local error can be found by 

averaging Elocal,i for all np target points: 
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In the next phase, it is necessary to calculate the residual sum between the baseline and approximation functional 

data
14

.  This value is used in conjunction with another residual sum between the baseline functional data and some 

threshold functional data to compute the global error index.  The first residual sum is given by 

 

               

X

app dxxyxyRS
0

)(ˆ)(                (3) 

 

where y(x) and ŷ(x) represent the complete baseline and approximation functional data respectively and X is the 

domain over which the functional data are defined.  Similarly, the second residual sum is given by 

 

           )()(      ,)()(
0

bxayxydxxyxyRS thresh

X

threshthresh              (4) 

 

where ythresh(x) represents the complete threshold functional data.  It is this residual sum that sets a maximum 

acceptable value for the global error.  Note that the amplitude threshold coefficient a and the phase threshold 

coefficient b help set this value based on toli: 

 

               base

iii xtolbtola min     ),min(1               (5) 

 

With this definition, the global error index between the baseline and approximation functional data is given by 

 

              
thresh

app
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RS

RS
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The combined error index Ecomb is found by simply calculating the arithmetic mean of the results of Eqs. (2) and (6).  

Typically, Ecomb is used to gain a sense not only of the overall error between the functional data but also of whether 

an approximation is even valid with respect to the preset tolerances.  Such a condition is referred to as a liberal 

validity criterion
14

 as it only requires Ecomb to be nonnegative for valid curve approximations.  Conversely, if it is 

required that Elocal and Eglobal (and hence Ecomb) be nonnegative, then this condition is known as a conservative 

validity criterion
14

. 

 Based on Eqs. (1)-(6), it is proposed that AVASIM be extended to assess the accuracy of 2D functional data by 

simply modifying the residual sums with double integration.  Let z(x,y) and ẑ(x,y) represent the baseline and 

approximation functional data, respectively.  Then the residual sum between the baseline and approximation 

functional data is 

 

               
D

app dxdyyxzyxzRS ),(ˆ),(               (7) 

 

where D is the domain over which the functional data are defined.  Likewise, the residual sum between the baseline 

and threshold functional data is 

 

         ),(),(      ,),(),( cybxazyxzdxdyyxzyxzRS thresh

D

threshthresh           (8) 

 

where a is still the amplitude threshold coefficient and b and c are phase threshold coefficients for x and y 

respectively.  Note that b and c are determined by: 
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The rest of the algorithm remains the same, including the meaning of the validity criteria. 

B. Application: Accuracy Assessment of Motor Performance Curves/Map 

AVASIM was applied to an accuracy assessment problem in which the functional data included maximum and 

minimum torque curves and a power loss map originally produced by a motor simulation model within an EV 

powertrain simulation for automobiles.  Because these functional data were computationally expensive to use 

directly in an MDO coordination strategy, approximations were developed offline to improve optimization 

efficiency.  These approximations were therefore validated against their high-fidelity versions at the expected 

optimal design, with the 1D AVASIM formulation used for the torque curves and the 2D AVASIM formulation 

used for the power loss map.  Since the target points selected in both cases were merely mesh points describing the 

functional data, a uniform tolerance of toli = 0.10 was assigned for all points.  For similar reasons, the phase 

threshold coefficients were set to zero, as in Sohns,
14

 as opposed to the methodology described in Eqs. (5) and (9).  

Additionally, division-by-zero errors were avoided by setting  = 10
-4

 for the torque curves and  = 1 for the power 

loss map based on experience.  Finally, note that the number of target points for the power loss map was not known 

a priori but rather determined by a subroutine that only included points that were within the torque curve boundaries.  

A similar subroutine was used to define numerically the domain of integration D for the power loss map, which is 

also within the torque curve boundaries.  The results from AVASIM are shown in Table 1, and Figs. 1-2 illustrate 

the accuracy of these functional data approximations visually. 

Upon reviewing these results, it is evident that AVASIM reasonably describes the local and global accuracy of 

the functional data approximations.  Specifically, it is seen that the conservative validity criterion is satisfied for all 

approximations and that the combined error indices for the torque curves and power loss map indicate accuracies of 

76.5%, 96.6%, and 58.4%, respectively.  It should be observed that in each case, the global error index is 

significantly higher than the local error index, which is consistent with what is seen visually.  Such behavior is often 

sufficient and in fact desirable for many engineering applications.  Therefore, one can utilize this knowledge and 

modify the AVASIM formulations such that Ecomb is not an arithmetic mean of Elocal and Eglobal, but rather a 

weighted sum, 

 

            globalgloballocallocalcomb EwEwE             (10) 

 

where wlocal and wglobal are nonnegative weights whose sum must always equal 1.  This new formulation is referred to 

as generalized AVASIM because it enables users to determine which accuracy component is more important when 

computing the combined error index.  Such flexibility could have important implications when implementing 

AVASIM in an MDO coordination strategy. 

 

Table 1. AVASIM results for functional data approximations 

 

Index Max-Torque Min-Torque Power Loss 

Elocal 0.588 0.969 0.319 

Eglobal 0.942 0.963 0.849 

Ecomb 0.765 0.966 0.584 

 



 

 

American Institute of Aeronautics and Astronautics 
 

 

5 

0 100 200 300 400 500 600 700 800
-150

-100

-50

0

50

100

150

Motor Speed (rad/s)

M
o
to

r 
T

o
rq

u
e
 (

N
-m

)

 

 

baseline,max

baseline,min

approx,max

approx,min

 
 

Figure 1. Torque curve comparison 
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Figure 2. Power loss map relative error 

IV. Analytical Target Cascading 

ATC
15-16

 is an MDO coordination strategy that is used for large-scale, multilevel design problems in which 

design targets at upper levels are passed, or cascaded, down to lower levels to optimize some local performance 

objective.  However, at the same time, a second objective consisting of a penalty function is minimized with each 

performance objective to ensure that design targets assigned at the upper levels are realizable by subsystem 

responses. 

A. General Problem Formulation 

It is assumed here that the original design problem is multilevel, or has been decomposed into a multilevel 

problem consisting of i levels and j elements.  Because the decomposition is hierarchical, any subproblem linked 

above/below subproblem Pij is known as its parent/child.  Using this terminology, the general ATC subproblem 

formulation for Pij is defined as
15

: 
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        (11) 

 

In the above, xij is the vector of local design variables, tij is the vector of target linking variables passed from the 

element’s parent at level (i - 1), rij is the vector of response linking variables passed to the element’s parent at level 

(i - 1), cij = tij – rij is the vector of (relaxed) consistency constraints between target and response linking variables, fij 

is the local objective function,  is the penalty function, gij is the vector of inequality constraints, hij is the vector of 

equality constraints, N is the number of levels, and M is the total number of elements.  It should be noted that in this 

study, the linking variables in tij and rij only consist of coupling variables and do not included shared variables.  

Additionally, the definition for the relaxed consistency constraints is only applicable for scalar-valued linking 

variables; when these terms consist of functional data, the definition must be modified based on the error metric 

desired for measuring consistency.  For example, in previous work
17-19

, consistency between functional data was 

measured through RMSE as Qrtc
Q

m mijmijlij  


1

2

,,, )(  for the l
th

-component of cij, where Q denotes the number 

of mesh points defining the functional data.  Because consistency in this study will be measured through AVASIM, 

the definition for the relaxed consistency constraints is lcomblij Ec ,, 1 , where Ecomb,l is computed through Eqs. (1)-

(9) with tij,m and rij,m substituted for yi and ŷi as appropriate.  Observe that in both cases, the definition of consistency 

is similar to that of the scalar-valued case; that is, when cij,l = 0, the linking variables match exactly, whereas if cij,l ≠ 

0, there is some discrepancy among the subproblems.  However, using AVASIM enhances the meaning of 

consistency since cij,l = 1 indicates that the functional data are consistent and at the threshold, and cij,l > 1 indicates 
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that the functional data is inconsistent.  Finally, note that for the current coordination strategy, the algorithm 

terminates when ||c
()

 - c
()

||∞ is within some small tolerance, where K denotes the iteration number. 

 Because an augmented-Lagrangian (AL) penalty function was used in this work, the general ATC subproblem 

formulation was modified accordingly
20

: 
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     (12) 

 

Here, the vectors v and w are weights corresponding to the linear and quadratic terms in the AL penalty function, 

respectively.  The subproblems are solved in an inner loop strategy where the weights remain constant.  Upon inner 

loop convergence, termination conditions are evaluated in the outer loop and, if another inner loop execution is 

required, the penalty weights are updated as indicated below: 
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The information flow for the general ATC-AL subproblem is illustrated in Fig. 3. 

 

 
Figure 3. ATC information flow

20
 

B. Problem Formulation for EV Powertrain Design 

The design problem formulation for the EV powertrain consists of a bi-level ATC decomposition.  In particular, 

the top level subproblem optimizes the battery design and location, belt-drive ratios, and motor map selection for 

maximum gasoline-equivalent fuel economy and minimum inconsistency between decision variables coupled with 

the bottom level subproblem.  This problem is also subject to constraints related to packaging, performance, motor 

feasibility, range, power availability, and battery capacity.  The bottom level subproblem, however, optimizes the 

motor design exclusively for minimum inconsistency between decision variables coupled with the top level 

subproblem. 

Using Eq. (12), the top level subproblem P11 (excluding simple bound constraints) is formulated as: 
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Subproblem Pij 
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In the above, g11,1 and g11,2 are battery packaging constraints, g11,3 is a performance (0-60 mph time) constraint, g11,4 

and g11,5 are motor feasibility constraints, g11,6 is a vehicle range constraint, g11,7 is a power availability constraint, 

and g11,8 is a battery capacity constraint.  The vectors comb and pcomb refer to the combined functional data 

approximations of the torque curves and power loss map as well as their combined representation in parameter 

space, respectively.  Finally, note that the superscripts T and R refer to target and response copies of the same 

coupling variable, respectively. 

 Similarly, the bottom level subproblem P22 (excluding simple bound constraints) is formulated as: 
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Table 2 provides definitions for the remaining input/output quantities of the objective and constraint functions for 

both subproblems. 
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Table 2. Definition of input/output quantities of objective/constraint functions 

 

Quantity Definition 

BI Battery electrode thickness scale 

BW Battery cell width scale 

BL Number of cell windings 

xb Battery compartment clearance (m) 

pr Belt drive ratio 

max Maximum motor speed (rad/s) 

mm Motor mass (kg) 

Jr Rotor moment of inertia (kg-m
2
) 

Iy,m Motor pitch inertia (kg-m
2
) 

Iz,m Motor yaw inertia (kg-m
2
) 

ym Motor lateral com location (m) 

mpge Gasoline-equivalent fuel economy (mpg) 

bw Battery width (m) 

bl Battery length (m) 

t60 0-60 mph time (s) 

V Torque violation constraint (N-m) 

V Speed violation constraint (rad/s) 

R Vehicle range (mi) 

PV Power violation constraint (W) 

Cb Battery capacity (A-h) 

ls Motor stack length (m) 

rm Rotor radius (m) 

Rr Rotor resistance () 

nc Number of turns per stator coil 

V. ATC Optimization with Functional Data 

The ATC problem formulation shown in Eqs. (14)-(15) was solved using three different measures of consistency 

for the functional data: RMSE, AVASIM, and generalized AVASIM.  In particular, the RMSE solution was used as 

a baseline case to which all other solutions were compared.  In each case, the design problem was solved using 

NOMADm
Abr07

, which is a derivative-free software optimization package that is based on mesh-adaptive search 

algorithms and was developed in MATLAB
®
 environment.  The default settings for this optimizer were modified for 

the P11 subproblem such that only a Latin hypercube search was performed and only 1,000 function evaluations 

were permitted.  This was necessary to alleviate computational issues associated with memory availability.  

However, for the P22 subproblem, the default settings were sufficient.  In the ATC coordination strategy, the weight 

update parameter was set to  = 2.75, the initial weight vectors for both subproblems were set to v = 0 and w = 1, 

and the tolerance on ||c
()

 - c
()

||∞ for outer loop convergence was set to 10
-2

.  Note that this outer loop convergence 

criterion only applied to the RMSE case; for all other cases, the coordination strategy was repeated until the number 

of ATC iterations performed was the same as the RMSE case.  Such a modification was necessary for an equitable 

comparison of the optimization results.  All computational work was performed on a 3GHz, 4 MB RAM, Intel
®

 

Core
TM

 2 Duo CPU. 

A. RMSE in ATC 

The ATC optimization results using RMSE as a consistency measure for the functional data are shown in Tables 

3-5.  To avoid ill-performance of this measure due to the vast difference in magnitudes between the torque curves 

and power loss maps, the RMSE definition was slightly modified for the power loss maps such that baseline values 

larger than 1 W in magnitude were used to normalize the errors before being squared.  Convergence was achieved 

after 28 ATC iterations with a runtime of approximately 21.3 hours and resulted in a system solution that was 

reasonably consistent between both subproblems.  The active constraints included the bound constraint on max
T
 and 

the battery capacity constraint (g11,8) in the P11 subproblem, which were limited to 755 rad/s and 200 Ah, 

respectively.  Observe that the optimal values of pcomb are not included here as they are too numerous and not 

physically meaningful; however, the optimal motor map that they produce (and as stored in comb) is illustrated in 
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Fig. 4.  The total mass of the vehicle was 1330 kg, with approximately 12% (158 kg) of the mass associated with the 

battery pack.  With such a design, the EV could achieve a gasoline-equivalent fuel economy of 143 mpg, a 0-60 mph 

time of 9.56 s, and a range of 105 miles. 

 

Table 3. Optimal decision vector for P11 subproblem, RMSE solution 

 

BI BW BL xb pr max
T
 mm

T
 Jr

T
 Iy,m

T
 Iz,m

T
 ym

T
 

0.74 1.43 19.75 0.25 3.93 755 148 0.28 4.11 4.41 0.34 

 

Table 4. Optimal decision vector P22 subproblem, RMSE solution 

 

ls rm nc Rr 

0.09 0.12 17.90 0.13 

 

Table 5. Optimal consistency constraint vector/penalty weights, RMSE solution 

 

Consistency Constraint copt vopt wopt 

c,max 0.88 1.43 x 10
23

 7.28 x 10
11

 

c,min 0.91 1.47 x 10
23

 7.28 x 10
11

 

c,pLoss 0.47 7.90 x 10
22

 7.28 x 10
11

 

cmax 0 0 7.28 x 10
11

 

cmm 0.58 9.33 x 10
22

 7.28 x 10
11

 

cJr 0 -3.89 x 10
20

 7.28 x 10
11

 

cIy,m -0.04 -5.76 x 10
21

 7.28 x 10
11

 

cIz,m 0.03 4.81 x 10
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20
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Figure 4. Optimal motor map, RMSE solution 

B. AVASIM in ATC 

Similarly, the ATC optimization results using AVASIM as a consistency measure for the functional data are 

shown in Tables 6-8 and Fig. 5.  As indicated earlier, the coordination strategy was repeated until the number of 

ATC iterations performed was identical to that of the RMSE case.  The runtime for this case was 17.8 hours but 

resulted in a system solution that was inconsistent between the subproblems with respect to the functional data.  

Therefore, the remaining optimization results have not been interpreted as they lack meaning in the absence of 

consistency. 
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Table 6. Optimal decision vector for P11 subproblem, AVASIM solution 

 

BI BW BL xb pr max
T
 mm

T
 Jr

T
 Iy,m

T
 Iz,m

T
 ym

T
 

0.74 1.43 18.15 0.25 3.73 755 148 0.20 2.91 4.81 0.31 

 

Table 7. Optimal decision vector P22 subproblem, AVASIM solution 

 

ls rm nc Rr 

0.13 0.11 18.13 0.05 

 

Table 8. Optimal consistency constraint vector/penalty weights, AVASIM solution 

 

Consistency Constraint copt vopt wopt 

c,max 2.80 4.51 x 10
23

 7.28 x 10
11

 

c,min 0.86 1.39 x 10
23

 7.28 x 10
11

 

c,pLoss 0.59 9.56 x 10
22

 7.28 x 10
11

 

cmax 0 0 7.28 x 10
11

 

cmm 0.41 6.59 x 10
22

 7.28 x 10
11

 

cJr 0 -6.79 x 10
20

 7.28 x 10
11

 

cIy,m -0.16 -2.57 x 10
22

 7.28 x 10
11

 

cIz,m 0.15 2.36 x 10
22

 7.28 x 10
11

 

cym 0.01 1.09 x 10
21

 7.28 x 10
11

 

 

 
 

Fig. 5 Optimal motor map, AVASIM solution 

C. Generalized AVASIM in ATC 

Finally, the ATC optimization results using generalized AVASIM as a consistency measure for the functional 

data are shown in Tables 9-11.  The previous results from the optimization strategy using AVASIM appeared to 

indicate that the global accuracy of the functional data was vital for achieving consistency; therefore, for generalized 

AVASIM the weights were set to wlocal = 1/3 and wglobal = 2/3, respectively.  As indicated earlier, the coordination 

strategy was repeated until the number of ATC iterations performed was identical to that of the RMSE case.  The 

runtime for this case was approximately 18.3 hours and resulted in a system solution that was reasonably consistent 

between both subproblems.  In the P11 subproblem, the active constraints included the bound constraint on max
T
, the 

performance (0-60 mph time) constraint (g11,3), and the battery capacity constraint (g11,8), which were limited to 755 
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rad/s, 10 s, and 200 Ah, respectively.  The only activity in the P22 subproblem was the bound constraint on Rr, which 

was limited to 0.20 .  The optimal motor map produced by pcomb is illustrated in Fig. 6.  The total mass of the 

vehicle was 1330 kg, with approximately 12% (158 kg) of the mass associated with the battery pack.  With such a 

design, the EV could achieve a gasoline-equivalent fuel economy of 149 mpg and a range of 109 miles. 

 

Table 9. Optimal decision vector for P11 subproblem, generalized AVASIM solution 

 

BI BW BL xb pr max
T
 mm

T
 Jr

T
 Iy,m

T
 Iz,m

T
 ym

T
 

0.74 1.43 19.75 0.25 3.73 755 148 0.28 4.11 4.41 0.34 

 

Table 10. Optimal decision vector P22 subproblem, generalized AVASIM solution 

 

ls rm nc Rr 

0.10 0.12 17.65 0.20 

 

Table 11. Optimal consistency constraint vector/penalty weights, generalized AVASIM solution 

 

Consistency Constraint copt vopt wopt 

c,max 0.11 1.74 x 10
22

 7.28 x 10
11

 

c,min 0.05 8.27 x 10
21

 7.28 x 10
11

 

c,pLoss 0.36 5.88 x 10
22

 7.28 x 10
11

 

cmax 0 0 7.28 x 10
11

 

cmm 0 -5.09 x 10
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 7.28 x 10
11

 

cJr 0 3.01 x 10
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cIy,m 0 -1.06 x 10
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cIz,m 0 1.80 x 10
18

 7.28 x 10
11

 

cym 0 4.04 x 10
18

 7.28 x 10
11

 

 

 
 

Fig. 6 Optimal motor map, generalized AVASIM solution 

D. Summary of Results 

Initial comparisons among the ATC solutions seem to indicate that the RMSE consistency measure 

outperformed the AVASIM consistency measure in terms of accuracy, while the generalized AVASIM consistency 

measure outperformed the RMSE consistency measure in terms of accuracy and efficiency.  Indeed, the magnitude 

of the consistency constraint values for all coupling variables (with the exception of the functional data, since 

different consistency measures were used) in the RMSE case were generally smaller than those in the AVASIM 

case, and the optimal motor map appeared to be more accurate in the former case as well.  However, the magnitude 
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of the consistency constraint values for the same coupling variables were smaller in the generalized AVASIM case 

than those in the RMSE case, and the optimal motor map also appeared to be more accurate in the former case.  

Moreover, the optimization runtime for the generalized AVASIM case was significantly faster than that of the 

RMSE case.  These results alone could imply that the generalized AVASIM consistency measure is superior in this 

study.  Nevertheless, to alleviate any ambiguity, all ATC solutions were subsequently compared to the solution of 

the corresponding all-in-one (AiO) MDO problem.  Specifically, l2-norms were used to assess the error between the 

optimal design vectors of the AiO and ATC solutions, and the percent differences between their associated optima 

were also calculated.  It was found that the error in the optimizers for the RMSE, AVASIM, and generalized 

AVASIM cases were 0.576, 1.74, and 0.333, respectively, and that the percent differences in their associated optima 

were -9.2%, 8.5%, and -5.3%, respectively.  Therefore, these secondary results along with the original observations 

strongly indicate that the generalized AVASIM consistency measure is superior in this study. 

VI. Conclusions and Future Work 

Based on the results in Sections III and V, it is evident that AVASIM can be an effective accuracy assessment 

tool for both 1D and 2D functional data used in simulation-based design.  In both sections, AVASIM was able to 

provide a clear indication of the accuracy of the functional data with respect to preset error thresholds using 

relatively simple error measures.  Such definitive success indicates the possibility of AVASIM being applicable to 

more general n-dimensional functional data.  The nominal AVASIM formulation, which assigns equal weight to 

both local and global accuracy, was reasonably effective in offline (i.e., not during optimization) accuracy 

assessment as this was not an iterative procedure over a multitude of possible designs.  However, the generalized 

AVASIM formulation, which enables variable weighting of local and global accuracy according to the problem 

application, was much more effective during optimization as it interacted with the consistency constraint definitions 

to provide an optimal solution that was more accurate than the existing RMSE consistency measure.  Unlike the 

latter measure, the generalized AVASIM consistency measure can provide meaningful information regarding the 

consistency of functional data in an MDO coordination strategy.  For example, in Table 11, the generalized 

AVASIM metric indicates that the consistencies of the maximum/minimum torque curves and the power loss map 

between the subproblems are (1 – 0.11) x 100% = 89%, (1 – 0.05) x 100% = 95%, and (1 – 0.36) x 100% = 64%, 

respectively.  The RMSE values in Table 5 for the same functional data are incapable of providing such information.  

Finally, as an additional benefit, implementing the generalized AVASIM consistency measure resulted in a faster 

ATC solution time. 

Despite the success of the generalized AVASIM metric in the particular problem presented here, several aspects 

should be investigated in future work.  We should determine if a systematic approach can be devised to assign 

values to wlocal and wglobal.  This clearly had a significant impact on the accuracy of the ATC solution, and it is 

unknown whether a different weighting could further improve the optimization strategy.  While it was sufficient in 

this study to rely on extensive experience with the model and design problem to set values for these weights, such an 

approach may not be appropriate or efficient in more general problem applications.  Further, we should determine 

the precise reason for the faster convergence times using generalized AVASIM compared to RMSE.  This behavior 

could be more than problem-specific and could yield significant computational savings when using MDO 

coordination strategies such as ATC.  Finally, we should  investigate other error metrics and determine their ability 

to support MDO coordination strategies through the accuracy assessment of 1D and 2D functional data.  Following 

further studies, it may turn out that the generalized AVASIM formulation may not always be the most suitable 

metric for all applications.  However, the present work is a first effort to explore the capabilities of any functional 

data error metric within an MDO coordination strategy. 
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