THE UNIVERSITY OF MICHIGAN
COMPUTING RESEARCH LABORATORY

MINIMIZATION OF INTERPIROCESSOR
COMMUNICATION FOR P..RALILEL
COMPUTATIONS ON AN
SIMD MULTICOMPUTER

Willlam Sai-fong Wu

CRL-TR-24-84

MARCH 1984

Room 1079, East Engineering Bullding
Ann Arbor, Michigan 48109

USA

Tel: (313) 763-8000

MINIMIZATION OF INTERPROCESSOR COMMUNICATION
FOR PARALLEL COMPUTATIONS
ON AN SIMD MULTICOMPUTER

by
William Sai-fong Wu

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
(Electrical Engineering)
in The University of Michigan
1984

Doctoral Committee:

Professor Keki B. Irani, Chairman
Professor Donald A. Calahan
Assistant Professor Janice M. Jenkins
Professor Norman R. Scott

Professor Alfred C-T Wu

ABSTRACT

MINIMIZATION OF INTERPROCESSOR COMMUNICATION

FOR PARALLEL COMPUTATIONS ON AN SIMD MULTICOMPUTER

by

William Sai-fong Wu

Chairman : Keki B. Irani

Interprocessor communication is an important aspect of parallel processing. Studies
have shown that data communication can be a major cause of performance degradation of a
parallel algorithm. This thesis is concerned with minimization of delay due to interprocessor
data communication during the execution of a parallel algorithm on an SIMD multicomputer
interconnected with any multistage interconnection network from a class of functionally

equivalent networks.

The interprocessor communication cost minimization problem for the omega network in
the equivalent class are presented. For the class of important permutations with which this
thesis is concerned, a representation scheme is developed. This class of permutations includes
the class of bit-permute-complement studied often in the literature. Based on the representa-
tion scheme and the omega network, algorithms are developed that determine, for a given
parallel procedure, the mapping and remapping of data into physical memories so that the
communication cost is minimized. Algorithms are also developed that determ ne, for every
arithmetic expréssion of a given procedure, the alignment of operands for every binary opera-
tion so that the communication cost is minimized. For example, the communication costs of
a lower triangular matrix inversion program and a fast Fourier transform program are minim-
ized using both approaches. For each of the approaches, a saving of one-third of the original

communication cost is achieved for the matrix inversion program while a saving of three-fifths

is achieved for the fast Fourier transform program. The algorithms developed are proved to
be applicable for any SIMD multicomputer interconnected with any network from the

equivalent class.

TABLE OF CONTE NTS

DEDICATION .ottt tseeat et e sres e e ebe s snseenn e sssae st s s sanes ii

ACKNOWLEDGEMENTScctioiiiiiiiimtciinen et scaesaassesseseesesneseessesssnessesees il

LIST OF FIGURESc.cooiiiiiiiiitic ittt sae e se s s v sae st e e senaes vi

LIST OF TABLES ..ottt sttt st e e s e s e seae st aenaesraesre e vii
CHAPTER

1. INTRODUCGTION .ottt cer et s 1

1.1 Motivation and ObJectivesccccoevieiiiieiiiicceee et 2

1.2 The Communication Cost Minimization Problemc..c.cooniineinnniin. 6

1.3 Review of Previous Worksoccooimiciiiiniiiincrree e 14

1.4 Outline of THeSiSc.ccovviiriiiiiieeeniee ettt e e e st s e e 17

2. THE OMEGA NETWORK AND THE ALGORITHM ENVIRONMENT 18

2.1 The Omega Network ettt ree et e e ee et e ettt et et e st aeaenbbe e eenbaneesnnnn 19
2.2 A Method for Finding Data Mapping Functionsccccccovviveenineineinennnen, 23
2.2.1 Data Mapping for PSP and BRPccocoovvvvviiiiie e, 25
2.2.2 A Data Mapping for BRP and PSP on Omega Network 28

2.2.3 Applications for Other Networksccccccoevmvvnvivivinnnirinenennen. 35

2.3 A Larger Class of Permutationsccccecivuuemmeirveeiereerrecciieeeseeeeeeeeeeeenes 36
3. NON-STATIC DATA MAPPING ..coorviiiiiicieerctesecicreetr e eevne e 42
3.1 Log'ical Transfers and Data Mapping Functionscccceeevveeievineveccenneenn, 45
3.2 Characterization of Optimum SeqUencescccccvereeeeerevieceieinnee e 49
3.3 Non-Static Data Mapping Algorithmsccccccoviivivnviiviieeecee 56
I3 D 611 111, L. SO OSSO UUURRU PRSPPI 6

iv

3.4.1 Lower Triangular Matrix Inversioncccoeevveevvveirveevecnnnennnns 65

3.4.2 Fast Fourier Transformc.cccconieviiniennninnencnneeneeieneeenenes 76

4. DATA ALIGNMENT ..ottt sresen e sen e e ses 84
4.1 Logical Transfers and Alignment Functionscccccevieeiviieeeceeeriecennnns 85

4.2 Characterization of Optimum Sequencesccocceirreimisrrisinninncrciinenns 91

4.3 Data Alignment AIZonthmscccovviiiieiiiieiiiiireeercce e srcerre e e nenes 106

4.4 EXAMPIES ..ooviiiiiiiicce ettt es e s s e eesrs e ae s sar e es s enenne 116

5. APPLICATIONS FOR OTHER NETWORKScccoooiiiiis e 117
5.1 Data Mapping AIZOTIthMS ...oocormreiiircr e cerereeene cverreeereerenees 120

5.2 Data Alignment AIgOTtRMScccviiiiiiiiiieir e e 124

6. SUMMARY AND CONCLUSIONS ..ot e e sanenaes 129
APPENDIX L.ttt et sae st s e e e e e s s n s anes 132
BIBLIOGRAPHY ..ottt sttt s st sass s e s sanesmessane s e senssenssnne 136

LIST OF FIGURES

FIGURE
1.1 Model of an SIMD multicomputerccovveiiiviiiieniviemrrcree et ee e

1.2 Logical and physical data transfers

..

1.3 An expression tree for B(s + 1) - C{i - 3)#D(i + 1)

2.1 A 23x23 omega network

2.2 A single stage for a 23X 2% omega DEtWOrkcoooooveeeeeeeeereeeeeereeeereeeeeeeens

3.1 Example for recursive transformation

...

3.2 Expression trees of a parallel program

...

3.3 Relationship between V, A, D and L

3.4 Relationship between V and its submatrices

3.5 Relationship between A/ s and C

...

3.6 Forming the off-diagonal terms of A/ s

..

3.7 Forming all the product terms of A;'D; and A3'D,

3.8 Adding product terms to form elements of A3'Dg and Aj'Ds

3.9 Forming all the product terms of Aj'DsAg! and A3'DoA3!

& 10 Adding product terms to form elements of A3'DyAj3! and A;'D:AG!

3.11 Forming the product terms of V3!'V3

..

3.12 Forming intermediate sums of product terms

3.13 Forming the elements of V5!V

3.14 Forming all the product terms of V3'V;3Vi!

sessesseeirsseretvetsecetateas ot ass sasransnane

3.15 Forming intermediate sum of product terms

...

3.16 Forming the elements of H = V3!V V!

vi

FIGURE

3.17

3.18

3.19

3.20

4.1

4.2

43

44

4.5

4.6

5.1

Signal flow graph of a 16 points FFT

..

Expression trees for computing A, (stage 1)

..

Expression trees for computing Ay and A3 (stage 2 & 3) .occovvrvreinccenenenne,
Expression trees for computing Ay (stage 4)cccocceeveeeeecne ceereeeereeeeeneaeaaans
Logical transfers and alignment functionccccoovivirnirerivneeniiieenverreeeesennns
Logical transfers and alignment functions for temporary vanables
Subtree of a full expression tree

...

Relationship between k-tree, j-stree and kj-stree

A full eXPression tTeecceieiieeiieiirieirriieistieeeie et eseaee e e s e s e eenes
Expression trees of a parallel program for data alignment

.............................

A 28% 2% indirect biDary D-CUDEococoeiioiieieeenrveceeiee e s

vil

77

80

81

82

86

89

90

LIST OF TABLES

TABLE
I Example Permutations in BPCccccoovminiiniiiiicrinnciee s
II Logical Transfers and Date Mapping Functions for 16 Points FFT

III Experiments on the Heuristic Algorithmccccovviivvniniinniinniiieis

vili

CHAPTER 1

INTRODUCTION

Continuing advances in VLSI technology have resulted in low cost computing capabili-
ties that make multicomputer systems more attractive as a practical way to increase effective
computing power without inordinate increase in cost. Multicomputer systems consisting of
more than 500 processors have been made feasible and proposed (LuBa80, Schw80]. However,
unless parallel algorithms that use these multicomputer systems effectively are found, the sys-

tems will not be cost effective|Ager77].

Until a few years ago, computer scientists were primarily concerned with the computing
aspects of parallel processing. Communication aspects of the processing usually receive little
attention. The communication aspects are becoming at least as important as the computing
aspects, if not more, as more and more proposed or built interconnection networks for the
processing elements are not capable of realizing at all or realizing efficiently some of the com-
munication patterns. Gentleman [Gent78] shows that communication time can be greater
than the computation time that is based on data dependencies alone. He shows that consider-
ing data dependencies alone, the execution time for computing the matrix product of two
NX N matrices is O(logN), but the communication delays limit the total execution time to
O(N) on a mesh connected multicomputer. Possible tradeoffs between computation and com-
munication are demonstrated through parallel algorithms developed for Boolean matrix multi-

N2
log N

plication [AgLi78]. The parallel algorithms developed are found 10 execute in O() and

N3

O(log N) ti i —_—
(log N) time using N and log Nlog Iog N

processors. The tradcoffs show that computatior

and communication should be taken into consideration in mappiig algor;thms onto multicom-
puter systems. Indeed, hy properly arranging the data onto a ci cularly «onnected network of
N processors, [IrCh80] shows that the complexity of the Jacobi algorithr: for a NX N matrix
can be reduced from O(N?) to O(N). This thesis investigates the problem of mapping paral-
lel algorithms efficiently onto a multicomputer system interconnected with any multistage

interconnection network from a class of functionally equivalent networks.

The structure of the multicomputer system that this roposal is based on is an SIMD
(Single Data Multiple Data Stream [Flyn72]) computer as shown in figure 1.1. It consists of a
central processor with its own private memory, N = 2" processing elements each with its own
private memory, and an interconnection network that provides data paths among the process-
ing elements (PEs). Data communication between PEs is performed by executing routing
instructions. Given a data communication pattern, depending on the interconnection network,
one or more routing instructions for the network may be needed to realize the communication
pattern. The total execution time of a parallel algorithm thus consists of the computation
time and the communication time. This thesis is concerned with efficient execution of an
arbitrarily given parallel algorithm on a multicomputer system through minimization of the

communication delays of the algorithm.

1.1. Motivation and Objectives

The execution of a parallel algorithm can be considered to proceed in a sequence of
alternating computation and communication stages. During a computation stage, active pro-
cessors perform transformations on available data, generating new results. During the com-
munication stage, one or more data are transferred between processors in preparation for the

next computation stage.

I/OI

I/0 1/0
Main Main
P
Proces- Memory

sor

|

> PE, N >
———p
— —P>
M0
PE ¢
> 1 "Intercon—
«———» nection
A > Ml Network
u
| |
[]
»]
. .
|]
n
n
— PE - P
N-1
P
—Pps
MN-—l

Figure 1.1 Model of an SIMD multicomputer.

As Chen [Chen81] has pointed out, while the processing speed of a computation stage
can readily be determined from the capability of the processing elements, the processing speed
of a communication stage depends on the organization of the entire system, and thus is much
more complicated. The communication process is dependent on many factors, including the
interconnection network, the storage scheme for the data and the data transfer functions per-

formed. For instance, consider a parallel assignment statement (PAS).
A(#) < D(+2) + A() #(B(i) - Q4)), 0<i< N-L
It consists of the following cycles :

1.Computation stage :
(i) — A(i) #(B(2) - C{3)) (T is a temporary vector)
Communication stage :

align T(i) and D(i+2)

2.Computation stage :

A(3) — D(i+2) + T(3)

Clearly, alignment of vectors D and T can be achieved in different ways, each causing a
different communication delay (number of routing steps). For example, we can move Dto T
or move T to D. The way the vectors are stored also affects the data transfer function.
Communication delay of a data transfer function may again vary, depending on the type of
network used. Thus, for a given algorithm and a given machine, a careful study of the rela-
tionship among the computational structure, the communication requirements and the

machine structure is necessary for minimizing the total communication cost [Ager77].

At the hardware level, a cross-point array interconnection network is obviously tae best
choice for minimizing the communication costs. Hcwever, as N increases, its cost-

effectiveness decreases rapidly and becomes impractical[luck78]. It is also possible to design

an interconnection network that matches the communication requirement of a given algo-
rithm. However, it is often the case that it is too costly or its usefulness is limited to only

specific problems.

The requirements of cost-effectiveness along with high performance have led to propo-
sals of many blocking multistage interconnection networks |[Park80, WuFe78, WuFe79,

Prad79]. Such network of size N (N input X N output) consists of log N stages each

comprising _1{:/ elementary 2 input X 2 output, two-state switches. Each stage is preceded or
followed by a fixed wiring pattern that connects it to the adjacent stage or the outside. The
number of admissible permutations on such network is \/TV_N, which is a small fraction of N'!
possible permutations for N>8. However, researchers [Lawr75Peas77| have demonstrated
that many important permutations of parallel algorithms can be realized in one pass through
some of these networks. In this thesis, we will be concerned with a class of networks that are
functionally equivalent to the omega network. We will denote this class of networks by T’

and will define it in chapter 5.

Once, a good interconnection network is chosen, other means must be sought to improve
the communication delays of paralle]l algorithms. Now, the need of data communication arises
when the operands of some binary operations are not aligned. It is thus clear that communi-
cation cost is affected by the manner in which data ar. stored in the memories. This has led
to the development of software techniques [IrCh82, K uSt77, Kuhn79, Kuhn80] to properly
distribute the data over memories to reduce communication costs. Kung & Stevenson
[KuSt77], Kuhn [Kuhn80|, Bohkari [Bohk81] and Irani & Chen [IrCh82] have demonstrated
that to improve the performance of parallel algorithms, storing the data properiy is sometimes
a more flexible tool for providing better solutions than harlware, whose capability is often
limited by cost and compleﬁity, However, most of their works are limitec to multicomputer
systems with single stage interconnection networks of limited capabilities, for example, the

mesh connected [KuSt77], the perfect shuffle connected [Kuhn80| and the circularly connected

multicomputer systems|IrCh82].

The global objective of this thesis is thus to develop methodologies for minimizing inter-
processor communication delays in parallel computations on an SIMD multicomputer inter-
connected with a blocking multistage interconnection network in I'. It embodies the following

general objectives:

1. Characterization of a network in T.

2. Characterization of the class of communication patterns with which we will be

concerned.

3. Development of methodologies that will analyze an arbitrarily given algorithm
and obtain an optimal or near optimal solution to the interprocessor communication

minimization problem for an SIMD multicomputer interconnected with the network.

4. Demonstration of how the methods developed can be used for any multistage in-

terconnection network in I.

The communication problem with which this thesis is concerned is first formulated in

[IrCh82| and is defined formally in the following section.

1.2. The Communication Cost Minimization Problem

The communication cost of a parallel algorithm is dependent on the algorithm and the
multicomputer system onto which it is to be mapped. Characterization of the communication

cost minimization problem hence involves specifications of parallel algorithms, inte connec-

tion networks, and the relationship between the two. The notion of data transfer at the logi-

cal and the physical level is illustrated.

Specification of Parallel Algorithms

Let m denote the logical memory and assume that the parallel algorithm uses 2" = N

logical memories, mg,my,my, . .. ,mpry. Also assume that the vectors :n the algorithm a e of
size N and their elements are indexed from 0 to N-1, and that the sth element of a vector, for

example, B, i.e., B(i), is stored in logical memory m,.

The communication requirement of a parallel algorithm is specified by : sequence of &
logical data transfers, P;, 0 < j < k-1. Let {0,1,...,N~1},, denote the index set of the logical
memory, then a logical transfer (or data transfer at the algorithm level), P, for a particular
data is a partial function mapping the index set {0,1,...,N-1},, into itself. That is, P; sends
data from memories m, to mp; (i) for all i to which P; assigns values. For instance, consider
the expression u{s - 1)X t{¢ + 1). Since u(i - 1) and i + 1) are not stored in the same logical
memory. logical transfers are needed to align the two vector operands before multiplication
can be executed. We can move either u to v or v to u. Suppose v is to be moved to u for
alignment. That is, transfer operation is applied to variable v 01ly, so that after the opera-
tion, the desired computation can be carried out at u. The logical transfer P; for vector v

may then be written as a permutation,

0 1 2...N—;]
Pi={N2 N10 ... NF

This transfer P; is, at the logical level, a uniform shift of distance -2, i.e., P; (3) = (i -
2) mod N. However, Pj is not unique. A logical transfer for vector u with shift distance +2,
or a logical transfer for v with shift distance -1, and one for u with shift distance 41 can also

be used to align the operands.

The notion of where the operands shall be aligned can be formalized as follows. Con-
sider the expression u(P,(i)) X v(P;!(})), instead of aligning u with v or v with u, we can

align them according to a bijection mapping {0,1,...,N-1},, onto {0,1,..,N-1},,. By this, we

mean that if wis the result vector of the binary operation on u and v, and A, is the bijection,
then the binary operation for u and v is performed in processor A, (i), and the result is stored
in memory my_ (), 0 < ¢ £ N-1. The logical transfers for vectors u and v, in this case, are
Pyy = AyP, and P, = A,P,, respectively. For instance, consider the binary operation u(s -
1)X ¢ + 1) again. If A, = identity function, then Pyy(s) =1 + 1 mod (N) = P, and
Py(i) =i-1mod (N) =P, If Ay(i) =h + imod(N), then Pyu(i) =i+ 1 + h mod (N)
and Pyy(i) =1i-1+ h mod (N) Herceforth, such bijections, A,'s will be called alignment
functions. If temporary vector variables w; is to be aligned to w;, the logical transfer is given

by A,,,JA,,’,".

Specification of Interconnection Networks

Let M denote the physical memory with N memory modules, My, M;, . .. ,Mp_;, which
are connected by an interconnection network. The network is defined by a set of admissible
network functions, @ = {Q0,Q1, - - - ,Qk}, each element of the set being a bijection on the
index set { 0,1,2,...,N-1 };r When a routing instruction associated with an admissible net-
work function @), is executed, data is sent from data memory modules A, to MQ! (i) for all the
”active” memories AM; through direct data paths of the network. In other words, each admissi-
ble network function designates a transfer that can be physically realized in one routing step

(one pass through the network).

Let P be an arbitrary partial function on the the index set { 0,1,2,...,N-1 }4 and that i
specifies a transfer of some data from M; to Mp (,. Zero or more routing instructions will b
needed to realize P, i.e. zero or more passes through the network before the data can reach
the destination memories. Hence, we can associate with each interconnection network, a dis-

tance function D on a set of partial functions such that

{minimum number of routing steps to reglize P, if P can be realized.
D(P) = 00 if P cannot be realized.

Clearly, if P is an identity function, no transfer is necessary. Therefore, D{P) =0. If P
is an element of the set of admissible network functions, @, of a network, then D(P) = 1 with

respect to the network. If D(P) =1 for a network, then we define P as an admissible permu-

tation of the network.

Mapping Data onto Memories

Consider a parallel algorithm using N logical memories that is to be executed on a
machine with N PEs and an interconnection network with a distance function D. To execute

the algorithm, we map the "logical” memories, m, onto the "physical” memories, M. A data

mapping function for a data variable v is a bijection F, mapping { 0,1,...,N-1 },, onto

{0,1,..,N-1}ps , ie., the ith component of v in m; is stored in memory module

Mp 0 < i < N-1.

Consider two vectors u and v, let F, and F, be their corresponding (ata mapping func-
tions. Suppose u and v have to be aligned for certain operation, for example,
u(P(i)) X o(P;}(i)). One way to align the two vector operands is to nove u to v so that
after the operation the desired computation can be carried out at v. Let %, = P;'P, be the
function describing the logical transfer (permutation) of moving v to v. .it the logical level,
element u(F,!(i)) is moved from Mp1(; to Mp Fa(i) At the physical level, however, the data
movement is from M; to M PuoFal) The actual permutation to be realized by the network
is then given by F,P,,F!, and the communication cost is thus given by D(F,Pu,,F;l). Figure
1.2 illustrates the notions of logical transfer, physical transfer, and data mapping function.
Identity functions are usually the first choice for data mapping functions. However, if the
data mapping functions F,, and F, are both identity functions, the network transformation to
be realized becomes P,, = transfer at the algorithm or logical level, which may not be real-
izable in one routing step. Hence, alternate data mapping functions for u or v or both may

h:ve to be used to make F,P,,F,! admissible.

10

¥
A 4
o
o
]
|
—
E

-1
Fu physical level Fy
-7 logical 1level
4
m_ -1 . N m -1,.
F, (1) b 7 Puyyty (1)

uv

Figure 1.2 Logical and physical data transfers

Having spccified the algorithm, the network and the relationship between data transfer
and data mapping functions, we shall now formulate the interprocessor communication

minimization problem.

The Minimization Problem

For any binary operation, the way operands are aligned determines the log cal transfer
functions for the two operaxids. Instead of aligning variable u wi h v or v with u or a binary
operation involving v and u (as was the case in the previous section), we can perform the
binary operation in processor A,(:) and store the result in memory ma (0 <1< N-1
There is no loss of generality il the resulting vector is cailed w{Ay (s)). In other words, the
data mapping function F,, is an identity function. The total communication cost for the
binary operation is then D(Pu,,ﬂl)+D(PWF;1), where the logical transfers P,, and P,, are

AgPy and A P, respectively.

11

The above result can be generalized to a parallel expression, S, with variables
v;,t%, . ..,% Let E be an expression tree for S. For example, for B(i + 1) - C{i -

3)*D(i + 1), E is as shown in figure 1.3.

where w; and wy are the interna
nodes of the tree and the partia resuits.

Figure 1.3 An expression tree for B(i+1)-C{3-3)*D(i+1).

Now, let wg,wy, . . . ,w; be the internal nodes of I£, where each w; represents the partial
result of some binary operation on variables and/or other internal nodes. For a given expres-
sion tree E, which specifies the order of computation of S, the alignment of operands for every
operation from which the logical transfer functions can be specified must be determined.

Thus, for a statement S, the communication cost is

)Y D(Po)+)Y D(Pyy).
Yi* variable v, w, : internal nodes
(leaf node) v = parent (v,)
L partial result

(internal node)

= parent(v;)

where parent(z) denotes the parent node of z in E.

12

The above indicates that the total communication cost depends on the data mapping
functions F,s, and the transfer functions P,,',,j’s and P,,,,,j's. The transfer functions in turn
depend on the expression tree E, as well as the alignment of operands. If the operations are

commutative, the tree may not be unique too.

The complete communication cost minimization problem for a parallel algorithm can

hence be stated as follows :

Given a parallel algorithm involving variables with logical i1 dex set {0,1,...,N-1},,, an
interconnection network for physical memories with index set {0,1,...,N-1},, and the distance

function D, determine the following :

1. an expression tree for every parallel assignment statement

in the given algorithm,;

2. alignments of operands for binary operations in every

expression tree in 1; and

3. a data mapping function F for every variable vinvolved

in the parallel statement in 1,

such that the value of the expression

Y D(P,uFy) + ¥ D(Py). 1.1)

. . !]
stalements vy variable Uy - snternal nodes
of the (leaf node) v = parent(v;)
given v partial result
algorsthm (internal node)
wj = parent{ v;)

is minimized.

13

A data mapping is defined to be static if the data mapping function, F,,‘. for each vari-

able, v;, in the algorithm does not change throughout the algorithm.

[Kuhn80] and [IrCh82] have shown that by determining when and how to perform a
remapping during the execution of a parallel algorithm, the new cost, the commurication cost
plus the cost of remapping itself, can be less than the cost of using only static dzta mapping.
For nonstatic mapping, we will determine a data mapping function for each logical transfer of
every vector variable in the algorithm. That is, given a sequence of k logical transfers for v,
we will determine a sequence of data mapping functions, :S", =Fu1, Fya, ..., Fy, where Fy;
is the data mapping function for the ith logical transfer of vector v. The remapping cost for v

is then given by

k
E D(Fu,mﬁ}-)-
=1

For nonstatic mapping, the sum of remapping cost for all the vectors is to be included
into the above communication cost formulation (equation 1.1). Only step 3 of the above cost
minimization problem has to be changed. That is, instead of determining a data mapping

function F, for every variable v, we determine a sequence of data mapping functions

Fy1, Fyg, ..., Fyyfor v

Clearly, the total communication cost is dependent on the alignment functions, the
mapping and remapping functions, and the logical transfer functions. Furthermore, since the
expression tree for a statement may not be unique, the choice of expression trees may affec.
the communication cost. The general communication cost minimization problem is complex
In fact, even the static data mapping problem, where alignment functions ard expression trees
are fixed, can be shown computationally equivalent to the bandwidth reduction problem
[KuSt77,Bokh81] which is NP-complete. Hence, in this thesis, we shall restrict ourselves to a
specific algorithm environment. We shall assume that the expression trees are fixed. This is

often desirable, for example, in problems where computation reordering may cause loss of sig-

14

nificant digits, overflow or underflow, etc.. We shall also assuine that the am:unt of compu-
tations in a parallel program is fixed. For example, if there is a loop in the prograri, the
number of times the loop will be repeated is fixed and known during compile time. Assuming
all alignment functions are identity functions, we will develop algorithms for optimum or
near-optimum nonstatic data mapping functions. Assuming all data mapping functions are
known or fixed, we will also develop algorithms for finding optimum or near-optimum a.lign-

ment functions.

1.3. Review of Previous Works

Data mapping is concerned with the manner 1n which data are stored. Its objective is
to reduce communication costs between processors and processors or processors and memories
during the execution of parallel algorithms. Even thrugh a restricted version of the data

mapping problem called mapping problem was first formulated by K:ing and Stevens n

[KuSt77| and the general communication cost minimization problem was then formulated iy
Irani and Chen {IrCh82],the notion of data mapping functions for special cases can actually e
traced back to earlier literature. For example, in [Lawr75|, [Budn71] and [Swan74], skewed
array storage scheres for conflict-free access to rows, columns, forward and backward diago-
nals and square blocks are described. In [Peas77], data mapping functions for performing FFT
and matrix multiplication efficiently on an indirect binary n-cube microprocessor array ire

described. However, no general technique had been reported.

In formuiating the mapping problem, Kung and Stevenson [KuSt77] model the commun-
ication requirement of a parallel program as a sequence of k logical transfers, P;0<;<#k-1.
The minimization problem is then to find a single mapping function, F, for all the vector

variables in the parallel program such that

15

£-1
Y, D(FP;F!) is minimized.
=0
For Py = Py = - -+ = P = P, they have shown that this type of algorithm (type I)

can always be executed optimally, even on the simplest network, namely, the circularly con-
nected network. Type I algorithm can be executed in at most 4k routing steps on a circularly
connected network. Matrix transposition and polynomial evaluation as described in [Ston71]
are examples of such an algorithm. It is also pointed out in [KuSt77] that the mapping prob-

lem for this type of algorithms corresponds to a graph numbering problem.

For algorithms using different transfers (type II), Kung and Stevenson [KuSt77] pointed
out that the minimization problems become the well known bandwidth or profile reduction
problems encountered in sparse matrix computations. Since no exact solution for the above
general problems can be easily obtained, in [ThKu77] 2nd [KuSt77|, an approximate technique
for the bitonic sort problem (type II algorithm) on a mesh connected n twork is described.
The technique determines an optimum data mapping function for the most expensive transfer.
The aporoach, however, is not desirable. The optimum data mapping function fo-r a particu-
lar transfer may not be optimum for the entire algorithm. It may make the total cost higher
as the optimal data mapping function may be costly for other transfers. Nevertheless, the

routing time is reduced from O(v/n log n) to O(v/n).

In [Bokh81] the mapping problem is shown to be computationally equivalent to the
graph isomorphism problém, and similar to the quadratic assignment problem. Since they are
usually solved approximately by heuristic algorithms, Bokhari [Bokh81| describes a heuristic
algorithm in solving the mapping problem that arises when solving structural problems on the
finite element machine (FEM), an array of processors under development at NASA Langley

Research Center.

In [Kuhn79, Kuhn80] efficient mapping of several numerical algorithms (type II algo-

rithms) on shuffle-exchange network is described. Efficient mapping in his sense, is to make

16

the communication complexity of an algorithm to be equal to or less than the computational
complexity of the algorithm. The notion of nonstatic mapping is introduced to map parallel
algorithms that cannot be efficiently mapped by static mappings. A mapping is defined to be
static if the mapping of data to memory does not change throughout the algorithm. Hence,

instead of minimizing

k-1
Y D(FP;FY),
=0

as in [KuSt77], Kuhn [Kuhkn80] tries to minimize

k-1
Y. D(Fj1 P,
=0

Non-static mapping is shown to be useful for some numerical algorithms consic ered by
Kuhn. However, no systematic method for finding the mapping functions, F;, 0 < j I k-1, is

described.

In [IrCh82], the general problem of communication cost minimization (as described in
section 1.2) is formulated. Based on the cycle structures of an interconnectinn network and

two arbitrarily given permutations, a mapping methodology for the permutations is described.

A heuristic algorithm to obtain an optimal or near-optimal solution for the problem of
mapping a particular class of algorithms onto a circularly connected n=twork is also describe
in [IrCh82]. The only restriction to the algorithms considered is that it consists of uniforn:-
shift type logical transfers only. Their approach consists of the following steps. First, at the
logical level, an optimal sequence L of lcgical transfers is obtained (b.- determining alignment
functions and a computation ordering for each expression tree), assu:1ing that identity map-
ping function is used. Then, based on L, they determine fcr every lata v a data mapping
function F,. Since F, is optimal only with respect to L. and may not be opti nal in a global
sense, z heuristic that makes appropriate adjustments so that the resulting data mapping

functions become optimal or near-optimal is then used. The notion of nonstatic data map-

17

ping is also considered and a method for finding an optimal remapping schedule is developed.

However, it is optimum with respect to a particular L only.

Previous efforts regarding to the interprocessor communicaiion problems have primarily
been concerned with solutions to special cases or on fast heuristics. The most general cases
that have been studied so far are reported in [IrCh82]. However, the study is mainly for a cir-
cularly connected network that is considerably different and less powerful than the class of

multistage interconnection networks that is to be studied here.

1.4. Outline of Thesls

In chapter 2, a network in I', the omega network, on which chapters 3 and 4 are based,
is characterized. Based on the characterization, the class of important permutations that this
thesis assumes is described. The characterization also leads to a method for solving for a data
mapping function for a single vector variable. The method is demonstrated by ﬁnding a data
mapping function that enables bit reversal permutation as well as perfect shuffle permutation
admissible on an omega network. In chapter 3, permutations and data mapping functions are
characterized. Identity alignment functions are assumed and algorithms are developed that
determine, for a given parallel procedure, the mapping and remapping of data into physical
memories so that the total communication cost is minimized. In chapter 4, permutations and
alignment functions are characterized. Identity data mapping functions are assumed and
algorithms are developed that determined, the alignment of operands for every binary opera-
tion of expression trees so that the total communication cost is minimized. In chapter 5, T,
the class of multistage interconnection networks that are functionally equivalent to the omega
neti;ork is defined. The algorithms developed in chapters 3 and 4 are then proved applicable

for any network in I.

CHAPTER 2

THE OMEGA NETWORK AND

THE ALGORITHM ENVIROMENT

In this chapter, the set of admissible network functions, defining the omega network in
I' is described. A representation scheme for a class of communication patteris is developed.
Based on the representation scheme, a general method for finding data mapping function for
a class of simple problems is described. The method is demonstrated by finding a data map-
pin3 function for bit reversal permutation (BRP) and perfect shuffle permutation (PSP) so
that they can both be realizable in one pass through an omega network. The data mapping
function is proved to be good for omega network of any size, and thus proving
Chen's|{Chen82] conjecture that for BRP and PSP, such data mapping function can always be

obtained for omega network of any size.

The class of permutations that the method can apply to is limited by the representation
scheme. It includes one of the five families of "Frequently Used Bijections” collected in
[Lenf78] only. However, it will be shown that the representation scheme can be extended to
represent a larger class of permutations that we will be designating by A[IrWu82]. This
larger class of permutations is assumed throughout this thesis. By this, we mean that all logi-
cal transfers for the vector variables of parallel algorithms are assumed to be in A. If a paral-
lel algorithm uses other permutations besides logical transfers in A, we shall consider the

minimization problem for vector variables involved in logical transfers in A only.

18

19

2.1. The Omega Network

Since the omega network proposed by Lawrie[Lawr75] has been extensively studied in
the past|[Sieg78,WuFe79], we will give a brief description of the network and then characterize

{1, the set of admissible network functions defining the omega network.

The topology of a 2"X 2" omega network consists of N = 2" input lines, N output lines
and n stages. The network input lines and network output lines are both numbered in binary

notation from 0 to N-1 as shown in figure 2.1.
The stages are also numbered from 0 to n-1, from right to left, as shown in the figure.
Each of these stages consists of a perfect shuffle interconnection of N lines and 12\1 switches.

The switches of each stage are numbered in binary notation from 0 to _Ié\l ~1 as in figure 2.1.

000 000 000 000
001 00 | 100 00 { 010 00 | 001
~
010 /// 001 100 1 010
01 01|10 01 |11 01]o011
100 10 | 9% 10 | 00 10 | 100
101 110 011 101
110 11 | 011 11 | 101 11 | 110
111 111 111 111
Stage 2 Stige 1 v Stage 0

Figure 2.1 A 2% 2 omega network.

For our purpose, a switch is not capable of broadcasting. It may either send its inputs straight

through or interchange the inputs i.e. a switch may operate in one of two modes namely,

"direct” or "crossed”.

The input lines of a stage are called switch input lines and the output lines of a stage
are called switch output lines (figure 2.2). The indexing of all these lines is carried through
the network, assuming all switches operate in the direct mode. That is, if lines (network
input lines or switch input lines) i and j are paired together on a switch on the left, the lines
(network output lines or switch output lines) incident on the right are also indexed as i and
j, with i connected to i and j to j when the switch operates in the direct mode. The switch
output line k of stage i is connected to switch input line k of stage i-1, 1<i<n-1,0<k< N-1.
The network input lines are the same as the switch input lines at stage n-1. The network

output lines are the same as the switch output lines at stage 0.

1 1
00 jm

k)
0l |n

Lk

100

° 1
P 11 | p

Figure 2.2 A single stage for a 2°X 2% omega n :twork.

21

Let { be the index of a switch input line and let it be identified by an n-dimensional vec-

tor (In-1,0n-2, - - . ,h,k), where

‘=2"_ll".1 + 2”-2’”_2+ 2[1 + lo.

At stage i, the switch input lines that differ only in their components ; are paired
together as inputs to a switch, for 0 < i< n-1. Two switch input lines
(Un-1s - < hir, Ly, 0k) and (g, - . - li41,0,051,...,kp) connected to a switch at stage ¢ can
be connected to switch output lines ([, ...,0 1,06, ... 0,k) and
(Upts - - < ShivnsLlcy, - - - ,0,k), respectively, at the output if the switch operates in the
crossed mode. They will be connected to switch output lines (In-y, . . . li+1,1,0q, . . . ,i,k)
and (lp-y, - . - ,4+1,0,00, . - - ,h,k), respectively, at the output if the switch is set to the
direct mode. Since there are n stages, each component /; of all network input lines,
0<i<n-1, is affected at some point and can be changed by setting appropri .te switches to
the exchange mode. Hence, the mapping of a network input line {1 to a network output line
12 can be regarded as an n-step process in which the ith component of the network input line

i1 is changed to the ith component of the network output line [2 at step (or stage) i, for

0< i< nl.

Let z & y be the indices of a network input and a network output,respectively. A per-
mutation, P, is then a one-to-one function mapping z into y for all integers in the range
0<z<2™1 and 0L y< 2™, ie. y=P(z). Let zp12p0 - 2 aad Ypitno " %
denote the binary representations of z & y € {0,1,...,2™ !}, respectively. Then the function

representing the permutation, P, can be described by a set of functions p,0 < i < n-1, where

Y = p,(z,,_l,z,,_ez,...,xo) (21)

22

iIf Pis a mapping that is linear in the components of the index, then we can write

y=Pz

T
where z = [IH, Zp2, Ip3, .-, 10] ,

T
_1! = [yn—lv Yn-2) Un-3: - - - yO] ’
P is a nX n nonsingular binary matrix,

and modulo 2 arithmetic is used.

In what follows, a permutation will be denoted by a capital letter. If a permutation
that is denoted by a capital letter has a nonsingular binary matrix representation, then the
matrix will be denoted by the corresponding capital letter in boldface. Unless otherwise
stated, modulo 2 arithmetic will be used for all matrix operations. We will use L to denote
an arbitrary lower unit triangular matrix and U to denote an arbitrary upper unit triangular
matrix. By unit matrix, we mean a matrix in which all the coefficients on the main diagonal
are ones. The following theorem is due to Parker[Park80] and is based in Pease’s earlier

work[Peas77].

Theorem 2.1

A permutation P is an element of 1, iff for every 3, 0 < i < n-1, y; can be expressed as

vi = 7,0/, (yn-lr Yn25 - - o5 Yol T5-10 24225 - - - 10)'

where f; is a boolean function and @ stands for exclusive-or operation (equivalent to modulo
2 arithmetic).
Proof :

Consider a switch node at stage i of the omega network. This node switches a pair of

lines whose indices differ only in the sth components of their binary representations. The less

significant conponents of the index have not been modified by any switch node at stage
k,k<i. Hence f; maps the less significant components of z, i.e., z;y, . . . ,% and the more sig-

nificant components of y, i.e. yp 1,¥n-2,...,¥i+1, into {0,1}.

The fact that y, must be equal to z;®f; instead of the more general form (g;z,®f;),

reflects the fact that if one input line to a switch node is switched, the other is also switched.

Corollarz 2.1

A permutation P, that is linear in the components of the indices, is in Q iff it can be

expressed in the form

1

Since the inverse of a lower unit triangular matrix is also a lower unit triangular matrix,

for the linear case, ycan be written as :

I
I
e~
c

(K3

Hence, a linear mapping P with permutation matrix P is admissible through a 2"x 2"

omega network iff it can be decomposed into an L and a U such that P = LU.

2.2. A Method for Finding Data Mapping Functions

In what follows, we will limit ourselves to data mapping functions and permutations
that are linear in the components of the indices. That is, we will consider permutations and

data mapping functions that can be represented in nX n nonsingular binary matrix form only.

Consider a data mapping function F, for a vector variable v. The relationship between

logical and physical memory is as follows :

24

z= szL!

where z/, is an n-dimensional vector that is the binary representation of the index of the logi-

cal memories of v,

z is an n-dimensional vector that is the binary representation of the index of the physi-

cal memories, where components of v are respectively stored.

A logical transfer P; for v can be expressed by a matrix, P}, such that

where y, is an n-dimensional vector that is the binary representation of the index of the logi-

cal memories of u, where v will be stored after the permutation.

Assuming identity data mapping function for u,
1=u
where y is an n-dimensional vector that is the binary representation of the indices of the phy-

sical memories, where components ‘of u are respectively stored.

The physical transfer relating the physical memories where v and w are stored is given
by

y=PjF |z

It P,‘[F,,]‘1 is LU decomposable, then with data mapping function, F,, the logical
transfer P; is admissible through an omega network with the data mapping function, F,.
Given k permutations, Pj, 0 < j < £, for a vector v, we will consider, in the next section, the
probl>m of how to find a data mapping function, F,;, i.” there exists one, for P;, 0 < j < k,
such that P,-F;’, 0 < j < k are LU decomposable. The method will be described by finding
a data mapping function, F,, that makes PSP and BRP both admissible to an omega net-

work.

25

2.2.1. Data Mapping for PSP and BRP

Perfect shuffle permutation (PSP) and bit reversal permutation (BRP) are two impor-
tant data communication patterns in many numerical problems, e.g., Fast Fourier Transform.
However, although perfect shuffle interconnection is used in every stage of an omega network,
both PSP and BRP are not omega network admissible. In what follows, it will be shown that
a systematic method can be used to find a data mapping function such that PSP (P,) and
BRP (P;) for vector variable v are simultaneously admissible in one pass throu ;h an omega
network. In fact, a general solution that is good for omega network of any size it found. Thus
proving the conjecture[Chen81] that for permutations BRP and PSP, a data mapping func-
tion can always be obtained for omega network of any size such that BRP and PSP will be

admissible in one pass.

Definition 2.1 :

Let P, be a perfect shuffle permutation on the set {0,1,...,N-1 }, where N = 2" and n is
a positive integer. Let (2,12,.0 - - * 2;%9) be the binary expansion of an element z of the set.

Then the PSP of z is given by

P,(2) = (Za2Za3 " ' * Z9Zp1)-

In other words, P, (z) is obtained by cyclically shifting the binary expansion of z one place to

the left. The corresponding nX n binary matrix P, is

0100...00
0010...00
0001...00
0000...10
0000 01
1000 . 0 0

Definition 2.2 :

Let Py be a bit reversal permutation on the set {0,1,...,N-1 }, where N = 2" and nis a

positive integer. Let (2, 12,0 * * - 2;2) be the binary expansion of an element z of the set.

Then the BRP of z is given by

Py (2) = (221 - * * Za2Zn1).

In other words, P; (z) is obtained by reversing the order of the bits of the binary expansion of

z. The corresponding nX n binary matrix P is

000...01
000...10
000...00
001 .00
010 .00
100 .00

-

Let F be a data mapping function with which both PSP and BRP can be realized in one
pass. Then P,[F|™ and Py[F|" in y = P,[F|™z and y = P[F| ™'z, respectively, are decom-

posable into LU’ s. Let the nX n binary matrix [F|™! be as shown below

[0 61 G2 ... Ga2 Gya]
o 611 B2 . . . G a2 G
G0 G2y G2 ... GBap2 029
8n-30 On-3,1 %132 - - - Gn3n2 On3nl
0n-20 6p-21 Gp-22 - - - O8p2p-2 Op2n1
[0n-10 Gn-1,1 8p12 - - - On1n2 Bnlni

The matrix product P ,[F|™! is then

.

G0 G113 B12 . . . O p2 al,n—l-
©0 o1 @2 . - . Bp2 82,1
30 631 432 . . . G3p2 G394
6n-20 4n-21 Gp22 - - - Gp2n2 Gp2 |
Gp-10 Gn-11 Gn-12 - . . Gpin2 Opl nl
[800 G601 G2 . . . Gn2 Op |

The matrix product Py[F|™ is then

8p10 9n-11 8n-12 - - - On1n2 a1l
8n-20 Gp-21 6n-22 - - . Gn2n2 Op2n|
8p-30 Gn-31 8n32 - - - Gp3n2 Op3n)
Go a1 62 . . . 0p2 0Gn}
G0 41 G2 - . . G p2 O pg
[%0 601 G2 - - .- Gon2 Ogn |

Since P,[F|™ and Py[F]"! are LU decomposable, we will let P,[F|™! and Py[F] be
decomposed into L,U, and LU, respectively. Let |, o Yeig, bij and wy,j, for

0 <4, j < n, be the elements of the matrices L, ,U,, L; and Uy, respectively. Then a system

. . bl . . .
of 2n* equations with 2(nz—n) + n” variables can be set up. For instance, consider 610

n
G810 = (E ly OJulj,O) mOd(2),
=1

n
allo = (Z lb ,,_QJ‘U(, ,‘lo) mod(2)
=1

In this example, we can eliminate a; o immediately by equating the equations. Hence,

n n
(Y lojtejo + Y lbnojusjo) md(2)=0.
=i =1

Solving this set of equations will produce F. Obviously, F does not exist if there is any
contradiction between the equations. In general, for m different communication patterns, we
will have mn® equations with m{ n? - n) + n® variables. There is a limit to the number of dif-
ferent communication patterns that can be made simultaneously admissible. Clearly, the

limit is dependent on the communication patterns required.

2.2.2. A Date Mapping for BRP and PSP on Omega Network

The system of nonlinear equations derived in the last section has been solved for dif-
ferent values of n. Observing the characteristics of the data mapping functions thus
obtained, a general solution that is good for omega network of any size is deduced. For a

2"% 2" omega network, the data mapping function F is determined to be

1 if j=n-1-i mod(n)
fiy = {1 if j=i+1 for —; <i<n-2 (n even) or n_2-1 <i<n-2 (n odd),

0 else

where 0 < 4, 5 < n-1.
As an example, forn =5 F is

(0000 1]
00010
0011 0.
01001
10000

The corresponding mapping expressed in the convention used in [Chen81] is:

(0,18,12,30,4,22,8,26,2,16,14,28,6,20,10,24,1,19,13,31,5,23,9,27,3,17,15,29,7,21,11,25).

The corresponding P [F|™ is

1 if j=n-2-i mod(n)
pij = {1 if j=i for i< ﬂoora[—g.
0 else

Forn =5 P,F|!is

(1001 0
01100
01000
10000
00001

The corresponding L,U, matrix is given by

1 if j=1

iy = {1 if i=n-2-5 for j< floor o,f'-g.
0 else
1 if j=i

uyi; = {1 if j=n-2-1 for i< floor of-g.
0 else

Forn =35, -
10000]
01000

L, = (01100
10010
00001
100 1 0
01100

U, = 00100
00010
00001

P(,[F]'1 is simply equal to L, and hence

Ly=1L,,

Uy=1,

where I is a nX n identity matrix with its diagonal elements equal to 1.

In what follows, we will prove that F is indeed a general solution. With data mapping

function F, BRP and PSP will both be admissible in one pass through an omega network.

Lemma 2.1

Let B be a nXn nonsingular binary matrix and b, , be the element in the pth row and

gth column of B such that,

1 if g=n-1-p mod(n)
bpg = {1 if g=p-1 for ISpS—g -1 (n even) or l_<_p§£;—-1 (n'odd) .

0 else

Then B is the inverse of F.

Proof :

We are going to prove that FB = 1. We will first define :wo matrices, C and D such

that C + D = F. We will then prove that CB + DB =FB = 1.

Let ¢;; and d;; be the elements in the ith row and jth column of C and D, respectively,

and they are defined as below,

{1 if j=n-1-i mod(n)

Ciy 0 else

31

1 if j=1i+1 for—;l <i< n—2(neven)or—’é1 < i< n-2(nodd).

dj = 0 else

Consider CB, the matrix multiplication is equivalent to replacing p in the definition of
bp,q With n-1-i. For g=n-1-p, we will have ¢=1, and for ¢=p-1, we will have ¢g=n-1-2. The

limits, 1, 21 and nl become n-2, —g and 52-1 Let cb, , be the eiement in the ith row

and ¢th column of CB. Then

1 it g=i
chig = 11 ifq=n—i—2for-: 5i$n—2(neven)or-—n—;-l <i< n-2(nodd).
0 else

The matrix multiplication of D and B is again equivalent to

1. replacing p in g¢g=n-1-p (in the definition of B) with i+1, for

<i< n—2(neven)ar'—:-1 <i<n-2(nodd)

-

ol

replacing p in ¢g=p-1 with i+1, for i that satisfies the following two requirements

o

simultaneously :
a.—: < i< n-2(neven) ox’—'%1 <i<n-2(nodd)

b.1$i+1$—;~l(ncven) orl_<_i+1$i21 (nold)

Obviously, the two requirements in 2 cannot be satisfied simultaneously. The element,

db;j, in the ith row and gth column of DB is

1 if g=n-1-2 for-g_<_i_<_n—2(neven)or-";Z--l < i< n2(nodd).

db‘v‘i = 1o else

32

CB + DB = FB = 1. Therefore, B is the inverse of F.

Lemma 2.2

PF!is LU decomposable.

Proof :

Now, matrix C in lemma 2.1 is actually a bit reversal permutation (BRP). Since
B = F!, the matrix product CF! = CB is given ir the previous lemma. If we examine
CB carefully, it can be seen that ¢b;; =0, for all + <_ ;. Furthermore, ¢b;; = 1, for i =,
0 < i < n-1. Therefore, CB is a lower triangular unit matrix. Clearly, P;F ! is LU decom-

posable, and D(PF!) < 1.

L1

Let p,, be the element in the sth row and jth column of the matrix P,. Then,

1 il j=1i+1 for0 < i< n-2
pij = {1 ifj=n-1-imod(n) fori=n-1
0 else

Matrix multiplication of P, and F~! is again equivalent to

1. replacing p in g=n-1-p (in the definition of b, ,) with i+1, for 0 < s+ < n-2
2. replacing p in g=n-1-p with n-1-i, for i=n-1

3. replacing p in ¢=p-1 with i+1, for i that satisfies the following requirements

simultaneously

a.l5i+l§—g—l(neveu)orlsz+l$—"%l (nodd),

The limits 1, —’21—1 and —’3—;—1 now become 0, —; -2 and -’%3 Let pb; 4 be the element in

the ith row and gth column of P,F~!. Then

1 ifg=n-2-1 for0< 1< n2
1 if g=i rorogig-;-l(neven)orogigl;?’(nodd).

Phig = |1 itj=n1 fori=n-1
0 else

Lemma 2.3
P F!is LU decomposable.
Proof :

Let E be a matrix with its element in the ath row and bth column defined as follows.

n n-1

1 ifb=n2-a for—- <a< n—2(nevcn)or—2 <a<n2.

(3]

€ad = 10 else

Now, multiply E by P,Fl. This corresponds to

1. replacing i in ¢ = n-2-i (in the definition of pf; 4) with n-2-a for a that satisfies

the following two requirements simultaneously

2. replacing 1 in the equation ¢ = i with n-2-a for s that satisfies the following re-

quirements simultaneously

34

a.-g__<_05n—2(neven)or%—l_<_a$n—2(nodd)
n n-3
b.0 < n»~2—a£-§—1(neven)or0$n—2-a_<_—§— (nodd)

Since e,; 4 = 0, we do not have to consider pfy 1 a1 at all. Let epy 4 be the element of

EP,F ! in the ith row and jth column. Then

1 if ¢=a for—;SaSn—‘Z(ncven)or—";—l < a< n2(nodd)

epaq = |1 if g=n-2-a for—;SaS_n—'Z(neven)or—n—;—l < a< n2(nodd).

0 else

Now, let I + E = L,;. They form a lower trianguiar unit matrix with its element in the
ath row and bth column defined as follows.
[l if b=a
. n n-1
1 if b=n-2-4a for-:-2 <a< n—2(neven)or—? <8< n2(ncdd).

la,b =
lO else

Clearly, IPF ! =P,F!. Now,LPF! = EPF! +PF ! LetU = EPF! +
P,F!. Then its elements uy are defined as follows.
1 ifdb=ga
. n n-3
1 ifb=n-2-a for0<s< E—2(neven)ar0$ a < w3 {nodd).

0 else

Now. U, is an upper triangular unit matrix. Since L,P F! = U, PF! =L;'U,

Therefore, P,F! is LU decomposable.

1

Theorem 2.2

There always exists a data mapping function for BRP and PSP, so that both will be
admissible to an omega network of any size. One such data mapping function is F whose ele-

ment in the ith row and jth column is given by

1 ifj=n-i1
Lij = {1 ifj=i+1 for-ggi_<_n-2(neven)or-n—;-l <i<n2(nodd).
0 else

Proof :

Based on lemma 2.2 and 2.3, with data mapping function, F, BRP and PSP are admissi-

ble in one pass through an omega network of any size.

L1

2.2.3. Applications for Other Networks

A network, Ny, is functionally equivalent|WuFe79, Prad79] (o the omega network iff

& = R(QR,,

where Q, is the set of admissible network permnutations for [V,

R, and R, are permutations.

Any permutation in @, can be decomposed into three functions, a permutation R, an
adriissible network permutation in 1 and a permutation Ry. If Ry and R, are linear in the
components of the indices, then a permutation, P, that is linear in the components of the
index is in @, if and only if P is decomposable into a R;L and an UR,. Given some permu-

tations that are linear in the components of the indices, a data mapping function for these

permutations on Ny, if there exists one, can be determined by solving the system of nonlinear

equations that can be set up similarly as in section 2.2.1.

2.3. A Larger Class of Permutations

Since once the desired permutations are put into matrix forms, F, if it exists, can be
found systematically with the algorithm described. The applicability of the algorithm is
clearly limited to those cases where a permutation can be expressed as a linear combination of

the components of the index.

The class of communication patterns that can be expressed in a nonsingular binary
matrix form is a small percentage of the N! possible input to output per autations. In fact,
the percentage decreases rapidly as N increases. Fortunately, as Lenfant {Lenf78| pointed
out, “he set of needed permutations is usually small, as compared to the set of N! possible
permutations. He collected Frequently Used Bijections (FUBs) into five families. .By extend-
ing our approach of representing a permutation in a matrix form, the method can now be
used for three families of Lenfant’s FUBs. In fact, this larger class of permutations, which we

designate by A, contains also the class of bit-permute-compicment studied in

[NaSa77,81A,81B]. We now describe AllrWug?2).

Let P:(zp1, Zn2, - - ., 20)=(¥n-1, Yn-2, - . ., o) be any mapping that is linear in the

components of z. Then it can be expressed in binary matrix form as shown below.

[1

80 6,1 %2 %3 .- - G0n2 Conl

G0 611 82 63 - - . G2 Oin
P =

Ga-10 Op-11 Bn-12 %n-13 - - « On-1n2 OGnlnl

where a;, € {0,1}.

37

Let k, 1kpp - - - ko denote the binary representation of k, 0<k<2"-1. Let 0; be a bijec-

tion defined by
ok: (In-l’ In-2) -« - IO)_‘(zﬁ—l) Tn-2r - oy IO)Qk'

where (2,1, Zp-2, . . ., 7))@k denotes bit-per-bit exclusive-or of (k,_j, kyo, ..., k) with

(Zn-1) Zn2s - - - » Z)-

Definition 2.3 :

Let Pgy == 65 P be the left composition of 8; with P. Then A, the set of permutations

with which we will be concerned, is defined by

A = {Pg| 0<k<2™1 }.

L1

Clearly, Pgy cannot be expressed in the matrix form described earlier except when k=0.
However, a 2% 2"! omega network can be partitioned into two 2"X 2" omega network by
not allowing any exchange at the first stage of the network|Smit78,Sieg78|. This is equivalent
to requiring the first row vector of a (n+1)X(n+1) permutation matrix for the network to be

[100...0. The (n+1)X(n+1) matrix below now specifies two permutations, P and Pgy, each

of which passes through one of the two subnetworks of order 2" X 2".

[1 0 o ... © 0)
ka1 @0 @1 . . . Gop2 Gop
kno o0 &1 - - . 8p2 G a4y

w.
il

L kO Op-10 Cp-11 « - - Op-1,n2 Onymy

In other words, I" is admissible through a 2™ % 2"*! omega network iff Pgy and P are
admissible through a 2"X2" omega network. Therefore, we can use a (n+1)X(n+1) non-
singular binary matrix to represent any Pgy (including k =0). In this form, theorem 2.1
states that a permutation Pg; is admissible through a 2"X2" omega network iff its
corresponding (n+1)X(n+1) matrix is decomposable into LU, where the first row of U is

[100..0].

Let F be a (n+1)X(n+1) nonsingular binary matrix. For I.’m'l to specify two commun-
ication patterns that correspond to P and P gy with alternate mappings, so that each com-
munica ion pattern passes through one of the two 2"X 2" subnetworks, the first row of I.’[I:]“1
shall be equal to the row vector [100... 0]. This, in turn, requires that the first row of Fbe

(100 --- 0]. If Fis the data mapping matrix for the data mapping function

F: (Imzn-lyzn-b L ;30)—'(yn,yn—1;yn-2; LI 130)!

then the mapping functions for Pg; and P are

Fl : (lrx"-l!zn—Zl L 130)_'(1:y»-l’yn-2; LR 130) and

FO : (Imzn-hzn—2l s :30)”(0:1/»-1;”»—21 e :IO)r respec“vely'

Henceforth, in this report, a permutation in A will be represented by a (n+1)X(n+1)
binary matrix whose 1st row is [100..0] even when k =0. Furthermore, when we talk
about an upper triangular unit matrix, we are concerned with a (n+1)X(n+1) upper triangu-
lar unit matrix whose first row is [1 0 0...0]. Since every permutation in A is LUL dcompos-
able [Peas77], at most two passes through a 2"X 2" omega n:twork are needed to realize any-
one of them. Furthermore, if the permutation is an identity function, no routing through the
network is necessary. Therefore, if D is the distance function associated with the 2%"x 2"
omega network, then 0<D(P)<2, for all Pin A. Since we are assuming a 2")(2" omega net-
work for the rest of this report, unless otherwise stated, the distance function 2 will be associ-

ated with the 2" X 2" omega network.

39

The cardinality of A can be computed in many ways. Based on the following lemma we

can determine the cardinality of A.

Lemma 2.4 :

n-1 .
There are J] (2" - 2') nonsingular nX n binary matrices.
=0

Proof :

The lemma is to be proved by mathematical induction. A binary matrix is nonsingular
if every row of it is linearly independent of all the other rows in the matrix. There are 2" dif-
ferent combinations of 0's and 1's. Excluding the row of all zeros, there are (2" - 2°) different

TOWS.

In choosing the first row, there are (2" - 2°) choices. There are 2'-1 rows that are
lirearly dependent on the first row. Hence, for the second row, we have (2" - 2!) choices

(excluding the row of all zeros). There are (2" - 20)(2" - 2!) possible combinations of the first

two rows.

” .
Now, assume there are ﬁ(2" - 2') possible combinations of the first /~1 rows. There
=0

are 2711 rows that are linearly dependent on any one of such combinations. Hence, for the
. -1 .
jth rows, we have (2™ - 27°!) choices. There are i:[(2" - 2') possible combinations of the first
=0

n-1 R
jrows. Therefore, there are [] (2" - 2') nonsingular nX n binary matrices.
=0

.

Lemma 2.5 :
n N
The cardinality of A is [(2™*! - 2Y).
=1

Proof :

40

n .
There are J](2™*! - 2) nonsingular (n+1)X(n+1) nonsingular binary matrix. But the
=0
n :
first row of a matrix in A has to be [1,0,....,0]. The cardinality of A is then J] (2" - 2%
=0

n .
divided by (2™*! - 2%). That is, [(2™ - 2').
=1

1

For large N, the cardinality of A is only a small percentage of the possible M permuta-
tions. Nevertheless, many of the permutations encountered in parallel algorithms are in this
class. Table I lists several of the more popular permutations in the class of bit-permute-

complement (BPC).

Table I Example Permutations in BPC

Permutations! Y =(Yn1 Un2 -) = P2)
Matrix Transpose (z_;_l, ey Z0y Ty oo z_g)
Bit Reversal (20, 21, 23y oy Zp1)
Vector Reversal (Zp-1, Zn-2) - 20) (2™-1)
Perfect Shuffle (20, Zn-1, Zp2, - -, 21)
Unshuffle (Zp-2) Zn-3) s %0, Zn-1)
Shuffle Row Major (zp-1, z_g_l, Zp 0, z_;_2, - z_é,, 7)
Bit Shuffle (Zp-1) Zn-3s -+» T15 Zn-2, Tndy -y T)

Further characterization of A in later chapters leads to efficient algorithms for networks
in I', a subset of the set of all networks that are functionally equivalent to the omega net-

work. Nevertheless, the method developed in this chapter demonstrates the general concept

lf = (Zp-1) In-2) -0 30)

41

of data mapping and is indicative of how complex the problem can possibly become if the

multicomputer system has a network that is not in I".

CHAPTER 3

NON-STATIC DATA MAPPING

We shall now develop techniques for determining non-static data mappings for the vec-

tor variables of a given parallel program such that its total communication cost can be

minimized.

We will assume that alignment functions of any expression tree are identity functions.
Furthermore, we will assume that the logical transfers for binary operations on temporary
variables are identity functions. If the logical transfer for a temporary variable is not iden-
tity, then it can be transformed to identity through simple recursive transformat.ons. For
instance, in figure 3.1 -A, logical transfers for aligning vectors a and b to w, are P, and Py,
respectively. Similarly, logical transfers for ¢, d, wy, wy, and wy are P, P4 P, P, and P,
respectively. Through transformations, the logical transfers for w;, w, and w; become P3P,
P3P, and I, respectively ! (figure 3.1 -B). Figure 3.1 -C can be obtained by applying the

transformation again.

For the beginning, we will also work under the restriction that there is no precedence
relationship between expression trees, i.e., leaf variables are not the results of other expression
trees. Earlier assumptions plus this restriction allows us to develop an algorithm that guaran-
tees minimum cost. The algorithm also sets the stage for the development of a heuristic algo-

rithm for a given parallel program where precedence relationship between its expression trees

exists.

1T stands for identity function

42

43

‘UOI}EUII0jSUEIY JAISINIIL 10) ajdwexy

1'¢ 2andiy

44

Under the above constraints, the communication cost function of a parallel program is

given by

y D(P.,’,,,,F,,‘&,,) + Y D(Fy h1Filh)
:;at:hr:unu Uit sariable L7 variable
iven
Zlgorithm A f :;::;' Fv"'h‘ ;:::J::PP‘M
w0 = parent
(v)

where F 4 is the data mapping function for the hth logical transfer of vector variable v,

To minimize the cost function, one therefore, has to determine for each vector v an
ordered sequence of data mapping functions. Since there is no precedence relationship among

expression trees, determination of an optimum sequence of data mapping functions, S, for

any variable, v, does not change any logical transfer for any other variables. Hence, the
minimization problem for a program with j vector variables can be decomposed into j

independent subproblems, each specifying the communication requirements ,f a single vari-

able.

For a vector v, all its communication requirements are specified by a sequence of logical
transfers, Pyt = Py1,Py2, - - * ,Pyt. The method for solving for an optimum sequence of data

mapping functions, Sy = Fy1,Fy2, . .. ,Fy4, for vso that the total communication cost,
k 1 : 1
S D(PysFoh) + Y D(FyaFiiha)
h=1 h=2

is minimized, can be applied to each of the j subproblems. The set of j sequences of data
mapping functions thus obtained is a solution to the minimization problem. Since the algo-
rithm that we will be describing deals with the variable v only, subscript v will be dropped

from F,; and P, from now on.

45

3.1. Logical Transfers and Data Mapping Functions

Characterization of the logical transfers and data mapping functions are needed for
describing the algorithm. The following two basic lemmas can be obtained easily from linear

algebra[Hers64]. Hence, we merely state them here.
Lemma 3.1

The LU decomposition of a nonsingular binary matrix is unique.

Lemma 3.2

The set of all lower triangular unit matrices and the set of all upper triangular unit ma-

trices are groups under matrix multiplication (modulo 2).

1

We will designate the set of all lower triangular unit matrices and the set of all upper
triangular matrices by .Ii and H, respectively. Two matrices, P, and Py, are in the same

coset of R, R =L or R = U, iff P, and P, are in RP; = {R,P, | R, ER}.

Theorem 3.1

Let D(PiFi') < 1. If Pj € LP; then D(P;F;') < 1.

Proof :

Let PF! = LU. Then LPF;! =LU. Therefore, if P; € LP; then P,F;! € LU and

D(RFY) < 1.

1

46

Theorem 3.2

Given Py, if D(PiFi') < 1 and F; € UFy, then D(P,F3!) < 1.

Proof :

It P,Fi' = LU, then PyF{'U = LU. Therefore, if F; = UF;, then P,F{!U;! € LU,

and D(P\F;') € 1.

Theorem 3.3

The set of all data mapping functions Fyy s that makes logical transfer Pj in the

sequence P, realizable in one or zero pass is given by

Farp = {ULPjlL; €L & U; € U}.

The cardinality of Fyyy is 2"2.

Proof :

Let F; = ULP;. Then (P;F;!) = P4(ULP;)! = LU ! is LU decomposable.

Therefore, if F; = ULPy, then F; € F 4.
Let F; € Fou. Then P4F;! = LUy and F; = U3'L;!P,,

Therefore,

Eaa={UrLoPh|Ur€y_&LaEE}'

n2—n !ﬂ2+ﬂ’ 0
Since there are 2 2 Usand2 % L, lEal(hl = 9"

47

The following two lemmas and theorem form the basis for theorem 3.5 that establishes

the worst case communication cost for non-static data mapping.

Lemma 3.3

Given two logical transfers, P, and Py, for vector variable v, there exists a data map-

ping function that makes both logical transfers simultaneously realizable in one pass.

Proof :

Now, every nonsingular binary matrix is LUL decomposable[Peas77]. Let PP3.; =

L,U,L;and let F, = LP;,,. Then D(P;F;!) < 1 and D(Py,F;!) < 1.

1

Lemma 3.4

Every nonsingular binary matrix is ULU decomposable.

Proof:

Let p be the bit reversal permutation matrix. Then pp = I and p = pl. It can be
easily shown that pLp = U, and pUp = L. Now, every nonsingular binary matrix is LUL

decomposable [Peas77]. Consider an arbitrary matrix, P € A. Let pPp = L,U,L; Then
P = pL.ppU,ppLp.
But pL,p, pLyp € U, and pUyp € L.

Therefore, every nonsingular binary matrix is ULU decomposable.

48

Theorem 3.4

Let 3’ = F\,Fy, ... ,F; be a sequence of data mapping functions for v. Let
Fi=Fiyy =+ =Fyp 2< ii+h < k Fi1#F;, and D(PF') <1, i< g < ith.
If the remapping cost D(F;F;|) = 2, then we can always find a F,,, to replace all of the
FyFit1, ... ,Fiyp such that D(P,F;,lw) <1, 1< ¢< H—"l, and the remapping cost is

D(F,,",F;_ll) S L
Proof :

Let the remapping function, FF;}, be decomposable into U,L,U,. Let F,,,, = U;!F,.

Clearly, D(F,,,,,,F”Fll) < 1. Furthermore, based on theorem 3.2, D(P,F,.‘m) <1i< g < i+h

1

Using the results of the above two lemmas and the theorem 3.4, the following theorem

can be proved.

Theorem 3.5

Given k different logical transfers for variable v, the resulting communication cost after
data mapping is given by
3
k-1 < cost §—2 k-1 (k= even),

k-1 < costs3—k2-——1 (k= odd).

Proof:

Case : the lower bound

Since there are k different logical transfers, the total communication cost clearly cannot
be less than k-1.

Case : the upper bound

49

Based on lemma 3.3, for every two permutations, we can always find a data mapping

function that makes both permutations simultaneously realizable in one pass. If k is even,

then we will have at most —g different data mapping functions or —;—l remappings. Based on
theorem 3.4, the remapping cost between any two different consecutive data mapping func-

tions can be less than or equal to one. Therefore, if k is even, the resulting communication

cost is less than k + —;—1 = —Z k-1.

If kis odd, then we will have at most (k:)l) +1 different data mapping functions or

V4

remappings. Therefore, if k is odd, the resulting communication cost is less than or

(k1)
3

equal to k + (—k;—l) .

1

3.2. Characterization of Optimum Sequences

The algorithm that we will be describing shortly, involves »jartial enumeration of possi-
ble partial solutions. Rather than enumerating all sequences to find an optimum sequence, the
algorithm generates possible subsequences of optimum sequences. Conceptually, during its Ath
step, subsequences of length h are formed by appending each suisequence from the 4-1th step
with data mapping functions that belong to Fﬁ’ a set of data m aipping functions that will be

defined later. The subsequences thus formed, are called intermed.ate subsequences. Intermedi-

ate subsequences that can lead to an optimum sequence are saved for the next step, while the
rest are eliminated. The subsequences that are saved fr the h+1th step are called candidate

subsequences. A set of candidate subsequences of leng h 4 is denoted by SEQ4. In “vhat fol-

lows, we will describe rules for eliminating some of the intermediate subsequences from con-
sideration. We will also describe F}, the set of data manping functions for step A of the algo-

rithm.

Some basic notations and definitions for the algorithm are needed.

Notation 3.1 :

A sequence of data mapping functions for variable v is designated by a hat over a capi-
tal letter S. For example, Si = Fy ,F,, . . . ,F}, is a sequence of data mapping functions for
variable v. A subsequence, Si,;, of Siis given by Fy;Faty, - . . ,Fy . If a=1, then .AS‘ia,b is

the prefix of :S'i and is designated by :S'ib. Note : :S'i = :S'ik.

]

Notation 3.2 :

The cost of a subsequence, :S'ia,b of :5';', is denoted by either Da,b(:S’i) or D, b(:gia,b), and is

given by

)) 5 b
Dos(Sias) = Dail(Si) = ¥ D(PaFRY) + Y D(FyiFily).

h=a h=a+1

Notation 3.3 :

Let Sj be a set of subsequences of data mapping functions of length h. Then Min(S}) is

the cost of the minimum cost subsequence in Sj.

]

Definitior 3.1:
A sequence Siis optimum if there does not exist another sequence Sj, such that
Dy (S3) > Dy i(S))-

1

The following theorems determine the conditions under which an intermediate subse-
quence of length A is to be eliminated. We will consider two interme iiate subsequences Sl

and S2j, where S1;7#52; Given a sequence Sl having S1; as its subsequence, we will

51

examine conditions under which we can always find S2 that contains S2; such that
Dy S1) > D, {S2). Since we are seeking an optimum solution only, these are conditions

under which 3‘1;. can be eliminated.

Theorem 3.6

Let .‘5’1;. be the prefix of Sl. Given a subsequence :5‘2;, such that Dl.;,(:S'l;,)-

Dl,h(:sgh) > 2, we can always find 52 containing :5‘2;, such that Dl_k(.g'l) - Dl'k(.AS‘Z) > 0.

Proof :

The communication cost associated with Sl is given by

Dyx(S1) = Dy y(S14) + Dy (S1) + D(Fyy1 1Fih)
Let :S‘L’;, be a subsequence of $2 and .AS‘Z;,H‘L. = .;'lh+1'k. The communication cost associ-

ated with & is then given by
Diy(S2) = Dys(S21) + Dyu(52) + D(Fhy12F3h)
= 01,5(3‘21;) + Dyi(S1) + D(F41,1F32).
Therefore,
Dy(51) - Dy (52) = Dy HSW) - Dy (S + D(Fir1,1Fil) - DFhor1Fhz)
> 2 + D(Fhr1nFiy) - D(Frer1Fia)-

But 0 < D(Fpiy 1FiY), D(Fhe1,1Fik) < 2. Therefore,

D(Fhy11FY) - D(Fhe11Frs) 2 -2, and Dy 4(S1) - Dy 4($2) > 0.
Corollary 3.6.1

The candidate set, SEQ;, can therefore, be partitioned into two disjoint sets, SEQ) and
SEQ), where Siy€ SEQ) iff D (Six) = Min(SEQs) and Siy € SEQ} iff Dy 4(Sin) =

Min(SEQ) + 1.

(]

52

Theorem 3.7

Let S1, be the prefix of s1. Given a subsequence 32;, such that Fj; = Fj, and

Dl’h(.AS'l;,)-DL,,(;‘Z;,) 20, we can always find S2 containing .;‘2;, such that DL,‘(:S‘I)-

Dl,k(&?) 2 0.

Proof :

The communication cost associated with S1 is given by

Dy (S1) = Dy j(S1) + Dpyy f(S1) + D(Fppy 1 Fik).

Let :S‘Z;, be a subsequence of $2 and .AS‘2;,+M = :S‘l;,ﬂ,/,. Then
Dy ((S2) = Dy 4(S2) + Dhr1 (S2) + D(Fity 2Fib)

= Dy W(S2) + Dpy1 (S1) + D(Fhyy FR).

Therefore, D,’k(.AS‘l) - Dl'k(:S‘L’) > 0.

Theorem 3.8

Let .;’lh be the prefix of Sl. Given a subsequence :5'2,, such that F;,llFi,,lg =L,U,,
Fj17#Fho and Dll;,(:S'l;,) - Dll,,(.AS‘2;,) > 1, we can always find) containing 3‘2;, such that

Dy S1) - Dyi(S2) > 0.

Proof :

The communication cost associated with Sl is given by
Di4(S81) = Dyi(SY) + DirtdS) + D(Fhsy 1Fih).
Let 3}‘2;, be a subsequence of 5‘2 and :S‘ZHU; = .AS'I;,H‘k, Then
D1(52) = Dyi(S2) + D1 (52) + D(Frss 2F3)

= Dy l(S2) + Dpyy #(S1) + D(Fpey 1 Fil)-

Therefore,

Dy (S1) - Dy fS2) 2 1 + D(Fhe11FiY) - D(Fher1 Fra)-

If D{Fhy1,1F34)=0, then since D(Fj411F3%) = D(Fy1Fi}) =1, Dl,l:(:gl) . 01,1(:5'2) 2 0.

If D(Fjy1,1FR1) > 0, then since D{Fj.y1F3h) < 2, Dl,h(:‘n) . Dl,l:(:s?)Z 0.

Therefore, if Dlyh(ASl) - Dl,;,(:S‘2) > 0 and Fhvlﬁk is LU decomposable, then Dl'k(:S'l) -

Dy (S2) > 0.

L1

It will be inefficient to generate intermediate subsequences of length A from candidate
subsequences of length A-1 by appending every one of the candidate subsequences with every
permutation in A. Based on the following two theorems, we determine the set of data map-
ping functions, F}, that have to be appended to candidate subsequences in SEQ},y to guaran-
tee an optimum solutions. Let lasty,1 < h <k-1, be a set of data mapping functions such that
Fgis in lasty, iff F,is the last mapping function of a candidate subsequence in SEQ, . Note :
lasty = 0. Let Mapy = lasty 1(\(Fatp-1\JFaup-2lJ Fattr-3), where Fyyp = @ if b is less than
or equal to zero. The first of the following two theorems shows that it is sufficient for Fj to
be equal to &s_t;HU_F_‘aa';,. The second theorem shows that it is sufficient for F} to be equal

to Mappl JFaun & lasthr|JFoun

Theorem 3.9

Let :S'i,,_l be a candidate subsequence in SEQ; | and Fj, be tie last data mapping

function in Sip1. Sip1,Fs ¢ SEQh if Fi£Fhyiand Fy ¢ Fanp,

Proof:

54

Let -;'J'h be formed by appending F), to .;‘ih_l. Then

Dy W(Sik) = Dy p1(Siny) + D(PhFS') + D(FoF3ty).

Let .;'ih be formed by appending F}_, , to -g‘ih-l- Then
Dy W(Sin) = Dy p1(Sin1) + D(PAFRy,)-
Therefore,

Dy W(Sin) - Dy (Sin) = D(PwFa') + D(FaFily) - D(PhF3ly).

Since Fg 5% Fyp,
D(PyF;!) =2,
and

Dy W(S7n) - Dyu(Sis) =2 + D(F4F3y) - D(PAF3L,).

It D(F,Fil1) = 2, then Dy 4(Si4) - Dy 4(Siy) > 2. By theorem 3.6, Sjy cannot be a can-
didate subsequence. If D(F,,F“;,fl',-) =1, then Dly,,(:S'jh) - Dll;,(:S’i;,) 2> 1. By theorem 3.8, :S'j;,

cannot be a candidate subsequence. Therefore, ASj;,¢ SEQ;.

Corollary 3.9.1

ItF, ¢ lastp_1|JFairp then for all .;'th_l € SEQ; 4, :S't;,_,,F, ¢ SEQj. Therefore, it is suf-

ficient for Fj, = _lg_s_t;,_IUE,,a‘;,.
Corollary 3.9.2

If SiESEQ), Fhi¢ Fayp then Fp ;= Fy,y ;.

1

E;, according to theorem 3.9 may still grow larger and larger, with increasing A, until it

equals A. The following theorem shows that that is not the case,.

55

Theorem 3.10

Let :S‘ih_l = .AS‘i;H,F;._&,‘,F;,-g,,‘,F;,_lI,' be a candidate subsequence in SEQj 4. If Fj g

¢ FapJFoun1JFanholJFaltp3 then Sipy, Fpy; ¢ SEQ.

Proof :

If Sij_y is a candidate subsequence, then Si;_,, which is a subsequence of Si;_;, is a can-
didate subsequence. Now, Fh;; ¢ Faypy. By corollary 3.9.2, Fj o = Fj; Similarly,
:S'i,h«,, Si, 4 are candidate subsequences and their last mapping functions, Fj 3, and F}_4 ; are

equal to Fjy ;.

Now, since Fy1; ¢ Faunl JFaup1J FatpoJ Fatipsr D(PFN) =2, b3 < r < h. Let

Siy = Sip.1,Fjr. Then,

A) A
Dy i(Sih) = Dy pa(Sin-g) + Y,

r=h-

= Dy W(Sin-4) + 8.

D(PrFr,i)
3

Based on lemma 3.3 and theorem 3.4, we can always find another intermediate subse-
quence Sjp = Sip4,Fh3 i FhojFh1Fhj such that Fjpg;=Fhoj Fpy5=Fj,
D(P,F’,},-) < 1, -3 < r <h, and the remapping cost D(F;,_;;JF’;,L,.‘) and D(F;,_L,Fﬁgh,') are less

than or equal to one. Therefore, Dl';,(.;'jh) < Dl,h—4(5i,,_1) + 6.
Since Dy 4(Si4) - Dy 4(Sj4) > 2, by theorem 3.6, Siy = Sip1,Fh1; ¢ SEQ .
Corollary 3.10.1

For an optimal solution it is sufficient that, F, = Maps| JFqup

Proof:

Since, if Sip_y, Fp1; € SEQp, then Fyy i € Founl JFauna1{JFatth-2lJFaith-3 and Fj g ; €

FaunJlastyy (corollary 3.9.1), it is sufficient for

Fy = (FagaJlasth) (Fati sl J Fotrh-1lJ Fatp-2' J Fait p-3)
= FaunlJUlsstha\(Fatp-1\J Fatth-2\ JFatp-3))
= Fau s JMapp

1

h
Since, F} C LJ Flyi¢ the set of data mapping functions that the algorithm will be exa-
t=5-3
mining will not grow larger and larger, with increasing A, until it equals A. In fact, it is

bound by 4X|Fyf, where |Foif = 2",

3.3. Non-Static Data Mapping Algorithms

From theorem 3.9, we cai also conclude that if F; is not in Fyy, but in Mapy, then F,
has to be appended only to the candidate subsequence whose last mapping function is equal
to F,. Therefore, instead of adding each data mapping functions in Fgyp UM" to every
subsequence in SEQ} 1, we only have to add each data mapping functions in Fyyj to every
subsequence in SEQ); and add Fj, ; in :S'il,_l to each subsequence :S'i;,_l in SEQ) ;. Hence,
instead of producing at most |SEQp-1| X |Fans UMG_EIJ intermediate subsequences at step b of
the algorithm, we have to produce only at most |SEQ) i|X|Fgensl + |Maps| intermediate

subsequences.

Actually not all the |SEQ4 | X |Fyys| + [Maps| intermediate subsequences have to be
generated and evaluated. We will first define the following notation and then describe the

observations behind such claim.

57

Notation 3.4 :

ﬂ2—ﬂ
The upper triangular unit matrices are U;, 1 < i<2 2 . U; =1 Similarly, the
(n%+n)
lower triangular unit matricesareL;; 1 <i<2 2 . L, =L

1

The following observations can be used in reducing the actual number of intermediate

subsequences that have to be formed.

1. Let C be the ccst of the lowest cost intermediate subsequence of !ength 4 formed
thus far in the partial enumeration algorithm. Let F; € Fj. 1If Mz'n(SEQ}-,_l) +

D(PyFi') > C + 1, then SEQ} 1,F; ¢ SEQ (Theorem 3.6).

2. The lower bounds of the costs of intermediate subsequences formed by appending
a mapping function, Fs € Fj , to subsequences in _._S'EQLL 1 =01, are § =
D(PyF;Y) + Min(%g_,) and | = D(PF,!) + Min(@},_l), respectively. Once an
intermediate subsequence with cost, [; is obtained by appending F, to a subsequence
in SEQ41, we do not have to append F,; to any subsequences in @’»—1 (Theorem
3.7). Furthermore, if such intermediate subsequence has a cost of f, we do not have

to append F, to any subsequences in SEQ?,_IUSEQ},_I (Theorem 3.7).

3. Let F}}_; be the last data mapping function of .;‘jh_l. It FF;}., = U, where F,
€ Faup but F; ¢ UP}, then we have to append U,'Fi to ~A5]'h—1 only. Appending any

other F, € UF; to é‘j;,_l is not necessary, for they will be eliminated (Theorem 3.8).

4. Let Fy;_; be the last data mapping function of .g'jh_l. Let SypLy be the set of all
ULU decompositions of F,'I'j},_l, where F; € F}, but F; ¢ UP,. We have to form in-
termediate subsequence .;'j;,_l,U,F,- iff the ULU decomposition U,L,U; € Syry. Ap-
pending any other UyF; to .;‘J'h_l is not necessary, for they will be eliminated

(Theorem 3.8).

The algorithm described below incorporates the observations made and will produce an

optimum sequence of data mapping functions.
Algorithm I :

MAIN PROGRAM
BEGIN
Let SEQ} = Py. Let S; = Fay - LPy.
Reduced S, according to theorem 3.8.
FOR h =2TO kDO
BEGIN
(n+n)

2

Form Fgy 5. Partition it into 2 equivalence classes.

(n%+n)
They are the cosets UL,Py, 1 < 1< 2 2

C = large_number; /* cost of minimum subsequence of length A */
SEQ}) = SEQ} = Temp = ¢,

(-

/* Form intermediate subsequences, keep them in Cand{1:2 2 | and their

()

corresponding cost in Lmin|[1:2 2 | */

Form_Subsequence (SEQ},, UL, Py, Lmin|], Cand|], C, b, 1);
Include Cand|] into Temp;

Form_Subsequence (SEQ},|, UL, P}, Lmin|, Cand]], C, h, 1);
Include Cand|| into Temp;

{n2+n)
FOR j=2TO2 ? DO

BEGIN

" Form_Subsequence (SEQ} 1, UL;Py, Lminl}, Cand]), C, b,);
Include Cand]] into Temp:

END;

=2
DONE = FALSE;

WHILE (NOT ((min(SEQ},_;) + 1) > C+1) AND NOT DONE DO (observation 1)
BEGIN

59

Form_Subsequence (SEQ)}, |, UL;Py, Lmin]], Cand]}, C, b, 1);
Include Cand|] into Temp;

=7t
(n%+n)
IF(j>2 %)THENDONE = TRUE;
END;

/* Remove some intermediate subsequences and partition the set into two sets */
REDUCE (Temp, SEQS, SEQ}, b);

/* Append subsequence with its last data mapping function if needed */

IF { (Fy - Faus)#9 } AND NOT(Min(SEQ),) + 2 >C+1) THEN (observation 1)
BEGIN

FOR EVERY Siy; € SEQ}, and Fj1 ;€ Fj - Fagp APPEND
Fjy i to Sijy to form Sij.
IF D, 4(Si) = C, THEN
Include it in SEQ
ELSE

IF (Dy 4(Sis) = C+1) AND (it cannot be eliminated by theorem 3.8)) THEN
Include it in SEQ};
END;

/* Append subsequence with its last data mapping function if needed */
IF { (Fj - Faup)7#9 } AND NOT(Min(SEQ},1)+2 > C+1) THEN (observation 1)
BEGIN '
FOR EVERY Siy; € SEQ}, and Fjy ; € Fy - Fays APPEND
Fjyito :S’i,,_l to form :S'i;,.
IF D, 4(Si) = C, THEN

Include it in §_E_Q_2
ELSE
IF (Dlv;,(:S‘ih) = C+1) AND (it cannot be :liminat=d by theorem 3.8 }) THEN
Include it in 25_9},,
END;
ELIMINATE subsequences in §£Q_}, according to theorem 8§;
END;
END.

/* This procedure forms intermediate subsequence if necessary */
PROCEDURE Form_Subsequence (SET, MPS, Lmin||, Cand]], C, b, t)

BEGIN
2

n“-n
Lmin[1:2 2 |=large_number;
WHILE { (NOT every Sj; € SET has been used) AND
n-n
(Lminlj] > Min(SET) + D(P4P3}1Li"), forsome 1 < j < 2 %)} DO (observation 2)
BEGIN
Let §h_1 be a sequence in SET that has not been used.

Let F be the last data mapping of :S';,_l. Let Fy = LPy,.

IF t =0 THEN
BEGIN

IF (Lmin[0]> Min(SET) + D(FoF') THEN
BEGIN

Lmin|0]=Min(SET) + D(F,F*)

Cand|0] = :S';,_l appended with Fj;

C= minimum of C and Lmin[0];
: END;
END;
IF (FoF!) = U; € U THEN (observation 3)
BEGIN
IF (Lmin|j} > Min(SET) + D(P3F5' U;')) THEN (observation 2)
BEGIN
Lmin|j)=Min(SET) + D(PyF3' U}') ;
Ceond]j] = :S‘;,_l appended with U;Fy;

C= minimum of C and Lmin|j);
END;
END
ELSE
BEGIN
IF NOT(Min(SET) + D(P4F')+1 > C+1) THEN (cbservation 1)
BEGIN
”2_"
FORj=1TO2 % DO (observation 3)
BEGIN
FORM Sypu, the set of all ULU decomposition of FoF Y, (observation 4)
FOR every UL, U; € Sy,y DO
BEGIN
IF (Lminlj]>Min(SET) + D(P4F5'U;') + 1 THEN

61

BEGIN
Lmin|j] = Min(SET) + D(PyF3' U}') + 1
Cand]j]=S appended with U;Fy;

C= minimum of C and Lmin|j];
END;
END;
END;
END;

Let :S'be another sequence in SET, that has not been worked on yet.
END;
END.
/* This procedure include intermediate subsequences into the set of
Candidate subsequences */
PROCEDURE REDUCE (T, SET’, SET', h)
BEGIN
Let C = Min(T);
FOR every S€ T DO

BEGIN
IF Dy 4(S) = C THEN
put Sinto SET,

ELSE

IF Dy 4(5) = C+1 THEN
put Sinto .S'_E'_Tl if they cannot be eliminated by theorem 8.

END;
END.

Based on previous theorems, it is clear that the algorithm produces an >ptimum

sequence of data mapping functions. Clearly, the complexity of the algorithm is dependent

on the number of intermediate subsequence formed. For each Fy € Fyyj , at most [SEQy |

intermediate subsequences with F, as its last mapping function will be formed. But, based on

theorem 3.7, there could only be one candidate subsequence with F, as its last data mapping

function. Therefore, the maximum number of candidate subsequences formed at step A is

|Mapy + Faysl- But

62

|Mapy| = |lasty sV (Fannt1 U Fattno |J Faun-s)l < 3C,

where C = 2"2.

Therefore, |Mapy + Foyp) < 4C. At step h+1, there are at most |Map, + Fanpl x
| Fanpe1| + [Maps| < 4C% + 3C intermediate subsequences. Given k transfers for vector v,

we will have kC(4C + 3) intermediate subsequences. Since n remains constant for a fixed net-

work, the complexity of the algorithm is O(k).

A Heuristic Algorithm

The problem of determining optimum data mapping functions for a parallel program
where precedence relationship between its vector variables exists is complex. For such paral-
lel programs, a heuristic algorithm that is based on the optimum algorithm developed in this

chapter has been developed and is described.

Consider a parallel program consisting of two expression trees only (figure 3.2). Clearly,
expression tree #2 in the figure is dependent on results from expression tree #1. To deter-
mine optimum sequences of data mapping functions for C or D before determining data map-
ping functions for A, initial data mapping function for A has to be assumed. However, the
data mapping function assumed for A may not be the initial data mapping function of an
optimum sequence for A. Hence, an optimum sequence of data mapping functions for A shall
be determined before optimum sequences for C and D are determined. More often than not, a
set of optimum sequences for A will be produced by algorithm I. Thus, for the parallel pro-
gram the problem of determining which one will lead to an optimal solution, if it ever will, is

complex. Hence, a heuristic algorithm for finding a near-optimal solution has been developed.

2

Figure 3.2 Expression trees of a parallel program.

Algorithm II

1. If the result vector, v, of an expression tree is d*pendent on its previous value, as-
sign a new vector variable to replace the result vector. Note : for each iteration of a
program loop where such dependency exists, we have to assign a new vector variable

to replace each such result vector.

2. Determine the precedence relationships between the vector variables and pu . them
in a sequence, vj,u, .. .,v; such that logical transfers for v; is not dependent on

any variables v; , ¢+ > J.

3. For j=1 to z DO
BEGIN

Determine optimum sequences for v;.

64

Pick limit number of optimum sequences for v; and for each of them
determine optimum sequences for other variables as follows :
For i=j+1 TO z DO
BEGIN
Determine logical transfers for v;.
Determine optimum sequences for v;.
Arbitrarily pick an ’optimum sequence for v;.
END;
Keep the optimum scquence for v; that leads to the total lowest cost
for all variables.
If j#£2, based on data mapping functions for vj determine logical transfers for v;,;.

END;

1

The above heuristic has been tested on a number of example problems, its perf>rmance
has been compared with that of a total enumeration algorithm and it is found that in most

cases, the heuristic generates optimal or near-optimal solutions.

3.4. Examples

In this section, we will consider two parallel algorithms, the inversion of a lower triangu-
lar matrix and the radix-2 fast Fourier transform (FFT). These two examples are represen-
tative of two classes of diverse, important computational requirements, namely, matrix opera-

tions, discrete spectrum analysis and related processes.

65

In section 3.4.1, we will present a parallel algorithm for lower triangular matrix inver-
sion and a corresponding optimum solution. In section 3.4.2, we will present the parallel FF'T

algorithm and a corresponding optimum solution.

3.4.1. Lower Triangular Matrix Inversion

In this section, we will consider the inversion of an 8 X8 lower triangular matrix on an
SIMD multicomputer system with 16 processing elements. We will assume that in any opera-
tion, one or more processing elements can be disabled or set to produce zeros. We will desig-
nate a vector variable of 16 elements by a capital letter. We will also designate the sth ele-

ment of a vector by its corresponding small letter and a subscript 1.

The inversion algorithm uses partitioning[Boro75,Hell78] to invert a rX r lower triangu-

lar matrix, V. It is based on the following relationship between V and its inverse vl
VvV, 0
V= Vi Vof’

where V), V; are —; X—; lower triangular matrices and Vj is a—; X-; matrix, then

1 Vil 0
Vo= vetvevy v

The inversion algorithm hence proceeds in stages. It will first determine V7! and V3!,

and then V3'V; and V3'V3Vil.

In our example, the elements of V are stored in three vectors, A, D, and L, and they

are to be operated on in that order. Their relationship with V is as depicted in figure 3.3.

b 4 4 k5 e O
L bk bk ey ay
B b he hs dy dy a4
ho by by hs d d3 a5 o

r

(6 0 0 0 0 0 0
& a6 0 0 0 0 0
dg dy ay, 0 0 O
dio d1y a4 a5 0 0 O
0
0

OQOOCOO‘

Vector elements that are not shown are zeroes, e.g. djs = 0.

Figure 3.3 Relationship between V, A, D and L.

For convenience, we name the submatrices of the matrix, V, as in figure 3.4.

A 0 0 O

v, o] |p; A 0 0
V={v3 Vol =1Ly L; A, ©
L, Ly Dy A,

A/ 8,D/ 8 & L/ s are 2X 2 matrices.

Figure 3.4 Relationship between V and its submatrices.

Some more definitions are needed.

Definition 3.2 :
Let # denote an exchange operator. Let Y and Z be two vector variables. Then Y
7 means that if the ith processing element is enabled, then the ith element of vectors

Y and Z are swapped.

]

67

Definition 3.3 :

P, is a permutation defined by

Pai(fs,l-z,zl ,20)—‘(33,32,20,21).

Definition 3.4 :

Py is a permutation defined by

Pbi(l’g,32,21,10)-’(22,23,1‘0,21)

]

We shall first describe how the inverses of Ay, Ay, A; and A; are formed and how they

are stored in a new vector C. The relationship between the elements of C, ¢;0 < i < 15,

and the submatrices is as shown below

1 .CO 0
As = &2 a
P‘:l? 01
Al =
| €14 C15)
Cg 0
Al =
| €10 C11]
C4 0‘
Aj =
%

Figure 3.5 Relationship between A/ s and C.

The following is a description of the procedure for forming the inverses of the 2X2

matrices.

(1) The reciprocals of the diagonal terms of the matrices are formed and stored in their ori-

ginal location in A. (They are equal to ¢, c3, ¢19, €15, Cg, €11, €4, €7).

(2) The off-diagonal terms, a5, a14, 80 and ag, of the matrices are multiplied with the diag-
onal terris of their inverses { figure 3.6), for example, ¢ = - c3apco. The products are
then combined with the diagonal terms of their inverses, Aj',A7!,A3!,A3! to give a new

vector C.

Only processor elements with off-diagonal terms multiply.
%% - diagonal and off-diagonal terms of the inverses combined to form C.

Figure 3.6 Forming the off-diagonal terms of A/ s.

Faving the inverses of Ay, A;, Ay and A; formed, we can now proceed to compute

A7'D; and A3'Dyg to give a new vector E, where

. € €1
AsDo =], .|
and

. e3 €
ArD; = €10 enf’

as in figure 3.7.

69

84 P, - forms all product terms of the diagonal elements.
05 P, - forms all the product terms of the off-diagonal elements.
- interchange of the vector elements in processors 1, 2, 9 and 10.

Figure 3.7 Forming all the product terms of A;'D;s and A3'D,.

The elements of A3'Dy and Aj'Ds are then formed by adding wz and wy together as

the expression tree in figure 3.8.

Figure 3.8 Adding product terms to form elements of A3'D, and A;'D;.

70

Ai'D;Ag! and A3'DoAj! can similarly be formed with the expression trees in figure 3.9

and figure 3.10.

3-Pg4 - forms all product terms of the diagonal elements.
0g: P4 - forms all product terms of the off-diagonal elements.
- interchange of vector elements in processors 1,2,9 and 10.

Figure 3.9 Forming all the product terms of A;'D;Aj! and A3'DyA3L.

The elements of A3'DyA3! and Aj'DsAy! are formed by adding the product terms w,

and w5 together as in figure 3.10 to give F.

Figure 3.10 Add ng prodi ct terms to form elements of A3'DgA3' and Aj'DsAG!.

7

Having Vi! and V3! computed, we can now form V3'V;3Vil. The product terms for all

the elements in U = V51V3 are computed according to the two expression trees in figure

3.11.

1 '

04 Py - forms all product terms for the diagonal elements of U.
65- Py - forms all product terms for uy o,ug 1,u2 3 and ug o of U.
Py - forms all product terms for ug,ug 2,4 3 and ug; of U.
61 Py - forms all product terms for u3 9,49 3,42 1 and u; 2 of U.
#1 & #2 - interchange of vector elements’in processors

1, 2,5 6,9, 10, 13 and 14.

Figure 3.11 Forming the product terms of V3!Vj.

We now have at most four product terms for each element in U. The expression tree in

figure 3.12 adds ws to zl»; and wg to l}.’g to form two sums of product terms for each element in

U.

#1 - interchange of vector elements in processors
0,1, 2 3, 12, 13, 14 and 15.

Figure 3.12 Forming intermediate sums of product terms.

Each element in U is finally formed by adding its own corresponding two intermediate

sums of product terms according to the expression tree in figure 3.13.

Y11

Figure 3.13 Forming the elements of V;!Vj.

Having U = V;'V; formed, we can now proceed to compute all the product terms of

the elements in H = V;!'V;Vi! according to the two expression trees in figure 3.14.

73

Py - forms all product terms for the diagonal elements of H.
82 Py - forms all product terms for Ag 1, hy o, h2 3 and Ay 3.
83 Py - forms all product terms for ko, hy o,) 3 and Ay ;.
810 Py - forms all product terms for hy 3, k3o, b 2 and Ao ;.
#1 & #2 - interchange of the vector elements in processors
1,2,5,6,9, 10, 13 and 14.

Figure 3.14 Forming all the product terms of V3lvavil.

We have now at most four product terms for each element in H. The expression tree in
figure 3.15 adds 1}112 to w3 and t.UH to 1'015 to form two sums of product terms for each ele-

ment in H.

74

#1 - interchange of vector elements in processors
4,5,6,7,8,9, 10 and :1.

Figure 3.15 Forming intermediate sum of product terms.

Each element in H is finally formed by adding its own correspondiug two intermediate

sums of product terms according to the expression tree in figure 3.16.

75

% & & &
8 8 & &
88 8 812 83]°

810 811 914 915

V;'VaVi' =

Figure 3.16 Forming the elements of H = V53'V,V7l.

A total enumeration algor:thm and the heuristic algorithm have been used to determine
data mapping f inctions for the above matrix inversion algorithm. It is found that the heuris-

tic algorithm produced an optimum solution in this case.

In the heuristic algorithm, the ordering of the vector variables into a sequence is not
unique. The following is one such sequence,

S, wy7,wye, Wys, Wy 4, W13, Wi2, T,wyy, wiowy, we, F, L, wy, ws, E, wy wy C,D,A.

The total communication cost before applying the heuristic algorithm is 34 routing
steps. Applying the heuristic algorithm, the mapping functions for all the variables, except C
and F, are determined to be identity. The sequence of communication requirements fcr F is
determined to be 6,P;, 05 Py, 8y'Py, Ps. The corresponding sequence of optimum data map-
ping functions for F is found to be Py, Py, Py, Py. Due to the initial data mapping functions,
Py, for F, the sequence of communication patterns for C is Py 04 P, Py0s5'P, Pybg P,

Pyby-P,, Py, 0y Py, g Py, 019°Py. The corresponding sequence of optimum data mapping

76

functions for C is determined to be Py05-P,, Py 65 P, Py0s'P, Pyls P, Py, Py, Py, Py. The
resulting total communication cost of the inversion algorithm is 21 routing steps. For this

particular case, it is also the minimum communication cost possible.

3.4.2. Fast Fourier Transform

The radix-2 version of the Fast Fourier Transform (FFT) that we are going to des ribe
is based on Pease’s work|Peas68|. It has a signal flow diagram as shown in figure 3.17 and is

dependent on perfect shuffle and bit reversal permutation.

We will first describe the discrete Fourier transform. Let Ay | k], £ =0, 1,..., R-1, be
R = 2" samples of a time function sampled at instant: that are spaced equally apart. The

discrete Fourier transform of Ag | k] is then a disc ete function X[], j=0,1,., fi1,

where
R-1 .
X7l =Y A k) Wi j=01,.., R-1
k=0

21§
and W=¢F |

Let (k._y, ko, ..., k) 2and (jp-1, Jr-1, - . -, Jo) be the binary representations of
kj€{0,1,2.. R-1} Then

X[jr—l;jr—?; s 1j0] =EE

ko Ky

) Z AO [kr—l; kr—?: I kO]”/jky

kr—l

where each of the indices k; are summed over the binary values 0 and 1.

Based on the above relationship, the FFT algorithm can be computed in r stages. At
stage i, 1 < 1< n, a vector A; will be computed from A;,, ‘or + > 1. The vectors are

defined as follows.

X 'k_gr‘—l
Al ko, ko] = D Ao [by, kg, o, R JWOTT

r-1

‘Ld siutod g1 ® Jo gdesd mo[j [tusis LI'E aIngiy
*dars yord I ampalos sorrnd aae parg
JdSd dSd JdSd \ dSd

XSS &&&& :
SIS,
NSRS SIS
> 2%»},\3&. |

/ \
XN AN
)Aﬁwlw!“mwo N

¢¢¢¢¢¢ 7 doag

oo
1:0)°V

78

Al by, oo, Koy dos - - oy de]

. . G2+ o ikt
=§At-l[kr~b---;kO»JO:---:Jl-2lW - 08
r-¢

y

where t =2,3,...,r

The roles of perfect shuffle and bit reversal permutation in the signal flow graph (figure
3.17) become evident when we consider an element of A;. Here, A; | j,y, jr0,...,0] and
AilJdr1, drgy ..., 1] of A;is the weighted sum of two elements, A;y [0, jro, ..., ;]
and A;y [1, jro, ..., 1] , of Ay A perfect shuffle will pair the two elements together for
the computation of A; [7y, jro, ..., 0] and A;|Jjry, jro, ..., 0] . The last vector, 4,,
has elements that are the values of the X[j], but the elements are scrambled in bit reversal

order. That is,
Ar[jOv jl.' teey jr—?r jr—l] = /\1 jr-l; jr—2; sy jO i
A bit reversal permutation will bring the elements of X back into normal order.

Since the computations required are executed on pairs of data, the elements of the vec-
tors can be stored in pairs and a 16 points FFT can be executed on an eight processing ele-

ments system. Each vector, A;,0 < i < 4, can be divided into two vectors, such that

Ai[07] =4;]024609,11,1315]
and

A 07] =4;[135781012,14] .

For the ith computation stage, each element in A, has to be paired with an element in

;‘i,-. The logical transfers for A; and A;, 0 < ¢ < 3, are determined to be

P:(zy,2,5) = (21,20,%)

and

P: (2,21,29) — (21,70,%, , respectively.

79

Finally, since

A [07] =X[04,2691311,15]
and

A07] =X[81210,141537],
to bring X into normal order such that

X[07] =X[024,69,11,1315]
and

X[07] =X][135738,10,12,14] ,
the logical transfers for X and X are determined to be

Pr : (220 %) - (Z2,20,21)
and

P,:(z,2,5) — (7Z,21,29), respectiv ly.

Let R;, S, T; & U, 0 <: <3, be vectors containing powers of 1. For exanple,
S=1111,1, We, W8 né e] . Then the expression trees for stage 1,2.3 and 1 are

shown in the figures 3.18, 3.19 and 3.20.

Figure 3.18 Expression trees for computing A; (stage 1).

81

Figure 3.19 Expression trees for computing A; and Aj; (stage 2 & 3).

82

Figure 3.20 Expression trees for computing A, (stage 4).

Since the constant vectors, R;, S;, T; & U,, 0 < 1 <3, are used only once, if P is a logi-
cal transfer for one of the above constant vectors, then the optimum data mapping function
for the vector is P. We do not have to consider data mapping functions for these constant
vectors in the heuristic algorithm. The ordering of the vector variables into a sequence for

the heuristic algorithm is clearly not unique. The following is one such sequence,
Bar B31 B?v B?; Bl; Bly BDv BO) AO; AO

The total communication cost before applying the heuristic algorithm is 20 routing
steps. For one of the sclution obtained, the sequences of logical transfers specifying the com-
munication requirements of i?; and éi, 0 < # £ 3, are the same. Furthermore, i?; and B, have
the same sequence of data mapping functions. Table II shows the sequences of logical

transfers and data mapping functions determined for the vector variables. The resulting total

communication cost of the FFT algorithm is 8 routing steps. For this particular case, it is

also the minimum communication cost possible.

TABLE II
Logical Transfers and Date Mapping Functions

for 16 Points FFT

Vector Variables Sequences of Sequences of
Logical Transfers | Data Mapping Functions
By, By P, P, P, P,
B, B, P,P, P,P P,P, P,P
B, B, PP, P,PP P, PP
By, By P, PP P, P,
Ay PP P,P
Ao P,P PP

CHAPTER 4

DATA ALIGNMENT

We shall now develop techniques for determining alignment function for each internal

node of tt e expression trees of a given parallel program.

In this section, we will assume that logical transfers for a binary operation on any two
vector variables (internal or external node variables), u and v, of a given expressisn tree in a
parallel program are specified as

v (Py(3)) * u (P(3)),

where * stands for any binary operator.

If the alignment function for w, the temporary result vector of the binary operation, is
an identity function, then logical transfers for aligning u and v to w are P,, = P, and
Py = P,. We will assume that data mapping functions for the leaf variables of an expres-
sion tree are identity functions. If the data mapping functions are not identity functions,
then we will replace each logical transfer and each data mapping function with a new logical
transfer and an identity function, respectively. For instance, if the logical transfer and data
mapping function for a vector variable, v;, are I",,'. and F",,'. , respectively, then the new logical
transfer will be P, = I.’,,‘. Fﬂ,‘. and the pew data mapping function will be an identity func-
tion. Though logical transfers for a binary operation on any two temporary variables may be
changed during the process of determining where the two variables should be aligned, we will

assume that logical transfers for all temporary variables are initially identity functions, or else

84

85

they will be transformed recursively to identity functions as in chapter 3.

We will also assume that there is no precedence relationship between expression trees of
a given parallel program. This assumption enables us to partition a parallel program with i
independent expression trees into ¢ independent subproblems. Applying the optimum data
alignment algorithm developed for a single expression tree to each of the i independent sub-
problems wi'l produce an optimum solution for the parallel program. Based on the optimum
algorithm, a heuristic algorithm also will be developed for parallel programs where precedence

relationship between expression trees exists.

The data alignment algorithm is based closely on the relationship between logical
transfers and alignment functions. Hence, we will be studying this relationship in the next

twc sections.

4.1. Loglcal Transfers and Alignment Functions

We now characterize the relationship between logical transfers and alignment functions.
Consider the following binary operation on two leaf variables, u and v,

v (PS'() * u (P!(9).

Let w be the temporary result vector of the above expression. If the alignment function
for wis I, then u (P,l(i)) is to be multiplied by v (P,'(i)) and stored in u(i). The correspond-
ing logical transfers, P,, and P, for the binary operation are P, and P, , respectively (fig-

ure 4.1), and the total communication cost is given by D (P,) + D (P,).

However, more often than not, identity alignment function will not give minimum com-
munication cost. We may want to have the variables aligned according to another alignment
function, Ay , so that u (P;l(s)) will be multiplied by v (P,(i)) and stored in w (A,()), and

the corresponding total communication cost

w A #1
W

Figure 4.1 Logical transfers and alignment function.

D (Puo) + D (Py),

where P,y = AgP, and Pyy = APy,

is minimized(figure 4.1). Suppose the vector variable, v, is a temporary result vector of
another binary operation. Since logical transfers for temporary result vectors are initially
identity functions, if the alignment function for v is A,, then u (P,!(i)) is to be multiplied by
v (A5'(4)) and stored in w{A(3)). The corresponding new logical transfer for aligning v to w is
then P,, = ApA4;!, and the total communication cost for the multiplication is

D(PI)U) + D(Puw)'

Thus, the data alignment algorithm determines, for each internal node w; of an expres-
sion tree, a corresponding alignment function, A.,'. , so that the communication cost of a

parallel program given by

Y DP) Y DPug)

-t,at:hm,,.,, ' variable Ui ©5° internal
o] the 9 partisl nodes
given result vy = parent
algorithm o = of v,

) parent '

of v;

87

is minimized. In this chapter, we also will be limiting ourselves to alignment functions that
are in A. If A, is an alignment function in A, then there is a corresponding (n+1)X(n+1)

nonsingular binary matrix A, whose first rowis [100 --- 0].
The following are some basic theorems.
Theorem 4.1

The set of all alignment functions, Agne, for logical transfer P, such that
Ag € Agiio iff D(Pyy) = D(A,P,) < 1, is given by

Adto = {LjUP | L€ L and U; € U}.
The cardinality of Ay is 27
Proof :

Let Ay = L,U;P;l. Then AP, = (L,-U,'P;I)P,, = L,;U; is LU decomposable. There-

fore, if Ay = L;UP}!, then A} € Aggo.

Let Ay € Agp. Then AP, = LUy and Ay = UL !P,!. Therefore,

Adte = {LjUP' | Lj€ L and U; € U}.

(,.2 - n) !,‘2 + n)
Since there are2 2 U’sand 2 2 L’s, Iéall,wl = 2"2-

Theorem 4.2

Let D(A,P,) < 1. If Ay € LA,, then D(AP,) < 1.

Proof :

Let AP, =LU. Then (LA/JP, = LU. Therefore, if A; € LA,, then AjP, € LU
and D(A,P,) < 1.

1

Theorem 4.3

Given P, and P, there exists an alignment function A, such that

D(A,P,) €1 and D(A,P,) < 1.

Proof :

Mow every nonsingular binary matrix is LUL decomposable[Peas77]. Let
P;'P, = UL,U,
Let A, = U;!P;l. The logical transfers are then P,, = AP, and P,, = A,P,, where

D(Pyy) £ 1and D(Pyy) £ 1.

]

Theorem 4.4

Let A, Ay and Ay be alignment functions for the three temporary vector vari-
ables, w0, ul and w2, shown in figure 4.2. Let Al{Ayg,Ay;) be a set of alignment func-
tions such that Ay, € AlllAy,Ap) il D(Pgowe) £ 1 and D(Pyiy2) < 1, where
Powe = AwpAw and Py iy = AwpAui. Then All{Ay,Ayp) can be partitioned into

cosets of E

Proof :

Consider Ay € AlllAyo,Awt), if D(ApAwm) <1 and D(ApAdl) €1, then
D(LiAwrAw) <1 and D(LiAwAy)) <1, Li € L. Therefore, LA,y C AllAy0 Agr) and

Al Ayp,Agy) can be partitioned into cosets of L.

1

89

w2

-1

-1
w2Awl

- A
wlw?2 AwZAwO

P Pwlw2=

w0 wl

Figure 4.2 Logical transfers and alignment functions for temporary variables.

Theorem 4.5

Let Ay, Ay and A,y be alignment functions for the three temporary vector vari-
ables, w0, wl and w2, shown in figure 4.2. The logical transfer, Py 0, for wl is then
ApAd. I D(Py1w2) = 2, then there exists another Ay € LAy, such that for the new

Piw = AeeAd', D(Puyi) < 1.

Proof :

Let A,Az; =L,UL. Then ApAJ L' =L U, Let Ay;=LA,. Then

D(i’wlu,z) < 1, where Py4p = A As.

1

While it is difficult to compute the lower and upper limits of the resulting communica-
tion cost of an arbitrary expression tree after applying the data alignment algorithm, the
lower and upper limits of the resulting communication cost of a full expression tree can be

computed and is given by the following theorem.

Theorem 4.6

Consider a full expression tree with r = 2" n > 2 leaf variables; if the logical
transfers for the leaf variables are all different, then the resulting communication cost

after determining the alignment functions is given by

w

r-1< cost< =~ r.

(3]

Proof :

Clearly, r-1 < cost. We have to prove cost < i;r only. Consider the alignment func-

tion for v (P;}(i)) * u (Py'(i)) in the earlier example; by theorem 4.3, we always can find an

alignment function A, such that D(P,,) < 1 and D(P,,) < 1.

Let v and u be the leaf variables of a full expression tree. With w and W, they form a

subtree (figure 4.3) of the full expression tree.

%
W, S
\.
\
\
w \‘
A
'/‘ \
7 RN
u v / \

Figure 4.3 Subtree of a full expression tree.

91

Let the alignment function for wg be Ag, = I. Then by theorem 4.5, we always can
find A, € LA, such that the logical transfer, PWG = A,,GA;,I, can be realized in one pass.

Furthermore, since Ay € LAy, by theorem 4.2, the new logical transfers for v and u,

f’w = /'i,,,Pv and i’w = /in,, can both be realized in one pass.

If we let the alignment functions for the ancestors of the parents of the leaf variables be
identity and determine similarly the alignment functions for all of the leaf variables and

parent nodes of the leaf variables, the total communication cost associated with the expres-

sion tree is less than or equal to 3 r.

1

4.2. Characterization of Optimum Sequences

The data alignment algorithm that we will be describing is similar to the data mapping
algorithm in the previous chapter. We assume an expression tree with k nodes. The nodes are
numbered in postorder fashion, and they form a sequence V =uv,%,...,v Through
partial enumeration of possible partial solutions, the algorithm determines a sequence of align-

ment functions,
E=A,A,..., A

where A; is the alignment function for node v, so that the communication cost of executing
the corresponding expression tree is minimized. For reasons that will be detailed later, if v, is
an external node, then we let A; equal P,,..‘l. During step k& of the algorithm, Ap, a sct of
alignment functions is determined for node v;. Subsequences of alignment functions for the
nodes of the subtree with root node v; are formed by concatenating every A; € Ap with two

subsequences of alignment functions, to give

EL , ER , Ajy

92

where Ej is a subsequence of alignment functions formed earlier for the nodes of the left

subtree of vy,

EpR is a subsequence of alignment functions formed eatlier for the nodes of the right

subtree of v,

As in data mapping, the subsequences formed will be called intermediate subsequences,

Intermediate subsequences that can lead to an optimum sequence for the expression tree are
saved for a future step, while the rest are eliminated. The intermediate subsequences that are

saved are called candidate subsequences. A set of candidate subsequences for the subtree with

root node vy is denoted by SEQy. In the following, we will describe rules for el:minating some
/
of the intermediate subsequences from consideration. We also will describe Ap, the set of

alignment functions for v;, that must be determined during step & of the algorithm.

Some basic notations and definitions for the algorithm are needed.

Notation 4.1 :

An expression tree with k nodes is designated by k-tree. Since the nodes are numbered

in postorder fashion, the root node of k-free is vg.

L]

Notation 4.2 :

For j < k, the j-stree is a subtree of k-tree. Its root node is v; and it includes all the
descendants of node vj of k-tree. The tree kj-stree is a subtree of k-tree with j-stree removed
(figure 4.4). Similarly, for b < j, if h-stree is a substree of j—stree, jh-stree is defined as a

subtree of j-stree with h-stree removed.

1

93

Figure 4.4 Relationship between k-tree, j-stree and kj-stree.

Notation 4.3 :

A sequence, Eij = Agi, Agt1,i, .-, Ajj is a subsequence of alignment functions
for subtree j-stree iff v,, 6 < r < j are nodes in j-stree. Here, A,; in ﬁ‘ij is an align-
ment function for node v,. Note: since the nodes are numbered in postorder fashion, the
last alignment function in a subsequence of alignment functions, i?ij, for subtree j-stree is

always the alignment function for node ;.

|

Notation 4.4 :

Eijj is a subsequence of alignment functions for subtree jh-stree iff every alignment

function in the subsequence is for a node in jh-stree.

]

Definition 4.1 :

The cost of a sul sequence for a subtree is the communication cost in executing the
subtree when alignment functions for all of its internal nodes are specified by the subse-
quence For ex: mple, the costs of ii'i,- and I:Jij;, are d(Ez,) and d(Ei,-;,), respectively. d(E:,)
can be defined recursively as follows,

d(Ei) = d(Eip) + d(Ei) + D(Puy),
where v v; and vy is an internal node of j-stree,
vy is the parent node of v,

Eij; is a subsequence of alignment functions for subtree jh-stree.

The cost of a sequence for an expression tree, Ei, is similarly defined as d(E%).

1

Definition 4.2 :
A sequence Ei is optimum if there does not exist another sequence i?j such that
d(Ed)> d(Ey).

]

Notation 4.5 :

Let S be a set of subsequences of alignment functions for A-stree. Then Min(S}) is

the cost of the minimum cost for an element in Sj.

[1

Consider an internal node, v;. Since the nodes are number d in postorder fashion, the
right son node of vy is vy ;. Let v be the left son node of vy. Let Eiy = A,, Agyy, ..., Ay
and Ejy, = Apq, Als2, - - -, Apg be subsequences of alignment functions for /-siree .ind

(b-1)-stree, respectively. The only way to form a subsequence of alignment functions for

95

b-stree from these two subsequences is to concatenate the two subsequences with an align-
ment function, Ay, for node vy, so that the new subsequence is
Ery =FE;,, E

I]b_l:Ab=AavAa+l;---:AI;AI+1:AI+2;---;Ab—l;Ab-

The communication cost in executing the subtree b—stree is then

dErs) = d(Ei) + d(Ejy1)+D(AAT") + D(AsAiLy).

The following theorems determine the conditions under which an intermediate subse-
quence for h-stree is to be eliminated. We will consider two intermediate subsequences ii’l;,
and @h wher: E’l;, %EQ;, Given a sequence ii'l having E‘l,, as its subsequence, we will exam-
ine conditions under which we can always find E2 that has E‘2;, as its subsequence such that

d(El) > d(E2). Since we are sceking an optimum solution only, these are conditions under

which El,, can be eliminated.

Theorem 4.7

Let El;, be a subsequence of El Given a subsequence E‘Zh such that d(ii‘l,.) -

d(f:‘?.;,) > 2, we can always find E containing E‘Z}. such that d(El) > d(E‘2)
Proof :
The communication cost associated with E‘l 1s
dE1) = d(E1) + d(Elg) + D(A;1ARY),

where v is the parent node of vy,

Ag1 , Apy € El are alignment functions for v; and v, respectively.

Form E‘Z by replacing the subsequence E‘l;, in E’l with ﬁh. Then,

dE2) = d(E2) + d(Elp) + D{Ay1ARY),

where Ap2 € E2 is the alignment function for node vy,

Now

-

d(E1) - d(E2) > 2 + D(Ay1ARY) - D(Ar Anh).
Since 0 < D(Ay1ARh), D(Ar14R2) < 2,
-2 < D(A1145Y) - D(Ag1Azk) < 2.

Therefore,

d(E1) - d(E2) > 0.

Corollary 4.7.1

The candidate set, SEQ;, can be partitioned into two disjoints sets, SEQ}, and SEQ%,

where
Siy € SEQY ift Dy 4(Siy) = Min(SEQy),
and Siy € SEQ} iff Dy 4(Sis) = Min(SEQy) + 1.
Theorem 4.8

Let E1; be a subsequence of E1. Given a subsequence E2j such that Ap; = Apo

and d(El;,) > d(é‘2;,), we can always find E2 containing E‘Z;, such that d(El) > d(EZ)
Proof :
The communication cost associated with El is
dE1) = d(Els) + d(Els) + D(A114R)),

where v; is the parent node of v,

Aty , Ap1 € El are alignment functions for v; and vy, respectively.

Form EZ by replacing the subsequence iE’l;, in E1 with E‘Zh. Then,

97

dE2) = d(E2) + d(Ely) + DAy AzY),

where A; . € E2 is the alignment function for node v,
Since Ay = Apg, d(E1) > d(E2).

Corollary 4.8.1

Let aj be the set of last alignment functions in all of the subsequences in SE:).
Then aj can de partitioned into two sets, _gi, z =0or 1, where _gﬁ is the set of last align-

ment functions in all of the subsequences in SEQf.

]

Theorem 4.9

Let i?l;, be a subsequence of El Given a subsequence E')Z,, such that AhJA;"lQ is
LU decomposable, Aj; # Ay and d(ﬁ‘l;,) - d(ﬁ?h) > 1, we can always find E2 contain-

ing l:l‘Z;, as its subsequence such that d(El) > d(EZ)

Proof :

Consider E’l, its cost is
d(E1) = dEY) + d(Ely) + D(A1ARh),

where v;; is the parent node of vy,

At , Apy € El are alignment functions for v; and vy, respectively.
Form E2 by replacing E1j in E1 with E2j. Then,

dE2) = dE%) + dE2) + D(A;1Azh)

where Ay 2 € E2 is the alignment function for node vy,

98

Therefore,
d(E1) - d(E2) = d(E1}) + dA;1AR)) - d(E2)-d(A1ARY)

> 1+ d(Ay ARl)-d(Ar1 A7),

If (Ay; = Ayy), then d(A; ;A7) = 0 and d(A;1A5h) = 1. Hence, d(E1) - E2) > 0. It
(A1 % Apy) then 1< d(ApARh) €2 0< d(AnARs) <2, and -1 < dAAR)Y) -
d(A,'lAj,'lg) < 3. Therefore,
d(E1) - d(E2) > 0.

L1

The partial enumeration algorithm will be inefficient if we let A, = A, for all internal
nodes vy in the k-tree. Based on the following theorems, we will determine the set of align-
ment functions, Aj, that is needed to form intermediate subsequences, Eiy's, to guarantee an

optimum solution.

For convenience, we will limit ourselves to node v, its left son v, its right son v, and

their corresponding sets of candidate subsequences SEQy, SEQ;and SEQ),, respectively. Their

corresponding sets of alignment functions are A, A; and A,, respectively.

If viis a leaf node, we will let A; = {P;'}, where Py is the logical transfer specified for v
in the given parallel program. We will also let SEQ; = {E[}, where if{ = P;!. This can be
done here because with an alignment function Ay for vy, the resulting logical transfer,
Py =‘A;,A71, for vj is mathematically equal to the actual logical transfer A4P;. If v, is a leaf

node, then A, and SEQ, are similarly defined.

We now characterize the set of alignment functions, A for internal node v Let
Ej, € SEQ, and Ei € SEQ;. Then A;, and A;; are alignment functions for v, and v; in the
subsequences Ej, and Eij, respectively. Let the subset of Ay that is used with the alignment

functions A;, and A;be é;,‘j. The following two theorems characterize _/_i_;,"’..

Theorem 4.10

It D(A;,Ai})<1 or D(A,A;})<1, then the set é;,‘j contains at most the elements

A;rand A;,.

Proof :

Suppose D(A;,A;}) < 1. Form E‘zh = ii'i,, i?j, , Agp, Where Agy ¢ {A;r, Aj,}. The

cost of Ezj is then

dEzy) = d(Ei) + d(Ej,) + D(A; A7) + D(AspA3Y).

We always can form Esy, = Ei, Ej, , A;,, such that,

d(Ess) = dEi) + d(Ej,) + D(Aj,A7}) + D(A;,A7Y).

The difference, d(ﬁ'zh) - d(ifs;,), is then

D(Az pA7Y) + D(AzASY) - D(A; A7)

Now, 1 < D(A;447}), D(A;44;%) < 2. Therefore, 1 < d(Ezy) - d(Es;) < 4. 1f the
difference is greater than or equal to two, then Ex;, ¢ SEQ (theorem 4.7). The difference is

equal to one iff D(A; 44;}) = D(A, 44;%)=1. But by theorem 4.9, Ez ¢ SEQ;.
Corollary 4.10.1

If D(A,'v,AI,}) =0, then A, = A;;and 1_4_;,"". = {A;1}.

100

Theorem 4.11

I D(A;,A;]) = 2 and D(A;A;}) = 2, then it is sufficient that
A = {Air, Aj JJANA, A;),

where A, € All(A;,, A;)iff D(A,A;Y) < 1and D(A,47}) < 1.

Proof :

Consider any alignment function A, 5 ¢ {A,,, A;} U AllA;,, A;). Let
Ezh = Ej, Ejr:Az,hy
then,

dEz) = d(Ej)) + d(Ei) + D(A,pA5L) + DA, pATY).

Suppose D(A, 4A7}) = 2, form Ejy = Eij, Ej, , A, such that
dEj) = d(Ejy) + AEi) + D(A;43)) + D(A; A7)
Therefore,
dEzs) - dEjs) = DAsAit) + D{AspAT)) - D(Aj,AT) - D(Aj, A7)
= D(A; p45))-

It D(A,4A4Y) = 2, then d(Ezy) - d(Ejs)=2 and Ezy ¢ SEQ (theorem 4.7). If
D(A;p4;%) =1, then d(Ez;)- dEjs) = 1. By theorem 49, Ez; ¢ SEQ, Similarly, if
d(A,J,A,",‘,) = 2, it can be shown that Ez;, can be eliminated by forming Eih = ii'il, Ej,) At

L1

The following theorems determine additional conditions under which All(A,;, A;,) does

not need to be included in éh'j.

101

Theorem 4.12

Let Ei(G SEQ; and i?j, € SEQ.. A;iand Aj, are the last alignment functions in
the subsequences ifil and E'j,. If D(A;,;A;;l,) =1, then for an optimal solution it is suffi-
cient that

éhi' = {A;1, Ay} for A, in any ‘Es.' € ——-SEQ}'

Proof :

Consider A, 5, where A, 4 7% A;jand A p 5# A,,, for any Es, € _L_S'_E_Q} Let
Ex;, = i'}'il, Es,, Az p Es, € §§Q}

The communication cost associated with E’z;, is then

dEz) = dEi) + dEs) + D(AAT) + D(A:A3)),

where A, , is the last alignment function in the sequence Es,.

We can also form Eih = i?z',, E‘j, » Ai1. The communication cost associated with E‘i;, is

dEis) = dEi) + dEj) + D(AAT]) + D(A;45})

= d(Ei) + dEj,) + 1.

Therefore,

d(Ezy) - d(Eir) = D(AA7}) + D(AAH)-1.

Since A, 7% A,, and A # A;, 1< D(AAY), D(AAT]) < 2. Therefore,
2 < D(A,A7Y) + D(AAT}) < 4 and 1< d(Ezy) - dE) < 3. If d(Ez) - dEip) > 2, then
Ezy ¢ SEQs (theorem 4.7). d(Ezy) - d(Eiy) is equal to one iff D(AA7}) = D(A,47}) = L.

Since D(A,Af,ll) =1, by theorem 4.9, Ez;. ¢ SEQp.

Therefore, for an optimal solution, it is sufficient that _4;," ={Ai1, A,,} for A,,in
any i?s, € SEQ&,

1

102

Theorem 4.13

Let Eil € SEQ; and Ej, € SEQ. A;1and Aj, are the last alignment functions in
the subsequences i?i, and Ej,. If D(A; ;A;l,) =1, then for an optimum solution, it is suffi-

cient that

AW* = {AiA,) for A, in any Es, € SEQY| JSEQ' = SEQ,

Proof :

Consider the subsequence E’i;, = Eil, E'j, , Ai. The cost of the subsequence, Eih, is
given by d(bi;) + Min(é'_E_Q?) + 1. Consider a subsequence,
Euy = Eif, Es, , A,
where Es, € ﬁ@} and A; ¢ {4,,, A1}
The cost of the subsequence, I:Jub, is
dEuy) > dEi) + Min(SEQ}) + 2
> d(Ei) + Min(SEQ?) + 3
> d(Eiy) + 2.
By theorem 4.7, E‘s, ¢ SEQp Therefore, it is sufficient for é;," = {Ai1, A,} for any
A,, in Es, € §E_Q} By theorem 4.12, it is sufficient for d;," = {A;, A,,} for any A, in
l:?s, € ._S'_I_T_Q_e, too.

L1

Now, a7, z =0 or 1, is the set of last alignment functions in all of the subsequences in
SEQ; (theorem 4.8). From theorem 4.5, we know that if g} contains a coset of L, then for
any A, in ii'i(€ SEQ there exists an A, , in i'],. in SEQ such that D(A,-,A,',"l) < 1. Determi-
nation of whether there exists A,, in Ea, € @i such that given .4;; of i?i, in SEQ,

D(A,-,Vi,",") = 1 can be simplified if we can identify the existence of a co:et.

103

The following two theorems characterize the cosets in af.
Theorem 4.14

IfLA, ;C ap, then EA,,hg_gﬁ or _IiA,’hgg},.
Proof :

If the above is not true, then there exists Ay in Eyj € _0_2 and Agy = LAy, in Etl, € g},.
But d(ii't;,) - d(i?y;,)=l and D(A;3Ays) = 1. This contradicts theorem 4.9 that excludes Etk

from SEQ;.

[

Let aj again be partitioned into two sets. They are sy, and gy ;, where A; € ap iff
LA C aps. The following theorem shows that if an alignment function, A,, is in a4, then

Az is in a,, or g/,
Theorem 4.15

If Agp € 8h o then Azn € g, U Gr s

Proof :

Let Ez;. € SEQj be the candidate subsequence containing A, . Its cost can be broken

down as followed:

d(Ezy) = dEz) + d(Ez,) + D(A;4A7)) + D(A; pAT)).
Suppose the theorem is not true, then since

A= U 4

A 1€ 9
Ajr€ 8

104

where AyY = { A;; Aj, } or AY = { Ay A, JUAIK Ais Aj,), we have to consider the fol-

lowing two cases only,

1. A;p € Al{A;;, Ag,) for some A,y € o and A,, € a,, where A, 7# A, and
<z,h ?é Az,r-

or

2.A;h € gpor A € oy

Case 1

If A;p € Al{A;1, Asy) for some Az € g and A;, € o, then D(A,';,A;,l,) =1 and
D(A,,,,A;’ll) = 1. Since LA;; C All{A;;, A,,), the following intermediate subsequence,
é‘.?;, = ile, Ez, , LiA; j, where Ly is any lower triangular matrix in L, and

d(E24) = d(Ez) + d(Ez,) + D(L1A;4A5Y) + D(LyA;pATY)

will be formed by the data alignment algorithm. Since
D(Az,bA;,ll) = D(LlAz,hA;,ll) and D(Az,hA;,lr = D(LlAz,hA;,lr),

dEz) = d(E2).

Now, if iz*z,, is in SEQy, then LA, should be a subset of 6y 5. But this contradicts the
fact that A; 4 € ap, Therefore, E‘Z;, should be eliminated by theorem 4.7 or 4.8 or 4.9. If
ﬁ;, is eliminated by theorem 4.7 or theorem 4.9, then é‘z;, should be eliminated, too. But this
contradicts Ez;. € SEQ). Therefore, E?;, can be eliminated by some subsequence iE'y;, where
Apy = App = L1A; j and d(E‘Z;,) = zi(i?y;,) (theorem 4.8). In that case, LA, is still in g,

Furthermore, LA; 4 C a5, and it contradicts A; 4 € Gh g

Case 2

Now, if Ay} = A, 1€ ajpor Ay = Ag, € 8,4, then D(A; p47}) = 0 or D(A;,4;}) = 0.

Suppose A;p = Az 1€ ap and Agp 7# Az € Ay The data alignment algorithm will form

105

the following intermediate subsequence

Ey, = Ey, Ez,, LlAz,lr

where Ay = LA, € ayy,
such that

AEy) = dEB) + d(Ez) + DlliAdspdzl) + DlliAsAZA)

Since d(Egz) = d(ii‘xl), using the same arguments as in case 1, it can be shown that

LAy C a4, and this contradicts Agp € Ap,.

If Aji = Agr = Agp , it is obvious that A;p € ap, ifl A;1€ g, or Ay, €sp, Other-

wise, A, 4 € appand LA;)y € app. Therefore, if A, 4 € ap,, then A; € g,0r A 4 € 6,
Corollary 4.15.1

Let A;p € gpand UAll= | All{A;), Ajy).
ApY # (A Ay
AjIE Y
A,", €a,

It Azp € (arsJaslJ VAN (ats | 8rs), them Az 4 € o

Proof :

Since A; 4 € g, if Az p ¢ 6hy then A;p € 44 The contrapositive of the theorem is if

Ach & 8r0 | b0 then A;p € apyp.
NOW, é,‘ = U éh”
A€ g
Aj,r € s,
= o JarslJ ol JarslJ UAK.

Therefore, if A;4 € (a5l JarslJ VAWM (a1 Jar,s), then Agp € aps.

Corollarz 4.15.2

106

If Azp € ap,then A, = P;!, where P, is the logical transfer for a leaf node, v,, in sub-

tree h-stree.

Proof :

Clearly, applying the theorem recursively, it can be shown that if Azp € 84, then

Az € 8, where v, is a leaf node of h-stree. But o, = A, = (P}

1

Based on theorem 4.14 and corollary 4.15.1, it can be concluded that we can treat each
coset as a unit and need not consider every alignment functions in the coset. For the case,
where (a3 Uss U Usll) N (a4 U) # 0, il Agi€ (ars U srs |J Vsl) N
(ais U 8y5) and A, 4 € gy, then A, € ap,or LA 4 € a5 In fact, except for the rare case,
LA Ca, | Jais for some A, if LA, C app, then LA, C g,y or LA, C gy or
LA; C All(A;), Ajyr), A1 € a, & Aj, € o; Instead of forming intermediate subsequences with
every alignment functions in All (A, A,-’,), only one intermediate subsequence has to be

formed for each coset in All (A}, A;,).

4.3. Data Alignment Algorithms

Based on theorems in section 4.1 and 4.2, the following algorithm could be proved to

produce optimum solutions.

Algorithm III

MAIN PROGRAM.
BEGIN

FIND_OPTIMUM_SEQ (root_node , @0 , _S_E_Ql);

| ** A1y sequence € §E_Q° is an optimum sequence **/
END.

107

SUBROUTINE FIND_OPTIMUM_SEQ (v, SEQ°, SEQ")
BEGIN
/* Subroutine to determine candidates subsequences for v ***/
IF (v4 has no children) THEN
BEGIN
[** vis leaf node **/
SEQ = {P'};
SEQ' = ¢;
END
ELSE
BEGIN
best = large number;
SEQ = SEQ" = SEQ' =,
Let { be the left son of vy;

| ** Form SEQ; and SEQ, *+/
FIND_OPTIMUM_SEQ (, SEQ , SEQ});
Let r be the right son of vy;
FIND_OPTIMUM_SEQ (r, SEQ, SEQ!);

/** Form SEQ - the set of intermediate sequences */
FORM_CANDIDATE (SEQ, SEQ] , SEQ®, best);
FORM_CANDIDATE (SEQ, SEQ? , SEQY , best);
FORM_CANDIDATE (SEQ, SEQ} , SEQ! , best);
FORM_CANDIDATE (SEQ, SEQ?, SEQ} , best);

[** Check if more intermediate subsequences needed **/
IF (Min(SEQ}) + Min(SEQ}) - best <2) (Theorem 4.6)
THEN
BEGIN
FORM_CANDIDATE (SEQ, SEQ} , SEQ} , best);
FORM_CANDIDATE (SEQ, SEQ} , SEQ} , best);
END;
IF (Min(SEQ]) + Min(SEQ?) + 2 - best <2) (Theorem 4.5)
THEN FORM_ALL (0, 0, best, SEQ);

IF (Min(SEQ}) + Min(SEQ?) + 2 - best <2) (Theorem 4.5)
THEN
BEGIN

108

FORM_ALL (0, 1, best, SEQ);
FORM_ALL (1, 0, best, SEQ);
END:

/** Form set of candidate subsequences +#/
REDUCE SE@ according to theorem 4.5 & 4.8 ;
PARTITION SEQ into SEQ® and SEQ',
SUCH THAT Ezj € SEQ IFF d(Ezy) = Min(SEQ);
END;
END.

SUBROUTINE FORM_CANDIDATE (SEQ , SEQ;, SEQ, , best)
BEGIN
/** Form candidate subsequences to be included in SEQ *+/
FOR EVERY Exj€ SEQ;DO
BEGIN

locbest = large number;

done = false;
WHILE (Min(SEQ)) + Min{SEQ,) < locbest) AND not done DO (Theorem 4.6)
- BEGIN
/** Form candidate subsequences to be included in SEQ s [
IrA,, € E‘y, € SEQ, represent a coset in a,
THEN BEGIN
Let A, Aj, =LUL,
Form E‘zr, from Ié'y, by replacing every A, in E‘y, with LZIAW.
Form fz’y;. = ii‘z; v Evp, LoAyy.
END
ELSE BEGIN
FORM Eyj = Ez,Ey, Ay
where A, is an alignment function for [in ifx,, Ey, € SEQ,;
END;

/** Is it a possible candidate subsequence ? #/
IF d(Ey;,) < lochest
THEN
BEGIN
cendidalesequence = Eyh;
locbest = d(ii'y;.);
END;

109

/u DONE ? u/
IF EVERY Ey, € &Q_, has been used THEN done = true;
END;
INCLUDE candidate subsequence into SEQ;
END;
END;

SUBROUTINE FORM_ALL (i, j, best, SEQ)
BEGIN
[** Form All(A;;, Ay,) if necessary **/
/** Form all subsequences due to Al{A;;, Ay,) **/
/** ALL the subsequences form are of the same cost *#/
FOR EVERY 4,, € Ez, € SEQ; and Ay € Ey € SEQi DO
BEGIN
IF NECESSARY TO FORM Al(4,,, A,) DO
BEGIN
/** Form candidate subsequences to be included in SEQ **/
FOR EVERY coset in Al{A,,, Ay) DO
BEGIN
Let an arbitrary alignment function A, ; in the coset to represent the coset.
FORM Ez, = Ey;, Ez, A,
SEQ = SEQUE:
END;
EI'D;
END;

IF (best> d(Ez;)) THEN
best = d(Ezy);
END;

1

The complexity of the algorithm is clearly dependent on the number of intermediate
subsequences formed throughout the algorithm. For an estimate, we will assume reduction
according to theorems 4.7 and 4.9 is not made. This is necessary because it is difficult to
assess the number of intermediate subsequences eliminated by theorems 4.7 and 4.9. Further-

more, we will assume that the expression tree is a full binary tree with 2" leaf nodes. The

110

tree has a height of n, and the levels are labeled from 0,...,n-1 as shown in figure 4.5.

From theorems 4.10, 4.11, 4.12 and 4.13, it can be concluded that for the maximum
number of intermediate subsequences, there should not be any cosets in a?,,, and a‘,),,,. Further-

more, 22 . = 32', = 2, where vy, is at level i of the tree, for each node.

The maximum number of intermediate subsequences formed by concatenating every
subsequence in SEQ, and every subsequence in SEQ, with one of the last alignment functions
in the two subsequences is 2|a/X|aj. The maximum number of cosets that we have to
include in Ay is]g_?,,lxlg?slt, where ¢ is the maximum number of cosets in Al{A;;, Ay/),
Agl € g?’. and A;, € g_?,,. Therefore, the maximum number of intermediate subsequences
formed with an alignment function from one of the cosets is |, X|af,|t. Hence, for the
worst case,

the number of intermediate subsequences = 2|a,|X|af + t|a7 .| X a4,

where ¢ is the maximum number of cosets in ALL{A;, Ay,), Ag1 € g?, and Ay, € 29,,.

level | -—=—-

level 0 --

Figure 4.5 A full expression tree.

111

With no subsequence elimination according to theorems 4.7 and 4.9, the number of
subsequences in SET, = |A)|. Since only |a,| + |a] candidate subsequences will be produced
from the 2|a|X|of intermediate subsequences (Theorem 4.8), |44 =|a,| + |af

+ |a? 4l X|_¢328|t. The following theorem finds maximum |A).
Theorem 4.16

Maximum |4, formed for node, v; , which is at level i is
2‘(2"*‘1 . l)t + 2l.+l’
where ¢ = the maximum of the number of cosets in ALL(A;,A,) for all Az Ay and

A # A,

Proof :

Mathematic induction will be used to prove this theorem. Consider a node at level 0.
la} = |of = Ig(,’,,l = |32s| = 1. Therefore,
'.4.0' = o] + laf + 'Ee,ulxlﬁ?,a't)
=202 - 1)t + 2,
=2%(1) + 2! = t+1.
Now, for a node v, at level i, maximum |32| =2 (theorem 4.15). Suppose the
theorem is true for node up to level i-1. Consider node v at level i.
o] =laf =271 +2+ - 27 + 2.

e = lab).

Therefore,
|44l = |ad + g + |ald x|o?)¢

=227 1 +2+ -+ +27)e+ 2"+ 20x 2

112
=2(1+2+ - +2")t + 2 4 0%
=2(1+24+ - 2" #2042

= 2i(2"1 - 1)t + 27,

Theorem 4.17 :

The complexity of the algorithm is O(Ic‘), where k is the total number of internal

and external nodes.
Proof :

Now, the number of intermediate subsequences formed for node vj at level i is

20adx s + (2%) = 244 x|A] + {2%)

=2(2"'(2-1)t + 2% + 2%

Since we are concerned with complexity only, we only need be concerned with the factor

) " .
24724 The number of nodes at level A is given by -2—,2;1. The total number of intermediate

subsequences at level A is, hence, of the the order of 9"+3h-34 The total number of intermedi-

ate subsequences generated throughout the algorithm is then of the order of

é 21H-3i—3t = ﬂg‘:;_’_.:}_) I3

=1

Since there are k—;l = 2" leaf nodes in the k-tree (a full expression tree), the com-

plexity of the algorithm is O(k*).

]

113

For a large k-tree, Ay in algorithm III may still grow larger and larger, with vy getting
closer and closer to the root node, until it equals A. Thus, given a parallel program with large
expression trees, we may have to partition each large expression tree into smaller expression
trees where precedence relationship exists, and use the following heuristic algorithm to solve

for a near-optimal solution.

A Heuristic Algorithm

Consider the parallel algorithm shown in figure 3.2. Here, expression tree #2 is depen-
dent on expression tree #1. Since the optimum alignment function obtained by algorithm III
for v, in expression tree #1 may not be identity, we must appropriately determine the logical
transfers for A in expression tree #2 before solving for an optimum sequence of alignment
functions for expression tree #2. More often than not, algorithm III will produce a set of
optimum alignment functions for v4. Thus, the problem of determining which of them will
lead to an optimum solution, if it ever will, is complex. Hence, we have developed a heuristic
algorithm for finding a near-optimum solution when precedence relationship between expres-

sion trees exists.

Algorithm IV

1. FOR j =1 TO z = ”"no. of expression trees” DO
BEGIN
Determine optimum sequence of alignment functions for expression tree j.

Pick a no. of optimum alignment functions for the result vector of expression

tree j.
For each of them determine optimum sequences for other expression
trees as follows
FOR i=j+1 TO 2z DO
BEGIN
Determine all the logical transfers for the expression tree i
Determine optimum sequences of alignment functions for expression i

Arbitrarily pick an optimum sequence of alignment functions for expression tree i

114

END;
Keep the optimum sequence of alignment functions (for expres:.ion tree j) that
gives lowest total cost to the complete problem.

If j < zthen determine all the logical transfers for the expression tree j+1.
END;

1

The above heuristic algorithm has been tested on a number of example problems, its
performance has been compared with that of a total enumeration algorithm and it has been

found that in most cases, the heuristic algorithm generates optimal or near-optimal solutions.

The results of five experiments on the heuristic algorithm are shown in table III. In
each experiment, the parallel program contains three full binary trees, each with four leaf
nodes (figure 4.6). Each tree has the same vector variable for all its leaf nodes and the logi-
cal transfers for the leaf nodes are different. v, 2 < z < 3 is the result vector of tree #(z-1).
Thus, there is precedence among the three trees. The five parallel programs differ in their

communication requirements for their vector variables.

Table II1

Experiments on the Heuristic Algorithm

Parallel Optimum Resulting
program | communication cost communication cost
{ heuristic algorithm }

1 15 15
2 14 14
3 14 14
4 13 13
5 13 14

115

‘yuowuBife ejep Joj weidoid [ofrered € jo saa13 uotssardxyg 9y aindiyg

£ 4 4 4 4

A N T

V4N A

\

3%

116

4.4. Examples

The heuristic algorithm developed in this chapter was used to find alignment functions
for the lower triangular matrix inversion algorithm and the FFT algorithm described in

chapter 3.

For the lower triangular matrix inversion algorithm, alignment functions for uy, z}JQ,
w3, rlz3, E, wy, 1'04, ws, t'vs, F are determined to be 05 P,. Alignment functions for wg, 1'1.’5, wy,
wy, us, ‘.DB, uy, 1.09, W10, 1'1)10; w11, t'011, T, wyo, t'1?12. w13, '.1’13: W14, l.!114, wis, 1'015, w1, ’:Ulﬁv uy7,
w7 and S are determined to be P, Alignment functions for other variables, e.g., C, are
determined to be identity functions. The resulting communication cost of executing the
inversion algorithm is 21 routing steps. As in the data mapping case, the above solution is

determined to be optimum.

For the FFT algorithm described in chapter 3, the alignment functions for Bo and Bo
are determined to be P and ;’, respectively. For z.i,-, 1.9;, Wiy, Wig, 1 £ 1< 3, the alignment
functions are (}',—1)'&1' For fi,‘, é,-, w1, Wiy, 1 £ § < 3, the alignment functions are (;”l)m.
The alignment functions for ,;14,).(, w31 and wso are }.’"k‘. The alignment functions for
1.4.4, X, w3 3 and wj 4 are P‘XP;l The resulting communication cost is 8 routing steps, which

is the minimum communication cost possible.

CHAPTER 6

APPLICATIONS FOR OTHER NETWORKS

In this chapter, we will show how the algorithms developed in chapters 3 and 4 are
applicable to I', a class of multistage interconnection networks that is functionally equivalent
to the omega network. Two networks, the Ny network and the N, network, are defined to be

functionally equivalent [WuFe79] iff

@1 =R, QoRy,

where Q) is the set of admissible network permutations for the Ny network,
Q> 1s the set of admissible network permutations for the N, network,

R, and R, are permutations.

Any admissible network permutation of the N, network can be decomposed into three
functions, a permutation R, an admissible network permutation for N, and a permutation
Ry. For T, the class of multistage interconnection networks with which we are concerned, R,
= Ry = R{' and R, is in A. As an example, if & is equal to (1, the set of admissible net-
work permutations for the omega network, and 0, is the set of admissible network permuta-
tions for the indirect binary n-cube[Peas77] shown in figure 5.1, then B, = R, = R;y! is a bit

reversal permutation.

In the following two sections, we will be concerned with a network in I, the Ny net-

work. It is functionally related to the omega network as follows.

117

118

0 0
I 1
— 2
3 3
4 4
5 5
6™ 6
7 7
stage 0 stage 1 stage 2

Figure 5.1 A 2°%23 indirect binary n-cube.

@ =RQR,

where @ is the set of admissible network permutations for the N network,

R is a permutation in A and R = R™L.

In the following, we will let S; denote the SIMD multicomputer system with a N, net-
work. We will let Sy denote the SIMD multicomputer systen with an 2 network. We also
will let Dg and Dy be the distance functions associated with the omega network and the N,

network, respectively. The following lemma relates the two distance functions, D and Dy.

Lemma 5.1

Da(P) = DM{RPR), for P € A.

119

Proof :

Since the omega network and the N, network are functionally equivalent, P € Q iff

RPR € Q,. Therefore, Dg(P) = 1iff D\({RPR) = 1.

Now, DMP) =0 iff P = 1. Similarly, D(RPR) =0 iff RPR = 1. Clearly, P =1,

ift RPR = L Therefore, Do(P) = 0 iff D({RPR) = 0.

If Dg(P) = 2, then P is LUL decomposable. Let P = L,U,L.. P, therefore, can be
realized by the following two admissible physical transfers through the omega network,

L. and then L,U,.

Now, RL.R and RL,UiR both can be realized in one pass through the N; network.
Therefore, RL,U;RRL R = RL,U;L,R = RPR can be realized in two passes through the

Ny network.

Now, let RPR be a'permutation that cannot be realized in one pass through the N,
network. Clearly, P can be decomposed into L U Ly, where L 541, U 5#I ard Lg£L. Then
RPR =RL,ULR = RL;URRLR. RPR, therefore, can be realized by the following
two admissible physical transfers through the N; network,

RLAR and then RL4U R.

Therefore, every permutation in A can be realized in less than or equal to two passes

through the N; network, and Dg(P) = 2 iff D\{RPR) = 2.

Clearly, it follows that Do(P) = Dp{RPR), for P € A.

120

In section 5.1, we will show how data mapping algorithms developed in chapter 3 can be
used to map a parallel program onto Sj. In section 5.2, we will show how data alignment algo-

rithms developed in chapter 4 can be used for S;.

5.1. Data Mapping Algorithms

In this section, we will show how data mapping algorithms developed in chapter 3 can

be used to map optimally or near-optimally parallel programs onto S;.

We will first describe:a data mapping algorithm for parallel programs whose expression
trees : re independent. Algorithm V below optimally will map such a parallel program onto

S,.

Algorithm V

1. Transform the given parallel program by multiplying R by every logical transfer,

P, in the parallel program to give a corresponding new logical transfer RP .

2. Apply Algorithm.1 to map optimally each subproblem of the transformed parallel

program onto Sq.

3. Multiply each data mapping function, F;, thus obtained for RP; by R to give a
new data mapping function RF; This data mapping function RF; is used in the
new system Sy, for the corresponding logical transfer, P, in the original parallel pro-

gram.

1

121

The set of data mapping functions for S; thus obtained can be shown to map optimally
the given parallel program onto S;. In the following, we will first show that the total com-
munication cost of executing the transformed parallel program mapped onto S is equal to
the communication cost of executing the original parallel program correspondingly mapped
onto S; with the N, network. Then, we will show that the data mapping algorithm does

indeed produce an optimum solution.

Theorem 5.1

The total communication cost of executing the transformed parallel program
mapped onto S is equal to the total communication cost of executing the original paral-

lel program correspondingly mapped onto S;.

Proof :

The communication cost of executing a parallel program mapped onto a multicomputer
system is composed of the communication cost in realizing all of the logical transfers in the

parallel program and the communication cost in remapping.

Based on algorithm V, if P; is the logical transfer in the original parallel program, then
RP; is the corresponding logical transfer in the transformed parallel program. If F; is the
data mapping function for RP, in the transformed parallel program, then RF, is the data

mapping function for P; in the original parallel program for S;.

Now, the communication cost of realizing logical transfer, P, through the N; network is
DN{P,-FIIR). The communication cost of realizing the corresponding logical transfer, RP,
through the omega network is Dg(RP,F;1). Based on lemma 5.1,

DMP F{'R) = Dg(RP F7').

122

Let F; and F;,; be the data mapping functions for the sth and s+1th logical transfers
for a vector variable, v, in the transformed parallel program, respectively. Then, RF,; and
RF ., are the corresponding data mapping functions for the ith and i+1th logical transfers

for vin the original parallel program, respectively.

Now, the communication cost of realizing the remapping, RF;,F;'R, through the N,
network is D\{RF,,F;'R). The communication cost of realizing the corresponding remap-
ping, F,; F;' through the omega network is Dg(F; F;!). Based on lemma 5.1,

DMRF, 1 F;'R) = Dg(F ;1 F7)).

Since the remapping cost and the cost of realizing the logical transfers are equal in both
cases, the total communication cost of executing the transformed parallel program mapped
onto S is equal to the total communication cost of executing the original parallel program

correspondingly mapped onto S;.

1

Theorem 5.2

Algorithm V will optimally map a given parallel program onto an SIMD multicom-

puter system with a /V; network.

Proof :

Based on theorem 5.1, the communication cost of executing the transformed parallel
program mapped onto S is equal to the communication cost of executing the original parallel

program correspondingly mapped onto ;.

If the data mapping solution for the parallel program on the N; network is not

optimum, then there exists another data mapping solution with iower total communication

123

cost. This means that there exists a better data mapping solution for the execution of the
transformed parallel program on Sq. This contradicts the fact that algorithm I in chapter 3 is

optimum. Therefore, algorithm V is an optimum algorithm.

1

For parallel programs where precedence relationship between expression trees exists, the
heuristic algorithm in chapter 3 can be modified similarly. Since logical transfers for a vector
variable, v, may depend on the data mapping functions of other vector variables, the logical
transfers for v must not be transformed until all data mapping functions for those vector vari-
ables and the logical transfers for v are determined. The following heuristic algorithm is a

modified version of algorithx; Il in chapter 3.

Algorithm VI

1. Determine the precedence relationships between the vector variables and put them

in a sequence, vy,t, ... ,v; such that logical transfers for v; is not dependent on

any variables v;, ¢+ > j.

2. For j=1to z DO
BEGIN
Transform all the logical transfers, Py, for v; to RPy;.
Apply algorithm I to determine optimum sequences of data mapping functions for v
Pick limit number of optimum sequences for v; and for each of them determine

optimum sequences for other variables as followed :

For i=j4+1 TO 2 DO
BEGIN
Determine logical transfers for v;.

Transform all the logical transfers,Py;, for v; to RPy,.

124

Apply algorithm I to determine optimum sequences of data mapping functions for v;.
Arbitrarily pick an optimum sequence for v;.

END;

Keep the optimum sequence (for v;) that leads to the lowest total cost
for all the variables.
If j72, determine logical transfers for v;,,.

END;

5.2. Data Alignment Algorithms

A similar approach can be taken in adapting data alignment algorithms in chapter 4 for
S;. For parallel programs where no precedence relationship between its expression trees

exists, algorithm VII below provides an optimal solution.

Algorithm VII

1. Transform the given parallel program by multiplying R by logical transfers that
are for the leaf variables of the expression trees in the program. If P is a logical

transfer for a leaf variable, then PR is the corresponding new logical transfer.

2. Apply algorithm III to each expression tree of the transformed parallel program to

obtain an optimum sequence of alignment functions.

3. Each alignment function, A,, thus obtained for an internal node (variable v,) is

then to be multiplied by R to give a new data alignment function RA; for the

125

corresponding node v; in the original parallel program.

1

The set of alignment functions thus obtained can be shown to be optimum for the exe-

cution of the given parallel program on ;.

Notation 5.1 :

Let O be the set of optimum sequences of alignment functions obtained in step 3 of
algorithm VII, each sequence being for an unique expression tree in the given parallel pro-
gram. Let T be the corresponding set of optimum sequences of alignment functions obtained
in step 2 of algorithm VII, each sequence being for an unique expression tree in the

transformed parallel program.

1

As we did for data mapping, we will show that with O and T, the total communication
cost in executing the transformed parallel program on $; is equal to the total communication
cost in executing the corresponding parallel program on S;. We will then show that algorithm

VII does indeed produce an optimum solution.

Theorem 5.3

With O z1d T determined for a given parallel program, the total communication
cost in executing the transformed parallel program on S; is equal to the total communi-

cation cost in executing the original parallel program on S;.

Proof :

126

Based on algorithm VII, if P; is a logical transfer for a leaf variable in the original
parallel program, then PR is the corresponding logical transfer in the transformed parallcl
program. If A;is the data alignment function for an internal node (variable v;) in the
transformed parallel program, then RA; is the corresponding data alignment function for v; in

the original parallel program.

Now, the communication cost of realizing logical transfer, P;, through the N; network is
Dp{RA,P;), where node i (variable v,)is the parent node of the leaf node that has P, as its
logical transfer. The communication cost of realizing the corresponding logical transfer, RP,

through the omega network is Dy(AP;R). Based on lemma 5.1, D\{RAP;) = Do(AP R).

Let node j (variable v;) be the parent node of node i. Let A; be the data alignment
function for v; in the transformed parallel program. Then RA, and RA; are the correspond-
ing data alignment functions for v; and v; in the original parallel program, respectively. The
logical transfers for aligning v; to v; in the transformed parallel program and the original

parallel program are then A,-A}l and RA,-A}IR, respectively.

Now, the communication cost of realizing the logical transfer of RA,'A}lR, through the
N; network is DN(RAiFle). The communication cost of realizing the corresponding logical
transfer, AA;' through the omega network is Dg(AjA7'). Based on lemma 5.1,

DMRA/A'R) = Do(A;AT).

Since the communication costs of realizing the logical transfers are equa! in both cases,
given O and T, the total communication cost of executing the transformed p irallel program
on Sq is equal to the total communication cost of executing the corresponding original parallel

program on Sj.

(]

127

Theorem 5.4

The data alignment algorithm described for S; is an optimum algorithm that will

minimize the total communication cost of a given parallel program.

Proof :

Based on theorem 5.3, with O and T, the communication cost of executing the
transformed parallel program on Sy is equal to the communication cost of executing the

corresponding original parallel program on ;.

If the set of data alignment functions for the parallel program on the N, network is not
optimum, then there exists another set of data alignment functions that gives lower total
communication cost. This means that there exists a better set of data alignment functions for
the execution of the transformed parallel program on ;. This contradicts the fact that algo-

rithm III in chapter 4 is optimum. Therefore, algorithm VII is optimum.

1

For a parallel program where precedence relationship exists, the heuristic algorithm in
chapter 4 can be modified. Since logical transfers for the leaf variables of expression tree j
may depend on expression tree ¢, where i < j, they are not to be transformed until alignment
functions for expression tree i , where i < j, are determined. The following heuristic algo-

rithm is a modified version of algorithm VI in chapter 4.

Algorithm VIII

1. For j = 1 to z = no. of expression trees DO
BEGIN

Transform all logical transfers for the leaf variables of expression tree j.

128

Apply algorithm III to determine optimum sequences of alignment functions
for expression tree j.
Pick lfimit number of optimum sequences for expression tree j and for each of

them determine optimum sequences for other variables as followed :

For t=354+1 TO z DO
BEGIN
Determine logical transfers for the leaf variables of expression tree 1.
Transform all the logical transfers of the leaf variables.
Apply algorithm III to determine optimum sequences of alignment functions
for expression tree .

Arbitrarily pick an optimum sequence for expression tree i.

END;

Keep the optimum sequence (expression tree j) that leads to the
lowest total cost to the complete program.

It j5£2, determine logical transfers for expression tree j.

END;

CHAPTER 6

SUMMARY AND CONCLUSIONS

The total execution time of a parallel algorithm on a multicomputer system can be bro-
ken down into the actual computation time and the time of interprocessor communication.
On an SIMD multicomputer system, the computation time usually is dependent only on the
capability of the processing elements, but the communication time is dependent on a number
of factors, such as the interconnection network and the data storage scheme. In this thesis,
the problem of minimizing the total communication time in parallel computations has been

studied for a class of parallel algorithms and a class of interconnection networks.

In chapter 1, the entire SIMD system, including the relevant components from both
hardware and software, is characterized. Based on the characterization, the communication

cost minimization problem is formulated.

In chapter 2, a representation scheme for A, a class of important permutations with
which this thesis is concerned, is developed. Based on the representation scheme, criterion for
a permutation in A to be realizable in one pass through the omega network is determined. A
method for static mapping of a single vector variable onto an SIMD multicomputer system
with an omega‘network is developed. The method is useful for a large class of networks that
are functionally equivalent to the omega network. However, it requires solving a system of

nonlinear equations.

129

130

In chapter 3, an SIMD multicomputer system with an omega network is assumed.
Given a parallel program where precedence relationship between its expression trees does not
exist, the program is partitioned into independent subproblems, each specifying all the com-
munication requirements for a different vector variable in the parallel program. An optimum
nonstatic data mapping algorithm for such subproblems is developed. Applying the algorithm
to each subproblem yields data mapping functions that map the program optimally onto the
SIMD system. For parallel programs where precedence relationship between expression trees
exists, a heuristic algorithm that is based on the optiinum data mapping algorithm is

developed.

In chapter 4, an SIMD multicomputer system with an omega network is also assumed.
Given a parallel program where precedence relationship between its expression irees does not
exist, the program is partitioned into independent subproblems, each containing a different
expression tree in the parallel program. A data alignment algorithm that will minimize the
communication cost associated with an expression tree is developed. Applying the algorithm
to each subproblem again yields an optimum solution to the communication cost minimiza-
tion problem. For parallel programs where precedence relationship between expression trees
exists, a heuristic algorithm that is based on the optimum alignment algorithm is also

developed.

The two heuristic algorithms developed in chapters 3 and 4 are found to generate
optimal or near-optimal solutions for most of the example problems. In fact, optimal solu-
tions are obtained for the matrix inversion program and the FFT program presented in

chapter 3.

In chapter 5, it is proved that the algorithms developed in chapters 3 and 4 are also

adaptable for any SIMD multicomputer system interconnected with a network from I.

131

In conclusion, the problem of minimizing the interprocessor data communication in
parallel computation for a class of parallel algorithms and a class of interconnection networks
has been fully investigated. Useful and practical algorithms have been designed for solving
the problem. The methodologies developed are widely applicable to many parallel algorithms
and many useful interconnection networks. Instead of using two approaches simultaneously
for a parallel program and then choosing the one that gives lower total communication cost,

one may choose to use only one of the approaches.

Suggestions for Further Research

The next logical step to this research is to develop a representation scheme for a larger
class of permutations. With the new representation scheme, one may then develop techniques
to minimize the communication costs of a more general class of parallel a’gorithms and possi-
bly a more general class of interconnection networks. Based on the current representation
scheme, we also can develop techniques for other networks that are functionally equivalent to

the omega network.

The question of whether given a set of permutations, there exists a data mapping func-
tion such that each of the permutations in the set can be realized in one or zero pass is still
open. Some necessary conditions have been established and are detailed in the appendix.

However, sufficient conditions have not yet been established.

APPENDIX

132

APPENDIX

DATA MAPPING FUNCTION FOR

A GIVEN SET OF PERMUTATIONS

The question of whether given a set of permutations, P, for a vector variable v, there
exists a data mapping function for v such that each of the permutations in P can be realized
in ome or zero pass through an omega network is still open. However, in the following

theorems, some necessary conditions are established.

Theorem A.1

With the mapping function F, the set of all permutations Pp, that can be realized in
one or zero pass through an omega network is given by

Pp={L,UF |L,eL8U,eU}.

The cardinality of Ppis 2"

Proof :

Clearly, PF™! is in Pp iff PF! is LU decomposable. If P; = LUF!, then PF! is
LU decomposable. Let PF! =L.U; Then P; = L ,U;F. Therefore,

Pp={LUF |L,€LBU, €U }.

ﬂ2—ﬂ 1112-4"1}

Since there are-2 2 Usand2 2 L’s,| Pp| = on’

133

134

Corollary A.1.1

Given P, a set of permutations for v, if | _If] is greater than 2"2, then there does not
exist a data mapping function for v such that every permutations in P can be realized in

one or zero pass through an omega network.

L1

The following two basic lemmas can be obtained easily from linear algebra. Hence, we

merely state them here.
Lemma A.1

The set of all lower triangular unit matrices, L, is a subgroup of A.

Lemma A.2

The left coset relation, Ry, defined by R, = { < P;,P; > | P, €LP, }, is an

equivalence relation on A.!

1

Ry, partitions A into equivalence classes. It is also clear that if [P;] denotes the

equivalence class containing P; € A, then [P;] in A equals the coset LP;

! Based on lemma 3.2, A is a group under matrix multiplication (modoulo 2).

135

Theorem A.2
(n2-n)
The equivalence relation Ry partitions Pp into 2 2 equivalence classes of
(n2+1n)

2 2 permutations.

Proof :

Consider P; € Pp. Let PF! =LU. Then I_Jl"‘,'l“'l =LU and LP; =[P;| C P

!"2'*") !n2+n)
Since |L| =2 % , LP;=|[P;] is a partition of Pp containing 2 2 permutations.
(n2+1)
Every permutation in Pp belongs to a partition of size 2 2 in Pp. Therefore, Ry, parti-
ﬂ2—ﬂ !”2+ﬂ’

tions Ppinto 2 2 equivalence classes of size 2 2

Corollary A.2.1
()
Given P, a set of permutations for v, if R, partitions P into more than 2 2
equivalence classes, then there does not exist a data mapping function for v such that

every permutations in P can be realized in one or zero pass through an omega network.

1

BIBLIOGRAPHY

136

[AgLi78)

[Ager77]

[Bokh81]

[BoMu75)

[Budn71]

[Chen81]

[Cool03)

[Flyn72]

[Gent78]

[Hers64]

[Hell78]

[IrCh82]

[1rCh80]

[Ir'Wus2]

137

BIBLIOGRAHPY

T. Agerwala & B. Lint, "Communication in parallel algcrithms for boolean
matrix multiplication,” IEEE Parallel Processing Confer-nce 78, 1978, pp.
146-153.

T. Agerwala, ”Communication, computation, and computer architecture,” 1977
Int'l Communication Conference Rec., Chicago, June 1977.

S. H. Bokhari, "On the mapping problem,” IEEE Trans. Computers, C-30, pp.
207-214, March 1981.

A. Borodin & I. Munro, "The computational complexity of algebraic and
numeric problems,” American Elsevier, New York, 1975.

P. Budnik & D. J. Kuck, "The organization and use of parallel memories,”
IEEE Trans. on Computers, December 1971, pp1566-1569.

K.-W Chen, "Minimization of interpr« cessor communication in parallel compu-
tation,” Ph.D. dissertation, U. of Mict igan, Ann Arbor, 1981.

J. W. Cooley & J. W. Tukey, "An ulgorithm for the Machine Calculation of
complex Fourier series,” Mathematics of Computation, Vol. 19, 1965.

M. Flynn, "Some computer organizations and their effectiveness,” IEEE Trans.
Computers, C-21 , pp. 948-960, Sept. 1972.

W. M. Gentlemen, "Some complexity results for matrix computations on paral-
lel processors,” Journal of the ACM, pp. 112-115, January, 1978.

I. N. Herstein, "Topics in algebra,” Lexington, MA, Xerox College, 1964.

D. Heller, "A survey of parallel algorithms in numerical linear algebra,” SIAM
Review, Vo0l.20, No. 4 , October 1978, pp740-777.

K. B. Irant & K.-W. Chen, "Minimization of interprocessors communication for
parallel computation,” IEEE Trans. Comp., Vol. ¢-31, #11, November 1082.

K. B. Irani & K.-W. Chen, "A Jacobi algorithm and its implementation on
parallel computers,” Proc. of 18th Annual Allerton Conference on Comm.,
“ontrol, Computing, Oct. 1980.

K. B. Irani & W. S-F. Wu,”A data mapping methodology for enhancing the
capability of a class of multistage interconnection networks”, Proceedings of
the 1982 Real Time Systems Symposium, Los Angeies, CA, pp. 101-109.

[Kuck78]

[KuSt77]

[Kuhn79)

|[Kuhn80

[Lawr75]

[Lenf78]

[LuBagg]

[NaSas0]

[N: Sa81A]

[NaSa81B|

[Park80)

[Peas68]

[Peas77]

[Sieg78]

[Smit78]

138

D. J. Kuck, "The structure of computers and computations,” Vol. 1, John
Wiley & Sons, 1978.

H. T. Kung & D. Stevenson, "A software technique for reducing the routing
time on a parallel computer with a fixed interconnection aetwork,” High Speed
Computer and Algorithm Organization, (D.J. Kuck et al. editors), Academic
Press, N.Y., pp. 423-433, 1977.

R. H. Kuhn, "Efficient mapping of algorithms to single-stage interconnec-
tions,” 7th Int’'l Symp. on Computer Architecture, 1979.

R. H. Kuhn, "Transforming algorithms for single-stage and VLSI architec-
tures,” 1980 Interconnection Network Workshop, p11-17.

D. H. Lawrie, "Access and alignment of data in an array processor,” IEEE
Trans. on Comp., Vol. ¢-24, #12, December 1975, pp. 1145-1155.

J. Lenfant, "Parallel permutations of data : A Benes network controi algorithm
for frequently used permutations,” IEEE Trans. Comp., Vol. C-27, #7, July
1978, pp. 637-647.

S. F. Lundstrom & G. H. Barnes, A controllable MIMD architecture,” IEEE
Parallel Processing 1980, pp. 19-27.

D. Nassimi & Sartaj Sahni, "Parallel algorithms to set-up the Benes permuta-
tion network,” 1980 Interconnection Network Workshop.

D. Nassimi & Sartaj Satni, "Data broadcasting in SIMD computers”, IEEE
Trans. Computers. Vol. 2, 1981.

D. Nassim1 & Sartaj Sahni, "Benes network and parallel permutation algo-
rithms,” IEEE Trans. Computers, Vol. 5. 1981.

D. S. Parker, "Notes on shuffle/exchange type networks,” IEEE Trans. Comp.
Vol. C-26, pp 458-473,May 1977.

M. C. Pease, "An adaptation of the fast Fourier transform for parallel process-
ing,” Journal of the ACM, Vol. 15, pp. 252-264, Apr. 1968.

M. C. Pease, "The indirect binary n-cube microprocessor Array,” [EEE Trans.
Comp., ¢-26, #5, May 1977, pp. 458.

H. J. Siegel & S. D. Smith, "Study of multistage SIMD interconnection net-
works,” 5th Annual Symp. Computer Archecture, Apr. 1978, pp223-229.

S. D. Smith & H. J. Siegel, "Recirculating, pipelined, and multistage SIMD
interconnection Networks,” 1978 Parallel Processing Conference.

[Sieg79)]

[Schw80)

[StonT71]

[Swan74]

[ThKu77]

[WuFe78]

[WuFe79]

139
H. J. Siegel, "Partitioning permutation networks : the underlying theory,”
IEEE Parallel Processing, 1979, pp. 175-184.

J. T. Schwartz, "Ultracomputers”, ACM Transactions on Programming
Language and Systems, Vol. 2, No. 4, October 1980.

H. S. Stone, ”Parallel processing with the perfect shuffle,” IEEE Trans.
Comp., ¢-20 #2, Feb. 1971, pp. 1563-161.

R. C. Swanson, "Interconnections for parallel memories to unscramble p-
Ordered vectors,” IEEE Trans. on Comp. Nov. 1974.

C. D. Thompson & H. T. Kung, "Sorting on a mesh-connected parallel com-
puter,” Communications of the ACM, April 1977, pp. 263-271.

C.L. Wu & T. Y. Feng, "Routing techniques for a class of multistage intercon-
qection networks,” 1978 Parallel Processin Conference.

C.L. Wu & T.Y. Feng, "Routing techniques for a class of multistage interco -
neciton networks,” 1979 Parallel Processing Conference, pp 197-205.

