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The characteristic singular �eld at the tip of a crack in a linear elastic, homogeneous
material was investigated by Williams,1 who studied the planar stress �eld in a traction
free wedge with vertex angle 2�. When � = �, the traction free surfaces of the wedge fold
into a \mathematically sharp" crack with vanishing tip radius, resulting in a stress �eld

that varies with distance, r, from the crack tip as r�
1
2 . In this paper, a traction free plane

stress wedge with a discrete cohesive zone along the intended crack-path is studied. Of
interest is the inuence of the cohesive zone on the crack tip stress �eld. Further, the
inuence of the cohesive zone on the strain energy release rate is also investigated. Two
example problems are studied; a double cantilever beam and an in�nitely wide plate with
a through-the-thickness crack. The objective of this paper is to examine the conditions
under which a cohesive zone model can be used to represent an intended crack-path without
unduly altering the original problem being investigated.

I. Introduction

Computational modeling of cracked bodies and layered structures with interfaces are of importance in the
analysis of structures made of composite materials. In order to simulate the transition between a continuum
and a non-continuum in an uninterrupted manner, the cohesive zone modeling (CZM) framework has gained
popularity and is being incorporated into commercial �nite element (FE) software packages (two examples
are the commercial �nite element packages, ABAQUS and ANSYS) that are used for stress analysis. In
the CZM framework, originally introduced by Barenblatt,2 the material ahead of the intended crack path
is replaced by elements that have a prescribed traction law as discussed in, for example, Gustafson and
Waas,3 Song and Waas,4,5 Qui et al.,6 Li et al.7 and Freed and Banks-Sills.8 This traction law is supposed
to capture the physical attributes of the material or interface (for example, in case of adhesively bonded
joints, the adhesive layer can be modeled as a CZ layer, see, Gustafson and Waas3), usually, through two
parameters; a cohesive strength, �c and a fracture toughness, Gc. Thus, when a CZM strategy is used,
the original boundary value problem that contains the body (B0)to be analyzed is replaced by a new body
(B1)that has a CZM contained within it. In the case of a cracked body, (B1), two issues are of concern:
(a) To what extent are the features of the crack tip stress �eld that is originally contained in (B0) di�erent
than in (B1)? (b)How is the strain energy release rate (SERR) corresponding to (B0) di�erent from that
which is computed in (B1)? In other words, to what degree is the SERR of (B0) di�erent from that which
is computed in (B1)? Some of these issues for elastic-plastic fracture have been addressed in recent work by
Sun et al.9,10 In particular, these authors have considered two issues; (1) when CZM is used, the placement
of CZM elements along the intended crack path can lead to an alteration of the sti�ness of the original body
that is to be studied, and, (2) Since the traction-separation laws used for traditional CZM modeling, which
start with a vanishing traction at vanishing separation, are in conict with the requirement of an intense
stress �eld that was present in the original body (B0) that is being modeled, to what extent is the choice of
traction law inuencing computational results that are generated using CZM strategies ?
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The objective of this paper is to examine these questions by analyzing a plane stress bi-material wedge
with a CZM added along the interface of the two materials. The CZM is described by traction-separation laws
for the opening (mode I) and sliding (mode II) modes. Both, homogenous (when the two wedge materials
are the same) and bi-material wedges are considered and their response to crack initiation is studied for
di�erent values of CZM parameters. As examples, a double-cantilever beam and an in�nitely wide plate
with a through crack subjected to tensile forces are studied, both of which correspond to mode I fracture.
The stress �elds, SERR and stress intensity factors, (SIFs) are compared for specimens with and without
the CZM to understand the inuence of using a CZM in computational modeling of structures.

II. Problem Formulation

The original model of the plane stress wedge used in Williams1 to analyze the stresses at the crack tip in
a plane stress problem, is shown in Fig. 1. When � approaches � in zone 1, and �� in zone 2, the wedge can
become a traction free, mathematically sharp crack . The Williams model is replaced by two symmetrical
wedges (symmetric about the interface,) with di�erent homogeneous materials in each wedge. These wedges
are separated by a CZM that is represented as a continuous bed of nonlinear 1D cohesive elements, which
have a prescribed traction-separation relation, as shown in Fig. 2.

The case of a free-free wedge is considered here. That is, traction-free surfaces are considered, so that
for appropriate wedge angles, a crack that has a CZM ahead of it can be simulated.

The governing equilibrium �eld equations and associated boundary and matching conditions are derived
using the principle of virtual work. The derived equations are solved for the case of linear elastic materials,
with a CZM that has a triangular traction-separation law, with an initial linear sti�ness. A brief overview
of the derivation is given below.

The incremental strain energy, �U , of the two wedges, the incremental work of tractions in the CZM, and
the external incremental boundary work, �WE , for the entire body, with zero body forces, is as given below.

�U =
Z


1

� : ��dv1 +
Z


2

� : ��dv2 +
Z
S1

i

TCZMn �uds+
Z
S1

i

TCZMs �vds (1)

where, �u is �(u1 � u2) , �v is �(v1 � v2), TCZMn is the normal traction in the cohesive zone and TCZMs is
the shear traction in the cohesive zone.

�WE =
Z
So

1

T 1o
1 �v1ds+

Z
So

1

T 1o
2 �u1ds�

Z
So

2

T 2o
1 �v2ds�

Z
So

2

T 2o
2 �u2ds (2)

�WE is the external incremental work done, by the tractions fT 1o
1 ; T 1o

2 g on the outer surface of zone 1 and
the tractions fT 2o

1 ; T 2o
2 g on the outer surface of zone 2, respectively. �u1 and �u2 are the kinematically com-

patible incremental displacements in the two zones in the � direction, and �v1 and �v2 are the kinematically
compatible incremental displacements in the two zones in the r direction. The strain energy and the external
work done for linear elastic materials take the following form,

U =
Z


1

� : �dv1 +
Z


2

� : �dv2 +
Z
S1

i

1
2
k2[u1 � u2]2ds+

Z
S1

i

1
2
k1[v1 � v2]2ds (3)

External work :
WE =

Z
So

1

T 1o
1 v1ds+

Z
So

1

T 1o
2 u1ds�

Z
So

2

T 2o
1 v2ds�

Z
So

2

T 2o
2 u2ds (4)

Using the principle of virtual work, we get the equations of equilibrium and the corresponding boundary
and matching conditions for each of the two wedges. The equations of equilibrium are,

1
r

@��
@�

+
@�r�
@r

+
2�r�
r

= 0 in 
1 (5)

@�r
@r

+
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r
+
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1
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+
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+
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= 0 in 
2 (7)
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= 0 in 
2 (8)

and the corresponding 4 boundary and 4 matching conditions are,

�� = T 1o
2 on So

1 (9)

�r� = T 1o
1 on So

1 (10)

�� = T 2o
2 on So

2 (11)

�r� = T 2o
1 on So

2 (12)Z
Si

��ds =
Z
Si

k2[u1 � u2]ds on S1
i (13)Z

Si

�r�ds =
Z
Si

k1[v1 � v2]ds on S1
i (14)

��jS1
i

= ��jS2
i

(15)

�r�jS1
i

= �r�jS2
i

(16)

These equations are �rst solved for linear elastic materials. Furthermore, it is assumed that the initial
sti�ness of the CZM is linear, conforming to a triangular traction-separation law. By choosing the following
de�nitions for the stresses, �r = 1

r
@�
@r + 1

r2
@2�
@�2 ; �� = @2�

@r2 and �r� = � @
@r ( @�r@� ), along with the equilibrium

equations satis�ed identically, we get the classical bi-harmonic equation by enforcing the compatibility of
strains as,

r4�(r; �) = 0 (17)

to be satis�ed in each of the two zones. Therefore, guided by the approach in Williams,1 a solution to the
above equation is assumed to be:

�(r; �; �) = r�+1[a1sin(�+ 1)� + b1cos(�+ 1)� + c1sin(�� 1)� + d1cos(�� 1)�] in 
1

= r�+1F1(�;�)
(18)

and

�(r; �; �) = r�+1[a2sin(�+ 1)� + b2cos(�+ 1)� + c2sin(�� 1)� + d2cos(�� 1)�] in 
2

= r�+1F2(�;�)
(19)

The 4 boundary and 4 matching conditions for the entire wedge with the cohesive zone with an including
angle equal to 2�, in terms of r; � coordinates are as follows :

��1 = 0 at � = � (20)

�r�1 = 0 at � = � (21)

��2 = 0 at � = �� (22)

�r�2 = 0 at � = �� (23)

��1 = ��2 at � = 0 (24)

��1 = ��2 at � = 0 (25)

For the last two conditions, we introduce a characteristic length denoted by ‘L’. This length can be chosen
based on the CZM properties, for example, and is de�ned as, L = EGIC

�c
2 . Alternatively, this length can also

be de�ned as L = 1
2� (KI

�Y
)2 in case of elasto - plastic material.A circular region of diameter, L, surround-

ing the crack tip, is referred to as the zone of dominance and it is expected that this region engulfs any
dominant singularities in the problem. For the purpose of computation presented here, L is estimated as,
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L = 66mm,using L = EGIC

�c
2 , where, E = 3:3GPa,GIC = 500N=m and �c = 5MPa. The 7th and the 8th

boundary conditions are now cast in integral form, to be valid within the zone of dominance as,Z L

0

��1dr =
Z L

0

TCZMn dr (26)

and, Z L

0

�r�1dr =
Z L

0

TCZMs dr (27)

Applying the above 8 boundary conditions, 8 homogenous equations in 8 unknowns(a1; b1; c1; d1; a2; b2; c2; d2)
are obtained, and these equations are cast as a system of linear algebraic equations,

A ~X = ~0; (28)

where, ~X is a vector of the unknowns. For non-trivial solution, the determinant of A must vanish, which
results in an equation for �, with other material and CZM properties entering the equation. The solution
provides � for various combinations of material properties and CZM parameters. To start with, in the next
section, the homogeneous case is considered �rst (with same material properties for the two bodies attached
through a CZM).

A. Traction - Separation Law

The traction separation law used is a triangular law, and is adopted from Xie and Waas11 with a maximum
traction �c and a fracture toughness GIC as shown in Fig. 3.

With known values of �c,GIC and �1, the corresponding values of initial sti�ness of the cohesive zone is
determined. That is, from the triangle in Fig. 3, the value of ‘k’ is determined as follows: The area of the
triangle is GIC and is given by,

GIC =
1
2
�c�

? (29)

The slope ‘k’ is given by,
k =

�c
�1

(30)

Keeping the area of the triangle constant, i.e. GIC constant, �1 is varied to obtain di�erent values of initial
slope ‘k’ as shown in 4. That is, when �1 = 0, the maximum sti�ness kmax = 1, and when �1 = �?, the
minimum sti�ness kmin = �c

�? . This implies that the values of sti�ness can be varied between kmin and kmax,
�c

�? < k <1.

III. Homogeneous Case

The homogenous case is considered �rst. It is assumed that both zones 1 and 2 in the body have the
same material properties and are de�ned by the same Lam�e constants, i.e. �1 = �2. Also, the initial sti�ness
of the cohesive zone is assumed to be equal in the opening and sliding modes. As shown in the previous
section, with the known values of GIC and �c, we have a range of values for k. The range of sti�ness varies
from 10 to 1( practically, a very high value � 105). Solving, for � in the determinant of A, for di�erent
values of k and �xing the characteristic length to 66 mm, we plot � against k as shown in Fig. 5. We notice
here that, as k varies from 10 to 105 on a logarithmic scale, � varies between 1 and 0.5. This matches with
the results given in Williams.12 That is, for the wedge shown in Fig. 1, when the vertex angle between the
faces of the wedge is 2�, � is 0.5 for a free-free homogeneous wedge without a CZM. For example, the ��1
along the CZM/crack path is given by,

��1 = r��1[�(�+ 1)F1(� = 0)] (31)

and, ��1 for the case with the CZM is given by,

��1 = r��1�(�+ 1)(b1 + d1) (32)

where, b1 and d1 are constants which depend on the material properties of the wedges. A plot of �� against
length along the CZM path from CZM model and the Williams solution1 for di�erent values of k, are plotted
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in Fig. 6. Here, as the sti�ness of the cohesive zone is increased tending to1, the value of � tends towards 0.5,
which gives a r�

1
2 singularity in stress �eld in the vicinity of the crack/wedge tip. However, for other values

of k, it is seen that the crack tip singularity is di�erent from -0.5 and is, in general, weaker. Consequently,
it is expected that both the stress intensity factor and SERR will be a�ected, since these depend on the
strength of the singularity.

Also, the variation of displacement jump normal to the crack length and along the interface between the
wedges is examined for di�erent values of initial CZM sti�ness. The plot of �u� along r for di�erent values
of k at � = 0 obtained from CZM model as well as Williams solution1 is shown in Fig. 7. We notice that
as the initial sti�ness of cohesive zone is increased, the displacements get closer to the Williams solution.
From the above it can be inferred that in order to obtain the same behavior in stresses and displacements
in a model with CZM elements, it is necessary that the initial sti�ness of cohesive zone is very high, and we
characterize this initial sti�ness in terms of a non-dimensional parameter, �, later in the paper.

IV. Bi-Material Case

In this section, the two wedges separated by the CZM are considered to possess di�erent material prop-
erties. This is controlled by taking �1 6= �2. We introduce a parameter, �, which is one of the Dundur’s
Parameters adopted from Suo,13 and is de�ned as,

� =
�(�2 + 1)� (�1 + 1)
�(�2 + 1) + (�1 + 1)

(33)

where, � = �1
�2

, �i = 3��i

1+�i
and i=1,2 corresponding to each of the zones 1 and 2. By simple manipulations

we get � as follows,

� =
�1

�2
=

(1 + �)(�1 + 1)
(1� �)(�2 + 1)

(34)

Therefore, substituting for �1 in the determinant, we get an expression in terms of �; �2; �; �1; �2; k1; k2 and
L. For a range of values of �, and for chosen values of �1 and �2, and for di�erent values of k (k1 = k2),
we �nd corresponding values of �. A surface plot of � vs k, for varying � is shown in Fig. 8. Here, the
value of � describes the bi-material property of the wedge, i.e., for � = 0, the wedge becomes homogenous.
So, it can be seen in Fig. 8 that for a range of values of �, the value of � gets closer to 0.5 as the sti�ness of
the cohesive zone is excessively increased. This implies that even for a bi-material wedge, a similar trend is
observed as in the case of a homogenous wedge, with the strength of the singularity dependent on the initial
CZM sti�ness, k.

V. Example Problems

In this section, a double cantilever beam con�guration and a thin plate with a central crack are analyzed
to illustrate the �ndings presented earlier.

A. Double cantilever beam

The DCB with CZM is shown in Fig. 9. Forces \P" are applied to either end of the DCB arms, and are pulled
apart causing bending of DCB arms (anges). The stress intensity factor (SIF) of the model is calculated as
a function of the sti�ness of the cohesive zone a. To compare the models with and without cohesive zones,
we calculate the percentage error in the values of SIF (denoted as, Err), as follows :

The analytical model of the DCB is as shown in Fig. 10. Strain energies and displacement �elds of the
two parts 1 and 2 are given by,

U1 =
Z a

0

1
2
EI(w1

00)2dx (35)

and,

U2 =
Z L

a

1
2
k(w2)2dx+

Z L

a

1
2
EI(w2

00)2dx (36)

aNote that for an isotropic material under mode-I fracture, SIF is related to SERR by, GI =
(1��2)
E

K2
I for plane strain and

GI =
K2

I
E

for plane stress
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where,

w1 =
1
6
P

EI
x3 +�1

2
P (a2�2 + 2a�+ 1)

EI�2
x+

1
6
P (2a3�3 + 6a2�2 + 6�a+ 3)

EI�3
(37)

w2 = e(��x)[
1
2

(cos(�a) + sin(�a))(sin(�a)2 � 1� �a+ 2�asin(�a)2 + cos(�a)sin(�a))P
(2sin(�a)2 � 1)�3e(��a)EI

cos(�x)

+
1
2
P (�cos(�a) + sin(�a))(cos(�a)sin(�a)� �a+ 2�asin(�a)2 + sin(�a)2)

(2sin(�a)2 � 1)�3e(��a)EI
sin(�x)]

(38)

where,

� = (
k

4EI
)

1
4 (39)

Then, the total strain energy is given by,

U =
Z a

0

1
2
EI(w1

00)2dx+
Z a+y

a

1
2
k(w2)2dx+

Z a+y

a

1
2
EI(w2

00)2dx (40)

Let,

X =
x

a
; Y =

y

a
;W1 =

w1

h
;W2 =

w2

h
; k =

�EI

ta4
; �P =

Pa3

hEI
(41)

The corresponding non-dimensional strain energy is,

�U =
U

2
a3

EIh2
(42)

The stress intensity factor (SIF) is de�ned as,14

K2
I = E

1
t

@U

@a
(43)

Therefore, the non-dimensional SIF is,

KInd
= KI

r
(
ta4

h2E2I
) (44)

Now, considering the model without the cohesive zone, the equation for the SIF is given by,

KIa = Pa

r
1
It

(45)

and, the non-dimensional SIF is,
KIa�nd

= �P (46)

The material chosen for the beam has Young’s modulus E = 70GPa. The dimensions of the beam are
as follows: a = 0:5m;h = 0:05m; t = 0:05m. The value of the non-dimensional force, �P = 100. The value
of the non-dimensional sti�ness ‘�’ for the cohesive zone is varied from 10 to 109. The percentage error in
the values of KInd

and KIa�nd
is calculated, and the error is plotted against the entire range of sti�ness of

the cohesive zone in Fig. 11. We notice that the error tends to zero as the initial sti�ness of the cohesive
zones tend to 1. Moreover, in the model with CZM, the contribution of the springs to the SIF is studied.
A plot of SIF contribution of the springs is plotted against the total SIF of the model as shown in Fig. 12.
It is noticed that, as the sti�ness of the springs is increased, its contribution to SIF reduces as expected.
The tip displacement is also plotted against tip load for a range of spring sti�ness, and is compared to the
DCB with no springs in Fig. 13, illustrating how the initial sti�ness of the CZM alters the load-deection
response, which is a measure of the structural sti�ness.
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B. In�nitely wide thin plate with a central crack

The in�nitely wide plate with a center crack is shown in Fig. 14. We again calculate the percentage error in
the values of SIF for a model with and without a cohesive zone as shown below.

Using the principle of superposition as shown by Zok,15 the SIF of the plate is determined by adding the
SIF of two di�erent plates as shown in Fig. 15. SIF for part A is given in Anderson14 and, is as follows:

KIA
= �o

p
�a (47)

For part B, the strain energy is given by the following expression:

U = �
K2
IA
B

�k
[log(

a

a� L
)] (48)

Thus, the SIF for part B is,
K2
IB

E
=

1
B

@U

@a
= �

K2
IA

�k
[
1
a
� 1
a� L

] (49)

K2
IB

E
=

�2
oL

k(a� L)
(50)

Therefore,

KIB
= �o

s
EL

k(a� L)
(51)

The total SIF of the plate is,
KI = KIA

+KIB
(52)

KI = �o
p
�a+ �o

s
EL

k(a� L)
(53)

Thus, the error in the SIF is KIB

KIA
and is given by,

error =

s
EL

�ka(a� L)
(54)

The percentage error is plotted against the entire range of sti�ness of the cohesive zone in Fig. 16. We
observe the same pattern of response in the error as in the case of the DCB.

These results show that the insertion of a CZM can (and does) alter the deformation response of a body
in a computational modeling CZM framework. On the other hand, methods which model the body as a
continuum but transition seamlessly to a CZM strategy later in the loading history - such as in the VMCM
method,16 does not lead to an alteration in the responses of the body being modeled. From the P-� curve
for the DCB shown in Fig. 13, it is evident that the initial sti�ness of the cohesive zone a�ects the load
deection behavior. It is noticed that as the CZM sti�ness becomes greater than the elastic modulus of the
DCB material, the P - � curve converges to the one without CZM. Again, we quantify the necessary increase
in the initial CZM sti�ness in terms of � as detailed later.

VI. E�ect of the initial CZM sti�ness, k

The analysis of the wedges with CZM inserted is conducted for three di�erent characteristic lengths,
(L = 66 mm, 33 mm, 3.3 mm). The stress �� is determined for all the three lengths for two di�erent
cases : (1) Varying the critical traction of the cohesive law (�c) with constant elastic modulus, E, of the
wedges, (2) Varying elastic modulus of the wedges with constant critical traction of the cohesive law, (�c).
The stresses computed are compared with the stress �� from the Williams solution (without a CZM) at a
distance r = 2 mm from the crack tip at � = 0. In order to get these values to match within a desired
percentage of 0.3 percent, the initial sti�ness of the cohesive zone required is determined for each case. Two
new non-dimensional parameters are constructed as follows : � = kGIC

�2
c

and E=�c, which will aid towards
determining a measure for k.
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Properties used in case 1 are GIC = 0:5 N
mm and E = 3:3 GPa. The �c corresponding to the three

di�erent characteristic lengths, L, are 5, 7.07 and 22.36 MPa. The initial sti�nesses are determined to be
5e3,1e4 and 1e5 N

mm3 , respectively. Similarly, properties used in case 2 are GIC = 0:5 N
mm and �c = 10 MPa.

The E corresponding to the three di�erent lengths (L) are 13.2,6.6, 0.660 GPa, respectively. The initial
sti�ness is found to be k = 2e4 N

mm3 for all the three lengths.
For both cases, the non-dimensional parameters mentioned above are determined and plotted in Fig. 17.

It is observed that the non - dimensional parameter �, is almost insensitive to E=�c, and is equal to 100.
With this at hand, one can choose the value of k for pre-determined values of GIC and �c in such a way that
� is around 100, which would give stresses within the desired percentage when compared to the Williams
solution.

As an example, the cohesive laws for GIC = 0:5 N
mm and E = 3:3 GPa and varying �c values of 5, 7.07

and 22.36 MPa, and for values of k determined from the analysis are plotted in Fig. 18. This shows that as
long as � is about 100 or greater, the local stress-�eld in the body outside the CZM region is computed to a
su�cient level of accuracy.

VII. Concluding Remarks

A stress free bi-material wedge with a vertex angle of 2� has been considered to evaluate the e�ects of
cohesive zone modeling in computational mechanics. The behavior of the stress �eld in the vicinity of a crack
tip is studied by specializing the wedge angle to appropriate values. A homogenous case is considered where
according to Fig. 6, the stresses display 1p

r
behavior for �=0.5, in the absence of a cohesive zone. When a

cohesive zone is inserted, the stress �eld, characterized in terms of the strength of the singularity is found
to vary continuously with the initial cohesive zone sti�ness, approaching 1p

r
behavior only when the initial

sti�ness of the cohesive zone is very high. A non-dimensional parameter � is introduced to characterize
the required CZM initial sti�ness. Further, a comparison of stresses and displacements from the Williams
solution,1 and the solution obtained from a CZM approach for homogeneous material are presented in Fig. 6
and Fig. 7. It is observed that the variation of stress ‘��’ and displacement ‘u�’ at the interface is similar in
both analysis only at very high initial sti�ness of the cohesive zone, resulting in � � 100.

Along with the stress equivalence, results have been presented that describe the e�ects of the CZM on
the stress intensity factor and the strain energy release rate through two example problems. In both the
cases it is observed that percentage error in stress intensity factor reduces to be negligible only when the
initial sti�ness of the cohesive zone is very high.

Throughout the paper, it has been shown that in order to reproduce the same behavior of stresses,
displacements and strain energy release rates in a model with cohesive zone when compared to a model
without cohesive zones is possible, only when the initial sti�ness of the cohesive zone is very high.

A non-dimensional parameter � is established, which will serve as a guide in determining the initial
sti�ness of the cohesive law corresponding to pre-determined values of GIC and �c.
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Figure 1. Bi-Material Wedge Subjected to Traction Boundary Conditions

Figure 2. Bi-Material Wedge With Cohesive Zone Subjected to Traction Boundary Conditions
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Figure 3. Traction - Separation Law for the Cohesive Zone

Figure 4. Traction - Separation Law for the Cohesive Zone with Fixed Fracture Toughness and Varying Sti�ness
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Figure 5. Plot of � vs Sti�ness of the Cohesive Zone for Homogenous Case

Figure 6. Plot of �� vs Length Along Crack Path for Di�erent Values of k

Figure 7. Plot of u� vs Length Along Crack Path for Di�erent Values of k
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Figure 8. Plot of � vs k for Di�erent Values of Dunder’s Parameter �, for Bi-Material Case

Figure 9. Double Cantilever Beam With Cohesive Zone
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Figure 10. Analytical Model of Double Cantilever Beam

Figure 11. Plot of Percentage Error in SIF of DCB With and Without Cohesive Zone vs. Sti�ness of Cohesive
Zone
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Figure 12. Plot of Percentage Contribution of Cohesive Zone towards SIF of DCB as Compared to the Total
SIF of the DCB

Figure 13. Plot of DCB Tip Load vs Tip Deection for a Range of Spring Sti�ness
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Figure 14. Model of In�nitely Wide Plate With Through Crack Subjected to Tensile Stresses

Figure 15. Superposition to obtain the original Wide Plate with through Crack subjected to Tensile Stresses
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Figure 16. Plot of Percentage Error in SIF of Plate With and Without Cohesive Zone vs. Sti�ness of Cohesive
Zone, k

Figure 17. Plot of Non-Dimensional parameters � and E=�c for di�erent L and for the Two Cases

Figure 18. Cohesive Law for L = 66 mm,33 mm and 3.3 mm corresponding to case 1
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