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Enhanced finite elements are elements with an embedded analytical solution which can 

capture detailed local fields, enabling more efficient, mesh independent finite element 

analysis.  In the present study, an enhanced finite element is applied to generate a general 

framework capable of modeling an array of joint types.  The joint field equations are 

derived using the principle of minimum potential energy, and the resulting solutions for the 

displacement fields are used to generate shape functions and a stiffness matrix for a single 

joint finite element.  This single finite element thus captures the detailed stress and strain 

fields within the bonded joint, but it can function within a broader structural finite element 

model.  The costs associated with a fine mesh of the joint can thus be avoided while still 

obtaining a detailed solution for the joint.  Additionally, the capability to model non-linear 

adhesive constitutive behavior has been included within the method, and progressive failure 

of the adhesive can be modeled by using a strain-based failure criteria and re-sizing the joint 

as the adhesive fails.  Results of the model compare favorably with experimental and finite 

element results.   

I. Introduction 

N the aerospace industry, fiber reinforced polymer matrix composites (FRPCs) are gaining increasing use and 

attention because of their high strength to weight ratios, among other factors.  FRPC joints perform much better 

with adhesive bonding rather than bolting or riveting because of their quasi-brittle nature
1
 and the ability of the bond 

to spread the load over a larger area 

leading to a lessening of the stress 

concentration
2
.  Therefore, accurate 

analysis of adhesively bonded joints 

is becoming more critical than ever. 

Adhesive joints have 

traditionally been analyzed using 

two methods: analytical models and 

finite element analysis
3
.  Analytical 

methods have been utilized to 

extract efficient closed-form 

solutions for adhesive single lap 

joint stresses.  Classical formulas 

have been introduced by Volkerson
4
, 
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Goland and Reissner
5
 and Hart-Smith

6
.  More recently, refined analytical studies, carried out by Mortensen and 

Thomsen
7
 and Delale et al.,

8
 have proven to be quite accurate in predicting stresses within adhesive joints.  

However, analytical methods are often limited by geometric assumptions used to obtain a closed form solution and 

are not as useful to designers for compiling vehicle-scale models that may contain multiple joints.  Finite element 

analyses are widely utilized in industry, and can be used to assess joints with a wide variety of geometries and 

loading conditions.  However, these methods can suffer from mesh dependence and a lack of efficiency, which is 

especially crippling for initial sizing analysis and full vehicle-scale models
9
.  Therefore, a need exists to develop 

predictive tools for bonded joints that can be seamlessly coupled with large scale structural analyses without adding 

major computational costs. Such tools can be used to make quick mesh-independent assessments of bonded 

composite joints.  Currently, such a capability is lacking, and joint assessment is typically performed late in the 

design cycle when structural changes that can lower the weight are much more difficult and expensive. 

Gustafson and Waas
3
 have merged analytical and finite element methods in order to perform efficient, mesh 

independent finite element analysis of double lap joints to use for initial design and macroscopic vehicle modeling.  

Analytical models were embedded into a single finite element with minimal analyst input.  Stapleton and Waas
10

 

extended this method to single lap joints (Fig. 1), which are more complex due to the eccentricity of the axial load 

path.  The adherends were treated as Euler-Bernoulli beams, and the adhesive was modeled as a bed of normal and 

shear springs.  The current study extends the method to include a nonlinear constitutive model for the adhesive in 

conjunction with inputs to cohesive zone finite element modeling
11,12

 or a curve-fit to experimental test data.  

Additionally, a strain-based failure criterion is utilized to track damage in the adhesive and the joint element and 

adjacent beam elements are re-sized to account for the failed adhesive.  The entire joint can then be replaced by a 

single joint finite element, while the remaining structure (outside the joint) is modeled using standard structural 

elements, for instance beam elements (Fig. 1).  As a result, failure in the adhesive is built into the joint element.  

II. Analytical Formulation 

The joint element with adhesive failure capabilities is an extension of the linear elastic joint element derived 

elsewhere (Stapleton and Waas
10

).  The main difference is that this model now has the capability of handling 

adhesives with non-linear constitutive behavior and has a failure criteria implemented within the model.  A flow 

chart of the joint element implementation is shown in Fig. 2.   

 

 
Figure 2.  Flow chart of the joint element with adhesive progressive failure. 
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The individual steps will be expanded upon in the following sections, but the basic layout consists of solving the 

linear problem first to obtain shape functions, defining a non-linear stress/strain relation for the adhesive and 

linearizing this relation at each load increment, calculating the joint stiffness matrix and force vector using the linear 

shape functions and strain energy for the non-linear case, and solving the resulting equations.  Furthermore, the 

adhesive is checked for failure, and in the case of adhesive failure, the length of the joint element decreases to 

account for failed adhesive.   

A. Obtain Linear Shape Functions 

In order to model nonlinear adhesive in a joint element, the shape functions are obtained from the case of a joint 

with a linear adhesive.   To do this, the adhesive and adherends were assumed to be linearly elastic.  Figure 3 

illustrates the required geometric parameters and material properties of a single lap joint.  The width of the joint in 

the y-direction is b. The subscripts 1, 2, and a denote a variable associated with adherend 1, 2, or the adhesive. 

 

 
Figure 3.  Required geometric and material parameters for overlap region of a single lap joint. 

 

 

Assuming the adherends behave like Euler-Bernoulli beams, the strain energy of the joint, U, is written as: 

  

 
𝑈𝐽𝑜𝑖𝑛𝑡 =

1

2
 𝜎1𝑥𝜖1𝑥 ⅆ𝑉
𝑉1

+
1

2
 𝜎2𝑥𝜖2𝑥 ⅆ𝑉
𝑉2

+
1

2
  𝜎𝑎𝑧𝜖𝑎𝑧 + 𝜏𝑎𝑥𝑧 𝛾𝑎𝑥𝑧  ⅆ𝑉
𝑉𝑎

 (1) 

 

where 𝜎𝑖𝑥  and 𝜖𝑖𝑥  represent the normal stress and strain in material i (1 or 2 for the adherends) in the x - direction, 

𝜎𝑎𝑧  and 𝜖𝑎𝑧  are the normal stresses/strains in the adhesive in the z-direction, 𝜏𝑎𝑥𝑧  and 𝛾𝑎𝑥𝑧  represent the shear 

stress/strain in the adhesive on the xz-plane, and all integrals are taken over the volume, Vi of material i. 

The two adherends are assumed to behave as beams, and the strain energy of the adherends can be found using 

standard Euler-Bernoulli beam theory.  The derivation is not shown here, but the details are contained in Stapleton 

and Waas
10

.    

It should be noted that many adhesive joints involving bonded FRPCs are made up of thin adherends which are 

relatively long in the y-direction, causing them to behave more like plates in cylindrical bending rather than beams.  

Though not done herein, to model the adherends as wide plates in cylindrical bending, it is only a simple matter of 

replacing the modulus of elasticity, Ei with Ei/(1-νi
2
), i=1,2 and modeling the adhesive using plane strain, rather than 

plane stress assumptions.    

A diagram of the notation scheme for the adhesive is shown in Fig. 4.  It is assumed that the displacement varies 

linearly in the za-direction and that the adhesive and adherend are perfectly bonded at the interface.  The 

displacements at the interface will be denoted by the subscript i.   
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Figure 4.  Geometric and material parameters for overlap region of a single lap joint. 

 

The adhesive is modeled as a bed of linear normal and shear springs.  In terms of the interface displacements, the 

strains in the adhesive are: 

 

𝜖𝑎𝑧 =
1

𝜂
 𝑤𝑖1 𝑥 − 𝑤𝑖2 𝑥   

 
(2a) 

and 

𝛾𝑎𝑥𝑧 =
1

𝜂 
 𝑢i1 𝑥 − 𝑢i2 𝑥   (2b) 

 

and the stresses are: 

 

 𝜎𝑎𝑧 = 𝐸𝑎𝜖𝑎𝑧  (3a) 
and 

 𝜏𝑎𝑥𝑧 = 𝐺𝑎𝛾𝑎𝑥𝑧 . (3b) 
 

The interface displacements are defined in terms of adherend centerline displacements using Euler-Bernoulli beam 

theory: 

 

 

 

𝑢i1 𝑥 = 𝑢1 𝑥 +
𝑡1

2
 
ⅆ𝑤1 𝑥 

ⅆ𝑥
 ,  𝑢i2 𝑥 = 𝑢2 𝑥 −

𝑡2

2
 
ⅆ𝑤2 𝑥 

ⅆ𝑥
 , 

 

𝑤i1 𝑥 = 𝑤1 𝑥 ,  and 𝑤i2 𝑥 = 𝑤2 𝑥 . 

(4) 

 

Using the principle of stationarity of potential energy, four fully coupled governing equilibrium differential 

equations are obtained from the energy expression in Eq. (1). Of the four governing equations, two correspond to the 

axial equilibrium, while two equations correspond to the transverse equilibrium.  The axial displacement equilibrium 

equations contain second order derivatives, while the transverse displacement equations have fourth order 

derivatives.  The order of these equations can be reduced and assembled into a system of first order constant 

coefficient homogeneous ordinary differential equations of the form: 

 

 𝑢 ,x =  𝐴  𝑢  (6) 

where 

 

 𝑢 =  𝑢1 𝑢1,𝑥 𝑤1 𝑤1,𝑥 𝑤1,𝑥𝑥 𝑤1,𝑥𝑥𝑥 𝑢2 𝑢2,𝑥 𝑤2 𝑤2,𝑥 𝑤2,𝑥𝑥 𝑤2,𝑥𝑥𝑥  T  (7) 
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(8) 

 

with 

𝜆𝑖 =
𝐺𝑎𝑏

𝜂𝐸𝐴𝑖
, 𝑖 = 1,2 (9) 

  

Λ𝑖 =
𝐺𝑎𝑏

𝜂𝐸𝐼𝑖
, 𝑖 = 1,2 (10) 

  

Ω𝑖 =
𝐸𝑎𝑏

𝜂𝐸𝐼𝑖
, 𝑖 = 1,2 . (11) 

 

Inspecting the matrix [A] can be helpful in determining the nature of the solution and determining the solution 

method.  There are 12 eigenvalues of [A]: two real eigenvalues, four complex eigenvalues, and six repeating 

eigenvalues.  Therefore, the solution is made up of two exponential terms, four exponential terms multiplied by a 

sine or cosine, and the six repeating eigenvalues correspond to a third order polynomial found in a standard beam 

solution.  Such a complex solution shows that merely employing standard beam shape functions to the joint problem 

would be inadequate in capturing the nature of the whole solution.   

The system in Eq. (6) can be solved using various methods, but calculating the matrix exponential was the 

chosen method because numerical boundary conditions are not required to obtain a solution.  The solution of the 

system in Eq. (6) can be written in terms of the matrix exponential,  ⅇ𝐴𝑥  , as 
 

 𝑢 =  ⅇ𝐴𝑥   𝐶 . (12) 

 

The matrix exponential can be expressed as the infinite series
13 

 

 ⅇ𝐴𝑥  =  
𝑥𝑘

𝑘!
 𝐴 𝑘

∞

𝑘=0

. (13) 

 

In order to get faster convergence, a method of scaling and squaring
14

 is employed, and the series is calculated 

up to a value of k which yields an acceptable error, ϵ.  The error can be defined many ways, but the current study 

defined the error as the difference between the 1-norms of  ⅇ𝐴𝑥   for k-1 and k.  The value of the acceptable error was 

set at  𝜖 = 0.0001.  The next step is to solve for the vector of constants, {C}, using the boundary conditions.  It is at 
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this point that the methods to model a single lap joint, double cantilever beam, and bonded doubler diverge.  For the 

current study, a double cantilever beam (DCB) will be used to validate the joint element; therefore the boundary 

conditions will be those of the DCB (Fig. 5).  Applying prescribed displacements to the joined nodes on the left 

gives the following system of equations: 

 

 𝐵𝐶0  𝑢0 =  q  (14) 

 

where  𝑢0  is  𝑢  evaluated at x=0,  

 

 𝑞 =  𝑞1 𝑞2 𝑞3 𝑞4
𝑞5 𝑞6 𝑇 , (15) 

and  

. 

(16) 

 

At the right end of the joint, the nodes are not joined to any other elements and are referred to as “free nodes” 

(Fig. 5).  At these nodes, the natural boundary conditions obtained by minimizing the strain energy (Eq. (6)) are 

applied.  These boundary conditions enforce a traction free boundary at the ends, and there is a term for the axial 

force, transverse force, and moment at the free nodes.   

 
Figure 5. Boundary conditions for a DCB type joint element: prescribed nodal displacements at the joined 

nodes (x=0) and stress free at the free nodes (x=l). 

 

The boundary conditions are applied in the following equation: 

 

 𝐵𝐶𝑙  𝑢𝑙 =  0  (17) 

 

where  𝑢𝑙  is  𝑢  evaluated at x=l, {0} is a vector of zeros, and  
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The first and fourth rows of the matrix in Eq. (18) correspond to the axial force, the second and fifth correspond to 

the moment, and the third and sixth are the shear.  Equation (12) is substituted into Eq. (18) and Eq. (17) and stacked 

on top of each other to get 

 

 ζ  𝐶 =  
q
0
 . (19) 

 

where 

 ζ =  
 𝐵𝐶0 

 𝐵𝐶𝑙 

 𝑒𝐴0 

 𝑒𝐴𝑙  
 . (19) 

 

Using this relation, one can obtain an expression for {C}: 

 

 𝐶 =  𝜁 −1  
𝑞
0
  . (20) 

 

The expression can be simplified further by removing the zeros from the right hand side along with six columns on 

the right side of  𝜁 −1 to get {C} in terms of the nodal degrees of freedom only.  This reduced matrix will be 

denoted by  𝜁′  .  The constants are now given in terms of the nodal degrees of freedom: 

 

 𝐶 =  𝜁′  𝑞  . (21) 

 

This relation can be inserted into Eq. (12) to get the adherend centerline displacements in terms of the nodal degrees 

of freedom, q1-6: 

 

 𝑢 =  𝑁  𝑞  (21) 

 

where the shape functions,  𝑁 , are defined as: 

 

 𝑁 =  ⅇ𝐴𝑥   𝜁′ . (21) 

 

B. Define Adhesive Stress/Strain Relation 

With the shape functions determined for a joint with a linear adhesive, the non-linear constitutive stress/strain 

relations of the adhesive need to be defined.  This function can be based on constitutive relations, or fracture 

mechanics.  A stress/strain relationship based on constitutive relations would take a tensile stress/strain curve with a 

fitting function to the data.  A relation based on fracture mechanics would use a function which has its maximum 

stress at the mode one critical stress (𝜎𝐼𝑐 ) and the area under the curve would be the critical strain energy release rate 

of the adhesive (GIC).  Regardless of the method used to define the relation, the adhesive stress, 𝜎𝑎  can be written as 

a function of the adhesive strain, 𝜖𝑎 : 

 

𝜎𝑎 = 𝑔(𝜖𝑎). (22) 

 

Although this paper refers to the normal stress and strain in the adhesive only, the same derivation holds for the 

shear strain/stress relation.  For simplicity, the subscript a will be dropped from the stress and strain symbols. 

It should also be noted that this stress/strain relation assumes no permanent plasticity, but resembles non-linear 

elasticity.  Although it is acknowledged that this relation is not representative of the actual behavior of most 

adhesives, this relation was found to be sufficient for the purpose of estimating failure loads to aid in initial vehicle 

design and scaling.   

C. Linearize Stress/Strain Relation 

To simplify calculations and avoid the need for a non-linear solver, the stress/strain relation of the adhesive is 

linearized about the previous strain increment.  The Taylor series expansion of the stress about a strain at load step 

n, 𝜖𝑛  is: 
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𝜎 𝜖 = 𝑔 𝜖𝑛 +
𝑑𝑔 𝜖𝑛 

𝑑𝜖
 𝜖 − 𝜖𝑛 + 𝐻𝑂𝑇 (23) 

 

where HOT represents higher order terms.  To linearize, the higher order terms are ignored.   

D. Calculate the Adhesive Strain Energy 

The adhesive normal strain energy 𝑈𝑛+1 at the next load step, n + 1, is found as the strain energy from the 

previous increment plus the integral of the stress as a function of strain from the previous increments to the current 

increment: 

  

𝑈𝑛+1 =   𝜎 𝜖 𝑑𝜖𝑑𝑉
𝜖𝑛+1

𝜖𝑛𝑉𝑎

+ 𝑈𝑛  . (24) 

 

Carrying out the inner integral gives: 

 

𝑈𝑛+1 =    
1

2

𝑑𝑔 𝜖𝑛  

𝑑𝜖
 𝜖𝑛+1 2 +  𝑔 𝜖𝑛 −

𝑑𝑔 𝜖𝑛  

𝑑𝜖
𝜖𝑛 𝜖𝑛+1 − 𝑔 𝜖𝑛 𝜖𝑛 −

1

2

𝑑𝑔 𝜖𝑛  

𝑑𝜖
 𝜖𝑛 2  

𝑉𝑎

𝑑𝑉 + 𝑈𝑛 . (25) 

E. Perform Rayleigh/Ritz Using Linear Adhesive Shape Functions 

To obtain the stiffness and force matrices for the joint, the shape functions derived for the linear adhesive case 

(Eq. 5) are used.  Using Eq. (2) and (4) and the shape functions derived for the linear adhesive case, the strain in the 

adhesive is found in terms of the nodal displacements, q1-6.  The strain in the adhesive at the current, n + 1, 

increment is written as a function of x and q1-6:  

 

𝜖𝑛+1 = 𝑓(𝑞1−6, 𝑥) (26) 

 

while the displacements from the previous increment are used to define the adhesive strain at the previous 

increment, 𝜖𝑛 , as a function of x only: 

 

𝜖𝑛 = 𝑓(𝑥). (27) 

 

The energy is then minimized, which yields the i
th

, j
th

 component of the contribution to local joint stiffness matrix 

from the adhesive, k, to be: 

 

𝑘𝑖,𝑗 =
𝜕2

𝜕𝑞𝑖 𝜕𝑞𝑗
   1

2

𝑑𝑔 𝜖𝑛 

𝑑𝜖
 𝜖𝑛+1 2   

𝑉𝑎

𝑑𝑉 (28) 

 

and the i
th

 component contribution of the adhesive to the local joint force vector, f, to be 

 

𝑓𝑖 =
𝜕2

𝜕𝑞𝑖 
  −𝑔 𝜖𝑛 +   𝑑𝑔

 𝜖𝑛 

𝑑𝜖
 𝜖𝑛    𝜖𝑛

𝑉𝑎

𝑑𝑉 (29) 

The contribution of the adhesive to the local force vector and stiffness matrix can be added to the contributions of 

the two adherends.   Since only the adhesive is modeled as nonlinear, the contributions of the adherends to the 

stiffness matrix are the same as in the linear case.  The local stiffness matrix and local force vector can be used to 

find the local nodal displacements,  𝑞 : 

 
 𝑘  𝑞 = {𝑓}. (30) 
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F. Assemble Global Matrices, Apply Loading, and Solve Global Equations 

Once the joint element stiffness matrix and load vector are found, they are assembled with the rest of the 

elements in the model.  The loading increment is applied, and the system of linear equations is solved.  For this 

particular study, an in-house finite element code was used to assemble and solve the finite element global equations.  

Future work will implement the method into an Abaqus
11

 user element to be integrated in global, vehicle scale 

models. 

G. Check for Adhesive Failure 

Once the nodal displacements are found, Eq. (2a) and (2b) are used to find the strain in the adhesive as a function 

of horizontal position, x.  Then, a strain-based failure criterion based on the failure strain,  
𝜖𝑓𝑎𝑖𝑙 , is used to determine if and how much the adhesive has failed (Fig. 6).   

 

 
Figure 6.   Example of modeling failure in the adhesive: the normal strain surpasses the failure strain at the 

right end of the adhesive, causing this region to be categorized as “failed”. 

 

If failure is detected, the joint element is shortened by 

the length of the failed adhesive region, and the adjacent 

beam elements are lengthened to compensate (Fig. 7), with 

no continuity of displacements imposed between them.  

After this step is completed, the steps described in Section 

II A-G are repeated until the joint reaches equilibrium.  

After equilibrium is reached and further failure no longer 

occurs, the load is increased by one increment, and the 

process is repeated.  Through this method, the stresses, 

strains, loads, and displacements for the joint can be found 

at each load increment as the joint deforms non-linearly 

and progressively fails. 

III. Comparison with Published Results 

The ability of the joint finite element to predict the 

force vs. displacement behavior was assessed through 

comparison with experimental and finite element results 

published by Song and Waas
15

.  Results for a double 

cantilever beam (DCB) were chosen rather than a single 

lap joint because of the simple loading in the adhesive (no 

shear stress).   This particular data set was chosen because 

the authors stated that the failure was fully interlaminar 

and cohesive, which is the type of failure currently 

modeled by the joint element.   

Figure 8a shows a DCB specimen and the geometric 
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parameters.  The DCB specimens were constructed from two different 48 ply unidirectional composite laminates, 

E719/IM7 and E7T1/G40.  The adhesive was one of the interlaminar matrix layers.  The non-linear stress/strain 

relation of the adhesive was based on GIC and Ea (Fig. 9).  Normally, the mode one critical stress is preferred rather 

than the modulus, but this value was not provided by the authors.  The geometric and material properties of the 

specimens are shown in Table 1.  During the test, the loading was halted and the specimen was unloaded several 

times to measure the crack length within the specimen.  The DCB specimen was modeled using one joint finite 

element accompanied by 2 beam elements on the top and bottom of the joint as shown in Fig. 8b.   

 

   

 

Table 1.   Material properties and geometric parameters for Song/Waas
15

 DCB specimens. 

Specimen 

 

Adhesive Adherend Geometric Parameters 

Ea 

(GPa) 

GIc 

(N/m) 

E 

 (GPa) 

l  

(mm) 

a 

 (mm) 

b 

 (mm) 

t 

 (mm) 

η 

 (μm) 

E7T1/G40 4.1 335 116 200 52.6 15.5 4.65 35 

E719/IM7 3.3 1130 135 200 35.5 15.1 3.23 6 

 

 

Figure 10 compares the experimental force/displacement responses for the E719/IM7 DCB specimen acquired 

by Song and Waas
15

, along with the response predicted by these authors using an FEA model including discrete 

cohesive zone elements and the present joint element model.  As can be seen, the present model was quite accurate 

at predicting the progressive failure of the joint based on the given material properties and parameters.  The two 

models used different adhesive stress/strain relations, which probably accounts for the difference in predicted 

responses.  However, Song and Waas
15

 reported that their FEA took 1-2 hours to run each load loop, while the 

present analysis took only 30-60 seconds per load loop, a speed increase of a factor of 120.  This demonstrates the 

usefulness of the joint finite element in performing quick, computationally efficient analysis of joints, even in 

progressive failure scenarios.   

The plots in Fig. 11 are helpful in visualizing how the stress and strain evolve in the adhesive with increasing 

end displacement.  Figure 11a shows the load/displacement plot for the E719/IM7 DCB specimen.  The circles show 

points during loading at which stress (Fig. 11b) and strain (Fig. 11c) snapshots were taken.  The solid circles 

correspond to solid lines on the stress and strain plots, while the hollow circles correspond to the dotted lines on the 

plots.  The stress in the adhesive rises at the left end of the adhesive until the maximum stress according to the 

stress/strain relation (Fig. 9) is reached, at which point the stress at the end of the adhesive reduces to zero.  At this 

point, the adhesive starts to fail.  The strain reaches a critical level, about 1.6% strain, before failure begins.  It can 

be seen that the shape of the stress/strain relation will have a significant effect on the stress levels at the end of the 

joint. 
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Figure 8.   A typical DCB specimen, a) the geometric 

parameters and boundary conditions for the DCB specimens 

and b) the mesh for the joint element DCB model. 
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Figure 10.  Load vs. displacement curves for E719/IM7 DCB specimen tested by Song and Waas
15

, along with 

their Finite Element Model and the present joint element model. 

 

 

Figure 11.   The solid and hollow circles in the a) load/displacement plot for the E719/IM7 DCB specimens 

correspond to the solid and dotted curves in the b) stress and c) strain plots. 
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The behavior of the E7T1/G40 DCB specimens, shown in Fig. 12, was not predicted as accurately by the joint 

element model.  The joint element model predicted nearly the same elastic slope as the Song/Waas FEA model, 

except with a more conservative prediction of the maximum load reached.  Song/Waas used an interatomic force 

law to get the constitutive relations, while the present model used the adhesive modulus and critical strain energy 

release rate.  It appears that for this case, the two methods resulted in very similar predicted responses.  This 

comparison shows that the joint element can compete with discrete cohesive zone models in predicting the behavior 

of DCB joints. 

 

 

Figure 12.  Load vs. displacement curves for E7T1/G40 DCB specimen tested by Song and Waas
15

, along with 

their Finite Element Model and the present joint element model. 

 

IV. Comparison with Experimental Results 

DCB specimens were manufactured and tested to compare two paste adhesives, EA 9394 and EA 9309.3NA.  

The results of these tests were used to assess the ability of the joint finite element to predict the difference in 

performance of two adhesives with very different constitutive relations based on material properties obtained from 

tensile tests.  Solid cylindrical specimens with a 3.175 mm diameter and 3.175 mm long test section were machined 

out of cast adhesive cylinders.  The specimens were tested at NASA Glenn, and digital image correlation (DIC) 

techniques (Fig. 13a) were utilized to obtain the axial strain of the specimen at different loads.  The strains for 

several points in the gauge section were averaged, and the stress was found by assuming constant stress in the cross 

section.  Figure 13b shows characteristic stress/strain data for the two adhesives, and the equations used to fit the 

data with a curve.  The material parameters used in the equations are found in Table 2.  The functions were chosen 

because they result in the same curve in compression and tension and seem to fit the data adequately.   
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Figure 13.  Using a) cylindrical tensile specimens and digital image correlation, the b) stress/strain relations of 

the adhesives EA 9394 and EA 9309.3NA could be defined by curve-fitting experimental data. 

 

Table 2.   Material properties and geometric parameters of DCB specimens. 

Specimen 

 

Adhesive Adherend Geometric Parameters 

Ea 

(GPa) 

σu 

(MPa) 

εfail  

 

υ 

 

E 

 (GPa) 

l 

(mm) 

a 

(mm) 

b 

(mm) 

t 

(mm) 

η 

(mm) 

EA 9394 4.2 49.6 0.016 0.4 69 152.4 63.5 25.4 12.7 0.6 

EA 9309.3NA 2.7 41.3 0.068 0.42 69 152.4 63.5 25.4 12.7 0.55 

 

 

The tensile loading of a thin adhesive layer with 

relatively large in-plane dimensions differs greatly to that of 

a solid cylindrical specimen because the adhesive layer is 

extremely thin in one direction, and constrained from lateral 

displacement by the top and bottom adherends.  Because of 

these conditions, the adhesive is effectively a body in plane 

strain in the two directions perpendicular to the adhesive 

thickness (Fig. 14).  The adhesive is constrained from 

contracting (Poisson’s effect) in the x and y-directions while 

being loaded in the z-direction, which induces a stress in all 

three directions, commonly called a state of triaxial stress
16

.  

To find the stress/strain relation for a material under triaxial 

stress, consider first an isotropic, linearly elastic material.  

The normal stress in the z-direction is: 

 

𝜎𝑧 =
𝐸

1+𝜈
 𝜖𝑧 +

𝜈

1−2𝜈
(𝜖𝑧 + 𝜖𝑥 + 𝜖𝑦) . (31) 

 

The adhesive can be assumed to be in a state of plane stress in the xy-plane, and the strains 𝜖𝑥  and 𝜖𝑦  can be set to 

zero.  Then, the normal stress in the z-direction reduces to: 
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𝜎𝑧 =
1−𝜈

 1+𝜈 (1−2𝜈)
𝐸𝜖𝑧 . (32) 

 

This shows that the effective “resistance” to deformation in the z-direction is amplified by a factor that depends on 

Poisson’s ratio.  Although this relation is intended for linear elasticity, the relation was assumed to hold for the non-

linear stress/strain relation.  Therefore, the stress/strain relation was redefined as: 

 

𝜎 =
1−𝜈

 1+𝜈 (1−2𝜈)
𝑔(𝜖) , (33) 

 
which effectively increases the adhesive modulus.  Since the joint element considers only failure in the adhesive 

(cohesive failure), care was taken to ensure that the interface between the adherends and adhesive of the DCB 

specimens wouldn’t be the point of failure.  The adherends were 7071 T6 Aluminum, and the surfaces to be bonded 

were sanded, etched in lye, and anodized in a sulfuric acid solution prior to bonding.  This treatment was sufficient 

to produce failures in the adhesive layer, as can be seen on the failure surfaces of a post-mortem specimen in Fig. 

15.  The failed specimen has adhesive covering both adherends, which means that the interface was not the plane of 

failure.  Glass beads were used to maintain a consistent bond line thickness throughout the specimen, and pressure 

was applied to the specimen during curing.  The specimens were allowed to cure for seven days at room 

temperature.  

Three DCB specimens for each adhesive were tested on an Instron machine at 0.5 mm/min.  All specimens failed 

cohesively like the specimen in Fig. 15.  The force/displacement curves for all six specimens are shown in Fig. 16.  

The high strain-to-failure of EA 9309.3NA caused these specimens to hold over two times the amount of load as the 

EA 9394 specimens.  The EA 9309.3NA specimens held so much load that the aluminum adherends deformed 

plastically before the adhesive failed.  This can be seen in the plot as a gradual rounding prior to a drop in load.  The 

EA 9394 specimens exhibited a load plateau rather than dropping in load after adhesive failure was initiated.  It is 

possible that air bubbles in the adhesive caused the adhesive to fail prematurely, allowing the joint to not drop in 

load carrying capacity after failure initiated.   

 

Figure 15.  Two adherends of an EA 9394 DCB specimen after complete failure.  The fact that adhesive is 

found on both adherends shows that failure occurred within the adhesive layer as desired. 

 

The joint element model was able to capture the behavior of the joints rather well.  It was found that compliance 

in the experimental load train caused the models to over-predict even the initial linear portion of the loading.  To 

compensate for this system compliance, the length of the adherends was lengthened by 7.5% for both DCB 

specimen types.  This number was determined by fitting a linearly elastic model to the initial portion of the 

experimental force/displacement plot.  While not exactly matching the experimental data, the model was rather 

accurate considering the aforementioned adherend plasticity and air bubbles in the end of the adhesive.  These 

experiments were very effective in displaying the ability of the joint element to predict failure, along with showing 

how constitutive relations can be applied to get progressive failure of a thin adhesive layer.   
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Figure 16.  Load vs. displacement curves for DCB specimens with aluminum adherends and EA 9394 and EA 

9309.3NA adhesive, along with the joint finite element model prediction. 

V. Conclusion 

This study showed how a single finite element could be used to capture the behavior of an entire joint by using 

an analytical method to solve for the appropriate shape functions rather than prescribe the shape functions using a 

simple polynomial.  Additionally, progressive failure was included by defining the stress as a non-linear function of 

the strain and enforcing a strain-based failure criterion.  Failure of the adhesive was approximated by shortening the 

joint element by the length of the failed adhesive and lengthening the adjoining beam elements.  The accuracy of the 

joint element model was assessed through comparison with finite element and experimental DCB test results 

published by Song and Waas
15

, and experimental DCB tests conducted by the authors.  Results showed that the joint 

element model could capture the force/displacement behavior of the joint quite well, with a significant 

computational efficiency advantage compared to a traditional FEA. The assessment also demonstrated how the 

stress/strain relation of the adhesive could be obtained using fracture mechanics or constitutive relations determined 

by bulk tensile tests.  When using tensile tests, a factor was used to amplify the stress/strain relation to account for 

additional deformation resistance due to a triaxial state of stress.  With proper implementation of this method, a 

single finite element can be used in a broader, global-scale model to capture the behavior and failure of joints.   
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