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Safe aircraft emergency management requires a two-stage real-time response: �rst iden-
tify the problem, then alter the ight plan and constrain e�ector commands to maximize
chances of a safe landing. In cases of degraded aircraft performance, commands must
respect new ight envelope limits to avoid loss-of-control. In previous work we have pro-
posed an intuitive approach to adaptive ight planning and guidance in which feasible trim
states are sequenced into emergency landing ight plans. Sets of feasible trim states and
transitions between these states are derived from post-failure aircraft dynamics, enabling
the ight planner to focus on real-time generation of landing trajectory geometry (kine-
matics) without risk of violating dynamics constraints. This paper integrates the guidance
and planning algorithms required to autonomously discover the ight envelope and then
to plan a path (in real-time) to a nearby landing runway. Our method accommodates non-
traditional ight envelope constraints, including cases in which the aircraft cannot maintain
straight and/or level ight. Two F-16 control surface jam failure cases are used to illustrate
algorithm integration and performance.

Nomenclature

APF Arti�cial Potential Field
TSD Trim State Discovery
TDV Turning Dubins Vehicle
z Aircraft state vector
� Actuation vector
x; y; z Aircraft 3-D position (sub-vector of z)
U; V;W Aircraft velocity vector (sub-vector of z)
�; �;  Aircraft orientation as Euler angles (sub-vector of z)
p; q; r Aircraft angular rates (sub-vector of z)
� Angle of attack
� Sideslip angle
 Flight path angle
VT True airspeed
_ Turn rate
_h Climb rate
~FA Attractive force for the TSD APF
~FP Repulsive force for the TSD APF
~FR Resultant (total) force for the TSD APF
T Path in trim state space for TSD
� Curve (Lateral Plane Landing Path) for the TDV
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O Circular curve for the TDV
a Circular arc curve for the TDV
b Product of circular arc curves
� Set of possible curves for the TDV
�c Set of circular curves for the TDV
A Set of circular arc curves for the TDV
Ar Set of possible reference arcs connecting two centers of the initial and �nal circular curves
B Set of possible sequences of two di�erent turning radii for the TDV
C Natural representation of � with respect to a center c1 of the �rst circular curve for the TDV
s Length of the arc segment of the �
~V Velocity vector
~T Unit tangent with respect to c1
~k Curvature vector with respect to c1
~n Principal normal unit vector with respect to c1
~b Unit binormal vector with respect to c1
r Radius of circular curve
� Central angle of the reference arc
l Length of ight path arc curves
J Length of the reference arc traversed over a two-arc sequence
n Number of arc sequences in B
nm Minimum number of arc sequences in B
� Distance of the points on a straight line from a known point
h0 Initial altitude of the TDV

Subscript
r Reference arc
1 First circular curve of the TDV alternating arc sequence
2 Second circular curve of the TDV alternative arc sequence
m Minimum radius turning circle
M Maximum radius turning circle
T Trim state

I. Introduction

Flight vehicles ranging from unmanned aicraft systems (UAS) to commercial transport are becoming
increasingly reliable. With triply-redundant components and systems, safety-critical commercial transport
electro-mechanical failures are increasingly rare. Loss-of-control, however, remains the most common factor
identi�ed in accident investigations, with causes ranging from loss of pilot situational awareness to component
or system failure. UAS do not and cannot given cost/weight constraints be equipped with triple or even
dual redundancy, but UAS typically have far more exibility to safely land in a small clear area should a
problem arise.

For any ight vehicle, the top safety-oriented goal in an emergency is to land without incident. A safe
landing requires the accomplishment of two sequential tasks. First, the impact of the anomaly on aircraft
handling qualities and/or situational awareness must be su�ciently characterized to support a safe landing.
Next, the landing plan that respects reduced performance constraints must be devised and safely executed.
This process represents a number of challenges traditionally left to the human pilot. The autopilot must
avoid loss-of-control by establishing and maintaining a stabilizable ight condition. System identi�cation
technology can assist with updating pertinent performance models. Changes in performance are of use to
both the automation and the ight crew, and potentially of use to neighboring air tra�c and ground-based
controllers. Finally, a safe landing ight plan must be generated and followed.

We have studied the problem of ight planning and guidance for safe emergency landing in the context of
failures and damage that degrade aircraft performance.1{5 Situations of this class include engine or actuator
failures (jams) or structural damage due to cuases such as fatigue, attack, or collision. In our initial work1

we proposed an adaptive ight planning architecture that generated a ight plan by �rst selecting a landing
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runway then building a landing trajectory to that runway that met ight envelope constraints. Landing site
is identi�ed in under a second on a single-core desktop PC by e�ciently de�ning a footprint, identifying
runways within that footprint, downselecting to runways that meet minimum constraints such as length,
wind, and instrument approach, then utilizing a multi-objective utility function to prioritize these runways.
A Dubins path is then generated to this landing runway, requiring a sequence of stabilizable trim states
capable of turning and straight ight in a shallow descent. Initial work1 examined applicability of adaptive
ight planning to loss-of-thrust scenarios, also extensible to cases in which an onboard emergency (e.g.,
pilot incapacitation) results in a need to land with nominal performance characteristics. Our work was then
extended to analysis of control surface jams,2,3 resulting in identi�cation of F-16 ight envelope databases for
control surface jams referenced in this paper. In Strube et al,2,3 a general search-based approach to trim state
sequencing was proposed to generate landing trajectories for arbitrary failure cases. This method, however,
would be di�cult to certify given the combinatorial nature of the search space resulting in exponential
worst-case complexity.

Figure 1 illustrates the emergency ight management architecture providing context for the adaptive
ight planner (AFP) studied in this work. A Flight Plan Monitor continually validates the existing ight
plan against the most current system model to verify feasibility of the ight plan. If the executing ight
plan becomes infeasible, the pilot is noti�ed via the Pilot Interface. Concurrently, the AFP is activated to
generate a new ight plan. Within the AFP, a Landing Site Search (LSS) module identi�es a safe landing
site, currently de�ned as a runway deemed safe based on the degraded aircraft performance model. The
Segmented Trajectory Planner then constructs a dynamically feasible trajectory to the landing site. The
Segmented Trajectory Planner relies on the feasible and stabilizable post-failure/damage trim ight states as
building blocks of a segmented landing trajectory. In this paper, we rely on two real-time analytic trajectory
planners: the Dubins-based planner summarized above when possible and a Turning Dubins Vehicle (TDV)
planner �rst introduced in Choi and Atkins5 otherwise. Both build trajectories based on the feasible post-
failure ight envelope, from which constraints on turn rate, ight path angle, and airspeed are derived. In
Yi and Atkins,6 a trim state discovery (TSD) algorithm was introduced to guide the ight planner through
the space of trim states advantageous for landing.

This paper is the �rst publication in which trim state discovery and real-time trajectory planning algo-
rithms are integrated in an end-to-end ight planning and guidance system. Below, we �rst review our model
of trim states and ight envelope, then summarize the trim state discovery (TSD) algorithm integrated into
this work. Next, we review the Turning Dubins Vehicle (TDV) algorithm and present a nontrivial extension
to a three-dimensional solution that accounts for ight path angle constraints. We present a series of ight
envelope pro�les for an F-16 with jammed aileron and rudder to illustrate trim state database properties and
to highlight the manner in which database storage can be minimized through exploitation of ight envelope
overlap between jam angles. We then present Dubins and TDV landing trajectories over a series of limited
TSD-generated local envelopes to illustrate both the utility of the algorithms and the impact of limited TSD
on landing solutions. We conclude with a summary of �ndings and future work to mature this technology
to a form where it can ultimately be certi�ed for use in manned and unmanned aircraft.

II. Trim State

We assume a at earth model and adopt a rigid body model of aircraft dynamics and kinematics similar to

that presented in Stevens and Lewis.7 The state vector includes the components
h
x y z

iT
of the inertial

position vector, elements
h
U V W

iT
of the translational velocity vector ~vB , Euler angles

h
� �  

iT
,

and angular rates
h
p q r

iT
. Since the aerodynamic force and moment components depend on the

aerodynamic angles and the true airspeed, we replace state variables U , V , and W by true airspeed VT ,
angle of attack �, and sideslip angle �. Then state vector z is given by:

z =
h
VT � � p q r x y z � �  

iT
(1)

Actuation vector � is given by:

� =
h
�t �e �a �r

iT
(2)
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Figure 1. Emergency Flight Management Architecture.

where �t, �e, �a, and �r are engine throttle, elevator, aileron, and rudder control commands, respectively.
The standard 6-DOF equations of motion for a rigid-body aircraft used to describe the F-16 aircraft are then
given by:

_z = f (z; �) (3)

where f is a vector of twelve scalar nonlinear functions.
A trim state is de�ned as an unaccelerated or equilibrium state. We use trim states as a discrete

approximation of the stable or stabilizable aircraft ight envelope, de�ning nominal and post-failure feasible
ight conditions. Formally, a trim state is a condition in which:

d

dt

h
VT � � p q r

i
= 0 (4)

Both Dubins vehicle and Turning Dubins Vehicle trajectories constrain an aircraft to move along path seg-
ments with constant curvature bounded above and below.5,8 Augmented with a steady climbing/descending
ight path angle, our landing trajectories are de�ned as sequences of level or climbing/descending straight
or turning ight segments consistent with Dubins or TDV geometries and de�ned by:h

_VT _� _� _p _q _r
i

= 0h
_� _�

i
= 0

_ = _ �
_h = _h�

(5)

where _ � and _h� are the desired constant turn rate and climb rate for the trim condition. The climb-
ing/descending turning ight includes straight and level ight, straight climbing/desceding ight, and level
turning ight. For example, straight and level ight is a special case of climbing/descending turning ight if
_ = 0 and _h = 0. From Eq. 5, a trim state can be fully de�ned via the reduced state vector

�z =
h
Vr � � p q r � �

iT
(6)

Trim states �z� are determined by �nding a solution of the following nonlinear constrained minimization
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problem for the F-16, our example aircraft in this paper:

minimize Jtrim (z; �) = 1
2

_�zTQ _�z

subject to h = h�; VT = V �T ; tan � = ab+sin �
p
a2�sin �2+b2

a2�sin �2 ;

p = � _ � sin �; q = _ � cos � sin�; r = _ � cos � cos�
j�tj � 1 j�ej � 25 j�aj � 21:5
j�rj � 30

(7)

where � is the trimmed ight path angle satisfying V �T sin � = _h�, a = cos� cos�, and b = sin� sin� +
cos� sin� cos�. A numerical optimization algorithm is used to determine trim states z� de�ned by �z� because
this problem cannot be solved analytically.3,4 The inequality constraints represent actuator saturation with
throttle scaled in the range [0; 1] and with control surface deections measured in degrees. The ight
envelope is then de�ned as the set of feasible trimmed ight conditions

�
h�; V �T ;

_h� _ �
�

where a
trimmed ight condition is feasible if there exists a valid trim state z� and actuation vector �� for this
ight condition. The stability and controllability of the feasible trimmed ight conditions are considered
within a small neighborhood of each trim state. A nonlinear aircraft system 3 can be approximated by a
linearization of its dynamics about a feasible trim state in a small neighborhood of the trim state. The
Jacobian matrices at the trim state are obtained by using the linear perturbation model about the trim
state for the linearization. Therefore, the stability and the controllability of the feasible trim state can be
approximated by eigenvalues of the corresponding linear perturbation model and the controllability matrix,
respectively.3,4 An aircraft trim database representing the ight envelope is then generated by characterizing
each trim state in four-dimensional space

�
h�; V �T ;

_h� _ �
�

, i.e. categorizing feasible, stable, and
controllable trim states. Emergency real-time landing trajectories are generated by the Adaptive Flight
Planner by using the stabilizable trim states in the damaged ight envelope. Figure 2 shows a trim database
slice of the F-16 aircraft at a �xed altitude of 2000 ft for a 20� rudder jam (a) and a 5� aileron jam (b). As
shown in Figure 2, a green asterisk represents a naturally stable trim state while a blue asterisk implies an
unstable but stabilizable trim state. The infeasible or uncontrollable trim states are unmarked.
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(b) 5� Aileron Jam at 2000 ft

Figure 2. Trim States of the Damaged F-16 Aircraft

III. Trim State Discovery

In the presence of failures and/or damage, the Adaptive Flight Planner (AFP) generates emergency
landing trajectories using a trim state set known to be stable or stabilizable. For failure cases that can be
predicted a priori, the set of feasible post-failure trim states can be recalled from a database. For other cases,
such as structural damage, o�ine trim state identi�cation will not be possible. If no existing trim database
is suitable for the given failure, the ight envelope, or a subset of this envelope, must be discovered online.
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Given a nonlinear dynamic system already stabilized in one feasible trim state, extrapolation of the local
properties translates to determining the region of attraction around the current trim state. Researchers have
studied this problem using Lyapunov function methods,9,10 with growing interest in Linear Matrix Inequality
(LMI) theory to deal with nonconvex distance problems in attraction region estimation.11 Neither region
of attraction nor local linearizations extrapolated away from the current state are su�cient to de�ne the
full ight envelope from the current trim state, however. Instead, the aircraft must be guided through the
envelope, with further extension or contraction of the envelope at each step based on local estimate updates.

In previous work,6 we used an arti�cial potential �eld algorithm adapted from the robot motion planning
community for the process of trim state discovery. A path is constructed in \trim-state-space", de�ned as

three-dimensional coordinates
h
VT _h _ 

iT
, not physical space, to safely guide the aircraft through the

ight envelope discovery process. This path is translated to three-dimensional physical space and altered as
needed to ensure altitude and airspace constraints are satis�ed. For Trim State Discovery (TSD), we assume
the properties of trim states within the local neighborhood of the current trim state can be obtained, and
we de�ne a step size expected to meet region of attraction constraints. From our previous experience with
damage and failure models, each identi�ed trim state remained feasible at and below the maximum altitude
where this trim state can be feasible. Therefore, we presume the trim states achievable at high altitudes are
also achievable at lower altitudes, enabling the system to explore its envelope well above the terrain.

Motion planning can be categorized as static or dynamic.12 A path planner in static motion planning
knows all obstacle information prior to planning, but the dynamic path planner knows obstacle information
only through real-time sensing of its local environment. Researchers have studied dynamic methods of robot
motion planning with obstacle avoidance using methods such as Bug algorithms (Bug 1 & Bug 2)13,14 or
Arti�cial Potential Fields (APF).15,16 When envelope constraint information cannot be obtained otherwise,
the discovery process is activated. This implies that the path planner in TSD does not have prior information
of obstacles, i.e. envelope constraints. To minimize computational overhead and handle dynamically-updated
constraints we adopted the APF method for TSD.6

Without loss of generality, we assume the aircraft establishes and maintains an initial trim state just after
failures and/or damage occurs, although we make no assumptions beyond stabilizability on the properties
of this trim state. In the presence of failures and/or damage, the pilot or ight management system must
adapt the ight plan to enable a safe landing. As the failure characteristics are initially unknown, a nominal
landing trajectory may not be dynamically-feasible. TSD enables the pilot/autopilot to understand which
states are stabilizable, thereby de�ning a ight plan that is feasible given the failure/damage e�ects. Given
the existence of unknown, nonlinear aircraft dynamics, the stability and the controllability of a point in this
envelope, a trim state, cannot be determined until the damaged aircraft transitions to the local neighborhood
of that state. In previous work,6 Trim State Discovery (TSD) is de�ned as:

De�nition Given an initial stable damaged aircraft \position"in trim-state space zT0 =
h
VT0

_ 0 0

iT
and an ideal �nal approach trim state zTapp , Trim State Discovery (TSD) is to generate a continuous path
T in trim-state space from zT0 to zTapp where T is a sequence of continuous trim states and transitions. All
trim states in T must be stabilizable in the presence of disturbances.

In our previous work,6 both two dimensional and three dimensional TSD search spaces are considered. 2D
TSD searches through ight path angle  and turn rate _ space with the �xed true airspeed VT , the preferred
search given that airspeed transitions typically have longer settling time. However, we observed situations
in which the 2D search became trapped in a local envelope regions while extension to 3D TSD with true
airspeed VT enables a more extensive exploration, thus increased ability to identify a safe �nal approach
state. 3D TSD operates in the space VT , , and _ . APF path planning in this space represents what we
believe to be a novel departure from the traditional search through 3D physical space x; y; z.

In TSD, every step (local transition) in trim state space consists of two phases: exploration and exploita-
tion. Exploration strives to understand the neighborhood of the present trim state without respect to state
discovery, while exploitation seeks to determine a path T to a neighboring trim state by using information
from exploration. In the Trim State Discovery (TSD) algorithm we previously presented,6 a stable trim
state zT0 is established and maintained. A transition or step through trim-state-space then is modeled with
a time to transition from the present state to the next state, and a time to settle in the next state such that
local dynamics properties can be accurately identi�ed. For 3D TSD, total transition time, especially settling
time when airspeed changes, can be nontrivial.6 TSD, although searching through trim-state-space, must
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therefore also be concerned with ensuring the aircraft’s path through physical space will not risk impact into
terrain or entry into airspace unacceptable for maneuvering (e.g., for low-priority UAS). At low altitude, for
example, TSD must account for terrain thus will bias its search toward positive or zero ight path angles.
TSD must ultimately discover trim states with zero or negative ight path angle for approach to landing,
de�ning a \goal state" for TSD. Discovery of descending states simply must be done once su�cient altitude
is obtained.

To generate a series of trim state-space transitions connecting initial and goal �nal approach states, a
modi�ed Arti�cial Potential Field (APF) was adopted to establish a path T in trim state space. In trim
state space, obstacles represent estimated edges of the ight envelope de�ned by actuator saturation or
stabilizability constraints. Each edge exerts a repulsive force with su�cient strength to prevent the APF
planner from violating estimated envelope constraints. The ideal �nal approach trim state zTapp exerts an
attractive force. Let ~FA and ~FP represent the attractive and repulsive forces acting on present state zT ,
respectively. Then zT has a resultant force ~FR that represents the vector sum of these two forces. zT
subsequently moves on this arti�cial potential �eld via transition in the direction of ~FR. ~FA, ~FP , and ~FR as
given by:

~FA = FA0

"
1� exp

 ��zTapp � zT
����zTapp � zT0
��
!#

zTapp � zT��zTapp � ziTc

�� (8)

~FP = FP0

nX
i=1

�
ViO
Va

�
zT � ziTc��zT � ziTc

�� (9)

~FR = ~FA + ~FP (10)

where ziTc
is a state representing the centroid of the ith dynamically-discovered obstacle and is given by:

ziTc
=
h
V iTc

_ ic ic

i
=
�

1
Vi

O

RRR
V

VT dV
i 1

Vi
O

RRR
V

_ dVi 1
Vi

O

RRR
V

dVi
�

(11)

ViO and Va are the volume of the ith explored obstacle and the local attraction region, respectively. Since we
de�ne saturation boundaries but not explicit obstacle volumes, we can map centroids a certain distance from
obstacle boundaries to provide appropriate repulsive �eld strength as envelope boundaries are approached.
FA0 and FP0 are the adjustable coe�cients of the attractive force and the repulsive force which also can be
modi�ed to adjust relative �eld strengths. TSD will follow a sequence of transitions to the �nal approach
trim state with obstacle avoidance in the direction of a resultant force. A drawback to APF is that it can be
trapped into local minima of cumulative potential.6 At the trap of local minima in the APF method, TSD
switches to an edge-following method until it escapes the local minimum. In other words, zT will transition
along the obstacle in the direction perpendicular to the repulsive force. Since two vectors ~A and ~B are
perpendicular to the repulsive force ~FP such that ~A and ~B are of opposite direction, direction of motion of
zT is given by:

��!
stepi =

8<: steplength ~A

j ~Aj if
�
zTi � zTi�1

�
~A � 0

steplength ~B

j ~Bj if
�
zTi
� zTi�1

�
~A < 0

(12)

In the edge-following method, the transition of zT depends on the distance between the local edge of the
ight envelope and zT . If this distance is too far, zT may diverge away from the obstacle and may return
to the orginal local minimum because an attractive potential �eld is a function of distance from zTapp to
zT . Then zT repeats the same exploration steps and again is trapped. If zT is too close to the edge of the
ight envelope, the discovered trim states may lose robustness to disturbances. Therefore, we introduce an
additional repulsive force as follows:

��!
stepi =

8>><>>:
���!
stepi + 0:2~FP if Vi

O

Ve
> �1

���!
stepi � 0:2~FP if Vi

O

Ve
< �2

���!
stepi if �2 � Vi

O

Ve
� �1

(13)

where �1 and �2 are the prespeci�ed coe�cients representing proximity between zT and the ith obstacle.
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Figure 3 shows two examples of TSD from di�erent initial conditions, both at initial altitude 10000 ft
MSL. As shown, the AFP-generated path progresses to a �nal approach goal state followed by a termination
sequence in which local exploration around the �nal approach state is conducted to ensure the �nal approach
and neighboring states are well-understood. Our damaged F-16 model with aileron jammed at -10 degrees
was used in these three dimensional TSD simulations, as previously described in Yi and Atkins.6 The �nal

trim state is speci�ed as zTapp =
h
VT 0� �3�

iT
, with airspeed VT determined during exploration.

The initial trim state is de�ned as zT0 =
h

400ft=s 15:5� 2:9�
iT

for the �rst simulation (left) and

zT0 =
h

450ft=s �15� �1:3�
iT

for the second simulation (right). The green dots indicate stablizable
trim states, and blue dots and line represent the TSD path. As shown, despite the non-convex ight envelope,
more challenging to traverse than typical convex nominal envelope geometries, the AFP-based TSD algorithm
was able to identify a near-direct path from initial to a valid �nal approach state.

(a) VT = 400ft=s, _ = 15:5�, and  = 2:9� (b) VT = 450ft=s, _ = �16�, and  = �1:3�

Figure 3. 3D Trim State Discovery Examples for Di�erent Initial Trim States

IV. Turning Dubins Vehicle Trajectory

Using trim states from the trim database or from Trim State Discovery, the Adaptive Flight Planner
(AFP) builds a real-time emergency landing trajectory to guide the damaged aircraft to a chosen landing
runway. If the aircraft can y straight after failures and/or damage, a Dubins path is generated by the AFP.
Severe damage cases, however, such as a previously-studied left wing structural damage case4 may render
the aircraft unable to maintain a straight ight path. In previous work,5 we de�ned the concept of a Turning
Dubins Vehicle as an extension of the Dubins path landing solution as follows:

De�nition (Turning Dubins Vehicle (TDV)) A Turning Dubins Vehicle is a planar vehicle that is con-
strained to move along paths of curvature bounded both above and below, without reversing direction and
maintaining a constant speed.

Let � : [0; T ] ! R2 be a curve for the TDV that is twice di�erentiable for maneuver times T � 0, and
C (s) represent a natural representation of � with respect to ci. Since the magnitude of the curvature
of � is bounded above by the reciprocal of the minimum turning radius rm and below by the reciprocal
of the maximum turning radius rM , let � represent the set of possible curves for the TDV, i.e., � =n
�jk 2

h
1
rM
; 1
rm

io
where ~k is the curvature vector of �, and let �c be the set of circular curves for the TDV

as follows:

�c =

(
O
�
~rc; r; sgn

�
_ 
��
j rm � r � rM ; sgn

�
_ 
�

=

(
+1 if _ > 0
�1 if _ < 0

)
(14)
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where O
�
~rc; r; sgn

�
_ 
��

: [0; TO] ! R2 repre-
sents a circle of radius r with center ~rc and di-
rection of motion sgn

�
_ 
�

where TO denotes the
maneuver time during O. For a given center ~rc
in R2 and two given points ~rpi and ~rpf

in R2,
let a

�
~rc; ~rpi

; ~rpf

�
: [0; Ta] ! R2 be a circular arc

connecting ~rpi
and ~rpf

with arc center ~rc and let
A =

�
a
�
~rc; ~rpi

; ~rpf

�
j ~rc; ~rpi

; ~rpf
2 R2

	
.

To obtain the landing trajectory, we identify a
reference arc that can be followed by alternating seg-
ments of two di�erent turning radii that include a
prede�ned safety factor su�cient for disturbance re-
jection. Since the perpendicular bisector of a chord
passes through the center of the circle,17 let Ar be
the set of possible reference arcs connecting centers
ci and cf as follows :

Ar =
�
a
�
~rO; ~rci ; ~rcf

�
j ~rO =

1
2
�
~rci + ~rcf

�
+ �

�
cos �O Î + sin �OĴ

�
; � 2 R

�
(15)

where ~rO is a vector to the center O of the reference arc, and �O = arctan
�
�xcf ci

ycf ci

�
given ~rcf ci

= xcf ci
Î +

ycf ci
Ĵ . Note that there also exists a dual reference arc a0r 2 Ar because the direction of the unit vector

represeting the perpendicular bisector can be reversed, as shown in Figure 4. Using ~rOci , the radius rr, angle
�r, and length lr of the reference arc ar 2 Ar, as shown in Figure 4, are expressed as k~rOcik, arccos

�
�
rr

�
,

and 2rr�r, respectively. When we determine alternating segments of two di�erent turning radii, the below
de�nition of a product of two arcs is important. If a2i�1 (T2i�1 � T2i�2) = a2i (0) where a2i�1 and a2i are
the arcs of O 2 �c intercepted by ar 2 Ar, then we de�ne a product of two arcs as :

bi = a2i�1 � a2i =

(
a2i�1(t� T2i�2); T2i�2 � t � T2i�1

a2i(t� T2i�1); T2i�1 � t � T2i

(16)

where T0 = 0. The following theorem and corollary that we have proven previously5 present how to arrange
a sequence of two di�erent turning radii and a sequence of alternate turning arcs for the TDV.

Theorem IV.1 Let ar 2 Ar, and let O1

�
c1; r1; sgn

�
_ 
��

and O2

�
c2; r2; sgn

�
_ 
��

be in �c with r1 6= r2.

Let a1 be the intercepted arc of O1 with ar and center c1 such that a1 (c1; p0; p1) : [0; T1]! R2 where p0 and p1

lie on ar. Let a2 be the intercepted arc of O2 with ar and center c2 such that a2 (c2; p1; p2) : [0; T2 � T1]! R2

where p2 lies on ar. Suppose c1 lies on arc ar. If c2 is located on ray ��!p1c1 with distance r2 from p1, then O1

and O2 are tangent at p1. Moreover, the change in heading angle of the TDV over a1 � a2 is 2�� j4�1 � 2�2j
if sgn

�
_ 
�
> 0 and 2� + j4�1 � 2�2j if sgn

�
_ 
�
< 0 where �1 = arcsin

�
r1
2rr

�
and �2 = arccos

�
~aOc2 �~aOp1
k~aOc2krr

�
.

Note that 2�1 > �2 if r1 > r2, and 2�1 < �2 if r1 < r2.

Corollary IV.2 Let ar 2 Ar. Let O2i�1

�
c2i�1; r1; sgn

�
_ 
��

and O2i

�
c2i; r2; sgn

�
_ 
��

be in �c with
r1 6= r2 for all i 2 N. Let a2i�1 be the intercepted arc of O2i�1 with ar and center c2i�1 such that
a2i�1 (c2i�1; p2i�2; p2i�1) : [0; T2i�1 � T2i�2] ! R2. Suppose c1, p0, and p1 lie on ar. Let a2i be the inter-
cepted arc of O2i with ar and center c2i such that a2i (c2i; p2i�1; p2i) : [0; T2i � T2i�1]! R2. If c2i is located
on ray �������!p2i�1c2i�1 with distance r2 from p2i�1 and c2i+1 is located on ray ���!p2ic2i with distance r1 from p2i for
all i 2 N where p2i�1 and p2i lie on ar, then O2i�1 and O2i are tangent at p2i�1, and O2i and O2(i+1)�1 at p2i

tangent such that c2i�1 and c2(i+1)�1 lie on ar for all i 2 N. Consider the set fbi j bi = a2i�1 � a2i; i 2 Ng.
Moreover, the change in heading angle of the TDV over b1 � b2 � � � � � bi is i (2� � j4�1 � 2�2j) if sgn

�
_ 
�
> 0

and i (2� + j4�1 � 2�2j) if sgn
�

_ 
�
< 0for all i 2 N where �1 = arcsin

�
r1=2
rr

�
and �2 = arccos

�
~aOc2 �~aOp1
k~aOc2krr

�
.
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The proof of Corollary IV.2 is basically the same as the proof of Theorem IV.1 and is completed by
mathmatical induction.5 In the proof of Corollary IV.2, since O2i�1 and O2i are tangent at p2i�1 and
a2i�1 (T2i�1 � T2i�2) = a2i (0) = p2i�1 for all i 2 N, bi is de�ned for all i 2 N. If bi (T2i � T2i�2) = bi+1 (0)
where bi = a2i�1 � a2i and bi+1 = a2(i+1)�1 � a2(i+1), then we de�ne a product of two products as :

bi � bi+1 =

(
bi(t� T2i�2); T2i�2 � t � T2i

bi+1(t� T2i); T2i � t � T2i+2

(17)

where T0 = 0. Since O2i and O2(i+1)�1 are tangent at p2i and a2i (T2i � T2i�1) = a2i+1 (0) = p2i for all
i 2 N, b1 � b2 � � � � � bi is de�ned for all i 2 N.

2i-1δ 2iδ

-2π δ1

2i-1c

2i-1
π δ−
22ic

2i+1c

rr

ra
O

2i-1p2ip

2i-2p

2π δ1+

( )22π δ δ1+ −( )22π δ δ1− −

(a) Product of n Arcs if r1 > r2

2i-1δ 2iδ

2i-1
π δ−
2

rr

ra O

2i+1P

-2π δ1

2i-1c

2ic

2i+1c
2i-1p 2ip2i-2p

2π δ1+

( )22π δ δ1+ −
( )22π δ δ1− −

(b) Product of n Arcs if r1 < r2

runway

1c fc fO

ra

1O
2nO

rl

J

0P

2nP
B

(c) Feasibility Condition if r1 > r2 and sgn
�

_ 
�
> 0

runway

1C
fC
fO

ra

1O

2nO

rl

J

0P
2nP

B

(d) Feasibility Condition if r1 < r2 and sgn
�

_ 
�
> 0

Figure 5. Product of n Arcs and Feasibility Condition

Let fbi j bi = a2i�1 � a2i; i 2 Ng represent the set of products of alternate turning arcs for the TDV in
ar 2 Ar such that Corollary IV.2 holds, denoted by B. Although B follows a reference arc ar from the previous
corollary, the �nal circular curve Of and the 2nth circular curve O2n for the TDV are not guaranteed tangent
at p2n after n sequences. The following theorem that we have proven previously5 describes the horizontal
feasibility condition about ar for the TDV to reach the selected runway.

Theorem IV.3 Let ar 2 Ar, and let n 2 N be given. Suppose B = fbi j bi = a2i�1 � a2i; i 2 f1; 2; � � � ; ngg
over ar such that Corollary IV.2 holds. Let O1

�
ci; r1; sgn

�
_ 
��

and Of
�
cf ; r1; sgn

�
_ 
��

represent the initial
and �nal circular curves, respectively. Then there exists an ar such that the �nal position in bn 2 B, ~rp2n ,
lies on an intersection point of Of and ar if and only if rr satis�es the horizontal feasibility condition:

2�r = n j4�1 � 2�2j (18)
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where �r = arccos
�
�
rr

�
, �1 = arcsin

�
r1
2rr

�
, and �2 = arctan

0@r
r2r�

r2
1
4

r2
r

r2
� r1

2

1A. Therefore, the TDV can reach the

selected runway.

The essence of the proof of Theorem IV.3 is to show that a center of an additional circular curve O2n+1 from
Corollary IV.2 is a center of the �nal circular curve Of .

Let ar 2 Ar, and let lr represent the length of ar from the center c1 to the center cf from the de�nition
of Ar. Let J represent the lenght of ar traversed over b 2 B in ar. From Corollary IV.2, J is independent of
the index i in B. Multiplying Eq. 18 by the radius rr of the reference arc, we obtain the horizontal feasibility
condition about the length of ar:

lr = nJ (19)

where J = j2r1 � 2r2j if ar is a straight line, and J = j4rr�1 � 2rr�2j otherwise from Theorem IV.1. Thus,
lr must be an integer multiple of J for the runway to be reached via b1 � b2 � � � � � bi where bi 2 B for all
i 2 f1; 2; � � � ; ng. Since ar 2 Ar evolves from a straight line to a circle as � in Eq. 15 is varied from 1 to
�1, we can �nd a lower bound for n in B = fbi j bi = a2i�1 � a2i; i 2 f1; 2; � � � ; ngg over ar representing a
straight line. Moreover, since the radius of TDV’s curvature is in [rm; rM ], J is bounded. Let nm represent
the minimum value of n in B over ar satisfying the horizontal feasibility condition such that J has the
maximum value, and let arm represent the reference arc having nm. In the next theorem, we consider the
minimum sequence of alternating extreme turning arcs satisfying the horizontal feasibility condition 18.

Theorem IV.4 Let ar 2 Ar, and let n 2 N be given. Suppose B = fbi j bi = a2i�1 � a2i; i 2 f1; 2; � � � ; ngg
over ar such that Corollary IV.2 holds. Let O1 =

�
ci; r1; sgn

�
_ 
��

and Of =
�
cf ; r1; sgn

�
_ 
��

represent
the initial and �nal circular curves, respectively. Suppose ar satis�es the horizontal feasibility condition 19.
Then nm = d k~rcf ci

k
j2r1�2r2je and there exists arm

such that O2n and Of are tangent at p2n where

r1 = rM and r2 = rm if r1 > r2 (20)
r1 = rm and r2 = rM if r1 < r2 (21)

The following lemma to bound the maximum value of J is used to prove the above theorem.5

Lemma IV.5 If circular curves of two distinct radii satisfy the condition:

r1 = rM and r2 = rm if r1 > r2 (22)
r1 = rm and r2 = rM if r1 < r2 (23)

then J has the maximum value for all ar 2 Ar.

To prove the above lemma, we use other expressions of �2 given by:

�2 =

8>>>>>><>>>>>>:
�1 � arctan

0@ r1
2 �r2r
r2r�

r2
1
4

1A if r1 > r2

�1 + arctan

0@ r2� r1
2r

r2r�
r2
1
4

1A if r1 < r2

(24)

The essence of the proof of Theorem IV.4 is to show that the number n of products of alternating turning
arcs is greater than or equal to the length of ar representing a straight line divided by the maximum of the
length of J . Note that rr of ar 2 Ar has the following constraints:

rr >
r1
2
; and rr �

k~rcf ci
k

2
(25)
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V. 3D Turning Dubins Vehicle Trajectory

In the previous analysis of the Turning Dubins Vehicle, we presume the longitudinal and lateral aircraft
dynamics are fully-decoupled, and that we can achieve a ight path angle that yields the necessary alti-
tude change from the initial state to the �nal (landing) state. We now relax this assumption to consider
constraints on ight path angle as a function of turning radius. For simplicity, we assume a ight path
angle  is constant throughout descending ight to landing. Although the possible range of  will vary
as a function of turn radius, we de�ne m and M as the minimum and maximum ight path angles of
the TDV at the initial altitude, respectively, achievable for all turn radii in the range [rm; rM ]. Given the
initial position ~rpI

of the TDV and the position ~rpf
of the landing runway, let h0 be the initial altitude

of the TDV. Let rm and rM be given. By Corollary IV.2, the change in heading angle of the TDV in
B = fbi j bi = a2i�1 � a2i; i 2 f1; 2; � � � ; ngg for all n 2 N is given by:

n (2� � j4�1 � 2�2j) if sgn
�

_ 
�
> 0 (26)

n (2� + j4�1 � 2�2j) if sgn
�

_ 
�
< 0 (27)

where �1 = arcsin
�
r1
2rr

�
, and �2 = �1 � arctan

0@ r1
2 �r2r
r2r�

r2
1
4

1A if r1 > r2 and �2 = �1 + arctan

0@ r2� r1
2r

r2r�
r2
1
4

1A if

r1 < r2.
The minimum value nm of n in B over ar is determined by Theorem IV.4. Let sB represent a natural

parameter of � when the TDV �nishes B = fbi j bi = a2i�1 � a2i; i 2 f1; 2; � � � ; ngg over ar satisfying the
feasibility condition 18. Given ~rp0 , ~rpf

, rm, and rM , the length sB of B is then given by:

sB =

8<: n� (r1 + r2)� 2n�1 jr1 � r2j � 2�rr2 if sgn
�

_ 
�
> 0

n� (r1 + r2) + 2n�1 jr1 � r2j+ 2�rr2 if sgn
�

_ 
�
< 0

(28)

for all n � nm using feasibility condition 18 and Eq. 24. However, we don’t consider the arc length from the
initial position ~rpI

of the TDV to the position ~rp0 in the �rst circular arc a1 and the arc length from ~rp2n
in bn 2 B to ~rpf

in Eq. 28. Let  I be the initial heading of the TDV, and let  1 be the heading in the �nal
point p1 of the initial circular arc a1. Then the di�erence j 1 �  I j between two headings is determined
using the dot product of ~rcipI

and ~rcip1 according to the travel direction. We also determine the di�erence
j f �  2nj of the heading  f of the landing runway and the heading  2n of the �nal position in bn 2 B in
the same manner. Therefore, we now de�ne sB as the length of the TDV trajectory from the initial position
of the TDV to the position of the landing runway in B:
if r1 > r2,

sB =

8<: � [(n� 1) r1 + nr2]� 2�1 [(n� 1) r1 � nr2]� 2�rr2 + (j 1 �  I j+ j f �  2nj) r1 if sgn
�

_ 
�
> 0

� [(n� 1) r1 + nr2] + 2�1 [(n� 1) r1 � nr2] + 2�rr2 + (j 1 �  I j+ j f �  2nj) r1 if sgn
�

_ 
�
< 0
(29)

if r1 < r2,

sB =

8<: � [(n� 1) r1 + nr2] + 2�1 [(n� 1) r1 � nr2]� 2�rr2 + (j 1 �  I j+ j f �  2nj) r1 if sgn
�

_ 
�
> 0

� [(n� 1) r1 + nr2]� 2�1 [(n� 1) r1 � nr2] + 2�rr2 + (j 1 �  I j+ j f �  2nj) r1 if sgn
�

_ 
�
< 0
(30)

where �1 = arcsin
�
r1
2rr

�
, and �2 = �1 � arctan

0@ r1
2 �r2r
r2r�

r2
1
4

1A if r1 > r2 and �2 = �1 + arctan

0@ r2� r1
2r

r2r�
r2
1
4

1A if

r1 < r2.
In this work, we assume m is negative. This assumption is appropriate for the TDV to reach the selected

landing runway. If the TDV satis�es the vertical feasibility condition:

m � arctan
�
�h0

sB

�
� M (31)
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then the TDV can reach the landing runway. sB is a function of n in B over ar, and thus is noncontinuous
on fn 2 N j n � nmg for the �xed r1 and r2. However, sB in the condition 31 depends on the range of the
turning radius as well as the initial position of the TDV and the position of the selected landing runway.
Changing r1 and/or r2 on [rm; rM ], sB can be continuous for each n 2 fn 2 N j n � nmg. Without loss of
generality, let r1 = rM for the case where r1 > r2. From previous work,5 we know that if r2 = rm, then J
has the maximum value for all ar 2 Ar. Therefore, J is decreased for all ar 2 Ar as r2 is increased from
rm to rM �

h
k~rCfCik

2n

i
where n 2 fn 2 N j n � nmg. Since lr = nJ , the length of ar from the center c1

to the center cf should be decreased for n to be constant. Since ar 2 Ar evolves from a straight line to a
circle as � is varied from 1 to �1, rr should be increased if ar was the minor reference arc when r2 = rm,
or be decreased to k~rCfCik

2 if ar was the major reference arc when r2 = rm. If r2 = rM � k~rCfCik
2n , then

the reference arc ar is a straight line because k~rCfCik
j2rM�2r2j = n. Furthermore, rM �

h
k~rCfCik

2n

i
has the limit

rM as n approaches 1. Therefore, rr is increased if ar was the minor reference arc when r2 = rm, or is
decreased to k~rCfCik

2 and is increased if ar was the major reference arc when r2 = rm as r2 is increased onh
rm; rM � k~rCfCik

2n

i
where n 2 fn 2 N j n � nmg. The case where r1 < r2 is the same as the case when

r1 > r2 setting r1 = rm and r2 2
h
rm + k~rCfCik

2n ; rM

i
.

If r1 > r2, two candidate trajectories for the TDV can be considered because there exist two reference arcs
having the same rr and satisfying the feasibility condition. One of two candidates has the same properties
as the TDV trajectory when sgn

�
_ 
�
> 0, and the other candidate has the same properties as the TDV

trajectory when sgn
�

_ 
�
< 0. Let n 2 fn 2 N j n � nmg, and let r1 = rM . Let sBn+ and sBn� represent

the length sB of B when r2 = rm and sgn
�

_ 
�
> 0, and when r2 = rm and sgn

�
_ 
�
< 0, respectively. Let

sBnS
represent the length sB of B when r2 = rM � k~rCfCik

2n . Since the reference arc is a straight line if
r2 = rM � k~rCfCik

2n , �1 and �r are equal to 0 from the de�nition of �1 and �r. Then sBnS
is given by:

sBnS
=

8<: �
h
(2n� 1) rM � k~rCfCik

2

i
+ (j 1 �  I j+ j f �  2nj) rM if r1 > r2

�
h
(2n� 1) rm + k~rCfCik

2

i
+ (j 1 �  I j+ j f �  2nj) rm if r1 < r2

(32)

Since rr is varied as r2 is varied on
h
rm; rM � k~rCfCik

2n

i
, we can compare arctan

�
� h0
sBn+

�
, arctan

�
� h0
sBn�

�
,

and arctan
�
� h0
sBnS

�
. The case where r1 < r2 is the same as the case where r1 > r2 setting r2 2h

rm + k~rCfCik
2n ; rM

i
. Therefore, we can assume that the ight path angle  in B for each n 2 fn 2 N j n � nmg

is on [Bm ; BM
] where Bm and BM

are determined from arctan
�
�h0
sB

�
for sB 2 fsBn+; sBn�; sBnS

g.
Table 1 shows the algorithm to generate the 3D Turning Dubins Vehicle Trajectory. Let n = nm, r1 = rM ,

and r2 = rm. Then Bm
and BM

are determined by computing sBn+, sBn�, and sBnS
. If the minimum

and maximum of ight path angle  in B for n are less than the minimum ight path angle of the TDV
at the initial altitude, then the number n of products of alternating turning arcs is increased because sB
is increased as n 2 fn 2 N j n � nmg is increased. If the interval [Bm

; BM
] has an intersection with the

constraint [m; M ] of the ight path angle of the TDV at h0, r2 is increased from rm to rM � k~rCfCik
2n . If

the minimum Bm
of the ight path angle in B for n satis�es the vertical feasibility condition 31, a sequence

of alternating turning arcs for the TDV is generated by setting Bm
as the adequate ight path angle of the

TDV at h0, and thus the TDV can reach the landing runway. If M is less than Bm
, feasible and closer

runways should be selected despite the safety decrease of landing because the necessary altitude change from
the initial to the �nal (landing) state cannot be achieved within the distance between two centers of the
initial and �nal circular curves.

VI. Compact Flight Envelope Database Generation

When a damage or failure situation �rst occurs, an adaptive or emergency ight management system must
rapidly respond. First, the autopilot will stabilize the aircraft, ideally at a state close to that commanded for
the nominal ight plan, or alternatively at any state that prevents loss-of-control. Simultaneously, system
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1. Initialize ~rpI
,  I , ~rpf

, and  f for landing runway Lf .
2. Set the ranges of turning radii, turn rates, and ight path angles of the TDV, [rm; rM ],

h
_ m; _ M

i
,

and [m; M ].
3. Set r1 = rM and r2 = rm

4. Determine the initial circular curve Oi and the �nal circular curve Of .
5. Compute nm = d k~rCfCik

j2r1�2r2je and Set n = nm

6. Determine the radius rr of the reference arc satisfying the feasibility condition 18 for n.
7. Compute lengths sBn+, sBn�, and sBnS

of the TDV trajectory.
8. Determine Bm

and BM

9. if Bm < BM
< m

10. n=n+1; goto Step 6;
11. elseif Bm

< m < BM
< M

12. r2 is increased from rm to rM � k~rCfCik
2n ; goto Step 6;

13. elseif Bm
< m < M < BM

14. r2 is increased from rm to rM � k~rCfCik
2n ; goto Step 6;

15. elseif m � Bm � M
16. Generate a sequence of alternating turning arcs for the TDV by setting Bm ; exit
17. elseif M < Bm

18. Select a closer landing runway Lf ; goto Step 1;
19. end if

Table 1. Algorithm for 3D Turning Dubins Vehicle Trajectory Generation

identi�cation will generate an envelope estimate that is valid at least locally. System identi�cation can
take two basic forms. In cases of actuation failures, sensors may directly indicate the problem. System
identi�cation can establish the speci�c problem characteristics (e.g., loss of thrust results in zero thrust
coe�cient values). The second case is that the failure is not directly characterizable, as with structural
damage; a process such as trim state discovery described above is then required.

Suppose an actuator fails in a constant con�guration (e.g., jam). This failure can be identi�ed, and falls
into the class of failures that could be predicted thus modeled o�ine. Each speci�c jam condition, however,
changes the characteristics of the ight envelope to an extent. Trim databases such as those de�ned in Strube
et al2,3 can be generated for a control surface jammed at a particular angle, for example. However, it would
be impractical to store di�erent databases for each possible deection jam angle over the continuous interval
of possible values. Using a GUI-based Matlab tool to generate and examine trim databases for known failures
(Figure 6), we explored the use of databases that represent the intersection or overlap between stabilizable
trim states for di�erent F-16 actuator jam angles. Figures 7 through 9 show trim state sets for F-16
aileron and rudder jams that are stabilizable over the speci�ed interval. Although transitions between these
states would be inuenced by the speci�c deection angle, fundamental properties of the transitions (e.g.,
settling times) will be comparable given common dynamics and control law formulation. As shown, the F-16
ight envelope is more sensitive to the jam angle value for the aileron than for the rudder. Additionally, as
previously discussed, more stabilizable trim states are available at low altitudes than at high altitudes due
to the ability to impart higher-magnitude aerodynamic forces and moments thus actuation forces/torques
at higher atmospheric densities. As shown in Figure 9, a single envelope can be stored for all rudder
deections from -30 to 30 degrees. As shown in Figure 7, it will be advantageous to store a minimum of
three aileron database jam intervals, less than �10�, [-10� 10�], and greater than 10�. As shown in all three
�gures, altitude also strongly impacts ight envelope extent, although in all examined cases high-altitude
ight envelope is a subset of low-altitude ight envelope. Therefore, for jam deections it will be useful
to store databases for multiple altitude intervals, with [0 10000 ft], [10000 20000 ft] and [20000 30000 ft] a
su�cient set for F-16 aileron and rudder jams.

In the context of adaptive ight planning, not all data from the detailed ight envelope database need
be accessed in real-time to successfully plan a ight. As described in our previous work,2,4 a subset of
representative data is su�cient to build a ight plan. For a Dubins path, trim states representing straight,
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Figure 6. GUI Interface to Plot Trim States

left, and right turns are required, ideally with level and descending ight path angle options (and possibly
climb given terrain requiring an initial climb). For a Turning Dubins Vehicle (TDV) trajectory, bounds on
left or right turning radius are required, computable from turn rate and airspeed of stabilizable trim states.
Examples of each with trim states selected from control surface jam databases are provided below.

VII. Example Landing Trajectories Possible with the 3D Dubins and 3D TDV
Solutions

Emergency landing trajectories are generated by the Adaptive Flight Planner (AFP) using a trim state
set from integrated trim databases or trim state discovery. Suppose an �10� aileron jam for F-16 occurs at
altitude 10000 ft, and that true airspeed is 250 ft/s. Since altitude strongly impacts ight envelope extent,
we presume that the AFP uses trim state sets for F-16 aileron jams on an altitude interval [0 10000 ft] in
Figure 8. At a given altitude 10000 ft, the F-16 has a minimum rate �25 ft/s of climb and a maximum
rate 0 ft/s of climb, and turn rates between [�10 ft/s � 7:5 ft/s] and [7:5 ft/s 10 ft/s] can be achieved. The
AFP generates a Turning Dubins Vehicle (TDV) trajectory as an emergency landing trajectory rather than
a Dubins path because the F-16 cannot maintain straight and/or level ight due to the �10� aileron jam,
at least given an initial discovery step of the local envelope (rather than the full database over which to
plan, which reveals that reduced airspeed can enable straight ight). Suppose the F-16 is located at 40:64�N
and �73:76�W with a heading 210�, and suppose a Landing Site Search (LSS) module in the AFP selects
as its top choice JFK 31L (40:6398�N;�73:7789�W ). Figures 10 and 11 represent Turning Dubins Vehicle
trajectories for this emergency satisfying the horizontal and vertical feasibility conditions 18 and 31, and
thus the F-16 can reach the JFK 31L runway. Although the minimum values nm of n in B over ar are 5
and 8 in Figures 10 (a),(b) and Figure 11 (a), respectively, the determined emergency landing trajectories
have the increased number 9 and 10 of products of alternating turning arcs to yield the necessary altitude
change from the initial state to the �nal (landing) state. The radius r2 of the second circular curve O2 is
also increased from the minimum turning radius 1430:2219 ft to 1586:0619 ft, and the chosen ight path
angle �5:7361� falls between [�5:7391� � 0:5730�] limits to satisfy the vertical feasibility condition 31, as
shown in Figures 10 (c) and (d), although it falls in the steeper range, a problem addressable in future work
by increasing the number of turning arc sequences. In Figure 11 for sgn

�
_ 
�
> 0 and r1 > r2, the radius r2

of the second circular curve O2 is decreased from the maximum turning radius 1906:9626 ft to 1807:5865 ft,
and the determined ight path angle is equal to �5:3304�, again steep but feasible.
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(a) Aileron Jam from �10� to 10� at 0 ft (b) Aileron Jam from �20� to 10� at 10000 ft

(c) Aileron Jam from �10� to 10� at 10000 ft (d) Aileron Jam from �10� to 10� at 20000 ft

Figure 7. Flight Envelopes for Di�erent Jammed Aileron Deection Intervals

Suppose the F-16 has a true airspeed 225 ft/s about the same aileron jam and the same altitude as
the previous emergency. From the trim state set for F-16 aileron jams over altitude interval [010000ft], the
F-16 has a range [�25 ft/s 0 min ft/s] of climb rate if turn rate for the F-16 is on [�7:5 ft/s � 2:5 min ft/s]
and [2:5 ft/s 7:5 min ft/s], and a range [�25 ft/s 0 min ft/s] of climb rate if turn rate for the F-16 is on
[�7:5 ft/s 7:5 min ft/s] at a given altitude 10000 ft. The AFP can generate a Dubins trajectory and a
TDV trajectory for emergency landing because the damaged F-16 has a rate of turn where the F-16 can
y straight. Suppose the F-16 in an emergency is located at 40:69�N and 73:72�W with a heading 210�.
The LSS identi�es 136 feasible landing runways and selects as its top choice JFK 31L. However, the AFP
generates a Dubins path to the JFK 22R runway to guarantee su�cient altitude change between the given
initial position and the landing runway1 by extending �nal approach to the runway, as shown in Figure 12.
If the tangent segment of a Dubins path has a su�cient length to generate a direct (Dubins) trajectory
from an initial position of the aircraft to the top-ranked runway, the AFP generates a Dubins path without
extending �nal approach to the runway. If the length of the tangent segment is su�ciently long, and the
ight path angle of the tangent segment in a Dubins path is less than the minimum ight path angle from
the used trim state set at a given altitude, the AFP constructs the \S-turn"solution, i.e. a Dubins path
inserting an intermediate turn,1 as shown in Figure 13. In Figure 13, the F-16 has the same conditions as
the case of a direct (Dubins) trajectory except for the F-16 location (40:68�N;�73:82�W ) and the use of
runway JFK 31L.

For the case of the F-16 with a true airspeed 225 ft/s, the AFP can construct a Dubins path and a TDV
trajectory at the given altitude 10000 ft due to a range of turn rate, [�7:5 ft/s 7:5 min ft/s]. Suppose the

16 of 21

American Institute of Aeronautics and Astronautics



Figure 8. Flight Envelope for Aileron Jam over an Altitude Interval

F-16 has the same conditions as the case of a direct (Dubins) trajectory, but turn rate for the F-16 is on
[�7:5 ft/s � 2:5 min ft/s] and [2:5 ft/s 7:5 min ft/s]. From Figure 8, the F-16 has a range [�25 ft/s 0 min ft/s]
in climb rate. Unlike the case of a direct (Dubins) trajectory, the TDV trajectory generated by the AFP can
reach runway JFK 31L that the Landing Site Search (LSS) module selected as its top-priority runway, and
two feasibility conditions of the TDV are satis�ed to guarantee a successful emergency landing, as shown in
Figures 14 and 15. The vertical feasibility condition 31 is satis�ed by the ight path angle Bm

in B for the
case where r1 = rM = 5148:6315 ft, r2 = rm = 1716:2105 ft , and n = nm = 4 in Figure 14 and n = nm = 5
in Figure 15. Note that the determined ight path angle is �6:0143� in Figure 14 and �5:6006� in Figure 15.

VIII. Conclusions and Future Work

We have presented an adaptive ight planning architecture capable of autonomously managing situations
in which aircraft performance is degraded due to damage or system failures. Our ight planner �rst identi�es
or discovers the degraded performance characteristics by exploring the space of climb rate, turn rate, and
airspeed values in a manner that ensures the aircraft remains stabilizable but that determines a set of feasible
trim states to sequence into an emergency landing plan. Based on the identi�ed envelope properties, either
a Dubins or Turning Dubins Vehicle ight plan is generated, providing a comprehensive real-time trajectory
planning tool that ultimately can be certi�ed due to its use of geometry that ultimately can be proven correct
and complete. We have presented integrated ight envelopes, results from trim state discovery, and a series
of Dubins and TDV ight plans for an F-16 experiencing rudder and aileron jam failures.

In future work we will apply this approach to di�erent and more challenging damage models and will
integrate our ight planner within the full emergency ight management framework. In the TDV trajectories,
the reference arcs may be unde�ned as n and r2 are varied in order to satisfy the vertical feasibility condition
although the TDV trajectories satisfy the horizontal feasibility condition for the minimum number of products
of alternating turning arcs. Speci�cally, if the distance between two centers of the initial and �nal circular
curves is too close, and if the di�erence between two turning radii is too small, the reference arcs might be
unde�ned as the number of products of alternating turning arcs and the radius of the second circular curve
are changed when the AFP strives to generate a TDV ight plan as an emergency landing trajectory. In
future work, the case of the unde�ned reference arc must be managed, and thus an intermediate turn will
be inserted analogous to the \S-turn"solution from our Dubins path method.1
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(a) Rudder Jam from �30� to 30� at 0 ft (b) Rudder Jam from �30� to 30� at 10000 ft

(c) Rudder Jam from �30� to 30� at 20000 ft (d) Rudder Jam from �30� to 30� at 0 ft to 20000 ft

Figure 9. Flight Envelopes for Di�erent Jammed Rudder Deection Intervals
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Figure 11. TDV Trajectory to the JFK 31L for a �10� Aileron Jam of the F-16 with an True Airspeed 250 ft/s if

sgn
�

_ 
�
> 0 and r1 < r2

40.6

40.65

40.7

40.75

40.8

40.85

40.9

-73.75-73.7-73.65-73.6-73.55
longitude (deg)

la
tit

ud
e 

(d
eg

)

Ip

2p

3p

4p

1p

(a) 2D Dubins Trajectory

40.6
40.65

40.7
40.75

40.8
40.85

40.9
-73.75

-73.7
-73.65

-73.6
-73.55

0

2000

4000

6000

8000

10000

12000

longitude (deg)
latitude (deg)

al
tit

ud
e 

(ft
)

Ip

2p

3p
4p

1p

(b) 3D Dubins Trajectory

Figure 12. Direct Dubins Trajectory to the JFK 22R for a �10� Aileron Jam of the F-16 with an True Airspeed 225
ft/s
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Figure 13. S-turn Dubins Trajectory to the JFK 31L for a �10� Aileron Jam of the F-16 with an True Airspeed 225
ft/s
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Figure 14. TDV Trajectories to the JFK 31L for a �10� Aileron Jam of the F-16 with an True Airspeed 225 ft/s if
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Figure 15. TDV Trajectories to the JFK 31L for a �10� Aileron Jam of the F-16 with an True Airspeed 225 ft/s if
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