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In our study, shape descriptors were calculated for specimens from the diatom genus Asterionella, using the method of arc
lengths and tangent angles in Fourier analysis. Asterionella species are character-poor. populations being distinguished mostly
by subtle shape differences. Fourier analysis has been used in the past as an aid in taxonomy for many organisms. Fourier
cocfficients are least-squares estimators of best-fit planar closed curves that provide a quantitative measure of shape and can
be usetul shape descriptors in character-poor organisms. We determined the relation between number of x,¥ coordinates and
the number of Fourier coefficients used in shape analysis for Asterionella. In a worked example. using a single extracted
specimen outline, the method of calculating Fourier coefficients is demonstrated: coefficients were calculated for 100, 140,
and 200 coordinates. in order to determine how many coordinates are necessary for etfective shape analysis. Then, for each
in a size range of Asterionella specimens, Fourier coefficients were calculated, using the same number of coordinates for
each. Reconstructed outlines were compared graphically with the original. Statistical measures of average difference. vari-
ance. standard deviation. and coefficient of variation were calculated between x's, y’s and Euclidean distance for the original
and reconstructed outlines. From this, using 100 x,y coordinates, the number of Fourier coetficients necessary to give the
best-fit outline over a size range from 30 to 95 pm is 22. Although we used Asterionella as an example, the method may

be applied to any diatom valve outline.

INTRODUCTION

Morphometric analysis is especially useful for character-poor
organisms. In particular, shape analysis has proved useful, be-
causce shape is empirically the initial distinguishing character
of many organisms: we often use shape as a first criterion at
sorting or classifying organisms, particularly those with ap-
parently regular symmetry, such as diatoms.

Out of the many ways to accomplish shape analysis, coef-
ficients derived from orthogonal polynomials, such as those
from Fourier analysis, have proved to be suitable as shape
descriptors for clams (Gevirtz 1976). ostracods (Younker &
Ehrlich 1977). leaves (Kincaid & Schneider 1983), foraminif-
era (Lohmann 1983), mosquito wings (Rohlf & Archie 1984),
and mussels (Ferson er al. 1985). Legendre polynomials have
been used in diatom taxonomy (Stoermer & Ladewski 1982;
Stoermer et al. 1984, 1986; Theriot & Ladewski 1986; Stein-
man & Ladewski 1987; Goldman er al. 1990), and Fourier
analysis of diatom outline shape has also been attempted (Mou
& Stoermer 1992). By characterizing the outline of an organ-
ism as a closed, planar curve, coefficients from orthogonal
polynomials may be calculated with respect to the best fit (in
a least-squares sense) of that outline. That is, shape analysis
is essentially an orthogonal polynomial regression.

Few studies have been undertaken to determine the relation
between the number of coordinates used and the number of
Fourier coefficients calculated to obtain a best-fit outline. The
Nyquist frequency has been suggested as a general guideline
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(e.g. Gevirtz 1976: Davis 1986). It is the harmonic of the
fundamental frequency defined as n = k/2 (Davis 1986),
where n is the number of Fourier coefficients at the Nyquist
frequency. and & is the number of x,y coordinates used. How-
ever, the utility of the Nyquist frequency is limited because
error accumulates around the periphery of an outline as more
and more coefficients are added (Bennett & MacDonald
1975), and the outline may become distorted. That is, the Fou-
rier is a waveform in which sinusoidal curves can be packed
in a segment of an outline rather than a best-fit straight line,
leading to overfitting of that segment (Fig. 1). In studies using
Fourier methods in shape analysis, the number of harmonics
is small compared to the number of coordinates used (e.g.
Younker & Ehrlich 1977; Kincaid & Schneider 1983; Rohlf
& Archie 1984). Each harmonic consists of at least one pair
of transformed coefficients. Fewer values are used to represent
an organism’s outline by using Fourier shape coefficients from
the harmonics.

There are many Fourier methods that can be applied in
shape analysis. They are all implemented differently and one
method should not be confused with another. One type of
Fourier method uses radii from a centroid (e.g. Gevirtz 1976).
This method is useful only when each radius intersects only
one point on the curved outline (Davis 1986) (Fig. 2). Another
uses the elliptical form of the Fourier based on arc lengths
(e.g. Ferson er al. 1985), whereby the x-projection and v-pro-
jection are each represented by a pair of Fourier coefficients
(Kuhl & Giardina 1982) (Fig. 3). A third method is based on
arc lengths and tangent angles (e.g. Lohmann 1983), whereby
change in angular direction is measured as a function of arc
length (Zahn & Roskies 1972) (Fig. 4).
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Fig. 1. Series of stylized Asterionella outlines illustrating overfitting
between the two points. As more and more coefficients are added, this
part of the curve becomes progressively more wavy or is overfitted.

In our study, diatoms from the genus Asterionella Hassall
are used to describe how to calculate Fourier coefficients us-
ing the Fourier method based on arc lengths and tangent an-
gles (Zahn & Roskies 1972 Bennett & MacDonald 1975; Per-
soon & Fu 1977). Asrerionella was chosen because it is char-
acter-poor: shape is the outstanding feature of the valve, but
this shape is particularly challenging to reproduce numerical-
ly, because there is an abrupt change from the highly curved
and rounded ends to relatively straight areas along the sides.
Asterionella’s outline is therefore not as simple as in some
other diatoms, in which the outline is composed of a single
geometric form (e.g. an ellipse). In addition, we investigate
the relationship between number of Fourier coefficients cal-
culated and number of x,v coordinates used to obtain best-fit
outlines for Asrerionella over a wide size range.

To use the method effectively to find shape similarities
among all Asterionella, the same number of coordinates need
to be assigned to each specimen. regardless of size. This en-
sures that pseudolandmarks can be compared from specimen
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Fig. 2. Application of the Fourier method using radii drawn from a
centroid: comparison of an elliptical diatom and a stylized Asteri-
onella. In the elliptical diatom, each radius intersects only one point

on the outline, whereas in the stylized Asterionella, it intersects two
points.

to specimen (Lohmann 1983). This is especially important in
a size diminution series: diatoms have homologous regions
(e.g. capitate, rostratc. or rounded ends). but not necessarily
homologous points around the outline of their valves, so that
true landmark methods are not applicable. In addition, char-
acters can be lost as a result of size diminution. so that again,
landmark methods would not be appropriate. An understand-
ing of how to use Fourier analysis based on the method of
arc lengths and tangent angles will facilitate its application to
problems involving shape analysis in taxonomy.

MATERIAL AND METHODS

Background on the shape analysis method

From Zahn & Roskies (1972), the normalized shape function
on the interval [0, —2w] with total arc length, L, is

() = ¢(£> + 1
27
where ¢ = 2wl/L and [ is arc length. In this method, equally
spaced values of 7 are used (Zahn & Roskies 1972; Rohlf &
Archie 1984; Rohlf 1990). This shape function is invariant to
translation, rotation and changes in L or dilation; therefore,
the starting point on a closed curve is arbitrary (Zahn & Ros-
kies 1972). The eigenfunction expansion gives the real-vari-
able trigonometric Fourier series for N (the maximum number
of) coefficients as the shape function
PN )
“(t) = a, + 2, a,cos(nt) + b,sin(nt)

where the coefficients are

I M 1 & 2mnl
dy = —m — = 2 [ Ad, a, = —— 2 Ad,sin £ and
| P nw
1 & 2mnl
b, == E Ad,cos——
nm % L
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Fig. 3. Elliptical Fourier analysis: comparison of a closed curve and
a stylized Asterionella fitted with ellipses. Vectors denote x- and y-
projections for each ellipse. Two Fourier coefficients from each pro-
jection are calculated. As the number of ellipses are added to improve
recovering the shape of a closed curve, more and more pairs of Fourier
coefficients are calculated to represent most closely the closed curve
outline.

where /, is the kth arc length, Ad, is the kth angular change,
n is the nth coefficient, and M is the maximum number of
coordinates used (Zahn & Roskies 1972).

Converting a, and b, to polar coordinates results in the
shape function as

N
O*(r) = a, + 2 A, cos(nt + a,),
n

where A, is the amplitude or directed distance as
A, =Va+ b:
and «, is the phase or directed angle as

b,
o, = arctan—.
a

n

This form of the Fourier results in the discretized version
of the tangent angle function of the original shape. That is,
we use the truncated polar form of the Fourier to calculate
shape descriptors a,, A, and «,,.

Background on Fourier series

The truncated form of the Fourier is useful in shape analysis.
However, this eigenfunction expansion is derived from a com-

XM, YD)

X (0), Y(0)

Fig. 4. Fourier analysis using the method of arc lengths and tangent
angle: comparison of a stylized Asterionella and a polygonalized As-
terionella depicting. Arc lengths, [, are calculated between successive
x,y coordinates, and tangent angles, ¢ (with respect to arc length), are
calculated relative to the angular bend in the closed curve.

plex, continuous function, whose properties are of interest
since they show directly how the Fourier can be used in or-
thogonal polynomial regression and, therefore, in shape anal-
ysis of closed curves.

The complex Fourier form of the shape function (Zahn &
Roskies 1972; Persoon & Fu 1977) is

=

d#(r) = 2 c e

n=-—x

where

1 2w
= q):!:(r)e—ml (1)‘.
2w J,

‘.IV

The complex coefficient, ¢,, is related to the real coefficients
by

Co = Gy 2¢, = a, — ib, = A,e”" and

n n

2¢_, = a, + ib, = A,e'.

—n

That is, for the real coefficients, a, and b,

a, + E a,cos(nr) + b,sin(nt)
n=1

is the real part of the power series

— ib,)z"

ag + E (a

n=1

n

on the unit circle z = ¢” (Szokefalvi-Nagy 1965). The com-
plex conjugate of the series is
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E (a,sin nt — b,cos nt)

n=1

To approximate the outline defined as a function, f{t), we
want pointwise convergence of the Fourier shape function,
d*(r), such that

lim ®*(r) = f(2).

N—s
In an interval, [g.A4], ®*(r) may be determined by choosing
coefficients, ¢, to minimize the difference between this func-

tion and f{7). That is, in a least-squares sense, the mean square
deviation is defined as

lim J- [f(r) — ®*(D)]*p dr = 0,
h
where pdt is a positive weight function = 1.

d*(7) is an orthogonal function since

j+2m
sin mt sin nt dt

J

0,

j+2m
J cos mt cos nt dt = 0,
i

2 (m # n)
sin mt cos nt dt = 0 ¢, and
(m = n)

Ire 0 (m # n)
gimtg—int dr —
0 | (m = n)

where m and n are integers. m # n, and j is a real number
(Edwards 1967; Kufner & Kadlec 1971). Using

J

f [f(t) — DE(D)]*p dt
h

and squaring, integrating, and completing the square results
in

¢ 2

J' F(ODP*(t)p dt ’

—T——— +j f()p dr
h
h

N

ZJ- D*(1)?p dtc,
h

n=1

‘ D#(1)2p dr

5

, U FOD*(1)p dr}
h

N
a fgl 8
D*(1)’p dt
h

The coefficients, c¢,, occur only in the first sum. By making
all its terms zero, minimization of a sum of squares occurs
(Jackson 1941; Brown & Churchill 1993; Weinberger 1995).
That is, for the real form of the Fourier, we minimize coeffi-
cients a, and b, to get a best-fit closed curve in a least-squares
sense.

Imaging

Digital images of Asterionella were obtained from strewn mi-
croscope slides from two sources. One was the H. Korner
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collection (Botanischer Garten und Botanisches Museum Ber-
lin-Dahlem, Berlin, Germany). Specimens from slide B Algae
25634b were used. The other source was the E.E Stoermer
collection (Center for Great Lakes and Aquatic Sciences, Uni-
versity of Michigan, Ann Arbor, MI 48109-1090). Specimens
used were from collection (slide) 1997. Slides from Great
Lakes samples were mounted in Hyrax.

A Leica DMRX compound light microscope with an oil-
immersion objective, 1.40 numerical aperture, was used to im-
age specimens at X 1000. From a Sony 3CCD model camera
model 960MD and subsequently a DKC Sony 5000 camera
attached to the microscope, images were transmitted to a com-
puter, then digitized and captured using NIH Image software
(version 1.62: Wayne Rasband at the US National Institutes
of Health, http://rsb.info.nih.gov/nih-image/). For a complete
description of the microscope and software used in image
analysis, see Stoermer (1996). From the specimen outline, x,y
coordinates were obtained digitally/graphically from the dig-
itized Asterionella image. That is, using the imaging software,
coordinates were determined using a mouse to point and click
on an Asterionella image outline. To ensure that coordinates
were equally spaced, a grid (as an image that looks like graph
paper) was superimposed on the Asterionella image. Coordi-
nates were checked by plotting and superimposing on the dig-
ital image to ensure that the outline represented in a pointwise
fashion (Edwards 1967) was accurate for shape analysis.

Calculating arc lengths and tangent angles

To calculate Fourier coefficients, a,, a, and b, from x,y co-
ordinates representing the original closed curve, these coor-
dinates need to be converted into arc lengths and tangent an-
gles. Arc length is

I, = VAx* + Ay?

where /, is the kth arc length. Cumulative arc length (Zahn &
Roskies 1972) is

from the start to the kth point on the curve. To obtain the
closed curve, the first set of x,y coordinates is also used as
the last set for the last cumulative arc length. Tangent angles.
as angular bend, ¢, in a clockwise (negative) direction, are
initially calculated by

b = —arctan( 2
= arctan ﬁS.Y’.

At each point on a closed curve, we want to calculate
change in angular bend, Ad, where &(/) is the cumulative an-
gular bend function (with respect to arc length), or net angular
bend from the starting point to a point on the curve, / (arc
length), on a closed curve. Total net angular bend is &(L) =
—2m. From this, &(/) will need to be normalized on the inter-
val [0, —27] to ®*(r), to be used in the Fourier expansion of
the shape function. That is, —arctangent values have to be
corrected for direction and magnitude on the interval [0, —2]
before Fourier coefficients can be calculated.
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Fig. 5. Polygonalized Asterionella, divided into top and bottom
halves. The first y-maximum and the first y-minimum are the points
that define the halves. The top half is the zero sector: the bottom half
is the —m sector.

Direction of angular bend and correction of —arctangent
values

We will use stylized polygonalized drawings of Asterionella’s
shape to describe the process of correcting —arctangent val-
ues. With respect to x,y coordinates, the outline of Asterionella
is divided into halves, where one half is defined to begin
where the y-value is a first maximum and the x-value is small,
but subsequent x-values are increasing (Fig. 5). The top half
ends where the first y-value minimum occurs and the x-value
is large, but subsequent x-values are decreasing (Fig. 5). With
respect to dividing the outline of Asterionella into 0 (or —21r)
and w sectors, the top half of Asterionella is in the zero (or
—2m) sector or direction and the bottom half of Asterionella
is in the —m sector or direction (Fig. 5). After calculating
negative arctangent (—arctangent) values, the next step is to
add — to the —arctangent values for the bottom half of the
outline.

Direction of angular bend follows a general pattern (Fig.
6). Following the outline in a clockwise (negative) direction,
whether the curve bends outward or inward for the top or
bottom half determines the sign of the value added to the
—arctangent values (Fig. 6). In general, the way to correct for
direction involves using 7/2 fractions (Bennett & MacDonald
1975): a value of = 7/2 needs to be added or subtracted from
the angular bend. In the top half of the outline, where the
angle first increases, w/2 or less would be added. Likewise, in
the bottom half of the outline, where the angle first decreases,
/2 or less would be added. Complex three-sided outlines can
be analysed based on m/4 fractions. However, diatom shapes
which have much less curvature, approaching circular to oval
or triangular shapes, can be more simply analysed using the
Fourier method based on centroids and radii. For our purposes
and using Asterionella as a worked example, guidelines based
on multiples of /2 fractions are specifically covered in the
next section.

Fig. 6. Polygonalized Asterionella, showing the positive and negative
sectors of the curve where initial —m/2 fractions are added or sub-
tracted.

Magnitude of angular bend

In general, change in angular bend means recovering all the
peaks and valleys around the periphery of an outline. A circle,
the simplest closed curve, is 27 radians. A triangle is the
simplest figure with edges, and diatoms that are basically tri-
angular may be corrected by starting with this figure. A square
is the next figure in this series, with four edges (Fig. 7). In
any such angular figure, there is a change in angular bend at

arbitrary
starting point
x(0),y(0)~_ 21 = 0

-3r
4

e Saaery emee
-
arbitrary
starting point
X0y~ oy < g
v———»
-3n =
2 2
-
“x
arbitrary
starting point
x(0), y(0) 2 =0
\/1 -
-3n -
2 2

-
-
Fig. 7. Series of the simplest polygonal closed curves, a triangle, a
square, and a rectangle, with arbitrary starting point x,, y,. Magnitude
of angular bend is in —7/4 increments around the periphery of the
triangle and —m/2 increments around the peripheries of the square and
rectangle.
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Fig. 8. Concavity illustrated for angular bends around the periphery
of a closed curve.

the vertex between two edges (e.g. Fig. 7). Asterionella is
obviously more complex, and to illustrate recovering peaks
and valleys in the outline of Asterionella, we use a stylized
(polygonalized) drawing, in which Asterionella has been giv-
en straight edges and made into a crude polygon. The series
of polygons shown in Figs 5-10 can be regarded as progres-
sive approximations to the shape of Asterionella. As the edges
illustrating angular bend become smaller and smaller, the po-
lygonized Asterionella’s outline becomes smoother and
smoother, coming more and more to resemble the actual dia-
tom valve outline, rather than a stylized drawing.

To determine the magnitude of angular bend around the
periphery of the outline, a value of = /2 is added to or
subtracted from the —arctangent values. This is accomplished
using a series of polygonal curves that approach an Asteri-
onella outline (Figs 7—-10). These polygonal curves serve as
guidelines to proceed from a polygon with distinct angles to
a polygon with approximately smooth curvature. Since we are
dealing with a pennate diatom outline, the simplest polygonal
figure from which to start is a rectangle (Fig. 7, third drawing).
An arbitrary starting point is chosen, such as x,y, on the top
half of the outline (Fig. 7, third drawing). Any other point on
the closed curve may be chosen as a starting point (additional
information on choosing a starting point is given in the Dis-
cussion). In a clockwise direction, the uppermost horizontal
edge is equal to zero, a 90° bend equals —m/2, a subsequent
90° bend equals —r, another 90° bend equals —3m/2, and the
final 90° bend to the starting point ends at —21r.

The next two polygons in the series add angular bends to
produce either concavity (Fig. 8) or convexity (Fig. 9) and
this reflects the general pattern of angular bend. Now the an-
gular bends are subdivided and defined in multiples of —m/4.
By combining the angular bends from these polygons into a
shape more closely resembling Asterionella, finer and finer

arbitrary
starting point
x(0), y(0)
In /\ 2n =0 i
4 £ > 4
/ \
=3n e
2 2
= w pey
4 T 4

Fig. 9. Convexity illustrated for angular bends around the periphery
of a closed curve.

Pappas et al.: Asterionella shape analysis 445

arbitrary
starting point
x(0), y(0)
In On +n b4
V \: ) 2n =0 4 \i
-3n 14
2 2
-~
\ T
4 4 4 4

Fig. 10. Polygonalized Asterionella with a combination of concave
and convex angular bends around the periphery of the curve.

angular bends are defined (Figs 10, 11). Concavity or con-
vexity can occur at any point on the outline. To determine the
magnitude of angular bend, addition or subtraction of —m/4
or a multiple of —m/4 is performed, depending on which half
of Asterionella is being considered. The top half can be */
4, and the bottom half can be a multiple of =m/4, since this
is in the —m sector (Figs 5, 6, 10, 11).

Further subdivisions of —m/4, then —m/8 or higher multi-
ples, produce smoother and smoother curvature from vertices
of angular bends. To determine the exact value to add or sub-
tract, —arctangent values are compared to the interval values
in radians given in Table 1 (equivalent values are given also
in degrees). The maximum interval defined is based on an-
gular bend equal to —m/2, then halved for preceding intervals
until the minimum value approaches zero (Table 1). Adding
or subtracting the appropriate value once to each —arctangent
value based on interval values (Table 1) will produce the gen-
eral shape. For complex forms, getting a curve fit that is clos-
est to the original shape may require additional manipulation
of —arctangent values.

Figure 12 illustrates a composite of Figs 5, 6, and 8-11.
The total number of radians at each angular bend must result
in a value within a specific range (Fig. 12). Designate an ar-
bitrary starting point on the top half. From this, the total num-
ber of radians at each angular bend cannot exceed —9m/4 at
the first decline, +m/4 at the first incline, —m/2 at the next
decline, and —37/4 at the decline after & = —u/2 (Fig. 12).
For the bottom half, the total number of radians at each an-
gular bend cannot exceed —57/4 at the first incline, —3m/4 at
the first decline, —37/2 at the next incline, and —77/4 at the
incline after ¢ = —3m/2 (Fig. 12). At a given point on the
most highly curved part of the outline, the total number of
radians might be in a specific range somewhat greater or less
than the range defined just prior to this point and will need to
be adjusted.

arbitrary
starting point
x(0), y(0)
-2n 0
Tn — 9 / i, —
4 / 4/ 2m=0 4% \‘4

N

N

=t i
5_7:\ '/_3£ i 5_\ W o

-5n
4 4 4

Fig. 11. A more refined polygonalized model of Asterionella, with an

increased number of angular bends relative to Fig. 10.
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Table 1. Correction of —arctangent values for angular bend based on
fraction of /2.

If —arctangent is in
interval (degrees)

Add or subtract
/2 fraction

If —arctangent is in
interval (radians)

> 0-1.40625 > 0-0.024544 /128
1.40626-2.8125 0.024525-0.049087 w64
2.8126-5.625 0.049087-0.098175 /32
5.626-11.25 0.098176-0.19635 /16
11.26-22.5 0.19636-0.3927 /8
22.6-45.0 0.3928-0.7854 w4
45.1-90.0 0.7855-1.5708 /2

In addition. at the first y-maximum and the first y-minimum,
the —m/2 fraction added is greater than the first fraction added.
That is, the total number of radians at the first y-maximum is
a value close to but not exceeding —2m. At the first y-mini-
mum, the total number of radians is a value close to but not
exceeding —m. This ensures recovery of the angular bend at
these points.

After calculating angular bends, the change in angular bend,
Ad, is calculated. The last change in angle is calculated be-
tween the last and first points. Since the curve is closed and
the first point is used twice, —2m is added to correct the last
change in angular bend.

Calculating amplitudes and phase angles

From the arc lengths and corrected tangent angles, polar Fou-
rier coefficients, amplitudes and phase angles (as stated pre-
viously), are calculated as

A, = Va2 + b?

n

and

b,
o, = arctan—,
a

n

respectively. Unlike the amplitudes, phase angles are not in-
variant. Phase angles are modulo 2, except for the x-direction
of the outline, which is modulo w (Zahn & Roskies 1972).
This means that phase angles can be multiples of 27 (or 7 for
the x-direction) and still be correct as Fourier coefficients,
whereas amplitudes do not change in value. For example, a
phase angle at 0° is the same as one at 360° (2m), which is
the same as one at 720° (4w) and so on. After calculating
initial values for the phase angles, 7 is added to those that
have a corresponding Fourier coefficient for the (x-direction)
cosine term, «,, that is negative. For negative values of phase
angles that still result after this, 27 is added. The final result
is the corrected positive phase angles. From this, all 27 mul-
tiples of the phase angles would be correct Fourier coeffi-
cients.

Reconstructing an outline from Fourier coefficients

Cartesian or x,y coordinates may be calculated from Fourier
coefficients in the following way. Define a point on the re-
constructed outline as

i

Z() = (x(), y(l)) = Z(0) + J e'd(l) dl

0

with

first y-maximum

-4 <o <-2n “2n<$<-9m4 0<o<+m/4 O<p<-mw4

-3n2< o <-Tn/4

0<¢<-m2

arbitrary
starting point
x0), Y0)
V\D 0=-2n=0
o =-3n2 ¢=-m/2
o=-1
—Sn/4 < ¢ <-3n/2
-n<$<-5m4 3nd<p<-n -n<$<-5m/4 3n4<p<-xn

|
|
|
|

first y-minimum

Fig. 12. Polygonalized Asterionella [cf. Fig. 10, with ranges defining
the total number of radians at angular bends around the periphery of
the curve (magnitude)]. Not all of the possible angular bends ap-
proaching smoothness of the closed curve are shown; therefore, ranges
of radians are given. The first y-maximum, first y-minimum, and the
arbitrary starting point are designated.

1

1
x(l) = x(0) + f cos 0(/) dl v(l) = y(0) + f sin 6(/) d!
0

0

where
N
0l)=—-r+d+a, + z A, cos(nt — «,)
n=1
That is,
Z(l) = Z(0)

N
—t+8+a,+ E A, cos(nt —a,)

n=1

[ 2wl/L
+— expyi dt
27 J,

where & is the initial angular bend, ¢, at starting point Z(0)
(Zahn & Roskies 1972). Initial angular bend is equal to zero
if two conditions are met. First, coordinates must be obtained
when the specimen outline is aligned with the x-axis. Second,
the change in angular bend at the first arc length must be zero.
If the first condition is met but not the second, the initial
angular bend is equal to the angular bend at the first arc
length. If the first condition is not met but the second one is,
the initial angular bend would need to be corrected by number
of radians rotated from zero degrees. If neither condition is
met, the initial angular bend is equal to the angular bend at
the first arc length plus the number of radians rotated from
zero degrees.

The relationship between the number of coordinates used
and the number of coefficients needed to reconstruct a best-
fit curve was determined. One hundred, 140, or 200 equally
spaced x,y coordinates were designated around the periphery
of the outline of an Asterionella valve from slide 25634b
(Korner collection). Then Asterionella specimens of different
sizes from slides 25634b and 1997 (Stoermer collection) were
used to determine whether a best-fit outline could be recon-
structed for all of them. regardless of size, using the same
number of coefficients.

To determine best fit, the original coordinates were com-
pared with the reconstructed outline coordinates by calculating
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Fig. 13. Digitized image of Asterionella specimen 25634b-8. The out-
line from this specimen was used to illustrate how to perform shape
analysis calculating Fourier coefficients.

average difference, variance, standard deviation, and coeffi-
cient of variation for x-coordinates, y-coordinates, and Euclid-
ean distance between the closed curves, on a pointwise basis.
The smallest difference between the original and reconstructed
outlines on a pointwise basis for the majority of the measures
indicated the number of coefficients to use for a best-fit out-
line. Reconstructed and original outlines were graphed in a
pointwise fashion to show how well the reconstructed outline
reproduced the original from coordinate to coordinate.

RESULTS

To illustrate the method, 100 x,y coordinates were used from
the outline of Asterionella specimen 25634b-8 (Fig. 13). Tan-
gent angles are presented in Table 2. The second column gives
the initial —arctangents at each x,y coordinate. The third col-
umn shows that the bottom half of the outline has —m added
to the —arctangent values (see Fig. 11). The fourth column
shows the w/2 fraction added or subtracted to the —arctangent
value, based on Table 1. The sixth column shows the /2
fraction or more added or subtracted to achieve final —arctan-
gent values, based on Fig. 10. The seventh column reiterates
the ranges from Fig. 12. The final —arctangent values of an-
gular bend are given in the last column.

In Table 3, amplitudes are given in the second column. In
addition, phase angles and their final corrected positive values
are given. In the third column, initial phase angles are given.
In the fifth column, phase angle values are corrected by the
addition of m if the cosine term’s coefficient was negative
(Table 3, fourth column); that is, this correction is mod . In
the seventh column, phase angles that were still negative have
27 added to them; that is, phase angles are mod 2. The final
phase angles are given in the last column (Table 3).

An example of the reconstructed outlines using 0-30 Fou-
rier coefficients for this Asterionella specimen is shown in Fig.
14. Only even coefficients are used, since odd coefficients are
indicators of symmetry, not shape, of the closed curve. The
simplest reconstruction is an ellipse (Fig. 14, first reconstruct-
ed outline). As more coefficients are added, the outline ap-
proaches that of the original coordinates (Fig. 14): the ellipse
undergoes deformation as coefficients are added to achieve
the desired outline. How hard one induces deformation at
equally spaced points on a circle/oval is determined by the
magnitude of amplitudes (Zahn & Roskies 1972).

The relationship between the number of coordinates des-
ignated and the number of Fourier coefficients calculated was
investigated in relation to the effectiveness of shape descrip-
tion. For example, the outline from Asterionella specimen
25634b-8 (Fig. 13), which is 30.2 pm long, was represented
by 100, 140, or 200 x,y coordinates. Initially, x,y coordinates
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were compared to the originals empirically by graphing. For
100 x,y coordinates along the original outline, reconstructed
approximate best-fit outlines were obtained from 18, 20, 22,
or 24 Fourier coefficients (Fig. 15). For 140 x,y coordinates,
reconstructed approximate best-fit outlines were obtained us-
ing 16, 18, 20, or 22 Fourier coefficients (Fig. 16). whereas
for 200 x,y coordinates, the number was 14, 16, 18, or 20
(Fig. 17). Beyond 24 coefficients for 100 coordinates, 22 co-
efficients for 140 coordinates, and 20 coefficients for 200 co-
ordinates, overfitted closed curves were produced.

When the specimen outline was represented using 100 co-
ordinates, the smallest average difference between x coordi-
nates was at 22 coefficients. The smallest average difference
between y coordinates was at 18 coefficients. The smallest
average distance between x,y coordinates was at 22 coeffi-
cients. For x coordinates, 22 coefficients produced the smallest
variance. For y coordinates, 24 coefficients produced the
smallest variance. For distance between x,y coordinates, 18
coefficients produced the smallest variance. The smallest dif-
ference in coefficient of variation for x coordinates was at 18
coefficients. However, for y coordinates, the smallest differ-
ence in coefficient of variation was at 22 coefficients. The
smallest distance between x,y coordinate distances for coeffi-
cient of variation was at 24 coefficients (Table 4).

For this specimen outline using 140 coordinates, the small-
est average difference between x coordinates and between y
coordinates was at 22 coefficients. The smallest average dis-
tance between x,y coordinate distances was produced at 18
coefficients. Variances were smallest at 22 coefficients for x
coordinates and y coordinates and at 16 coefficients for the
distance between x,y coordinates. For coefficients of variation,
20, 18, and 16 Fourier coefficients produced the smallest dif-
ferences for x coordinates, y coordinates, and x,y coordinate
distances, respectively (Table 5).

Using 200 coordinates, the smallest average difference be-
tween x coordinates was at 20 coefficients. For y coordinates
and x,y coordinate distances, 20 and 16 coefficients produced
the smallest average differences, respectively. The smallest
variances were at 18, 16, and 20 coefficients for x coordinates,
y coordinates, and x,y coordinate distances, respectively. The
smallest differences for coefficients of variation were 14, 14,
and 18 coefficients for x coordinates, y coordinates, and x,y
coordinate distances, respectively (Table 6).

Along with the 30.2 wm specimen, the smallest to be found
in the collections used, Asterionella outlines were obtained
from a range of other specimens, the longest being 94.6 pm.
The fewest number of coordinates in this analysis, 100, was
used to cover all size ranges of Asterionella, because com-
putation time is slightly increased as more coordinates are
used. For illustration, reconstructed outlines were produced
from 18, 20, 22, and 24 coefficients for three specimens cov-
ering the size range of Asterionella, from the smallest speci-
men to 51.9 wm (Fig. 18) to 94.6 pm (Fig. 19).

For the 51.9 wm specimen, 25634b-10, the smallest average
difference for x coordinates was at 18 coefficients, whereas
for y coordinates and x,y coordinate distances it was at 20
coefficients. The smallest variances for x coordinates, y co-
ordinates and x,y coordinate distances were at 18, 22, and 22
coefficients, respectively. The smallest coefficients of varia-
tion for x coordinates, y coordinates, and x,y coordinate dis-
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Table 2. Values and corrections for —arctangents of Asterionella 25634b-8 outline. See Table 1 for intervals of —m/2 fractions and Fig. 12 for
ranges in radians of angular bends.

Addition or

subtraction
7/2 fraction of another /2
to be added fraction
Number of Addition of  or subtracted or more
Xy —arctangent - to according to Number of according to Equivalent angle or Final —arctangent
coordinate value bottom half Table 1 radians subtotal Fig. 12 ranges from Fig. 12 value
1 0 0 0 0 0
2 0 0 0 0 0
3 0 0 0 0 0
-+ 0 0 0 0 0
5 0 0 0 0 0
6 0 0 0 0 0
7 0 0 0 0 0
8 0 0 0 0 0
9 0 0 0 0 0
10 0 0 0 0 0
11 0 0 0 0 0
12 0 0 0 0 0
13 0 0 0 0 0
14 0 0 0 0 0
15 0 0 0 0 0
16 0 0 0 0 0
17 0 0 0 0 0
18 0 0 0 0 0
19 0 0 0 0 0
20 0 0 0 0 0
21 0 0 0 0 0
22 0 0 0 0 0
23 0 0 0 0 0
24 0 0 0 0 0
25 0 0 0 0 0
2 0 0 0 0 0
27 0.099669 0 —m/16 —0.096681 0<db=-74 —0.096681
28 0.099669 0 —m/16 —0.096681 0<db=-m/4 —0.096681
29 0.099669 0 —m/16 —0.096681 0<db=-74 —0.096681
30 0 0 0 0 0
31 0 0 0 0 0
32 0 0 0 0 0
33 0 0 0 0 0
34 0 0 0 0 0
35 0.099669 0 —m/16 —0.096681 0< b= -m/4 —0.096681
36 -0.1974 0 +m/8 0.1953 0<d=+7/4 0.1953
37 —0.099669 0 +7/16 0.096681 0< b= +m/4 0.096681
38 0.69474 0 —m/4 —0.09066 —m/4 0<od<—m2 —0.87606
39 0.7854 0 —m/4 0 —m/4 0< b =-—-7/d —0.7854
40 1.5708 0 —m/2 0 —m/2 =m/2 —1.5708
41 —0.87606 0 =mf2 —2.44690 34 < b= -7 —2.4469
42 —0.46365 0 —m/4 —1.24905 —ar/2 34 < b =-7 —2.8198
43 0.099669 = —m/16 =3.2383 —m < b= —-5u/4 =3.2383
44 0.099669 - —m/16 —3.2383 - < ¢ = -5u/d4 —3.2383
45 0.1974 —F —m/8 —3.3369 - < ¢ = —5u/4 —3.3369
46 0 - —3.1416 —r —3.1416
47 0 - —3.1416 =2 —3.1416
48 0 - —3.1416 —r —3.1416
49 0 - —3.1416 - —3.1416
50 0 =4 —3.1416 - —3.1416
51 0 —T —3.1416 —7 —3.1416
52 0 =T —3.1416 —aF —3.1416
53 0 - —3.1416 - —3.1416
54 0 —1r —3.1416 —qF —3.1416
55 0 = —3.1416 =5 —3.1416
56 0 - —3.1416 - —3.1416
ST, 0 —F —3.1416 —qr —3.1416
58 0 =1 —3.1416 —Af —3.1416
59 0 =y —3.1416 =47 —3.1416
60 0 - —3.1416 —1r —3.1416
61 0 =P —3.1416 AT —3.1416
62 0 “=qr —3.1416 - —3.1416
63 0 - —3.1416 —aqr —3.1416

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Pappas et al.: Asterionella shape analysis 449

Table 2. Continued.

Addition or
subtraction

/2 fraction of another /2

to be added fraction

Number of Addition of  or subtracted or more
X,y —arctangent -7 to according to Number of according to Equivalent angle or Final —arctangent

coordinate value bottom half Table 1 radians subtotal Fig. 12 ranges from Fig. 12 value
64 0 — 1y —3.1416 iy —3.1416
65 0 = —3.1416 s —3.1416
66 0 -1 —3.1416 =T —3.1416
67 0 —ar —3.1416 - —3.1416
68 0 =y —3.1416 T —3.1416
69 0 - —3.1416 —Ar —3.1416
70 0 —F —3.1416 - —3.1416
71 0 ~4f —3.1416 -7 —3.1416
72 0 =qr —3.1416 —AT —3.1416
73 0 —r —3.1416 —r —3.1416
74 —0.099669 =T +m/16 —3.0449 —3md < b= -m —3.0449
75 —0.099669 =y +7/16 —3.0449 “3mA<d=-7 —3.0449
76 —0.049958 ~1F +m/32 —3.0934 “3m/4 < b=-m —3.0934
77 0.049958 —t: —m/32 —3.1898 - < ¢ = —57u/4 —3.1898
78 0.099669 =i —m/16 —3.2383 - < b= —-57/4 —3.2383
79 0.099669 - —7/16 =312383 - <d = -5u/4 —3,2383
80 —0.049958 —1F +m/32 —3.0934 34 <b=-m —3.0934
81 —0.14889 =7 +m/16 —3.0941 3 < b= -7 —3.0941
82 —0.099669 =q5 +7/16 —3.0449 —-3m4 < d=-m —3.0449
83 —0.1974 —E +m/8 —2.9463 +7/8 “3mA<b=-7 =2.5536
84 —0.1974 g +7/8 —2.9463 +7/8 —-3m4 < d=-m —2.5536
85 0.1974 =t —m/8 =3.3369 —n/8 - < ¢ = —5u/4 —3.7296
86 0.1974 - —m/8 —3.3369 —m/8 - < b= -5n/4 —3.7296
87 0.1974 =y —7/8 ~3.3369 —/8 - < = —5n/4 —3.7296
88 0.54042 = —m/4 —3.3866 —m/4 -7 < b= -5u/4 —4.172
89 1.2278 g —m/2 —3.4846 -w < b= -5u/4 —3.4846
90 1.1071 — —ar/2 —3:6052 - < $ = —5n/4 —3.6052
91 —0.87606 - =2 —5.5885 —m/4 21 < b= —-97m/4 —6.3738
92 —1.1071 - —/2 —5.8195 —m/4 2 < b = —-9m/4 —6.6049
93 —0.7854 — 5 —m/4 —3.1416 —m/4 =32 < b = —Tw/4 —5.4978
94 0.67474 =1 —m/4 —4.6017 —m/4 =3n2 < b = —Tu/4 —5.3871
95 —0.099669 = —7/16 —3.4376 —3n/4 —Imld = b < 2w —35.7938
96 0.099669 —2%(0) —m/16 —5.3799 27 < ¢ = —-9n/4 —6.3799
97 0.099669 =27 (0) —m/16 —6.3799 27 < é = —-9m/4 —6.3799
98 0.29146 =27 (0) —/8 =0.1012 —/8 27 < ¢ = —9n/4 —6.7771
99 0.099669 =27 (0) —m/16 —6.3799 27 < b= -9n/4 —6.3799
100 0.38051 —27 (0) —m/8 —0:0122 —7/8 —2n < $ = -9m/4 —6.6881

tances were at 20, 24, and 22 coefficients, respectively (Table
7).

For the 94.6 pm specimen, 1997-1, the smallest average
difference for x coordinates was at 24 coefficients. For y co-
ordinates and x,y coordinate distances, however, the smallest
average difference was at 22 coefficients The smallest vari-
ances for x coordinates, y coordinates, and x,y coordinate dis-
tances were produced at 24, 20, and 22 coefficients. The co-
efficient of variation was smallest at 20 coefficients for both
x and y coordinates and at 18 coefficients for x,y coordinate
distances (Table 8).

DISCUSSION

This method of shape analysis requires careful thought and
patience and is not initially the easiest method to use. Deter-
mining the magnitude of corrections to the —arctangent values
for angular bend is complicated, but important. In theory, an
infinite number of peaks and valleys can be formed on a

closed curve. However, once the method is learned, applica-
tion becomes easier, and a reliable way to quantify an impor-
tant taxonomic character, namely shape, can be used.

The method, as described here, can be applied to any closed
curve, and so any diatom valve shape can be analysed, not
just those in which each radius from the centroid intersects
the outline only once (as required for the method of Gevirtz
1976). Table 1 provides general guidelines for correcting tan-
gent angles for any closed curve. By halving /2 an indefinite
number of times, with multiples thereof, any change in an-
gular bend can be represented mathematically. This is con-
comitant with the idea that a circle can be deformed in an
infinite number of ways.

We recommend using shape analysis on flat, whole valves,
but our method is also applicable to partial outlines, and it
will be interesting to apply the method to partial outlines, once
a suitable database of whole valve shape coefficients has been
amassed. As noted in the Methods section, for whole valves
the first x,y coordinate is also used as the last one. If the first
is not used in this way to create a closed form, a partial outline
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Table 3. Amplitudes and phase angle calculations. First, phase angles are corrected by +m if cosine term coefficients are negative. If phase

angles are still negative, they are corrected by +2.

Initial Cosine term

Correction with

Result of Correction with Final phase

Harmonic Amplitudes phase angles coefficient,a +r first correction 2w angles
1 0.013818 0.438087 —0.012513 al + 7 3.579679 al +0 3.579679
2 1.003617 0.522054 —0.869932 a2 + 3.663647 a2 +0 3.663647
3 0.018585 —0.651801 0.014775 a3 + 7 2.489792 a3 +0 2.489792
- 0.499812 —0.484703 —0.442240 o4 + 7 2.656889 a4 + 0 2.656889
5 0.006486 —1.077410 0.003072 of + 0 —1.077410 a5 + 2w 5.205776
6 0.318743 —1.468506 —0.032547 ab + 1.673086 ab + 0 1.673086
7 0.026749 0.525497 —0.023140 al +m 3.667090 o7 +0 3.667090
8 0.206491 0.646142 0.164865 a8 + 0 0.646142 a8 + 0 0.646142
9 0.030049 0.030594 —0.030035 a9 + 3.172187 a9 + 0 3.172187
10 0.119536 —0.461638 0.107023 al0 + 0 —0.461638 al0 + 27 5.821547
11 0.052132 —0.451236 —0.046914 all + 2.690357 all + 0 2.690357
12 0.062471 1.524299 —0.002904 al2 + 4.665892 al2 +0 4.665892
13 0.062208 —1.514796 —0.003482 al3 +w 1.626797 al3 +10 1.626797
14 0.039871 0.423990 —0.036341 ald + 3.565583 ald + 0 3.565583
15 0.037805 0.422178 0.034486 al5 + 0 0.422178 al5 +0 0.422178
16 0.036136 —0.637287 —0.029043 al6 + 2.504305 «al6 + 0 2.504305
17 0.003506 —0.502721 0.003072 al? +0 —0.502721 al7 + 2w 5.780464
18 0.031746 1.496898 0.002344 al8 + 0 1.496898 al8 + 0 1.496898
19 0.014392 1.163087 0.005707 al9 +0 1.163087 al9 +0 1.163087

20 0.027484 0.708128 0.020876 a20 + 0 0.708128 a20 + 0 0.708128
21 0.020964 0.386867 0.019415 o2l +40 0.386867 a2l +0 0.386867
22 0.032960 —0.139757 0.032639 a22 + 0 =0.139757 a22 + 2w 6.143428
23 0.034668 —0.594135 0.028727 a23 +0 —0.594135 a23 + 2w 5.689051
24 0.042972 —1.199261 0.015601 a24 + 0 —1.199261 a24 + 2% 5.083925
25 0.051739 1.347617 —0.011451 625 + o 4.489210 a25 + 0 4.489210
26 0.053033 0.930982 —0.031663 a26 + 4.072575 a26 + 0 4.072575
27 0.063675 0.206378 —0.062324 a27 + 3.347971 a27 + 0 3.347971
28 0.062742 -0.012742 —0.062737 a28 + 3.128851 o28 + 0 3.128851
29 0.068119 —0.851342 —0.044888 a29 + 2.290251 a29 + 0 2.290251
30 0.066353 —0.991173 —0.036342 a30 + 2.150419 a30 + 0 2.150419

shape is analysed and this may be useful for partially obscured
specimens. A small section of our smallest Asterionella (Fig.
13) was slightly obscured by the edge of a Gomphonema Eh-
renberg valve. With good imaging software (such as NIH Im-
age), the whole outline of such valves can be recovered and
analysed. However, we could have analysed the valve outline
minus the section overlapped by the Gomphonema and still
obtained shape coefficients.

There are some matters to keep in mind when using this
method of Fourier analysis. The Fourier series is used to de-
scribe shape in a pointwise fashion, but it may not provide a
unique solution. That is, Fourier series terms may or may not
converge to zero, but yet have summability (Edwards 1967).
In shape analysis a truncated series or a partial sum of terms
is used, and these Fourier coefficients completely determine
the shape function for a particular outline. Convergence de-

pends on
f | £(0)] dr

being finite (Weinberger 1995); then, the shape function, and
therefore the Fourier series, converges to f{t) in a pointwise
fashion.

Another matter worth considering is choice of a starting
point. The shape function is not dependent on any particular
starting point. In the simplest closed curve outline, the circle,
any point can be chosen to start the tracing of that circle. The
same is true for more complex deformations of a circle as
represented by the shape function, and therefore Fourier co-

efficients. These coefficients are invariant to translation, ro-
tation, changes in arc length or dilation (Zahn & Roskies
1972). If a starting point, Z,, is then chosen for an outline,
and a different starting point, Z’, is chosen on that same out-
line, the shift in starting point results in Fourier coefficients
as Ay, = A, and o', = «, + nAa, where Aa = —27Al/L. That
is, the amplitudes are invariant, and there is a shift in phase
angle. The same idea can be applied to a group of similar
shaped-specimen outlines, such as Asterionella, or any other
group of similarly shaped diatoms. This would preserve pseu-
dolandmarks for analysis of specimens, particularly those in
a size diminution series.

Close inspection reveals that using too many coefficients —
in our example, with 26-30 coefficients — produces a distorted
outline (Fig. 14, cf. Fig. 1). This overfitting is a result of
accumulating error as more coefficients are used (Bennett &
MacDonald 1975; Davis 1986). Deciding on the number of
coefficients appropriate for analysing and reconstructing a par-
ticular outline depends on the number of original coordinates
used. In general, the more complex the outline is, the more
equally spaced x,y coordinates will be necessary to recover
that outline, and the more Fourier coefficients will be neces-
sary to represent the outline. For example, an elliptical shape
is recovered by the mean (zero’th) Fourier coefficient, two
coefficients produce an ellipse with symmetrical valleys,
whereas Asterionella’s shape is recovered without waviness in
the straight areas by = 16 coefficients (Fig. 14).

It has been suggested that guidance concerning the number
of Fourier coefficients that is appropriate in a particular case
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Fig. 14. Series of reconstructed outlines for Asterionella specimen
25634b-8 using Fourier coefficients. Outlines using even coefficients
are depicted, together with the original outline (at base).

may be gained from spectral analysis and by using the Nyquist
frequency (see Introduction: Jenkins & Watts 1968; Koop-
mans 1974; Platt & Denman 1975; Legendre & Legendre
1983; Davis 1986). For our analysis, 100 x,y coordinates were
used, based on the Nyquist frequency, and so the number of
coefficients to use is 50. However, our empirical tests show
that this is not appropriate. No improvement in shape match
is evident after 22 coefficients are used, and shape match ob-
viously deteriorates (through overfitting) when 26 or more co-
efficients are used (Fig. 14). The number of coefficients to use
is thus much less than the theoretical limit defined by the
Nyquist frequency (Bennett & MacDonald 1975).

During the early stages of a morphometric study, it is nec-
essary, therefore, to carry out empirical tests to determine the
number of Fourier coefficients that will be needed for the
particular range of shapes encountered. Initially, this can be
done by superimposing reconstructed outlines on the original
outlines: plots of the data can be resized to view pointwise
matching between original x,y coordinates and those from the
reconstructed outlines. Statistical measures should also be
used, as we have described, to determine the relationship be-
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Fig. 15. Comparison of reconstructed outlines (filled symbols) and
original outlines (hollow symbols) for Asterionella specimen 25634b-
8 (length 30.2 wm), based on 100 coordinates and using 18, 20, 22,
or 24 Fourier coefficients.

tween the numbers of coordinates and Fourier coefficients for
the diatoms under investigation. This helps to ensure consis-
tency of comparison within a class of shapes with respect to
pseudolandmarks. It is best to consider many statistical mea-
sures rather than one or a few, as our examples show, and, as
more outlines are tested for a given class of closed curves
(such as Asterionella), it is possible to arrive at a confident
estimate of the number of Fourier coefficients necessary to
produce a best fit.

The choice of coordinates will also determine how well the
reconstructed outline approximates the original shape of the
valve. Here, there is a problem of edge detection (Canny
1986). Diatom frustules are composed of hypovalve, epivalve
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Fig. 16. Comparison of reconstructed outlines (filled symbols) and
original outlines (hollow symbols) for Asterionella specimen 25634b-
8, based on 140 coordinates and using 16, 18, 20, or 22 Fourier co-
efficients.

and girdle bands (Round et al. 1990). The presence or absence
of any of these elements will affect the apparent outline of a
specimen. And even when single valves are selected, they may
not lie entirely flat in a plane. Furthermore, the valve margin
is apt not to be imaged as a thin, crisp line, so that determining
the true values for x,y coordinates is not easily accomplished.
It is essential always to check that extracted coordinates do
accurately replicate the valve outline, by visual inspection vs
the original digitized image.

The results of our statistical analyses indicate that not much
is gained in using more coordinates to reduce the number of
Fourier coefficients that have to be calculated to reconstruct
a best-fit outline for Asterionella. The amount of computation
time is greater using 140 or 200 coordinates vs 100 coordi-
nates, but the consequent reduction of even Fourier coeffi-
cients is only two (from 22 to 20). In studies using a variety
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Fig. 17. Comparison of reconstructed outlines (filled symbols) and
original outlines (hollow symbols) for Aszerionella specimen 25634b-
8, based on 200 coordinates and using 14, 16, 18, or 20 Fourier co-
efficients.

of Fourier methods, the number of coordinates used has
ranged from 72 for clams (Gevirtz 1976), which have a rel-
atively simple outline, to 256 for maple and sassafras leaves
(Kincaid & Schneider 1983), which have very wavy, complex
outlines. Likewise, the number of coefficients calculated has
ranged from 6 for ostracods (Younker & Ehrlich 1977) and
10 for clams (Gevirtz 1976) to 20 for maple and sassafras
leaves (Kincaid & Schneider 1983). Researchers must deter-
mine the initial number of coordinates needed to recreate an
outline that captures the degree of waviness in that outline.
The number of even Fourier coefficients required to give
best fits to Asterionella outlines, for a wide range of sizes and
using 100 x,y coordinates, is 22 (Tables 4. 7, 8: for the 51.9
pm specimen, 20 coefficients might also be sufficient) and
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Table 4. Pointwise comparison between x coordinates, y coordinates,
and distance between x,y coordinates for original outline and recon-
structed outlines based on 18, 20, 22, and 24 coefficients for Asteri-
onella specimen 25634b-8, 30.21 mm length. One hundred coordi-
nates were used.
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Table 6. Pointwise comparison between x coordinates, y coordinates,
and distance between x,y coordinates for original outline and recon-
structed outlines based on 14, 16, 18, and 20 coefficients for Asteri-
onella specimen 25634b-8, 30.21 mm length. Two hundred coordi-
nates were used.

X y Distance X y Distance
18 Coefficients 14 Coefficients
Average —0.04053 —0.21433 0.15925 Average -0.06522 0.09747 0.25081
Variance 0.01071 0.63184 0.00506 Variance 0.00954 0.01496 0.07290
Standard deviation 0.10349 0.79488 0.07114 Standard deviation 0.09767 0.12232 0.26999
Coefficient of variance —2.55365 —3.70869 0.44670 Coefficient of variance —1.49771 1.25492 1.07648
20 Coefficients 16 Coefficients
Average -0.02197 —-0.22381 0.14351 Average —0.03048 0.06643 0.23675
Variance 0.00978 0.62729 0.00548 Variance 0.00515 0.01304 0.07124
Standard deviation 0.09888 0.79201 0.07404 Standard deviation 0.07175 0.11420 0.26691
Coefficient of variance —4.50100 —3.53871 0.51594 Coefficient of variance —2.35406 1.71903 1.12733
22 Coefficients 18 Coefficients
Average —0.00937 —0.22667 0.14080 Average -0.01229 0.03889 0.71863
Variance 0.00908 0.61751 0.00558 Variance 0.00495 0.01640 0.07073
Standard deviation 0.09529 0.78582 0.07468 Standard deviation 0.07035 0.12805 0.26595
Coefficient of variance —10.17462 —3.46680 0.53037 Coefficient of variance —5.72576 3.29292 0.37008
24 Coefficients 20 Coefficients
Average -0.01036 —-0.21756 0.16315 Average —0.00402 0.02770 0.26068
Variance 0.00902 0.59435 0.00513 Variance 0.00523 0.01813 0.06882
Standard deviation 0.09498 0.77094 0.07164 Standard deviation 0.07233 0.13466 0.26233
Coefficient of variance —9.16451 —3.54352 0.43909 Coefficient of variance —18.00826 4.86080 1.00631

this is the best choice to cover the size range for Asterionella.
Application of the statistical measures we used does not pro-
vide unequivocal guidance on how many coefficients will be
appropriate but augments empirical use of plots of recon-
structed outlines to decide best fit. It is important to avoid
overfitting, which can easily occur in smaller specimens com-
pared to larger specimens in a size diminution series, and sta-

Table 5. Pointwise comparison between x coordinates, y coordinates,
and distance between x,y coordinates for original outline and recon-
structed outlines based on 16, 18, 20, and 22 coefficients for Asteri-
onella specimen 25634b-8, 30.21 mm length. One hundred forty co-
ordinates were used.

x y Distance
16 Coefficients
Average —0.09761 —0.00009  0.17734
Variance 0.00800 0.03567  0.01256
Standard deviation 0.08944 0.18887 0.11205
Coefficient of variance —-0.91632 —2145.03109 0.63183
18 Coefficients
Average -0.30790 0.03238  0.16649
Variance 0.27526 0.00390  0.01338
Standard deviation 0.52465 0.06246  0.11565
Coefficient of variance —1.70395 1.92876 0.69466
20 Coefficients
Average —0.09725 0.02929 0.17373
Variance 0.00745 0.00388 0.01450
Standard deviation 0.08632 0.06228  0.12043
Coefficient of variance —0.88761 2.12605 0.69318
22 Coefficients
Average —0.03584 0.02674  0.17319
Variance 0.00182 0.00317 0.01492
Standard deviation 0.04270 0.05634  0.12215
Coefficient of variance —1.19152 2.10711 0.70526

Reconstructed outline superimposed on original
outline and number of Fourier coefficients used
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Fig. 18. Asterionella specimen 25634b-10 (51.9 pwm): comparison of
reconstructed outlines (filled symbols) and original outlines (hollow
symbols), based on 100 coordinates and using 18, 20, 22, or 24 Fou-
rier coefficients.
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Reconstructed outline superimposed on original
outline and number of Fourier coefficients used
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Fig. 19. Asterionella specimen 1997-1 (94.6 wm): comparison of reconstructed outlines (filled symbols) and original outlines (hollow symbols),
based on 100 coordinates and using 18, 20, 22, or 24 Fourier coefficients.

Table 7. Pointwise comparison between x coordinates, y coordinates,
and distance between x,y coordinates for original outline and recon-
structed outlines based on 18, 20, 22, and 24 coefficients for Asteri-
onella specimen 25634b-10, 51.88 mm length. One hundred coordi-

nates were used.

Table 8. Pointwise comparison between x coordinates, y coordinates,
and distance between x,y coordinates for original outline and recon-
structed outlines based on 18, 20, 22, and 24 coefficients for Asteri-
onella specimen 1997-1, 94.58 mm length. One hundred coordinates
were used.

x y Distance X y Distance
18 Coefficients 18 Coefficients
Average 0.02259 —0.02440 0.07172 Average —0.01036 =0.21756 0.16315
Variance 0.00033 0.00225 0.00154 Variance 0.00902 0.59435 0.00513
Standard deviation 0.01812 0.04739 0.03925 Standard deviation 0.09498 0.77094 0.07164
Coefficient of variance 0.80205 —1.94272 0.54733 Coefficient of variance —9.16451 —3.54352 0.43909
20 Coefficients 20 Coefticients
Average 0.04823 0.00646 0.06710 Average —0.09780 —0.05293 0.10866
Variance 0.00131 0.00129 0.00083 Variance 0.00649 0.00471 0.00607
Standard deviation 0.03623 0.03596 0.02880 Standard deviation 0.08057 0.06862 0.07793
Coefficient of variance 0.75117 5.56705 0.42921 Coefficient of variance —0.82382 —1.29656 0.71719
22 Coefficients 22 Coefficients
Average 0.06891 0.02539 0.06768 Average —0.05378 —0.00151 0.09782
Variance 0.00275 0.00109 0.00081 Variance 0.00224 0.00590 0.00364
Standard deviation 0.05242 0.03301 0.02840 Standard deviation 0.04730 0.07680 0.06034
Coefficient of variance 0.76081 1.30040 0.41962 Coefficient of variance —0.87943 —50.76958 0.61689
24 Coefficients 24 Coefficients
Average 0.08421 0.03333 0.07018 Average —0.02310 0.03989 0.11115
Variance 0.00425 0.00116 0.00101 Variance 0.00123 0.01047 0.00403
Standard deviation 0.06521 0.03407 0.03184 Standard deviation 0.03508 0.10231 0.06348
Coefficient of variance 0.77433 1.02238 0.45371 Coefficient of variance ~1.51851 2.56485 0.57114
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tistical analysis is helpful in determining the number of x,y
coordinates to use within a size diminution series to preserve
pseudolandmarks. In other pennate diatoms, valves vary great-
ly in shape; at one extreme are simple elliptical forms, such
as in Diploneis Ehrenberg, whereas at the other extreme are
some with a high degree of waviness, such as Eunotia Ehren-
berg, and these will require different combinations of coor-
dinate and Fourier coefficients for morphometric analysis.
Once one has decided on the shape class of the specimens
that are to be included in an analysis, the following questions
must be answered in sequence. First, what is the size range
of specimens for analysis? Second, how many x,y coordinates
are necessary to recreate the outline of the smallest specimen
when superimposed on its digitized outline? Third, can the
outline of the largest specimen be recreated with the same
number of coordinates used for the smallest specimen (to pre-
serve pseudolandmarks)? Then, once the number of x,y co-
ordinates to use has been determined, the number of Fourier
coefficients necessary to reconstruct a best-fit outline will
need to be determined. So, for the smallest specimen, calcu-
late enough Fourier coefficients for each of the even harmon-
ics until an approximate outline is achieved and overfitting is
not evident (by reconstructing outlines). Use the statistical
measures to determine which of the reconstructed outlines
(with respect to the number of Fourier coefficients used) is
closest to the original. Repeat for selected valves over a range
of sizes and determine a consensus number of coefficients that
can be applied throughout.

Fourier coefficients, as well as coefficients from other types
of orthogonal polynomial regression, can be used to charac-
terize shape similarities for taxonomic purposes. Multivariate
statistical methods, including principal components analysis
(e.g. Stoermer & Ladewski 1982; Lohmann 1983), discrimi-
nant analysis (Younker & Ehrlich 1977), and cluster analysis
(Ferson et al. 1985), as well as frequency distributions (Kin-
caid & Schneider 1983) have been used to analyse shape de-
scriptors. Multivariate statistical methods are especially appli-
cable in analyses of Fourier coefficients, since these coeffi-
cients are orthogonal (see Methods). As each pair of Fourier
coefficients, amplitude and phase angle, is calculated, they are
inserted into the Fourier expansion of the shape function,

N
O*(1) = q, + 2 A, cos(nt + a,),

and summed with previous results. One summed quantity can
be used to reconstruct an outline independent of subsequent
summed quantities in the Fourier expansion. Orthogonality
means independence between pairs of Fourier coefficients,
and ordination from multivariate statistical methods depicts
this independence as different attributes of diatom valve shape
being assigned to different dimensions (eigenvectors) in shape
space. Moreover, orthogonality means that two similar shapes
will have similar shape descriptors and will be depicted near
each other in ordination diagrams of shape space. Quantifi-
cation of shape descriptors is therefore useful in taxonomic
sorting and classification (e.g. Younker & Ehrlich 1977;
Stoermer & Ladewski 1982; Stoermer er al. 1984).
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