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A functional multiple imputation
approach to incomplete longitudinal data

Yulei He,** T Recai Yucel® and Trivellore E. Raghunathan®

In designed longitudinal studies, information from the same set of subjects are collected repeatedly over time.
The longitudinal measurements are often subject to missing data which impose an analytic challenge. We
propose a functional multiple imputation approach modeling longitudinal response profiles as smooth curves
of time under a functional mixed effects model. We develop a Gibbs sampling algorithm to draw model
parameters and imputations for missing values, using a blocking technique for an increased computational
efficiency. In an illustrative example, we apply a multiple imputation analysis to data from the Panel Study
of Income Dynamics and the Child Development Supplement to investigate the gradient effect of family
income on children’s health status. Our simulation study demonstrates that this approach performs well under
varying modeling assumptions on the time trajectory functions and missingness patterns. Copyright © 2011
John Wiley & Sons, Ltd.
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1. Introduction

In designed longitudinal studies, information from the same set of subjects are measured repeatedly
over time. The aim of such studies is to frequently estimate the mean or individual response at a certain
time, to relate time-invariant or time-dependent covariates to repeatedly measure response variables, or
to relate the response variables to each other. Missing data often occur in longitudinal measurements
because subjects may miss visits during the study, because some variables may not be measured at
particular visits, or because subjects may drop out prematurely. The absence of complete data is a
serious impediment to longitudinal data analysis.

The commonly used complete-case or available-case analysis (AC) is based on observed data without
any imputation or other adjustments. They are well known to be inefficient and may give biased results
if data are not missing completely at random [1]. Other naive missing data approaches include the mean
imputation method, which imputes a missing value at a specific time by the mean value of the observed
sample at that time, and the last observed value carried forward method, which imputes a missing value
at a specific time by the observed value immediately before that time. These two imputation methods,
although simple to implement, do not adequately reflect the temporal pattern as well as the relationship
among response variables and therefore may produce misleading results.

More principled approaches include the likelihood-based methods, inverse probability weighted
estimation equations and multiple imputation. See Discussion (Section 6) for a general comment on the
connection and differences among three approaches. In this paper, we focus on the multiple imputation
approach to incomplete longitudinal data where the repeated measurements are subject to missing
values. In multiple imputation, missing data are ‘filled-in’ by several plausible sets of values to generate
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Figure 1. Log-transformed income to needs ratio data (LOGINR) from 1979 to 1997 of PSID; thick line:
average profile of a sample of n =2172 families; thin lines: income series from 25 randomly selected families.

completed datasets. The analysis results obtained from each completed dataset are combined in a way
to account for imputation uncertainty and form a final inference [2].

Multiple imputation is very popular among practitioners because of its great flexibility. The analysts,
who generally do not have special statistical expertise required by alternative missing data methods
(e.g. likelihood-based methods), can readily analyze the completed datasets using existing statistical
procedures or routines. In addition, the analysis procedures applied to the imputed data can be incom-
patible (uncongenial) with the statistical model used to create imputations and still lead to practically
adequate multiple imputation inferences in many cases [3], allowing more room for applying a variety
of imputation analyses. Further, the increasing availability of imputation software makes it relatively
easy to generate imputations under some well-developed models [4].

We assume missingness at random (MAR) for the incomplete longitudinal data, that is, the prob-
ability of missingness is not related to unobserved values conditioning on observed data [2]. Under
MAR, multiple imputation approaches have been developed based on the linear mixed model and its
multivariate extensions for longitudinal data [5, 6], and can be implemented using the library ‘pan’ in
R package (www.r-project.org). In these methods, however, the growth curves of the response variables
are limited to linear/quadratic or other simple parametric functions of time. This assumption may not be
general enough to characterize the temporal trends exhibited by some real data. For example, Figure 1
plots the (log-transformed) annual records of family income to needs ratio over a 19-year period from
the Panel Study of Income Dynamics (PSID) (Section 4). The mean trajectory (thick line) appears to
be close to linear over time, while the individual series (thin line) appear to show more curvature. The
main focus of the analysis is to relate family income status at different time spans to children’s health
status. Given the incomplete longitudinal data, it is of practical interest to develop a multiple imputa-
tion approach which appropriately incorporates the temporal patterns as well as covariate information.
Certainly, a less restrictive assumption on the time functions might be more desired than imposing
some parametric assumptions, which might be incorrect.

In our motivating example from PSID, one plausible strategy is to treat the income series as smooth
curves and estimate the missing values using nonparametric methods. This is in lieu of methods used
in functional data analysis [7] in which the basic unit of analysis is a curve. Some of the common
applications of functional data analysis involve curve-type longitudinal data such as height growth
curves, hormone profiles and CD4 counts over time [8-10]. For instance, the authors of [11] proposed
a class of functional mixed effect models that can be viewed as extensions of linear mixed models for
the curve data, estimating the response profiles using cubic smoothing splines. Methods in functional
data analysis are also highly relevant to semiparametric or nonlinear regression [12] and smoothing
techniques.

___________________________________________________________________________________________________________|]
Copyright © 2011 John Wiley & Sons, Ltd. Statist. Med. 2011,301137-1156



Statistics
Y. HE, R. YUCEL AND T. E. RAGHUNATHAN

Despite the vibrant research on functional data analysis, little attention has been paid to its application
on imputation and missing data analysis. In this paper, we explore this area by developing a multiple
imputation approach for missing longitudinal responses using the functional mixed models. Our goal
is to create imputations that retain the correct temporal trends using a data-driven strategy. The rest of
this paper is organized as follows. Section 2 describes the functional mixed model. Section 3 develops
a Gibbs sampling algorithm for drawing missing values and model parameters. Section 4 describes
the example which motivates this study and illustrates the application. In Section 5, we conduct some
simulation studies to evaluate the performance of the proposed approach. Finally, Section 6 concludes
this paper with a discussion.

2. Functional mixed model

2.1. General setup

Let y; be the response of subject i at time #;; (i=1,...,m, j=1,...,n;), and we assume y;; can be
subject to missing values. The functional mixed model [11] takes the following form

vij= Xyt + Zijou (i) + 37, & ~N(0, 62), (1)

where X =(x;j1, ..., %ijp)(1 x p) and Z;; =(z;j1, ..., Zijq)(1 X q) are design matrices, f(t)=(B(®), ...,
ﬁp(t))T is a px 1 vector of fixed functions, o;(t)=(041(t), ..., %q4(t))" is a g x I vector of random
functions that are modelled as realizations of Gaussian processes A(t)=/(a(t), ...,aq(t))T(collection
of processes) with zero means; and ¢; is the measurement error. For simplicity, here we assume both
X’s and Z’s are fully observed. The problem of handling missing X’s and Z’s is briefly addressed in
Section 6.

The functional mixed model (1) can be regarded as a generalization of the linear mixed model
by treating both the fixed and random effects as smooth curves of ¢. Similar to the interpretation
of the linear mixed model, (#) can be interpreted as population-average profiles, Z;o;(t) as the ith
subject-specific deviation from the population-average curves, and hence X;;(t)+ Z;jo;(t) as the ith
subject-specific function. As pointed out by [8], a variety of longitudinal curve models can be viewed
as special cases of the functional mixed model. For example, if both f(¢)’s and o;(¢)’s are modeled as
vector of polynomials, model (1) is reduced to the random coefficients model [13].

2.2. Estimation using cubic smoothing splines

Guo [11] proposed an estimation procedure for model (1) using cubic smoothing splines. This approach
exploits the connection between cubic smoothing splines and linear mixed model. This feature can be
traced back to [14], which showed that the estimate of a smoothing spline can be obtained through
the posterior estimate of a Gaussian stochastic process. Following Wahba’s [14] Bayesian approach,
Pr(t)’s and o;;(¢)’s are modeled as

t
Bu(t) = Biy+ Buot + /2 /0 We(s)ds, k=1,...,p, @

t
oc,-l(t):Ai“—l—A,-nt—i—/l;ll/Z/ Wa(s)ds, i=1,....m, I=1,....q, 3)
0

where By; and By, have diffuse priors and are treated as fixed in the terminology of linear mixed
model, i.e. ((Bk1, Bx2)T ~N(0,7I,) with 1— 00), A;;; and A;;» are random intercepts and slopes,
ie. (A, Ain)T~ii.d N0, for i=1,...,m and [=1, ...sq, Wi(s)'s and Wj(s)’s are indepen-
dent Weiner processes, and Ap;’s and A,;’s are smoothing parameters controlling the balance between
smoothness and ‘goodness of fit’ for ,(¢)’s and o;()’s, respectively. Therefore, }V;kl/ 2 f(; Wi (s)ds and

i;ll/ 2 fot Wii(s)ds model the nonlinear curvature of f3,(¢) and o;;(f)’s, respectively.

For simplicity of notations, we assume that each subject has equal number of time points, i.e.
ny=---=n,=n, and t=(11, ...,tn)T. More generally for unbalanced designs, t is the collection of
distinctive time points across different subjects. As shown by Green and Zhang et al. [15, 16], the
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estimation of f,(¢)’s and o;;(¢)’s at the design points t can be obtained through the following linear
mixed models:

1
Bi(t) = TC; +Bay, { =(By1, Bio)", ag ~N (0, mlnq) , “4)

oii(t) = Ty +Bay, (= (A1, Ai)' ~N(0, ), a5 ~N (0, %In—2> ; (5)
a
where f,(t)=(;(t1), ...,[}k(t,,)T, ()= (aig(t1), ..., oi(t,))T, T={1,t}, and B is an n x (n —2) matrix
which satisfies BBT =R1, where R! is the integrated Weiner covariance matrix evaluated at t [14]. In
mixed models (4) and (5), {; models the fixed intercept and slope for function S, (¢), {;; models the
random intercept and slope for function o;;(¢) of subject i. Both a; and a; are (n—2)x 1 vector of
random effects so that Ba; and Ba;; model the departure of S, (z) and o;(¢) from the straight lines,
respectively. The inverse of smoothing parameters, 1/, and 1/44;, are the variance components of
the mixed models (4) and (5), respectively. When 1’s — o0, the estimated functions are close to linear
curves. On the other hand, when 4’s — 0, the estimated functions tend to interpolate all the data points.
Note that parameterizations of the linear mixed model format of cubic smoothing splines may appear
slightly different in different literature. For example, the associated random effects are modeled as
vectors of dimension n in [11]. However, it can be easily shown that the estimates of smooth functions
remain the same under those different parameterizations.
Substituting equations (4) and (5) into model (1), we obtain a linear mixed model representation of
the functional mixed model

Y; =XTB+XPb+ZT B, +ZPb; +¢;. 6, ~N(©,6°L,), i=1,....m, ©6)
where
Yi =ity eees yin) s
XI=XT,....X, 1), XB=(X;1B, ...,X;,B) with Xy =diag {Xi1k, ..., Xijk, - -+ Xink}»
Y =@ur, ... 2,)0), 2B =(Z:B, ..., Z;;B) with Zy=diag{zi1/, ..., Ziji, -+ Zinl},
B=l.....c)"

@j.....a,) ~NO.diag{1/ 21, ... 1/ 25} ®L1-2),

=pd
Il

B =l ... )T ~N(0, diag{Q;. ..., Qq}®I,), and
bi = (@]}, ....a;)" ~N(,diag{1/a1. ... 1/dag} ®T,_2).

Under the linear mixed model format (6), the restrictive maximum likelihood estimation approaches
have been proposed [11, 16-20], and the inverse of the smoothing parameters are estimated as variance
components. The connection between the cubic smoothing spline and the linear mixed model, therefore,
allows fitting of the functional mixed model using existing software, such as SAS PROC MIXED
(www.sas.com).

Other than cubic smoothing splines, functional mixed models can also be estimated using kernel
smoothers [21]. When data exhibit many local features like peaks or jumps, a more general wavelet-
based approach can be used [22,23]. In this paper, we focus on using the cubic smoothing spline
approach to functional mixed models mainly because it provides a continuum of models from a trend
linear in time to treating time as a factor (obtained as the smoothing parameter A’s tend to oo and 0,
respectively). Smoothing splines are also relatively easier to formulate and program and thus might
be more accessible to practitioners. However, alternative computational methods under the functional
mixed model can also be considered for imputation.

3. Gibbs sampling algorithm

We use the Gibbs sampling technique [24] to obtain the draws of missing values in y;’s and
model parameters from their posterior distributions under model (6). To complete a fully Bayesian
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model specification, we now specify the prior distributions of the linear mixed model (6). Denoting
IG() as inverse gamma distribution and IW() as inverse Wishart distribution, we impose conjugate
prior distributions for the parameters as { ~N(0,Xy), 1/Apk ~IG(ypr/2, tp/2), & ~IW(d, ciRy),
1/2a1~1G(y /2, tgy/2), and 62~IG(})0/2, Uo/2) for k=1,...,pand [=1,...,q. Values of the hyper-
parameters of these prior distributions can be chosen based upon prior knowledge or to give diffuse
priors for a more objective inference. We recommend to run the Gibbs sampling with different priors
to ensure that the results are not sensitive to the choice.

Because model (6) has multiple random effects with large dimensions, and some of them (e.g. b
and b;) might be highly correlated a posteriori, the default Gibbs sampling algorithm which updates
one parameter at a time can lead to slow convergence. We adopt the strategy of de-conditioning [25]
by blocking the parameters into groups and then updating them simultaneously to achieve a better
convergence. We rewrite model (6) as

P = 9 =~
Yi=) XU+ ZjUj+e, i=1,....m, (7)
k=1 I=1

where )Niikz(i,-kT, X;B), Z-,:(Z-IT, ZiB), Ukz(Cz,a{)T, and Uﬂ:(C%,a%)T. The key of the algo-
rithm is to group fixed and random effect coefficients into blocks as Ug’s and Uj;’s, which are the
coefficients corresponding to the population-average profile and individual profile, and draw them
iteratively from their conditional distributions given the remaining model components. The variance
components can then be drawn based on draws of U’s and Uj;’s.

With a little abuse of notations, let [X|Y] denote the conditional distribution of X given Y, and
denote variance components as the collection of A’s, Q’s and ¢>. From equation (7), it is easy to obtain
the following distributions:

(a) the conditional distribution of Y; given | J{Uy} k=1....p (i.e. the collection of Ug’s) and variance
components: o

<

[Y,' [U{Uk} k=1....p’ variance components] ~N ( )z(,-kUk, V,-) ,
1

k

= =T
where V; =31 | Z;diag{Q, 1/2a®1,-2}Z; +0°1,,
(b) the conditional distribution of Uy given variance components

[Ug|variance components] ~N(0, Wy), where Wy =diag{Z¢, 1/Apx QL,_2}

(c) the conditional distribution of Y; — Z,’:Zl XUy given | J{Uy} I=1....q and variance components:

P =~ 9 ~
|:Y,- — > XiUg| U{Uil}1=1 o variance componentsi| ~N (Z Z;U;, azln> ,
k=1 1=1

and
(d) the conditional distribution of U;; given variance components:

[Ujs|variance components] ~N(0, A;), where A;=diag{€;, 1/141,_2}

From distributions in (a) and (b), it is easy to show that Uy’s (k=1, ..., p) can be drawn from:
Step 1:

[Uk|U{Yi}i:1 Ut » S;ék,variance components]

meT = —1 L fm o 1 = n=T = 1 -1
~N ( X Vi Xic+W, ) > XV | Yi— 2 XU ’<2Xikvi Xik+ W, ) :
i=1 i=1 s#k i=1

|
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Distributions in (c) and (d) imply that Uy’s (i=1,...,m,[=1,...,g) can be drawn from:
Step 2:

[Ui1|Yi, U{Uk}kzl,...,p’ U{Ui,}tzl,n”q’t#, variance components]

~T~ ~T ~T~
~N(ZyZa/*+A7H™! (Z,-,( ZXZkUk—ZZnUU» (ZyZa/o*+A;7H7).
t#l

Once U;’s and Uj;’s are sampled, the variance components can be sampled from:
Step 3:

+n—-2 u +ala;
[1/ﬂ~hk|ak]~IG(yb" " ”kzk ) k=1,...,p,

_ m -1
_Ql|U{Cil}i:1,...,m]~IW (m—l—dl, (26i1C5+(C1R1)1) ) , I=1,...,q,

i v+ m—=2)m py+Y " alay
1/zaz|u{aﬂ}i=1,,_.,m]~IG<“l S e )L =1,

AU, U U]

~1G Yo +nm :u0+21 1(Y Zk 1 kUk_Zl 1 llUll) (Yi Zk 1 kUk_Zl 1 llUtl)
2 7 2

To draw the missing values in Y;’s, suppose Y; =(Y; mis, Yi obs) and denote n; mis as the number of

missing values in Y;, the posterior distribution of the missing values given the observed values and

parameters is

Step 4:
P = 9 =~ 2
[Yimis| Yi,obs, parameters] ~ N { >~ Xik misUk + D Zit misUir, 0" Ly, 1 | 5
k=1 =1
fori=1,...,m, where i;kimis and Zik,mis denote the submatrix of )~(ik and Z-k corresponding to the

missing items in the ith subject.

Given the starting values of model parameters, the above steps 1-4 define a cycle of the Gibbs sampler.
Executing this cycle repeatedly creates sequences of draws of parameters and missing data. Time series
plots and Gelman—Rubin statistics [26] can be used to determine whether the Gibbs chain converges.
After the Gibbs sampler converges, we can select M (e.g. M =5) draws of the missing values from one
Gibbs sampler sequence, with long lag times between each draw to avoid autocorrelation, to obtain M
completed data sets. Or we can carry out M independent Gibbs sampling chains and choose the last
draw of missing values from each chain upon convergence. Although the fully Bayesian inferences of
the functional mixed model parameters can be obtained from the posterior draws of the parameters,
using imputed data can be advantageous for analyses that do not directly conform to the functional
mixed model (Section 4). In this work, we code the Gibbs sampling imputation algorithm using a
matrix-based language GAUSS (www.aptech.com). Some sample code are attached in Appendix,F and
please contact the authors for further information.

4. Application

4.1. Survey background

The PSID is a longitudinal survey of a national representative sample of U.S. families. Originated
in 1968, the PSID interviewed and re-interviewed individuals from sampled families every year until

YSupporting information may be found in the online version of this article.
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1996. Since 1997, the interviewing has taken place every other year. The panel is based on a complex
survey design for households. It follows adults through the full life course and also includes families
when children of the original sample grow up and establish separate households or when marriage goes
separate ways. The PSID emphasizes the dynamic aspects of economic and demographic behavior, but
it contains a wide range of measures, including health, sociological, and psychological ones. In 1997,
the PSID supplemented its main data collection with additional data on O- to 12-year-old children,
their parents, and other care-givers. The Child Development Supplement (CDS) cohort studies a broad
array of developmental outcomes such as physical health, emotional well-being, cognitive abilities,
achievements, and social relationships with family and peers. More information about the PSID and
CDS can be obtained from the web site http://psidonline.isr.umich.edu.

It is well known that there exists positive association between health and income in adulthood.
Research using the data from the PSID, CDS, and other public-use databases has shown that such
association has antecedent in childhood [27, 28], although mixed results were obtained regarding the
role of timing of household income in affecting a child’s health. One possibility is that the effect of
income depends on the age of the child when the income was received [27]. Another possibility is that
investment decisions are made on long-run average income, in which case the timing is not important
[28]. In this example, we illustrate the proposed imputation approach in analyzing a subset of the PSID
and CDS data to compare the effect of household income on children’s health development at different
time spans. However, we do not attempt to present a comprehensive and rigid study for the subjective
matters, which can be found in the aforementioned literature.

4.2. Multiple imputation

We limit our multiple imputation analysis to a sample of 2172 families included in the PSID cohort from
1979 to 1997, and augment it with the data from their children collected in the CDS. For simplicity,
we only include the data from the eldest child in each family and ignore the sampling design in
our analysis. The longitudinal response variables are annual record of family income to needs ratio
from 1979 to 1997, which is defined as the ratio of household income to the poverty threshold for
the corresponding family size. The average missingness rate for the income data is approximately
15.1 per cent per year, with a declining trend at the end. The missingness pattern is rather arbitrary
(i.e. nonmonotone). The children’s health status (HEALTH: 1=Excellent-very good, 82.4 per cent;
0=Good-fair—poor, 17.6 per cent) was collected in the CDS cohort. In addition, the subset data include
some fully observed auxiliary variables which may be associated with income or health status. These
covariates include: children’s gender (GENDER: 1=Male, 51.8 per cent; 0=Female, 48.2 per cent);
children’s age (AGE: mean=6.8 years, std=3.7 years); household head’s race (RACE: 1=White,
51.8 per cent; 0=Non-white, 48.2 per cent); and household head’s education level (EDU: 1 =More than
high school, 43.1 per cent; 0=High school or less, 56.9 per cent).

We apply a log-transformation to accommodate the skewness of income data and carry out the
imputation on the transformed scale. We use the functional mixed model (1) to characterize the trends
of log-transformed income series. For illustrative purposes, we ignore the possible autocorrelation of
the measurement error terms. The covariate effects of HEALTH, RACE, and EDU are treated as fixed
smooth functions as we hypothesize families with different such characteristics may have different
income trajectory. Individual family’s deviation from population-average profile are treated as random
smooth curves.

We use independent N(0, 10%) priors for all fixed effects, independent IW (10=3, 103 15) priors for
covariance matrices, and independent IG (1073, 1073) priors for the inverse of smoothing parameters
and error variance. These hyper-parameters reflect vague prior information on the parameters. To ensure
reliable results, we also examine the sensitivity of the estimation results to the values of hyper-parameters
of the conjugate priors. We find that various reasonable values of the hyper-parameters lead to essentially
the same results because of the large sample size. The Gibbs chains achieve convergence after burn-in
period of 2500 iterations, assessed by examining the time series plots, sample autocorrelation plots, and
Gelman—Rubin statistics from multiple chains. We run five independent Gibbs sampler sequences of
5000 iterations and use the missing values drawn from the last iteration of each sequence to obtain five
completed data sets (that is, M =5). We find that the multiple imputation analysis results essentially
remain unchanged when we increase the number of imputations, as the relative efficiency [2] of five
imputations for the analyses of interest (Section 4.3) exceed 95 per cent.

|
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Table I. Functional mixed model parameter estimates.

Parameter Posterior Mean 95 per cent credible interval
AHEALTH=0 693 (209, 1703)
AHEALTH=1 782 (245, 1799)
ASUBJECT 341 (311, 372)

a? 9.77x 1072 (9.58x 1072, 9.96x 1072)
30, HEALTH 5.73x1073 (=5.54x 1072, 6.59x 1072)
01, HEALTH 8.70x 103 (3.99x 1073, 1.33x1072)

Notes: 9o HEALTH is the estimate of intercept differences of population-average
income profile between two groups of families classified by HEALTH (HEALTH=1
vs HEALTH=0). 0| ypaLTH is the estimate of slope differences of population-average
income profile between two groups of families classified by HEALTH.

Table I lists the posterior means and 95 per cent posterior confidence intervals for some of the model
parameters. The large scales of the smoothing parameters suggest that the log-transformed income series
are rather close to straight lines, although the individual series are more noisy (less smooth) than the
population average profiles. Families whose child is in better health status has significantly larger slope
(01, uEALTH =8.70 %X 1073), indicating a faster growth on their income. Families with higher education
also had a faster income growth; there was no difference on income growth between families with
different races, although white families had apparently higher income at the baseline (results not shown).

Figure 2 plots the observed values, multiply imputed values, as well as the estimated family-specific
log-transformed income trajectories from randomly selected three families. The family-specific curve
estimates are the posterior means of the smooth functions from the Gibbs samples, and they are similar
across independent Gibbs chains. There exist some curvature for the estimated trends but the deviation
from linearity is not strong. The imputed values (‘+’ in Figure 2) for each family are scattered the
estimated trend, and they are different across multiple Gibbs chains, incorporating the uncertainty of
imputation.

4.3. Post-imputation analyses

We investigate the effect of family income on children’s health status on three periods: (1) six years
prior to birth; (2) the first three years since birth (i.e. critical developmental period) [27]; and (3) the
child’s entire life until 1997. We conduct the following analyses using the multiply imputed datasets:

(A) Estimate the differences of the average income to needs ratio during the three periods (1)—(3)
between two groups of families classified by HEALTH;

(B) Fit three logistic regression models corresponding to three periods, and in each model the average
income to needs ratio during the period and other covariates are used to predict HEALTH,;

(C) Fit a mixed model assuming both fixed and random linear trends for the log-transformed income
to needs ratio from 1979 to 1997, and estimate the slope difference between two groups of
families classified by HEALTH, controlling for other covariates.

These analyses represent typical ones applied to longitudinal data, that is, the univariate descriptive
statistics (A), multivariate regression ignoring correlation among repeated measurements (B), and
mixed-model fitting (C).

The estimates from each completed dataset are combined using the multiple imputation combining
rules [2]. In addition to the functional multiple imputation approach (FUN), we also apply alternative
missing data methods. These approaches include the AC analysis procedure, the last observation carried
forward method (LOCF), the mean imputation method (MEAN), and the multiple imputation approach
based on a random effects model assuming linear growth curves of log-income (LIN, implemented
using R library ‘pan’ with M =35). Note that AC discards incomplete cases in analyses, while LOCF,
MEAN, and LIN fill in these missing cases for each subject repeatedly over time and thus create
completed data for analyses.

Table IT shows the estimates of interest and their associated 95 per cent confidence intervals (inside
the parenthesis). The results are somewhat similar across the methods. The income difference estimates
suggest that children with better health status are more likely to be in higher income family. In addition,
the logistic regression analysis results imply that the family income status at different time spans
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Figure 2. Trajectory plots of the observed and imputed data of log-transformed income to needs ratio from
selected subjects; row (from top to bottom): three subjects; column (from left to right): three imputations per
subject; concrete line: family-specific curve estimates; dots: observed values; plus: imputed values.

have significant and rather similar effects on children’s health development. The mixed model analysis
results further quantifies the difference in income growth for the two groups over the study period. Our
illustrative example indicates that, rather than the income at specific age period, the long run average
income determines health investment and health status, which is consistent with findings from [28].

5. Simulation studies

In this section we use Monte Carlo simulations to systematically evaluate the performance of the
proposed approach and compare it with those alternatives.

5.1. Design
5.1.1. Complete-data generation. We consider the functional mixed model
viflxi = Be ) +ou(t) e, 6 ~N(O, 02),
x; = 14+Bernoulli(0.5),

and allow f,(¢) and o;(7)’s to be various functions of ¢ including linear, polynomial, and trigonometric
curves.
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Table II. Analysis results relating family income to children’s health.
DIFF (6 yrs prior) DIFF (Critical) DIFF (entire)
AC 2.488 (1.686,3.291) 3.240 (2.003,4.476) 3.865 (2.730,4.999)
LOCF 2.375 (1.621,2.130) 3.275 (2.144,4.406) 3.888 (2.768,5.007)
MEAN 2.046 (1.339,2.753) 2.956 (1.878,4.034) 3.646 (2.559,4.734)
LIN 2.263(1.513,3.012) 3.217 (2.079,4.355) 3.888 (2.761,5.016)
FUN 2.338(1.561,3.114) 3.196 (2.044,4.348) 3.886 (2.756,5.016)
OR (6 yrs prior) OR (Ceritical) OR (entire)
AC 1.378 (1.055,1.802) 1.303 (1.042,1.629) 1.445 (1.185,1.762)
LOCF 1.418 (1.082,1.857) 1.402 (1.113,1.767) 1.491 (1.214,1.832)
MEAN 1.360 (1.017,1.817) 1.391 (1.090, 1.774) 1.480 (1.197,1.831)
LIN 1.316 (1.008,1.718) 1.363(1.082,1.717) 1.468 (1.198,1.798)
FUN 1.343 (1.019, 1.770) 1.331 (1.057,1.675) 1.443 (1.194,1.787)
SLOPE x103
AC 8.46 (3.81,13.10)
LOCF 8.72 (4.18,13.27)
MEAN 9.05 (4.72,13.38)
LIN 8.40 (3.73,13.08)
FUN 8.49 (3.90, 13.07)

Notes: DIFF denotes the difference in the average income to needs ratio in the analysis (A) from
Section 4.3. OR denotes the odds ratio estimates associated with the average income to needs ratio
(1 unit change=10) in the analysis (B) from Section 4.3. SLOPE denotes the slope difference
estimated in the analysis (C) from Section 4.3.

Study I: We first consider the case that 5, (¢) # ,(¢) so that two groups have different distributions
of longitudinal profiles. The estimands of interest (Section 5.1.3) focus on the differences between two
groups. The data-generating functions are as follows:

scenario I.1. linear curves: t=1,2, ...,20,
8.0 346t ifx;=1,
)=
! 6+5t  if xi=2,

0; (1) = ag; +ay;t,

( 7 on(o 100 —0.5 .
api, i) ~ s , 0 =1/]
v 0.5 0.36

scenario 1.2. polynomial curves: r=0,0.2,0.4,...,3.8,

16— 12t 4+7t2— 983 + 6% —1° if x; =1,

ﬂx(t)z 2 3 4 5 .
14412t —T7t4+8t" —41t"+0.7t if x; =2,
% (1) = ag; +ayit +axt®> +azit® +agit?,

(aoi, aii,az,asi, as)’ ~ N(0,diag(20,2,0.1,0.01,0.001)), 6> =1;

scenario 1.3. trigonometric curves: t=1/21,2/21,...,20/21,

8sin(4nt)+6cos(4nt)
—sin(4nt)—2cos(dnt) if x; =2,

ifx,-:l,

Be() = {

o; (1) = ag; +ay; sin(4nt)+an; cos(4nt),

(aoi,aii,az) ~ N(0,diag(9,4,4)), 6* =1.

Copyright © 2011 John Wiley & Sons, Ltd. Statist. Med. 2011, 30 1137-1156



Statistics
Y. HE, R. YUCEL AND T. E. RAGHUNATHAN

Study II: We also consider the case where f5; () = ,(¢) so that two groups have the same distributions
of longitudinal profiles. The corresponding estimand of interest is the type-I error rate of falsely rejecting
the null hypothesis that these two groups differ. The data-generating models are as follows:

scenario II.1. linear curves: t=1,2, ..., 20,

Bi(t)=P,(t) =3+6¢,

0; (1) = ag; +ay;t,

T 100 —0.5 .
(aOliall) N 07 ) g —27,
—0.50.36

scenario II.2. polynomial curves: r=0,0.2,0.4,...,3.8,
Bi()=Po(t) = 16— 12+ 71> =983 +61* — 1,
i (1) = agi +ayit +anit> +azit> +agt,
(aoi,a1i, az, asi, as))’ ~ N(0, diag(20,2,0.1,0.01,0.001)), 6* = 1;
scenario II.3. trigonometric curves: t=1/21,2/21, ...,20/21,
1(6)=p,(t) = —sin(4nt) —2cos(4nt),
o; (1) = ag; +ay; sin(4nt)+an; cos(4nt),
(aoi, a1i, az)" ~ N(0, diag(1,1,4)), 6> = 1.

In every scenarios considered, 500 complete datasets are generated, and each set contains 100 subjects
(m=100) with longitudinal Y’s measured over 20 time points (waves).

5.1.2. Creating missing data. We assume that the covariate X is fully observed and impose both
monotone and nonmonotone missingness patterns for Y’s. In a monotone pattern, subjects never come
back after they drop out of the study. In a nonmonotone pattern, the missingness is rather intermittent
so a subject can have observed response at a later wave even if he/she missed earlier ones [1]. In
principle under MAR, the missingness of a case at wave j can be dependent on observed values at
any wave before j (i.e. wave 1,2, ..., j —1). However, we surmise that in most real life scenarios, the
probability of missingness at wave j is affected more by earlier observations closer to wave j such as
at wave j—1 or j—2 and affected less by those closer to the starting time (i.e. baseline). Therefore,
we consider two scenarios for modeling the dependency of missingness in the simulation.

In a simple scenario, the missingness at wave j is dependent on the most recently observed value.
To create a monotone pattern, the Y’s are fully observed for the first five waves, while for the later
waves (j>6), the missing values are produced using the following equation:

) o O(Ao+ A1x; +/12y,',j,1 +/13x,‘yi,j,1) if Vi,j—1 is observed,
Pr(yjj is missing|yii, ..., yi j—1)= . L
1 if y; j—1 is missing,

where @ is the cumulative probability distribution function for the standard normal distribution. To create
a nonmonotone pattern, the Y’s are fully observed at the baseline (the first wave), while for the later
waves (j>2), the missing values are produced using the following equation:

Pr(y; is missing|yi1, ..., yi, j—1) =P(Ao 4+ A1X; + A2 yi j* + 23X Yij*),

where y;;» denotes the most recently observed value before wave j. Unlike the monotone pattern, y;
could be values at a wave earlier than j — 1. Note that the interaction between the group indicator and
observed values in the missingness equations allows the pattern of dependency differs between two
groups. With certain choices of 1’s, for example, we can produce scenarios where in one group, the
missingness tends to occur for subject whose observed values are larger, while it is less so or even
in opposite direction in another group. It might be expected that throwing away incomplete cases in
these scenarios or not incorporating the trend appropriately would lead to bias for the estimates of the
difference in the two groups.

|
Copyright © 2011 John Wiley & Sons, Ltd. Statist. Med. 2011,30 1137-1156




Statistics
Y. HE, R. YUCEL AND T. E. RAGHUNATHAN

In a more general scenario, we let the probability of missingness at wave j depends on observed
values from the two recent waves. For the monotone missingness, the Y’s are fully observed for the
first five waves, while for the later waves (j>6), the missing values are produced using the following
equation:

Pr(y;; is missing |y;1, ..., yi,j—1)

DA+ A1 x; +/12y,-,j_1 +)v3y,',j_2+/14x,' Vi, j—1 +)u5x,'y,"j_2) if Yi,j—1 is observed,

1 if y; j—1 is missing.

For the nonmonotone missingness, the Y’s are fully observed on the first two waves, while for the later
waves (j>3), the missing values are produced using the following equation:

Pr(y; is missing |yi1, ..., i, j—1) =P+ A1x; + A2yij* +23yije + Aaxi yij« + A5xi yije),

where y;;x and y;j+ denote the observed values from two recent waves before wave j, and they can
be at waves earlier than j—1 and j —2 for some cases.

The coefficients A’s are chosen to yield the average missingness rate per wave close to 20 per cent in all
scenarios considered. For example, Figure 3 shows one simulated incomplete dataset from various curves
in the simple scenario. We could include more waves of observed values (e.g. j—1,j—2,j—3,...)
in the above equations for even more general missingness mechanisms. But this would increase the
complexity of the missingness probability equations and we are less capable of controlling average
missingness rates in the simulation.

5.1.3. Estimands of interest. In Study I, we consider three estimands that distinguish the two groups
(ie. x=1vs x=2):

(i) The between-group difference for the mean of responses from wave 12 till wave 16, i.e.

100 i=16 100 i=16
Zi:ll{xl:l}Zj':]z%’j i=1 li=2) Zj’:n)’ij
100 B 100 :

52 izt I=1) 5% ici lwi=2)

(i1) Run a logistic regression for the group indicator X using the average of Y’s from wave 12 till
wave 16 as the predictor, and estimate the associated coefficient;

(ii1) Fit with the data-generating model (Section 5.1.1), which are mixed models for longitudinal
¥ij’s, and estimate the mean difference in selected coefficients between two groups. Specifically,
in scenarios 1.1 and 1.2, the estimand of interest is the difference in the coefficient for the
linear term ¢, and in scenario 1.3, the estimand of interest is the difference in the coefficient
associated with sin(4mnr).

Vio—16x=1—Y12—-16,x=2=

Matched with analysis (A)—(C) in Section 4.3, estimands (i) and (ii) focus on the ‘local’ difference
between the two groups and estimand (iii) is pertaining to the ‘global’ difference. These estimands also
represent typical analyses applied to longitudinal data, that is, the univariate descriptive statistics (i),
multivariate regression ignoring correlations within repeated measurements (ii), and mixed-model
fitting (iii).

In Study II, we apply the same analyses as in Study I and test the null hypothesis that the quantity of
interest is 0, which indicates no difference between two groups. We obtain the average rate of rejecting
the hypothesis (i.e. Type-I error) over 500 simulations. Since the two groups have the same distribution
of longitudinal profiles, we would expect the estimated type-I error would be close to the nominal level
5 per cent for the method working properly.

5.1.4. Methods and evaluation criteria. For all scenarios considered, we apply FUN to the incomplete
datasets. Same prior distributions as those used in the real data example are adopted in the Gibbs
sampling. We use the last draws of five independent Gibbs chains with 3000 iterations for multiple
imputation, with the relative efficiency exceeding 95 per cent for estimands of interest. Other missing
data methods including AC, LOCF, MEAN, and LIN (with M =5) are also applied. In scenarios 2
and 3, we also apply the linear mixed-model imputation assuming a fifth-order polynomial for the mean
response and a fourth-order polynomial for the random effects using R library ‘pan’(POLY).
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Figure 3. Simulated longitudinal data with missing values. Red (Gray on print version):
x=1; Blue (Black on print version): x =2.

In both studies, the inferences made on the data before deletion (BD) are taken as the gold standard.
We evaluate the performance of the methods using the following four criteria [29]:

Relative bias (RBIAS = |Bias/True|x 100 per cent) (Study I): it measures the accuracy of the point
estimator, and a reasonable upper limit for the relative bias can be taken as 5 per cent.

Root of the relative mean squared error (RRMSE = ./MSE(Method)/MSE(BD)) [30] (Study I): the
root of the mean squared error (RMSE) has been extensively used in the literature of simulation studies
because it is an integrated measure of bias and variance and has the same units as the quantity being
estimated. RRMSE is a standardized version of the RMSE, measuring the increase in RMSE relative
to that of the BD analysis.
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Table III. Results from simulation study I: missingness dependent on the observed values from the most
recent wave.
Missingness Mean difterence Logit regression Mixed-model
Function pattern ~ Method |RBIAS| RRMSE COV |RBIAS| RRMSE COV |RBIAS| RRMSE COV
Linear Monotone AC 5.13 1.14 930 4.55 1.13 908 0.04 1.09 950
MEAN29.22 1.48 654 8.06 1.28 932 4546 379 170
LOCF  32.26 1.89 844 6499 221 84 4742 454 708
LIN 0.04 1.03 964 0.5 1.03 916 0.06 1.12 952
FUN 0.15 1.03 948  0.51 1.03 918 0.10 1.14 950
Linear Nonmonotone AC 0.11 1.03 950 5.74 95 918 0.02 1.02 956
MEAN  26.39 1.34 670 30.14 1.70 902 30.00 2.54 160
LOCF 8.67 1.05 928 832 099 908 2.34 1.05 954
LIN 0.14 1.00 952 029 099 934 0.02 1.02 956
FUN 0.01 1.00 956 0.19 099 928 0.01 1.02 958
Polynomial =~ Monotone AC 4.52 1.27 942 7.28 1.27 888 0.05 1.04 934
MEAN 3410 290 122 7.43 1.54 952 50.63 11.12 22
LOCF  13.36 1.81 880 53.02 2.61 24 3558 7.69 2
LIN 3392 301 528 8.80 1.25 990 4022 881 810
POLY 0.05 1.07 954  0.68 1.03 942 0.03 1.07 934
FUN 0.31 1.06 946 4.14 1.11 952 0.95 1.14 938
Polynomial =~ Nonmonotone AC 1.38 .12 942 11.80 1.10 816 0.04 1.09 942
MEAN 28.81 245 132 3620 231 818 6056 13.70 398
LOCF 11.13 1.33 860 17.32 145 956 3743 848 454
LIN 2853 256 504 1035 1.23 984 3405 823 972
POLY 0.06 1.00 956 0.83 0.99 940 0.20 1.11 950
FUN 0.04 1.00 956 0.67 099 940 1.25 1.16 946
Trigonometric Monotone AC 22.82 1.59 904 16.18 1.41 966 0.02 1.03 958
MEAN 34.84 1.53 578 15.59 1.51 960 2573  6.15 0
LOCF 89.01 3.69 418 9434 3.13 6 1355 336 160
LIN 7427 3.07 514 8132 277 158 1655 4.05 128
POLY 2447 141 882 2449 1.39 948 3.78 147 818
FUN 2.12 .15 972 691 1.05 962 0.09 1.25 904
Trigonometric Nonmonotone AC 5.57 1.12 940 9.01 0.99 914 0.01 1.01 954
MEAN 31.31 145 678 2.83 1.22 948 2423 5.76 0
LOCF  35.86 1.70 728 28.21 143 914 740 201 614
LIN 30.10 1.55 860 35.88 148 734 1794 431 22
POLY 9.97 1.09 938 1291 1.16 964 1.02 1.07 888
FUN 2.19 1.03 940  2.69 1.06 942 0.26 1.04 904

Notes: Mean difference: between-group difference in the average of responses from wave 12 till wave 16. Logit
regression: a logistic regression for the group indicator using the average of responses from wave 12 till wave
16 as the predictor. Mixed model: fit with the data-generating model for longitudinal responses and estimate the
mean difference in selected coefficients between two groups. These analyses correspond to estimands (i)—(iii) in
Section 5.1.3. Highlighted numbers indicate that the absolute relative bias are larger than 5 per cent and coverage
rates are lower than 90 per cent.

Coverage rate of the 95 per cent confidence interval estimates across 500 replicates (COV) (Study I):
if a method is working well, the actual coverage should be close to the nominal rate (95 per cent). The
performance of a method can be regarded to be poor if its coverage drops below 90 per cent.

Type-I error rate when the two groups have the same distribution of repeated outcomes (Study II). If
a method is working well, the actual Type-I error rate should be close to the nominal level (5 per cent).
The performance of a method can be regarded to be poor if its Type-I error rate exceeds 10 per cent.

5.2. Results

Tables III and IV include the results from study I, where curves from two groups have different
distributions. Biases and coverage rates that are beyond acceptable limits are shown with bold characters.
As expected, the naive missing data methods, such as AC, MEAN, and LOCEF, can perform badly when
estimating the mean difference and logistic regression across all three types of curves. When fitting
the random coefficient models, however, AC is performing well because the estimation is based on
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Table IV. Results from simulation study I: missingness dependent on the observed values from the two
recent waves.

Missingness Mean difterence Logit regression Mixed-model
Function pattern Method [RBIAS| RRMSE COV |[RBIAS| RRMSE COV |RBIAS| RRMSE COV
Linear Monotone AC 25.52 1.61 828 29.59 1.66 924 0.43 1.12 962

MEAN  26.42 1.36 662 42.09 2.10 908 45.85 3.82 9
LOCF  36.31 2,15 826 72.62 244 28 2380 3.48 900

LIN 0.76 1.05 940 2.60 1.09 934 0.71 1.15 962
FUN 0.11 1.05 952 0.79 1.05 920 0.12 1.17 964
Linear Nonmonotone AC 5.26 1.05 948 0.01 0.98 918 0.06 1.04 946

MEAN 31.32 1.47 472 74.16 3.04 674 5112 417 0
LOCF 724 096 932 2534 142 918 18.01 1.75 690

LIN 0.04 1.00 952  0.29 1.01 924 0.00 1.04 944
FUN 0.16 1.01 956  0.36 1.01 930 0.02 1.05 944
Polynomial =~ Monotone AC 8.11 142 910 1345 1.24 830 0.17 1.17 946

MEAN 39.73 3.32 38 2.07 1.30 938  43.80 9.73 100
LOCF  28.85 2.82 678 43.89 2,19 112 29.38 639 12
LIN 43.94 391 390 0.21 097 974 28.16 6.40 984
POLY 0.27 1.04 948 1.39 1.00 932 0.00 1.04 944
FUN 0.47 1.04 940 3.54 1.06 952 0.64 1.06 946

Polynomial =~ Nonmonotone AC 8.00 1.26 908 15.24 1.17 764 0.01 1.13 950
MEAN 42.71 3.52 0 21.60 1.84 902 6495 14.83 318
LOCF 13.82 1.46 780 3.30 1.02 920 24.66 6.05 756
LIN 31.08 277 464 8.51 1.18 978 17.79  4.78 1000
POLY 0.12 1.01 956 0.76 099 938 0.27 1.16 950
FUN 0.10 1.01 954 054 099 938 3.71 1.56 918

Trigonometric Monotone AC 76.2 3.10 316 95.54 3.52 566 0.01 1.04 950
MEAN 17.11 1.05 890 106.69 3.80 472 2494 6.00 0
LOCF 7430 3.12 478 86.18 2.88 2 758 2.08 604
LIN 18.61 1.33 946  30.00 1.38 838 12.63 3.16 312
POLY 17.16 122 930 22.84 1.38 970 1.29 1.14 912
FUN 1.57 .12 968  2.80 1.07 962 0.68 1.15 922

Trigonometric Nonmonotone AC 17.27 1.29 912 30.52 1.34 732 0.03 1.01 948
MEAN 60.12 239 168 32.04 1.63 804 18.20 4.38 6
LOCF 56.80 242 534 24.07 1.27 944 3.67 1.30 890
LIN 56.57 236 522 5833 2.09 460 16.27 3.94 3
POLY 7.82 1.08 944  7.64 1.08 960 2.26 1.16 884
FUN 4.21 1.04 942 0.10 1.07 952 1.29 1.07 912

Notes: Mean difference: between-group difference in the average of responses from wave 12 till wave 16. Logit
regression: a logistic regression for the group indicator using the average of responses from wave 12 till wave
16 as the predictor. Mixed model: fit with the data-generating model for longitudinal responses and estimate the
mean difference in selected coefficients between two groups. These analyses correspond to estimands (i)—(iii) in
Section 5.1.3. Highlighted numbers indicate that the absolute relative bias are larger than 5 per cent and coverage
rates are lower than 90 per cent.

the observed-data likelihood when only the outcome is missing [31]. For linear response functions,
LIN performs well in all estimands because it is based on the actual data-generating model, while for
nonlinear response functions, either polynomial or trigonometric, LIN clearly breaks down with large
biases and low coverage rates. As expected, POLY is performing well under the polynomial curves
because the imputation model matches with the data-generating model. But with trigonometric curves,
POLY can yield some bias and have low coverage rates. This indicates that correctly modeling the
temporal trend is important in imputing the longitudinal response. Overall, FUN yields satisfactory
performance across all scenarios and comes out as the top method. The results are similar across two
missingness mechanisms tested.

Tables V and VI present the results from study II, where the curves from the two groups are generated
from the same distribution. Type-I error rates that are beyond the acceptable limit are shown with bold
characters. The overall pattern is similar to that from the simulation study I. For the mean difference
and logit regression coefficient, the ad hoc approaches including AC, MEAN, and LOCF can have
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Table V. Results from simulation study II: missingness dependent on the observed values from the most
recent wave.
Missingness Mean difference Logit regression Mixed-model
Function pattern Method Type-I error Type-I error Type-I error
Linear Monotone AC 73.6 714 5.4
MEAN 31.2 254 26.4
LOCF 50.4 49.6 97.4
LIN 5.2 3.8 4.2
FUN 4.6 4.4 4.2
Linear Nonmonotone AC 14.2 13.0 4.4
MEAN 16.0 124 12.6
LOCF 60.8 57.4 100.0
LIN 5.0 3.8 4.4
FUN 4.8 4.2 3.0
Polynomial Monotone AC 13.2 10.8 5.8
MEAN 8.6 8.0 4.0
LOCF 18.0 15.2 85.0
LIN 6.6 5.6 1.8
POLY 44 4.2 5.0
FUN 4.6 4.4 52
Polynomial Nonmonotone AC 27.8 26.8 6.4
MEAN 7.4 6.6 1.6
LOCF 284 274 244
LIN 19.0 15.8 95.4
POLY 44 4.0 5.8
FUN 44 4.2 6.6
Trigonometric Monotone AC 5.4 3.6 4.4
MEAN 14.6 11.0 6.0
LOCF 58.0 50.2 17.4
LIN 3.4 2.0 2.8
POLY 3.6 2.6 8.8
FUN 3.0 3.6 6.6
Trigonometric Nonmonotone AC 11.2 9.6 4.6
MEAN 10.4 9.6 5.6
LOCF 49.0 48.6 7.6
LIN 7.6 5.4 4.0
POLY 52 3.8 11.6
FUN 5.2 4.2 9.6

Notes: Mean difference: between-group difference in the average of responses from wave 12 till wave 16. Logit
regression: a logistic regression for the group indicator using the average of responses from wave 12 till wave
16 as the predictor. Mixed model: fit with the data-generating model for longitudinal responses and estimate the
mean difference in selected coefficients between two groups. These analyses correspond to estimands (i)—(iii) in
Section 5.1.3. Note: Highlighted numbers indicate that the Type-I error is larger than 10 per cent.

large type-I error rates across all three types of curves. For the mixed model coefficient estimates, AC
has reasonable type-I error rates across scenarios because the estimation is based on the observed-data
likelihood when only the outcome is missing [31]. When the curves are linear and polynomial, the
error rates from LIN or POLY are around the nominal level, respectively. This is expected because
the imputation model matches the true data-generating model under the respective situation. Overall,
the error rate from FUN is close to the nominal level irrespective of the type of curves tested, suggesting
its good performance and robustness.

6. Discussion

We have proposed a multiple imputation approach in which a functional mixed model is used to
create imputations for incomplete repeated measurements. This approach avoids relying on parametric
assumptions on time functions by using nonparametric cubic smoothing splines. The draw of missing
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Table VI. Results from simulation study II: missingness dependent on the observed values from the two
recent waves.
Missingness Mean difference Logit regression Mixed-model
Function pattern Method Type-I error Type-I error Type-I error
Linear Monotone AC 71.6 68.4 4.8
MEAN 30.2 27.0 260
LOCF 324 31.8 90.8
LIN 5.6 4.6 4.2
FUN 6.4 6.0 3.0
Linear Nonmonotone AC 9.2 8.6 5.8
MEAN 12.6 10.6 12.0
LOCF 26.8 24.6 96.2
LIN 52 4.0 6.0
FUN 4.8 3.8 4.2
Polynomial Monotone AC 21.2 18.2 5.8
MEAN 11.0 9.8 5.6
LOCF 10.8 9.4 95.2
LIN 6.6 3.6 12.2
POLY 3.8 32 5.6
FUN 44 3.8 5.0
Polynomial Nonmonotone AC 28.6 27.0 7.0
MEAN 10.0 8.8 2.0
LOCF 16.6 15.2 61.0
LIN 22.0 19.0 724
POLY 44 4.2 6.0
FUN 4.6 44 6.8
Trigonometric Monotone AC 6.6 4.6 34
MEAN 15.6 12.2 52
LOCF 98.0 96.2 374
LIN 3.8 32 2.2
POLY 6.8 7.2 6.2
FUN 2.2 2.8 4.6
Trigonometric Nonmonotone AC 6.6 4.8 5.0
MEAN 8.0 7.2 5.0
LOCF 44.0 44.8 6.6
LIN 3.8 2.8 3.0
POLY 3.8 3.6 7.0
FUN 5.0 3.8 8.2

Notes: Mean difference: between-group difference in the average of responses from wave 12 till wave 16. Logit
regression: a logistic regression for the group indicator using the average of responses from wave 12 till wave
16 as the predictor. Mixed model: fit with the data-generating model for longitudinal responses and estimate the
mean difference in selected coefficients between two groups. These analyses correspond to estimands (i)—(iii) in
Section 5.1.3. Highlighted numbers indicate that the Type-I error is larger than 10 per cent.

data at the designed time points can be obtained using Gibbs sampling algorithm on the linear mixed
model format of the functional mixed model. To enhance the practical use of this approach, imputation
routines such as R library ’pan’, which contains the Gibbs sampling algorithm for linear mixed models,
can be modified so that practitioners can implement it without programming their own algorithm. Our
simulation study has shown that this data-driven imputation strategy might be less sensitive to the
functional forms of the longitudinal trends than methods relying on simple parametric functions such
as linear or quadratic curves.

Several immediate extensions of the functional mixed model can be considered. First, if missing
data occur in both outcome (Y’s) and covariates (X’s and Z’s) in the functional mixed model (1),
distributions for X’s and Z’s can be specified to jointly impute the missing data. Second, a multivariate
extension of the functional mixed model can be formulated. In such extension, the correlations among
the random functions of different response variables can be introduced through the covariance of the
Gaussian processes of cubic smoothing splines. Third, similar to the extension from linear mixed model
to generalized linear mixed model, a class of generalized functional mixed model can be proposed for
nonnormal outcomes.

|
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Our study has several limitations. First, all data-generating models used in the simulation study
follow the functional mixed model (1), which assumes a linear relationship between the covariates and
(fixed or random) coefficient functions of time. On the other hand, many types of longitudinal data
can be modeled using nonlinear mixed models [32], such as in pharmacokinetic and pharmacodynamic
analysis. Of potential interest is to assess the performance of the proposed approach under some classic
types of nonlinear mixed models.

Second, we limit our study to ignorable missingness. In many practical cases, the incompleteness
are often nonignorable, that is, the probability of missingness can depend on unobserved values [2].
Nonignorable missing data problems in longitudinal studies is rather challenging and the solution often
involves modeling the missingness mechanism under some hypothetical assumptions [33]. On the other
hand, models for nonignorably missing data are often specified by modifying a baseline ignorable
model, for example, by hypothesizing a scale shift relative to ignorable imputations or a ‘not missing
at random’ selection model. The proposed method can then be used as the baseline model, which is a
starting point for developing a nonignorable model.

Third, we only consider the cubic smoothing splines, which is only one of the many smoothing
methods developed. Cubic smoothing splines might be applicable to cases where data are rather
‘smooth’, lacking many peaks or jumps. In our illustrative example, we use a log transformation to
smooth the income data before applying the functional modeling. When data exhibit many local features
like spikes or changing points which cannot be well accommodated by transformation, more general
wavelet-based approach can be used [22, 23] to estimate the functional mixed model. In addition, double
smoothing estimators of the local linear regression [34] exhibit certain advantages over cubic smoothing
splines when data are sparse. Therefore, it is of further interest to adapt these smoothing and functional
data analysis techniques to missing data imputation and investigate their properties. On the other hand,
functional data analysis methods are usually complicated, and it requires additional research to suit
them for practical use by developing user-friendly software routines. Our future research plan pertains
to extending ‘pan’ so that it can carry out imputation using functional mixed models as proposed in
this paper. Therefore, practitioners can implement it without writing their own code.

This paper is focused on developing an imputation approach to incomplete longitudinal data. For
general missing data problems, the other two common approaches are the likelihood-based methods and
inverse probability weight (IPW) methods. Raghunathan [35] provided an overview of three approaches
for general practitioners, while more technical aspects can be found in [36] and references thereof.
Here we briefly comment on their connections and differences in general as well as in relevance to our
context.

Let Yeom =(Yobs, Ymis) refer to the collection of observed data and missing data, and 6 refer to
the model parameters. Under MAR, the likelihood-based approaches obtain the maximum likelihood
estimates of 0 by integrating out the missing values (e.g. using EM algorithm) in the observed-
data likelihood L(0]Yops) f P (Yobs, Ymis|0)dYmis, where P(Yobs, Ymis|0) is the imposed complete-data
model. Based on the same complete-data model, multiple imputations of the missing values can be
drawn from their posterior predictive distributions P (Yp;s|Yobs) under some assumed prior distributions
for 6. If the estimand of interest Q from the multiple imputation analysis is a function of 6, then
multiple imputation provides approximate Bayesian inference for Q. Therefore, with a large sample and
a diffuse prior distribution, multiple imputation and likelihood-based methods produce similar answers
[37]. The advantage of multiple imputation over likelihood-based methods mainly lies on the flexibility
of the former. Unlike the likelihood-based methods, multiple imputation separates the inferences into
two phases: the imputation phase, in which the imputations are created, and the analysis phase, in which
the completed-data inferences are obtained and combined. Because the phases are distinct, imputation
and analysis maybe carried out on different occasions and by different persons. In addition, a variety
of analyses can be applied to imputed datasets, not limited to the original form of 0.

In our problem, we expect that the likelihood analysis results would be similar to those under the
multiple imputation. This is most obvious when the estimand of interest Q is the mixed-model slope
coefficient 0 in the simulation study. We note that AC is the maximum likelihood estimator. The
corresponding results are similar to those of multiple imputation when the complete-data model matches
with the data-generating model (i.e. LIN under linear curves and POLY under polynomial curves) and
under the proposed functional mixed model. For the other two estimands, the difference in the mean and
logit regression coefficient, the functional relationship between them and the mixed model coefficient
exists but is less obvious. Since they are difficult to directly infer using the likelihood-based methods,
multiple imputation analysis under an appropriate model appears to be a more desirable approach.
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The IPW approach is based on modeling the missingness mechanism to obtain the estimated prob-
ability of being observed or missing. For the observed cases, estimation equations are applied yet
weighted by the inverse of being respondent to obtain the consistent estimates. The idea originated from
[38] in sample surveys, and developed by Robins et al. (e.g. [39, 40]) for more general settings. [PW
may exhibit some robustness property, as it does not depend on the knowledge or assumption of the
distribution of the observed data like likelihood-based methods/multiple imputation do. But the generic
form of IPW may be inefficient since it only uses data from complete cases. In addition, problem
can arise due to the fact that the resulting estimates might be unstable because certain subsets of the
study sample might have small response probabilities so their inverse (weights) would be large [1]. To
overcome the inefficiency of [IPW, Robins and colleagues (e.g. [41]) proposed improved IPW estimates
which are theoretically more efficient under the MAR assumption. A further development, the so-called
doubly robust, or doubly protected estimators, are robust under certain conditions to misspecification
of the model for the probability of responses. As yet, the technical nature of these methods and the lack
of available generally applicable software have restricted their accessibility and uptake by the wider
research community.

The application of IPW in our test scenarios is complicated by the long data series and nonmonotone
missingness pattern. We believe it is beyond the scope of our paper. From our limited experiences, most
of IPW applications for longitudinal data have been limited to the case of monotone missingness with
a few time points. With monotone missingness, the response probability models can be decomposed
into a series of logistic regressions of modeling response at wave j on the observed data at wave j —1,
Jj—2,.... The response weight at wave j is therefore the product of the response weights estimated
from these logistic regressions. In a rather long series as in our example, we would expect that the
weights for observed cases at later waves could get rather large and thus lead to a significant loss of
efficiency and unstable results. With nonmonotone missingness, the model of probability of response
at wave j is more difficult to specify, as the probability of being respondent can be associated with the
observed data at both later time such as wave j+1 and earlier time. However, unlike the monotone
missingness, subject with an observed value at wave j may have a missing value at wave j—1 and
this further complicates the modeling. Another challenge lies in the variance estimation of IPW, which
usually requires computationally intensive resampling methods such as Jackknife and bootstrap. There
are a few literature comparing the IPW (and its double robust extensions) with multiple imputation
under cross-sectional data [42], survival data [43], and longitudinal dropout [5, 22]. The results show
that IPW tends to be less efficient and its validity relies on the correctness of the probability model for
missingness, while the double robust extension of IPW shows edges over multiple imputation if the
complete-data model is misspecified while the missingness probability model is correctly specified in
the former approach. Therefore, extending IPW and its double robust extensions to more complicated
longitudinal designs with missing data and comparing it with multiple imputation approach is of
important interest.
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