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ABSTRACT

The problem of assigning clerks to work stations arises in the context of
mail order sales operations, airline reservation facilities, utility service
offices and other similar operations. The use of large numbers of part-time
employees and long hours of operation can make the assignment problem difficult to
solve optimally using manual procedures. Minimization of work stations also
provides significant savings over a "one work station per person" policy under
these conditions.

This paper describes both a fast, near-optimal heuristic and an optimal
procedure to solve the assignment problem, and presents computational
results which indicate that practical problems can be solved optimally, even on
a personal computer. We also discuss how these techniques can be used to study

the effect of work group size on facilities requirements.



1. Introduction

Many service and direct marketing operations require staff answering calls
to be seated at work stations equipped with a telephone and possibly a video
display terminal for reference aﬁd/or for input. If the staff work full-time
shifts and the number of hours of operation is less than two full=time shifts,
each person must be assigned his or her own work station in order to avoid
conflicting assignments and "musical chairs" reassignments in the middle of a
shift. However, if a large percentage of the work force is employed part-time,
or if the hours of operation are long, several people may be assigned to a given
seating location without a schedule conflict. Economies may be obtained by
minimizing the number of positions required.

In situations where a large workforce can be divided into smaller work
groups, it is also useful to study the effects of work group size on the ratio
of positions to employees so as to optimize the trade-off between group size and
number of positions. In general, it would be expected that as work group size
increases, the ratio of positions to employees decreases, since the problem
becomes less constrained. However, there may be some practical limitations on
managerial span of control or on the number of people in the work area. Thus,
the critical trade-off here involves facilities cost versus human
considerations.

This work was motivated by a facility of a major communications firm where
both the facility planning and work station assignment problems needed to be
addressed.

The solution to the assignment problem can be used in conjunction with any
standard workforce scheduling system. It is assumed here that each person has
been assigned work tours for a given day or week (i.e., the workforce

scheduling problem has been solved). The problem now is to assign these people



to positions. In Section 2 we formulate the problem. Section 3 describes an
optimal solution procedure and a fast heuristic. An example problem is solved
in Section 4, computational results are presented in Section 5, and we conclude

with a summary in Section 6.

2. Problem Formulation

We make the following assumptions:

(1) The work week can be divided into distinct days in such a way that there is
no feasible work tour which spans parts of two consecutive days, and such
that clerks can work only one tour a day.

(2) The work day can be divided into an integral number of time increments of
equal length in such a way that all work tours begin and end at a multiple
of this time increment.

The first condition assures separability of the problem by work day. In so
doing, it limits the size of the problem to the number of

individuals working on a given day. This condition is usually satisfied in

existing operations. The second condition is not necessary for the solution of

the seating assignment problem but is assumed in most workforce scheduling
algorithms and is almost always satisfied in manual scheduling systems.

The objective of this problem is to assign people to positions in such a
way that the minimum number of positions is used.

Let

1 if person i occupies position p and works
= during time period t

0 otherwise

1 if person i is assigned to position p

Yipt = .
0 otherwise



The objective is to minimize the number of positions required or

min max I ; xipt
t p 1

Obtaining the value of the objective function is trivial: 1t is equal to
the maximum number of people working at any point in time. The important
decisions involve assignment of people to these positions.

There is one basic requirement: each position can be occupied by only one
person at a given time. This can be expressed as the constraint

I X

ipt $1 ¥t

One additional constraint is desirable. Each person must be able to remain
at the same position for his or her entire work tour on a given day. Changing
positions in the middle of a work tour is undesirable both administratively and

from the perspective of maintaining productivity. The constraint is expressed

as:
(ylp-l)ixlpt=o’*}l’p
and Xipt = tour length for person i, ¥ i

pr

Some values may be prespecified as follows:

If person i does not work in time period t, set
Xipt ~ 0, ¥ p,

If person i must be assigned to position Pi» set
Xipt = 0, ¥ t, p #p;

and X4 =1, t ¢ {work tour for person i}, p = Pi .

pt
This formulation yields a large nonlinear integer programming problem. In
this form the problem is computationally intractable for most real problems.

The nonlinear constraints and the binary nature of the decision variables

make this problem extremely difficult to solve using what would appear to be



applicable techniques. For instance, the problem is a constrained two=-
dimensional bin=packing problem. The height of the bin is the number of

periods in a day, and the width corresponds to the number of positions. The
"cartons" to be packed are one unit wide, and for each person, the height is the
number of periods in the work tour. One special constraint is that each carton
must be placed in the correct horizontal (time) location in the bin.

Unfortunately, the two-dimensional bin=-packing problem is np=-complete
(Fowler, et al., 1981). The problem, however, can be formulated as a graph
coloring problem and can be solved in this manner.

Let each person working on the day in question be represented as a node.
Connect nodes i and j if person i's work tour coincides at some point in time
with that of person j (i.e., persons i and j cannot be assigned to the same
position). The problem then is to color the nodes with the smallest number of
colors in such a way that adjacent (connected) nodes do not have the same color.

This is known as the minimum coloring or stable set coloring problem. All

persons associated with a node of a particular color can be assigned to the same
work station.
In its most general form, the minimum coloring problem is np=-complete.

However, the graphical representation of this problem is an interval graph.

DEFINITION: An undirected graph is called an interval graph if its vertices can

be put in one-to-one correspondence with a set of intervals 9 of a linearly
ordered set (e.g., the real line) such that two vertices are connected if and
only if their corresponding intervals have a non-empty intersection. (Golumbic,
1980).

In the graphical representation of the problem, each node corresponds to a
continuous interval of time on a real time axis. The nodes are connected if

the work tours overlap, i.e., if there is a non-empty intersection. Thus, this



problem can be represented using an interval graph.

DEFINITION: Triangulated (also called chordal) graphs have the property that

every circuit of length & > 3 has a chord.

We next establish that interval graphs are triangulated, that triangulated
graphs are perfect graphs, and that perfect graphs have a perfect vertex
elimination scheme. The perfect elimination scheme is needed to an efficient

graph coloring algorithm which is described later.

THEOREM 1: An interval graph satisfies the triangulated graph property.
PROOF: See Hajos (1958).
Let G denote a graph. Then we have the following definition:
DEFINITION: A graph is called perfect if it has the property
(Py) w(Gy) = w(G) for all A
where w (G) = clique number of G: the size of the
largest complete subgraph of G
x (G) = chromatic number of G: the fewest
number of colors needed to properly
color the vertices of G
and GA = subgraph induced by nodes in A
This definition is not comprehensive, but is adequate for the purposes of this

paper.

THEOREM 2: Triangulated graphs salisfy the perfect property.

PROOF: See Berge (1960).

This implies that it is necessary only to find w(G) to insure that the (minimum)
chromatic number is identified.

Denote the adjacency set of a vertex v as Adj(v).



DEFINITION: An ordering ¢ = [v1,v2,".,vn] of the vertices is a perfect vertex
elimination scheme if each set

Xp = {v; ¢ Adj(vi), § > i}

J
is complete (i.e., there exists an edge between every pair of nodes).

DEFINITION: A vertex x of G is called simplicial if Adj(x) induces a complete

subgraph of G.

THEOREM 3: Every triangulated graph has a perfect elimination scheme, and any
simplicial vertex can start a perfect scheme.

PROOF: See Golumbic (1980).

We have now established that the graphical representation of this problem has a

perfect vertex elimination scheme.

THEOREM 4: Let d be the maximum degree and n the number of vertices in G. Then
an upper bound on the computational complexity of a perfect elimination scheme
for a chordal graph G is
nd(n+1)(d=1)/4,
PROOF: See Gavril (1972).
Clearly d < n=1 so nd(n+1)(d=1)/4 < nu/u, so the computational complexity

in the worst case is O(nux

The construction of a perfect elimination scheme is
the most computationally burdensome portion of the procedure. However, the work
required at each step involves checking for adjacency of two nodes, which is a
very simple procedure given a node incidence matrix. We would expect that for n
< 100, microcomputer implementation in a few minutes is feasible. Most

problems fall into the range of n < 100 in one work group. However, telephone

operator facilities in major cities may have n > 200, so a fast heuristic may be



necessary for such problems.

3. Optimal Procedure and a Fast Heuristic

The first step in solving this problem involves transforming output from a
workforce scheduling algorithm into a graphical representation of the seating
assignment problem. This involves fairly complex data management but is
straightforward conceptually. We will not dwell on this process here.

Once a graphical representation has been constructed, the problem can be
solved by first constructing a perfect vertex elimination scheme. Select a node v
such that Adj(v) is completely connected and eliminate it from the graph.
Continue this process until only one node remains. The nodes are colored in the
reverse order of the perfect elimination scheme.

A minimum coloring can now be obtained by coloring the relabeled nodes
sequentially (node with smallest label first), using the first feasible color.
Colors are sequenced by the order in which each is first used. A new color is
used only when colors already utilized are infeasible. This minimum coloring
algorithm is due to Gavril (1972).

Each set of nodes with the same color represents the set of people assigned
to one specific position. The relabeled nodes must be translated into their
original designations in order to make appropriate assignments.

The fast heuristic is quite simple. Sequence the workers in order of work
tour start time, breaking ties arbitrarily. Starting with the workers with
earliest start times, assign each fo the lowest indexed position available.

This heuristic will be compared with the optimal procedure in Section 5. First,
we illustrate the optimal procedure and the effect of work group size on

facilities requirements by way of an example.



I, Example
Assume that on given work day, the following work tours have been assigned:
Person Work tour

(including lunch
and breaks)

A 0800~1200
B 0800-~1700
C 0900-1200
D 0900-1500
E 1000~1800
F 1200-1600
G 1300-1700
H 1500-1800

The graphical representation appears in Figure 1., Note that there is one
node representing each person. Nodes are connected whenever the corresponding
people cannot be assigned to the same work station because of overlapping work
tour assignments. Therefore, node A is connected to nodes B, C, D, and E, but
not to F, G, and H.

One possible perfect elimination scheme is {H,G,F,A,B,C,D,E}. Returning
nodes in reverse order, the nodes are relabeled, as illustrated in Figure 2.

The nodes can be colored as follows:

Step 1. Node 1 colored with color #1
Step 2. Node 2 celored with color #2
Step 3. Node 3 colored with color #3
Step U4. Node U4 colored with color #4
Step 5. Node 5 colored with color #5



Step 6. Node 6 can be colored with any color
except #1, #2, and #4. The first
feasible color is #3; hence node 6 is
colored with color #3.

Step 7. Node 7 can be colored with any color except
#1, #2, #3 and #4. Therefore, node 7 is
colored with color #5,

Step 8. Node 8 can be colored with any color except

#1, #3, #4 and #5. Therefore, node 8 is
colored with color #2.

Using this information, the following positions are assigned:

Position Node numbers People
1 1 E
2 2,8 D,H
3 3,6 C,F
4 4 B
5 5,7 A,G

Now suppose that we were to split the original 8 person group into two
groups of 4 = A, C, E and G, and B, D, F and H. The first group would require 3
positions (with G and A or G and C sharing one position), and the second group
would require 3 positions (with H and D sharing a position). Thus, the total
facilities required have increased, as we would expect. The individuals can be
assigned to groups in such a way that a maximum of 5 positions is required = but
generally only if the original seating assignment is solved first. Furthermore,
it is probably not desirable to change group assignments for administrative

reasons.



5. Computational Results

There are two objectives of our computational study. First, we wanted to
determine whether problems of reasonable size can be solved optimally on a
microcomputer even though the complexity of the perfect elimination scheme is

O(nu).

Second, we wanted to compare the heuristic and the optimal procedure
both in terms of solution quality and computation times.

We randomly generated 50 different work schedules each for 20, 50, and 80
person situations. We assumed that the facility operates 16 hours per day
(which is typical in real applications). For 25 of the work schedules, work
tour lengths were randomly selected from 4 to 9 hours (integer values only), and
for the others, the work tour lengths could vary from 3 to 6 hours (again,
integers only). The Etart of each work tour was randomly generated from among
feasible start times for that tour length. For instance, a work tour six hours
in length could start from opening of the facility until ten hours hence. The
programs were coded in FORTRAN77 and run on an IBM PC/XT.

Means and standard deviations of the solution times for each set of 25
problems are reported in Table 1. It is evident that solution times increase

rapidly with the number of persons, but it is still feasible to determine

optimal solutions for problems with 80 persons.
TABLE 1

The heuristic generated colorings which were alternate optima in 149 of the
150 cases. In the one non-optimal solution, only one additional position was
required for n=80. The mean and standard deviation of computation times are
reported in Table 2 for each set of 25 problems. The heuristic required only a
fraction of the time required for the optimal solution, and the times did not

increase rapidly as n increased. Thus, it appears that this simple procedure,

10



which can be implemented manually, can be expected to provide good (and
frequently optimal) results.

TABLE 2

6. Summary

This paper details the graph theoretic solution of, and a fast heuristic
for a typical seating assignment problem with many potential applications.
Computational experience indicates that problems with up to 80 people can be
solved optimally on a personal computer. The heuristic found alternate optima
in over 99% of the problems in considerably less computation time. We
have discussed briefly how the techniques may be used to aid in facilities design
and capacity planning. As more business is transacted by telephone, efficient
utilization of facilities to house and support these service operations will become

increasingly important.
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FIGURE 1

12



FFFFFFF



1=

20

50

80

TABLE 1

Computation Time Statistics for the Optimal Procedure
(in seconds)

Work Tour Length Range (hours)

3-6 i-9
X s X s
4,62 1.29 1.40 0.37
178.52 31.51 194.50 34.87
1184.59 228.75 352.14 54,72
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TABLE 2

Computation Time Statistics for the Heuristic Procedure
(in seconds)

Work Tour Length Range (hours)

3-6 4 -9

| >
1]
| >
|»

0.19 0.029 0.20 0.028
1.08 0.033 1.17 0.045
2.70 0.038 2.93 0.051
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Captions for Figures:
Figure 1: Graphical Representation of Workers and Seating Conflicts

Figure 2: Perfect Elimination Scheme
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