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fMRI BOLD Signal Changes in Elite Swimmers
While Viewing Videos of Personal Failure
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Abstract Athletes who fail are susceptible to negative affect
(NA) and impaired future performance. Functional magnetic
resonance imaging (fMRI) studies have identified prefrontal,
anterior cingulate, and limbic activations following negative
mood provocation. Little is known about the neural correlates
of negative self-reference (SR), especially in athletes. Even
less is known about the neural correlates of the effects of
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cognitive intervention (CI) in modifying negative SR and NA
in this population. In an fMRI study, 13 athletes watched a
video of their own career-threatening defeat in two controlled
blocks. Between fMRI blocks, they received a 20-min CI
designed to assist in event reappraisal and planning for future
performance. Relative increases post-CI were seen in pre-
motor (BA6) and sensorimotor (BA4/1) cortices. Correlated
with mood ratings, relatively higher pre-CI levels were seen
in the ventromedial prefrontal cortex, the right dorsomedial
prefrontal cortex (PFC; BA10), the right dorsolateral PFC
(BAA45), the anterior cingulate, and the right parahippocam-
pus. CI may counteract the detrimental effects of NA and
negative SR on premotor and motor activity.

Keywords Self-reference - Emotion -
Cognitive neuroscience - Cognitive intervention

Elite athletes commonly experience sadness and subjective
distress after failing in major competition. In turn, subjec-
tive distress may yield poorer sport performance (Beedie et
al. 2000; LeUnes and Burger 2000). Negative affect (NA) is
a term (without causal connotation) for transient subjective
distress and sadness.

Dramatic failures are common both in selection for and
in competing at major international events; in most cases
failure is nothing more than motor execution error: Skills
that have been previously over-learned are not executed
adequately to produce success. Amateur athletes compete
for selection to their national team roughly once a year. The
majority, although ranked in the top five in their country
and top 40 in the world, are never selected to an Olympic
team; not achieving selection regularly results in sadness.
Failure-based NA is recurrently experienced by more than
half of the world’s best athletes.
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Failure to achieve as a national team athlete may trigger
NA and a breakdown in emotional self-regulation. Indeed,
the leading cause of retirement from amateur sport is failure
to qualify for a team. Almost 25% of athletes report
depressive symptoms following failure-based retirement
(Baillie and Danish 1992).

Most national team athletes are younger than age 25.
Overall, sport-active young people may have an incidence of
sadness and depression that is no greater than that found in
the general population (Sanders et al. 2000). However, for
Olympic-level athletes there may be a different story. The
US Olympic Training Center indicated that possibly 85% of
elite athletes experience serious psychological problems,
including those related to NA (Carrm et al. 2005).

Although experience suggests that these negative states are
over-represented among elite athletes, their prevalence and
implications have not been documented. Happy athletes
generally do well, while unregulated NA—NA that is not
controlled by appropriate coping responses—has multiple
negative repercussions for performance (Fazackerley et al.
2004; Lane et al. 2001; Totterdell and Leach 2001). Several
important questions remain unanswered. Would NA after one
failed competition predict a similarly inadequate performance
in the next competitive event, especially when an athlete
retains negative personal memories? What would be the
neural and biomechanical mechanisms for repetitive failure?

Neuroimaging of limbic—cortical interactions in mood
regulation

A fuller understanding of neural systems underlying NA
would advance empirically-supported intervention. Recent
findings in functional brain imaging have enhanced our
knowledge of mood circuits that are invoked with the
expression and regulation of NA. Earlier studies that used
sadness induction and subject-specific autobiographical mem-
ory (Mayberg et al. 1999) had illustrated the reciprocal nature
of limbic—cortical interactions with NA in healthy subjects
and depressives. The central conclusion was that reciprocal
changes in subgenual anterior cingulate cortex (ACC) and
dorsolateral prefrontal cortex (PFC) play a major role in the
expression and regulation of sadness in health and disease.
Reviewing performance is a form of autobiographic
review. ACC activation has been seen during NA induction
when subjects view sadness in others (Gotlib et al. 2005).
Similar effects are predicted from reviewing personal events.
NA suppression, reappraisal, and regulation studies have
generally documented an interplay between limbic and
cortical systems (Beauregard et al. 2001; Ochsner et al.
2002; Phan et al. 2005). Emotion regulation studies typically
achieve mood change by showing emotionally arousing
pictures and videos, not by showing self-referent stimuli.

Based on several authors’ research (Eugene et al. 2003;
Northoff et al. 2006; Ochsner et al. 2002, 2004, 2005), one
would expect the regulation of self-relevant NA to be
associated with activations of the medial prefrontal cortex
(mPFC), ACC, and hippocampus. Evidence suggests differ-
ential responding of the amygdala (for regulation of emotion)
and frontal areas (for regulation of cognition) depending on
whether the subject is asked to increase a positive mood or a
negative one (Ochsner et al. 2005). Although internal
focusing strategies for regulating personally relevant NA
likely involve medial prefrontal regions, we still thought it
important to assure self-relevant mood induction.

Negative self-reference (SR) is central to NA (Davis and
Unruh 1981; Rector et al. 1998) and to Beck’s (1967)
cognitive model of depression. Neuroimaging findings
relate Negative SR to reciprocal limbic—cortical changes
(Fossati et al. 2003; Gillihan and Farah 2005). No studies
to-date have used video-based personal events to induce
NA in an emotion regulation study.

Aims of the study

Our first purpose was to use functional magnetic resonance
imaging (fMRI) to identify changes in regional cerebral
activity associated with NA induced by viewing a self-
referent video of personal competitive failure. The next was
to investigate the neural correlates of a brief cognitive
intervention (CI) designed to cognitively reframe the event
and resulting emotional response. Although this study
intentionally did not explore the efficacy of a cognitive
treatment due to sample size constraints, we nonetheless
showed videos of a failed swim before and immediately
after a single, 20-min CI. The central hypotheses were that
negative SR would be associated with altered regional
cerebral blood flow (rCBF) in the premotor, sensorimotor
cortices as well as in the ventromedial and dorsomedial
prefrontal cortices. Secondarily, we intended to use the CI
to elucidate the importance of addressing cognitive per-
spective prior to video self-reference.

Materials and methods
Subjects

Fourteen elite athletes (ten males, ranging in age from 18 to
31, M 23.8+3.5 years) took part in the study on the basis of
having made major competitive errors that had resulted in
career-threatening failure. Eleven participants failed the
Olympic trials, missing qualification for the Olympic Games,
and three athletes failed at the Olympic Games. One subject
was eliminated because of technical problems during fMRI
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acquisition. For each athlete the fMRI session occurred at
roughly 8 months following failure at Olympic trials.

None of these athletes had a history of having used
medication for a mood disorder. The Beck Depression
Inventory mean at the time of fMRI was 9.7+£7.2. As
national team athletes, each had undergone regular testing
for drug abuse under World Anti-Doping Protocols and
none had ever tested positive for using banned substances.
As well, no athlete had a history of a substance abuse
disorder and none had been intoxicated with alcohol within
at least the 2 weeks prior to fMRI. Written, informed
consent was obtained from all participants according to
ethics guidelines of the University of British Columbia.

Tasks

Each fMRI session consisted of a continuous, fixed order,
16-min acquisition in which neutral video viewing (4-min)
always preceded failure video viewing (2 blocks of 4-min
each). One-minute rest blocks preceded both video viewing
conditions, and a 2-min rest block ended each session.
Subjects rated on line their subjective level of NA throughout
the fMRI sessions using a visual analogue scale (0-7), present
on the screen at all times, according to the instruction to “Use
the response pad to indicate your current level of sadness.”
Using a fiber optic response device, they pressed one button to
increase their rating of subjective distress (left index finger),
and the second to decrease it (right index finger).

The neutral video condition displayed other athletes racing
and was shown to enable a within-subject contrast against
which to understand the failure video activations. Instructions
were to watch the video and continuously monitor mood. The
failure video condition showed a recent personal, failed
performance. No athlete had viewed the 4-min video prior to
fMRL

Instructions varied with the fMRI session. At pre-CI (fail
video1), both orally and on the viewing screen during fMRI
the athletes were asked to re-experience the way they felt
immediately during and after the failed performance. After
the first fMRI session, athletes went to a nearby room for
the three-part CI to: (1) Express feelings generated from
watching the failed race; (2) Express self-referent cogni-
tions related to the actual motor performance, which tended
to be both attitudinal and behavioral (e.g., “I am slow”, “I
need to work on my stroke length”); (3) Consider and
imagine performance changes for the next race. It should be
remembered that the CI was not cognitive therapy,
however, and that the CI was used as a between-session
focusing exercise akin to a visual motor behavioral
rehearsal (cf. Suinn 1985). At post-CI (fail video 2) subjects
again rated affect by re-experiencing the way they felt
during and after the performance according to the same
instruction as that which had preceded video 1.

@ Springer

Image acquisition

Echo-planar images were collected on a Philips Gyroscan
Intera 3.0-T scanner, equipped with a SENSE coil.
Conventional spin-echo T;-weighted sagittal localizers
were used to view head position and to graphically
prescribe the functional image volumes. Functional image
volumes sensitive to the blood oxygen-level dependent
(BOLD) contrast signal were collected with a gradient echo
sequence (TR/TE 2000/30 ms, 90° flip angle, field of view
210%x143x240 mm (anteroposterior, feet-head, right—left),
3.00 mm slice thickness, slice gap 1 mm, 36 axial slices.

Image processing

Statistical Parametric Mapping software (Wellcome Insti-
tute of Cognitive Neurology, http://www.fil.ion.ucl.ac.uk/
spm/) was used for image reorientation, realignment,
normalization into Montreal Neurological Institute space,
and smoothing with a Gaussian kernel (8 mm full width at
half maximum) to compensate for inter-subject anatomical
differences and optimize the signal to noise ratio. The
BOLD response was modeled using finite impulse response
(FIR) functions estimated for each of eight continuous 30-s
epochs within each 4-min block. These epoch blocks
permitted the evaluation of the a priori hypothesis that the
BOLD response would correspond to mood ratings which
had also been aggregated to 30-s epochs.

Given the limited number of elite athletes, no group
contrast to compare treated and untreated subjects was
possible. While the main focus was on the comparison
between viewing fail videol and fail video2 (isolating the
regional effects linked to the variation of negative mood in
response to the failed swim), the neutral video condition
was added as control for test—retest repetition effects.

Voxel-by-voxel analysis The results of the FIR estimates were
employed to test the contrast of fail video1 vs. fail video2. The
significance of the contrast was tested using a random effects
model in which a single image of the contrast of interest is
brought forward for each subject. The random effects analysis
height threshold was first set at a more conservative, whole-
brain correction level (1=3.56, p<0.005). A second, more
liberal significance threshold was used to test regional effects
expected on an a priori basis for areas previously implicated
in negative mood and SR (r=1.78, p<0.05, uncorrected for
multiple comparisons).

ROI post-hoc analyses Binary masks were computed to
show significantly increased or decreased activity during
fail videol and fail video2. First, an individual subject’s
mean beta value was extracted for each 4-min condition
(neutral video pre-ClI, fail videol, neutral video post-ClI, fail
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video2). Mean beta values for each region of interest (ROI)
were entered in two-way repeated measures analyses of
variance (ANOVAs) with session (pre- and post-CI) and
condition (neutral video vs. fail video). For each of the
above defined regional clusters, we assessed the relation-
ship between the brain activity pre-CI and post-CI and the
subjective intensity of the induced mood in these periods.
Beta values were determined for each subject at each 30-s
epoch, and this value was correlated with the duration-
weighted mean subjective mood rating for that epoch
(allowed by the FIR analysis) using simple correlations.

Results
Mood measures

Mean subjective ratings were averaged across each condi-
tion, and a two-way repeated measures ANOVA was
conducted. There were main effects of session (pre-CI vs.
post-CI), F(1, 24)=29.4, p<0.0001), and video (neutral vs.
fail), F(1, 24)=33.3, p<0.0001. These were qualified by the
significant interaction of session x video, F(1, 24)=18.4,
p=0.002. Mean sadness ratings were 3.8+0.04 for the fail
videol and 1.1+0.2 for the neutral video pre-CI; 1.7+0.3
for the fail video2, and 1.0+0.2 for the neutral video post-
CI. Post-hoc comparisons revealed that athletes’ ratings
were higher for fail videol than for the neutral pre-CI
video, F(1, 12)=33.7, p<0.0001 and for fail video2 than
neutral post-CI video, F(1, 12)=7.6, p=0.02. However,
critically, the fail videol mood ratings were higher than the
fail video2 ratings, F(1, 12)=36.1, p<0.0001, confirming
that reviewing the fail swims provoked substantially more
NA prior to CI than after applying the CI instructions. See
Fig. 1 for a plot of the mean mood ratings as a function of
condition and fMRI scan time. Importantly, as a control for
stimulus habituation each ROI contrast compared the
response to viewing personal failure with the response to
viewing a neutral stimulus. ROI contrasts comparing
neutral stimulus BOLD activity pre-CI to post-CI showed
no significant changes as outlined below. The literature
consistently shows reliability estimates of using visual
analog scale (VAS) to estimate NA in the range of 0.9
and reports strong validity when VAS ratings are correlated
to standard profiles of mood (Lingjaerde and Foreland
1998; Steiner and Streiner 2005).

Voxel-by-voxel analysis
Fail video2 > fail videol Significantly greater BOLD

activity post-CI relative to pre-CI (height threshold /=3.56,
p<0.005, corrected, cluster threshold size=300) included
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Fig. 1 Mean sadness ratings as a function of time in the MRI scanner
in the pre and post-CI sessions. Note increase in the ratings during the
fail videos

two clusters in right premotor cortex BA6 and left
sensorimotor cortex, BA4/1 (see Table 1, top).

Fail Videol > Fail Video?2 Significantly greater BOLD
activity before than after CI (height threshold /=1.78, p<
0.05, uncorrected, cluster threshold size=400) included
three clusters in right parahippocampal gyrus (Brodmann
areas (BA 28/36), ventral medial PFC and adjacent rostral
anterior cingulate cortex (BA10/32) and dorsomedial and
dorsolateral PFC (BAs 10, 32 and 45; see Table 1, bottom,
and Fig. 2).

ROI analysis

Right premotor cortex BA6 Activity during the fail video2
was greater than during fail videol (p<0.001). Pre-CI,
activity in this region was significantly less during fail
videol than neutral video (»<0.003). In contrast, post-CI,
activity was not dissimilar for fail video2 and neutral video,
and neither differed from the pre-CI neutral video (see
Figs. 2 and 3 ).

Left sensorimotor cortex BA4 and 1 Similarly, fail video2
yielded greater activity than fail videol (»p<0.001), and this
was mostly explained by less activity during the fail videol
relative to the neutral video (p<0.07), while post-CI
activity was similar for fail video2 and neutral video, and
at the same levels as the neutral viewing pre-CI.
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Table 1 Clusters of significant BOLD signal change between fail videol and fail video2

Region Brodmann area Cluster size Peak ¢ value Coordinates
Fail video2 > fail videol®
R Pm 6 369 5.54 26, 1, 42
4.82 20, -1, 47
5.14 15, 6, 46
L M1/S1 4 and 1 308 5.32 -29,-17, 43
431 —24, -15, 55
3.98 —34, 21, 53
Fail videol > fail video2"
R GH 28 and 36 448 3.69 17, -19, —21
3.33 27,23, 21
3.30 22, -29, —28
vMF 10 631 3.42 -8,53,3
GC 32 2.79 17, 55,6
2.76 -1, 49, 8
R dorsomedial PFC 32 and 10 885 3.35 17, 28, 29
R dorsolateral PFC 45 3.23 48, 26, 10
2.94 24, 51,22

R Right, L left, Pm premotor, M primary motor, S/ primary sensory, GH parahippocampal gyrus, vMF ventromedial PFC, GC cingulate gyrus,

PFC prefrontal cortex.

*For fail video2>fail videol, height threshold is /=3.56, p<0.005, corrected, cluster threshold=300

® For Fail Videol>Fail Video2, height threshold is t=1.78, p<0.05, uncorrected, cluster threshold=400

Fig. 2 Top: significant clusters
where BOLD signal is greater
for fail video2 than fail videol
(t>3.56, p<0.005, uncorrected).
R Pm6 = right premotor cortex
BA6; L M1/S1 = left primary
motor/sensory cortex BA4&1.
Bottom: significant clusters
where BOLD signal is greater in
the fail videol than the fail
video2 (#>1.78, p<0.05, uncor-
rected). On the /left, activation in
ventromedial PFC BA10
(vMF10) and cingulate gyrus
BA32 (GC32). On the right,
activation in right parahippo-
campal gyrus BA36 (GH36) and
dorsomedial PFC BA10
(dMF10)
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Fig. 3 Mean percent signal T RPm6

L M1/s1

change in R premotor BA6 0.05
(Pm6, left) and in L M1/

S1 (right) while watching fail
and neutral videos pre and
post-CI. Note selectively de-
creased activity during fail
video pre-CI

0.04 4— —|

0.03 +— —

0.02+— —

0.01{— —

% BOLD Signal Change

Q01— — —

-0.02

% BOLD Signal Change

Pre-CBT

Ventromedial PFC BAI10 and 32 Greater activity was
present for fail videol than fail video2 (p<0.016). This
effect was contributed by a relative increase over neutral
video pre-CI, and a reverse-sign, relative decrease in
activity post-CI. However, neither of these changes over
the neutral conditions reached significance (see Fig. 4).

Right dorsomedial (BA10) and right dorsolateral PFC
(BA45) Similarly, greater activity was evident pre-CI than
post-CI (p<0.008), and this was explained by a relative
increase over neutral viewing pre-CI (not significant), and a
reverse-sign, relative decrease in activity post-CI (p=0.10).

Right parahippocampal gyrus Fail video viewing elicited
significantly more BOLD activity pre-CI than post-CI (p<
0.001). This difference was explained by a different pattern
than for the other ROIs. BOLD activity in right para-
hippocampal gyrus (GH) was greater when the Fail videos
were shown relative to the neutral videos both pre-CI (p<
0.001) and post-CI (p<0.0005; see Fig. 3).

Correlations
BOLD signal in the right premotor cortex BA6 was negatively
correlated to sadness intensity (p<0.01), with greater reported

NA associated to lower premotor activity. Non-significant

Fig. 4 Mean percent signal

Post-CBT

'|'vMF10/Gc32

Neutral [J

Fail . Post-CBT

Pre-CBT

positive correlations were found with BOLD activity in the
right parahippocampal region (p<0.10) and ventromedial
PFC (p<0.25).

Simple correlations of BOLD activity between ventro-
medial PFC and the other frontal regions (R Pm6, L M1/S1
and R PFC) were positive with the exception of failure
viewing (pre-CI) which was negative for R Pm6 and,
particularly, L M1/S1 (see Fig. 5).

Discussion

During fMRI, athletes first engaged in negative SR by
watching their failed races. This resulted in NA, as
predicted by Beck’s (1967) cognitive model of depression.
After a brief CI, they then viewed the failed performance
again, and this gave rise to considerably less NA. Self-
referential reviewing of failure activated ventromedial PFC,
including rostral ACC, dorsomedial and dorsolateral PFC,
and the right parahippocampus, while a marked reduction
of activity was observed in motor—premotor areas.

Limbic effects
The changes in ventromedial prefrontal cortex and para-
hippocampus in the present study replicate previous

findings in mood provocation and SR studies, consistent

R GH 36/28

change in VMF10/GC32 (left) 0.08
and in GH36/28 (right) while
watching fail and neutral videos

pre and post-CI

0.067
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0.021

o
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Correlations with vMF10/GC32

R Pmé LM1/81 B*PFC

. Neutral
M Fail

*
Pre-CBT

-0.8 1 Pre-CBT Post-CBT Pre-CBT

Fig. 5 Correlation of BOLD signal change between MF10/GC32 and
RPm6 (left), LM1/S1 (center) and R PFC (right) for each session (pre-
CI, post-CI) and Video (neutral, fail). Note negative sign correlations
in the fail 1 video only for RPm6 and LM1/S1

Post-CBT Post-CBT

with role of these regions in the expression and regulation
of negative emotion (George et al. 1995; Gotlib et al. 2005;
Lane et al. 1997; Mayberg et al. 1999; Phan et al. 2005). A
number of previous studies have employed sad stimuli and
asked subjects to make self-referential emotion-judgments.
The majority of such studies have not employed personally
salient or autobiographical stimuli. For example, Keedwell
et al. (2005) provoked SR to enhance the recall of sad
events in clinical depressives by first showing a photo of
sad third-persons. This resulted in activation of the
prefrontal cortex (BA9) and posterior cingulate cortex
(BA31). Gusnard and colleagues (2001) asked healthy
subjects to make self-referential emotion-judgments while
reviewing sad and happy photos; they reported increased
activity in medial prefrontal cortex (BA 8 and 10). An
exception are studies employing autobiographical sad
memories to provoke SR and elicit sadness (Bechara et al.
2000; Liotti et al. 2000, 2002). Consistent with such
studies, our subjects reviewed their own NA-evoking
failures before planning and imagining corrections. Our
results suggest that when negative schemas are invoked by
focusing on personal failure, medial prefrontal cortex is
activated, while motor—premotor regions are concomitantly
suppressed, as testified by the significant negative correla-
tions in Fig. 5 (pre-CI). Conversely, focusing on behavioral
possibility rather than on failure (post-CI), resulted in
relatively less activation of the mPFC, and allowed restored
activation of premotor—-motor regions. This is to our
knowledge the first study reporting reciprocal sign effects
in motor—premotor cortex during viewing of own-action
associated to SR and NA.

Activation in the right parahippocampal gyrus in the
present study is consistent with a possible role in generating
defensive responses to aversive stimuli, suggested by fMRI
studies employing faces, music, and films (Lane et al. 1997),
of aversive nature, as well as lesion correlation data showing
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that right GH lesions impair the ability to recognize
dissonant music as unpleasant (Gosselin et al. 20006).

Motor—premotor effects

Previous studies reported similar reciprocal sign changes
(less activity) associated to negative mood, but such
rCBF reductions were in right dorsolateral PFC (BA9/46)
rather than in motor—premotor cortex (Mayberg et al.
1999). A fMRI study reported similarly reduced blood
flow in left dorsolateral PFC relative to healthy subjects in
remitted depressives listening to criticism from their own
mothers (Hooley et al. 2005). Dorsolateral PFC subserves
attention and working memory functions, and its hypo-
activation may relate to the cognitive deficits observed in
depressed individuals (Liotti and Mayberg 2001). To our
knowledge, the present study is the first following
Vogeley et al. (2001) to have demonstrated similar
reciprocal changes in motor—premotor regions during
mood induction and negative SR. Such reductions where
inversely correlated with the activation of ventromedial
PFC and the subjective ratings of NA, emphasizing the
link between NA and premotor function. Reduced activity
in premotor—motor areas may represent a substrate for the
motor retardation/slowness observed in depressed patients
(e.g., Sabbe et al. 1999). In the context of the present
study, motor—premotor areas appear to be logically
responsible for motor programming and action planning,
necessary pre-requisites of competitive readiness. It is
important to note that failed action observation and
perhaps motor imagery may be necessary to bring about
such reciprocal sign effects of SR and NA, which may
explain why they were not reported previously.

Earlier self-reference studies have not reported effects in
the motor system. Voluntary suppression of negative affect
has been found to reduce posterior cingulate activity, but no
changes in motor—premotor cortex were reported (Phan
et al. 2005). Similarly, Beauregard et al. (2001) employed
suppression methods but did not focus on behavior and did
not show motor cortex findings. Ochsner et al. (2002,
2004), required a review of a sad third-person and
demonstrated mPFC activity in the absence of significant
motor—premotor activations. Comparing the present results
to those of Ochsner, it appears that first-person as opposed
to third-person self-reference leading to NA is essential to
bring about the premotor effects. In addition, action
processing is key to the design because, although informa-
tion processing of personal adjectives requires explicit SR,
adjective processing itself may have little to do with motor
activity.

In summary, it is likely that only action-based, personal
self-referential material brings about effects on the motor
system. Consistent with this suggestion, Amodio and Frith
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(2006) propose that self-monitoring that requires action
monitoring uniquely invokes processing in an area that is
contiguous to our BAG6.

Outside the area of self-reference, activation of motor—
premotor areas has been reported during action preparation
and imagery (Marshall et al. 1997; Rodriguez et al. 2004;
Wraga et al. 2005), and during action observation. For
example, studies in dance indicate that watching another
dancer while referencing the observed performance against
one’s own repertoire can activate parietal, premotor, and
motor cortices (Cross et al. 2006). However, human
movement studies that are not self-referent do not appear
to show the PFC—premotor correlated activations (Castelli
et al. 2000; Nyberg et al. 2006). Gusnard et al. (2001)
reported a tandem increase in medial PFC and premotor
BAG6 activity during observation of action-oriented emo-
tional pictures (skydivers, burn victims, guns pointed at the
subject) likely contributing to premotor activation. Interest-
ingly, no significant parahippocampal activations were
found in that study, perhaps suggesting that stimuli overall
did not produce a significant aversive response. By looking
at the medial PFC—premotor correlations in the present
study, it is clear that concordant, positive sign changes in
the two regions are observed when self-referent emotional
material is not accompanied by NA—as in Gusnard et al.
(2001) and Amodio and Frith’s (2006) study—while
reciprocal sign changes are only observed when self-
referent material produces significant negative affect (pre-
CI). We propose here that medial PFC—premotor functional
connectivity may prompt motor responses to self-relevant
stimuli, perhaps part of an adaptive response of survival
value—to prepare the organism to fight or flight. However,
in the presence of a build-up of significant sadness or NA,
such functional connectivity would revert, with reciprocal
sign changes in mPFC and premotor areas. We speculate
that such behavioral pattern in response to perceived failure
may correspond to what is observed during learned
helplessness when the animal stops trying to escape and
simply lies still (Panksepp 1998).

Another area of research that may be relevant to our
findings is the one associating medial PFC to error
processing, including error monitoring and detection, error
compensation, and response to negative feedback (e.g.,
Nieuwenhuis et al. 2005; Yeung et al. 2004). Late,
conscious error compensation includes post-error slowing
in an attempt to improve future performance. However,
these studies report event-related activity elicited by button
press errors during choice reaction time tasks, rather than
activity evoked by action observation of themselves making
errors. While it is possible that the same system is engaged
during self-error observation, there is no available evidence
to-date to support such a claim.

Effects of CI

Unlike previous research of cognitive appraisal or voluntary
suppression of emotion, in the present study we did not
attempt deliberate affect inhibition or cognitive distraction
(Ochsner et al. 2002, 2004). Subjects were instructed to
notice and allow affect while simultaneously considering
and imagining how to modify their technique, power
generation and strategy in order to create a more successful
future motor performance, if they would be able to redo the
race. Therefore our SR provocation was distinctive because
it involved referencing both performance and affect. Our
athlete subjects had arguably over-learned their motor skills
and were among the best in the world in executing these
skills at competition. Nevertheless, because of the extreme
level of competition in elite swimming, they happen to fail.
No personality testing was conducted to shed light on
whether some subjects were more affectively activated by
self-reference. This possibility will be explored in future
work with larger samples. Each athlete had prior experience
with managing performance-generated NA, but some may
still have perceived that their personal failure was of greater
significance than that of others. This potentiality under-
scores the importance of our having contrasted the athletes
individual SR responses to their own neutral stimulus
responses.

Conclusion

In summation, we showed expected increases in ventral
mPFC and parahippocampal activity as mood worsened
with SR mood induction; these changes were opposite to
reciprocal sign premotor—motor changes. A brief CI
strategy which allowed for the consideration of new,
corrective motor behavior showed potential for reversing
both the neural correlates of NA and debilitating effects
of NA on sport performance. Future work will incorpo-
rate experimental controls by contrasting neural activity
in two groups—failed and not-failed non-elite athletes—
undergoing the same SR task. The use of non-elite
athletes will permit larger samples and obviate a within-
subject design.

This suggests that suppression of activity in motor
regions during SR may be an important marker of failed
sport performance. We hypothesize that athletes at risk for
repeated failures will show the greatest decrements in
premotor activity, while more resilient athletes may exhibit
activation of premotor cortex as a result of self-action
observation. The at risk athletes should be the ones to
derive the greatest benefits from a CI based on reviewing of
the failing performance.
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