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ABSTRACT

We present an algorithm which determines optimal parameter values for order
guantity-reorder point systems with complete backordering. The service level is
measured as fraction of demand satisfied directly from shelf, also known as
"fill-rate." This algorithm differs from existing algorithms because an exact
cost function is used rather than an approximation. We also present a new
heuristic algorithm which is more efficient computationally than the optimal
procedure and provides excellent results. Results of extensive computational

experience also are reported.



New Algorithms for (Q, r) Systems
with Complete Backordering Using a

Fill-Rate Criterion

1.0 INTRODUCTION

Continuous review order quantity-reorder point inventory models, typically
called (Q, r) models, have been studied extensively. These models differ in the
assumptions about backordering, and in the service level criterion used. In
many cases, closed form solutions cannot be obtained or iterative algorithms
must be used to converge on optimal solutions. This difficulty of
implementation for the practitioner has led to proposals for and evaluation of
simple heuristic or approximate solutions.

Although the cost of reviewing inventory continuously may be expensive,
there are many situations in which (1) computer systems already exist to provide
continuous or nearly continuous review of inventory levels; (2) the order
quantity itself is important because of quantity discounts, package sizes,
minimum order quantities, or administrative considerations; or (3) leadtimes are
long and/or highly uncertain, making even approximate solutions for periodic
review policies difficult to compute using dynamic programming techniques. We
note that it is possible to model a periodic review system as a continuous
review system in which the random leadtime includes the period between the time
the order point is reached and the time an order is placed.

Continuous review systems have the desirable characteristics of being
fairly robust to errors in cost estimation and relatively easily incorporating
variable leadtimes. Generally operating parameters for continuous review
systems are much easier to compute than for periodic review systems, even if an

iterative routine must be used. Therefore, continuous review systems will



continue to be used and may become more prevalent as the cost of review
decreases with advancing technology.

Hadley and Whitin [3] analyze the case of complete backordering with a
penalty for each unit backlogged. They use an estimate of on-hand inventory
which does not incorporate the effect of backorders which must be filled by
incoming orders. Their formulation also uses a very simple approximation for
average on-hand inventory during the leadtime. Hadley and Whitin suggest an
iterative algorithm which derives from two non-linear equations in two unknowns.

Holt, Modigliani, Muth and Simon [4] study two situations with complete
backlogging. The first is the same as the Hadley-Whitin problem. For this
problem they use an estimate of on-hand inventory which distinguishes between
cycles in which stockouts do occur and those in which they do not occur. The
second formulation charges a shortage cost per unit per unit time using the same
approach to estimate inventory levels. For both problems, they derive the
optimal reorder point as a function of the order quantity.

Parker [6] studies single and multi-item continuous review systems in which
(1) a penalty per unit short is assessed and (2) a constraint is placed on
fraction of demand backordered. Using an approximate cost function, he derives
formulas for the order quantity and reorder point(s) for the two ohjectives.

Presutti and Trepp [7] develop explicit formulas for order quantities and
reorder points using models with two different aggregate multi-item service
constraints: (1) total number of units backordered per year, and (2) average
number of units in a backorder position. The importance of each item is
reflected as a weight in the aggregate constraints. Formulas are developed for
models in which holding costs are assessed on either on hand inventory or the
inventory position.

Schrady and Choe [9] develop techniques for multi-item inventory systems in

which the objective is to minimize time-weighted shortages. The problem is



constrained by limits on the total average inventory investment and number of
orders placed per unit time.

Gross and Ince [2] evaluate the algorithms proposed by Hadley and Whitin,
and by Wagner et al. [12], along with a single-pass (non-iterative) algorithm
which uses the standard Wilson lot-size formula. They assume a Poisson demand
process which, because of its memory-less property, satisfies the assumption of
(Q, ) models that demand over the leadtime is independent of when the reorder
point is reached. Their results show that the "single-pass" approach performs
poorly. The Hadley-Whitin and Wagner, et al. approaches perform well, generally
within 5% of optimal. The Hadley-Whitin algorithm performed slightly better
than the Wagner algorithm in many cases, because of compensating errors in
estimating on-hand inventory.

Silver and Wilson [10] develop approaches for determining the percentage
cost penalty of using a "single-pass" solution rather than iterative or
simultaneous solutions. This is done for four service criteria: (1) fixed cost
per stockout occasion, (2) fixed cost per unit short, (3) probability of
stockout per replenishment cycle, and (4) fraction of demand satisfied directly
from shelf.

Nahmias [5] demonstrates the equivalence of three approximate (Q, )
models. One model assesses a penalty per unit short, the second model imposes a
constraint on the fill-rate, and the third model specifies a constraint on the
probability of stockout during the leadtime. He also provides streamlined
versions of related algorithms proposed by Brown [1], Hadley and Whitin [3], and
Wagner [11].

Section 2 describes the formulation of the exact cost model under the
assumptions of complete backordering and a service level criterion of fraction

of demand satisfied directly from shelf, or "fill-rate." Section 3 details the



development of a new heuristic algorithm.  Section 4 compares the new heuristic
algorithm with the Silver-Wilson heuristic from an analytical viewpoint.
Section 5 presents computational experience with both algorithms, and Section 6

concludes with a summary and discussion.

2.0 DEVELOPMENT OF THE EXACT COST MODEL AND ALGORITHM

The problem objective involves minimizing the average annual sum of setup
and inventory holding costs subject to a constraint on the level of service.
Service is measured here as the fraction of demand satisfied directly from
shelf, also known as "fill-rate." We assume that the leadtime is known and
constant. We also assume that demand is stationary and that demand during the

leadtime can be described by some probability distribution.

Let Q = order quantity (a decision variable)
T = reorder point (a decision variable)
D = annual demand in units
S = setup costs
1t = leadtime in years

f (.) = density of demand during the leadtime
F (.) = cumulative distribution of leadtime demand
b (r) = expected number of backorders per replenishment
cycle, given reorder point r
0 = standard deviation of demand during the leadtime
1- o= service level required
The optimization problem using an exact cost representation (see [3] for
exact representations of average inventory and expected backorders) can be

stated as follows:



Minimize SD/Q + h{Q/2 + r-u + [B(r)-B (r+Q)1/Q}

T+Q
s.t. / [1-F (0] de/Q < o

T

where  B(v) =f°°(t-v) [1-F(8)] dt

v

The cost function is obtained using steady-state analysis of continuous time
Markov chains, as done by Hadley and Whitin ([3], pp. 181-188). Minimization of
costs will drive the constraint to an equality. Simplifying the objective

function and restating the problem using a Lagrangian yields:

T+Q
Minimize L = SD/Q + h {Q+r -J/~ (x=-T)F(x)dx/Q
T
o T+Q
+/ [1-F(x)ldx} + 2 E/ [1-F(x)]dx/Q - o] (1)
T+Q T

The first order necessary conditions are:

T+Q T+Q _
oL/3Q = {-SD + r/ (x-T)F(x)dx + A [/ F(x)dx - QF(r+Q)1}/Q2=0 (2)
T Tr

T+Q )

oL/3T = {h./ﬂ F(x)dx - A [F(r+Q) - F(r)]}/Q = 0 (3)
T

r+Q
aL/ax =_[r [1-F(x)1dx /Q = o
It can be shown that the original problem involves minimization of a convex
function on a convex set. Convexity of B(Q,r) = [B(r) - B(r + Q)1/Q has been
established by Zipkin [13], over the range in which safety stock is positive and
convexity of the remainder of the objective function is well-known. Convexity of
the feasible set can be demonstrated graphically, as shown in Figure 1 for x ~

N(u,oz). Under these conditions, first order conditions are sufficient for

optimality.



FIGURE 1

We observe that solving for A in equation (3) and substituting for

T+Q
F (x) by rearranging equation (4) permits us to eliminate A and to simplify

J

T
equation (1) to
T+Q
f (x-T)F(x)dx =
T
SO/h + @2 (1-a) [F(r+Q) + a-11/[F(1+Q)-F(r)] (5)
Given any value of r, we can find Q using a one-dimensional search. Similarly,
given any value of Q, we can find r satisfying the constraint using equation
(4) or its simplified equivalent:
T+Q
~/ﬁ F(x)dx = (1-0) Q (6)
T
The generalized reduced gradient technique is ideally suited to solve this
problem. Starting with any feasible value of r, one first solves for a new Q
using equation (5), then a new value of r using equation (6). Iteration
continues until the two equations are satisfied simultaneously. Solving
equation (5) is equivalent to a steepest descent step while equation (6) insures

that the constraint is satisfied.
2.1 GLOBAL CONVERGENCE OF THE ALGORITHM

If the algorithm described above converges, it converges to the global
minimum since the first order conditions are sufficient. We next demonstrate
that the algorithm indeed converges.

Let
g(Q,r) = {(Q,r) satisfying (5)}

and



h(Q,r) = {(Q,r) satisfying (6)}.
It can be shown (see Appendix) that
3Q/3r (g(Q,1)) <« | 3Q/3r(h(Q,r)) | (7)
Therefore, a situation depicted in Figure 2 in which a "hog cycle" (divergent
sequence of points) would occur is guaranteed not to arise. Further, since (7)

holds as a strict inequality, convergence is guaranteed, as depicted in Figure 3.

FIGURES 2 AND 3

3.0 A NEW HEURISTIC ALGORITHM

Much of the computational effort required for the exact procedure described
in Section 2 involves computing numerically integrals for which tabled values
are not available, even for standardized distributions. Using an approximate
but simpler representation of average inventory significantly reduces the

computational effort. We therefore chose to approximate average cycle stock as

(Q-b(r))?/29
This approximation is based on the assumptions that demand occurs at a constant
rate and that b(r) backorders are outstanding, on average, prior to the arrival
of an order.

An approximate cost model can be formulated as follows:

T
Minimize  SD/Q + h[(Q-b(r))2/2Q t/~ (r-x)f(x)dx] (8)

subject to b(r)/Q 2 o (9)

where b(r) ijﬁ (x-r) f(x) dx
T

Minimization of costs will drive the constraint to an equality. Therefore,

without loss of generality, (2) can be replaced by



f (x-r) f(x)dx - Qa = 0 (9")
r
Note that cycle stock has been represented by
(@ - B(r))2/2q

The average inventory level is -b(r) immediately before an order arrives.
Therefore, stock available upon arrival of an order is Q -b(r) on average. On
average, stock is available approximately a fraction of the cycle equal to
(Q-b(r))/Q.

Average safety stock is expressed as

T
f (r-x) f(x) dx

-00

which is a commonly used representation of safety stock that is somewhat more
accurate than r-p.

The problem can be restated as a non-linear optimization problem using a
Lagrangian as follows:

rT
L = SD/Q + h[(Q-b(r))2/2Q +f (r-x)f(x) dx] (10)

+ 1 [b(r) - Qo]
Taking the partial derivatives of L with respect to Q, T, and A and setting

them equal to zero yields:

5L/3Q = -SD/Q2 + h/2 - h[B(r)12/2Q2 - =0 (11)
9L/3T = -hb(r)[1-F(1)1/Q + h = A[1-F(r)] = 0 (12)
L/3X =b(r) -Qu =10 (13)

Solving for A in (12) and substituting for A and B(r) in (11) yields:



Q = {2D[1-F(r)1/h [(14a?) [1-F(r)]-20}-> (14)
or Q = {2SD[1-F(r)1/h [(1-0)? - (1+?)F(r)]}-°

The form of the equation for Q provides for a very simple iterative
approach for simultaneously determining Q and r. The algorithm is initialized
by setting r = u = mean demand during the leadtime which is equivalent to

setting F(r) = .5 when the density of demand during the leadtime is symmetric.

Heuristic Algorithm

1. Set j=20

Set ky = 0

Set F(ry) = .5
2. Solve Q, = v{2so [1-F(0)1/h[(1+02) (1-F(0)) - 20]}+3
3. Set j = j+l
4. Find rj such that E(rj)/Qj_l =0
5. Q5 = {250 [1-F(rj)1/h[(1+02) (1-F(r)) - 20]}+3
6. Determine kj = (rj-LJ)/O
7. If IQj - Q5.1 | or | Ij - Tj-1 | or | Ky = ki1 |

is sufficiently small, stop. Otherwise go to step 3.
Note that if leadtime demand is distributed N(u,oz), then step 4 can be
simplified to read as follows:

Find r: such that E [(rj -n)/a = Qj_lu/o where E(.) is the

J
standard normal loss function.



3.1 CONVEXITY AND CONVERGENCE

Let L represent the Hessian of the Lagrangian. It can be shown (see Appendix)
that L is positive definite for all non-negative Q. Therefore, the solution of
the first order necessary conditions in (5), (6) and (7) gives a unique global
minimum. The algorithm proposed in this paper simply utilizes these conditions
to achieve their simultaneous éolution. The algorithm is simply an adaptation
of the generalized reduced gradient technique, as is the algorithm for the exact
cost model. It can be shown that the heuristic algorithm is guaranteed to
converge from a procedural viewpoint. (The proof parallels that of the exact
algorithm in Section 2). However, additional conditions must be satisfied to
insure that at each iteration Qj is positive and real-valued.

In order for convergence to be assured, we must have

(14a?) (1-F(ry)) - 20 > O
orequivalently
Flry) « (1-0)2/(1+a?)

which, in turn, insures that Q is positive and real valued. This also implies a
necessary relationship between the standard deviation of leadtime demand the
standard economic order quantity (EOQ).

Consider the case of normally distributed leadtime demand. Let
k = (r-4)/0 where U =T D = mean leadtime demand and o = standard deviation of
leadtime demand.
Then

F(r) < (1-a)2/(14a?)
is equivalent to

3(k) < (1-a)2/(1+02)

Let k' be such that ¢(k') = (1-0)2/(1+2). We know that Q5=0 E(kj)/u for all

j by virtue of the service level constraint. But

10



} _ , .5
Q5 = E0Q [(1-0(k;))/(1-0(k;)-20)]

Therefore,

E(kg) = a(E0Q) [(1-0(k))/((L40?)(1-0(k1)-20))]+2/0 1
Now

E(k') = E{e7! [(1-0)2/(1+a2)]}
by definition of k'. We must have E(kj) » E(k') for all j, or

cog » E 107 [0-0%/(1ad)])
o L0 (k)/((1407) (1-8(k5)-20)] -

For constant o, the right hand side achieves its maximum at the smallest
permissible value of k (-» if unrestricted or 0 if safety stock is constrained
to be non-negative). In the unrestricted case the condition reduces to:

E0Q » E{¢71[(1-0)2/(1+02)]} (1-0)/
g

and to the following when k must be non-negative:

E0Q > E{e™} [(1-0)2/(1+02)} (cP-bas 1)/a
a

The right hand sides are plotted as a function of ¢ in Figures 4 and 5

respectively.

FIGURES 4 AND 5

4.0 COMPARISON WITH SILVER-WILSON HEURISTIC

Silver and Wilson [10] develop a heuristic for the problem posed in this
paper, using an estimate of on-hand inventory equal to:
Q/2 + (r-u)
where M = mean demand during the leadtime. The first term overestimates average
on-hand cycle stock while the second term underestimates safety stock.
Silver and Wilson solve for Q and r using a system of two non-linear

equations in two unknowns. It is clear, however, that the same approach as

11



described in Section 3 can be used to develop an algorithm with their
approximate cost function. Such an approach gives
Q = {250(1-F(1))/[h(1-F(r) - 20)]} -2
This results in a value of Q larger than in our algorithm, hence a smaller value
of r as well.
Note that the computations required to execute the new algorithm differs
- from the computational requirements of the Silver-Wilson heuristic by one
addition and three multiplications per iteration. Calculation of the term
1-F(r) -20
requires one multiplication and two subtractions. The term
(1+02) (1-F (1)) -2a

requires one addition, four multiplications and two subtractions.
5.0 COMPUTATIONAL EXPERIENCE

We examined 1440 problems with a wide range of cost parameters, leadtimes,
leadtime demand variability, and service levels in order to gain some empirical
evidence of the performance of the speed of convergence of the new algorithms.
For these problems we assume that leadtime demand is distributed N(u,oz).

Table 1 lists the possible values of the parameters. The 1440 problems
represent all combinations of these parameter values. The item cost, C, is
normalized to 1.0, and i, the annual holding cost rate, takes on values .20,

.25, .30, .35. Annual demand D, is set so that the Economic Order Quantity,
given S and h, is equal to 1000 or 5000. Hence D = 500,000h/S or 12,500,000

h/S.

TABLE 1

12



The leadtime may be .02, .04, .08, or .16 of a year, corresponding to
approximately, one, two, four, or eight weeks, respectively. The coefficient of
variation of leadtime demand is allowed to take a maximum value of .40 to insure
that the distributions represented reflect primarily positive demand.

There are several objectives of this computational study. The first, of
course, is to compare the solutions from the heuristic with the optimal
solution. The second objective is to determine how quickly each algorithm
converges.

It was necessary to eliminate from consideration many of the problems
because either (1) the EOQ/c ratio indicated that the heuristic algorithm
would not converge, (2) the safety stock factor would be negative so that the
optimal algorithm could not be applied, or (3) the combinations of parameters
generated two or more essentially equivalent problems (different us but equal
os). We decided to use relevant problems for S=10 to compare the results of the
two algorithms, primarily because for S=100 and S=1000, nearly all the problems
would be eliminated for one of the 3 reasons above. There were 94 problems
available for this comparison. For convergence results, we chose to use all
available problems; there were 803 problems for the heuristic and 94 for the
exact cost procedure using S=10.

It is important to note that because of the form of equation (5) and
availability of standard normal probability tables in increments of only .01, it
was possible to determine the value of Q using the exact algorithm only to the
nearest .01 . As such, we probably have not obtained exactly optimal values of
Q and r. However, a search would have been computationally prohibitive, as it
would be in real applications. Therefore, the comparisons described here may
realistically represent what would be achieved in practice.

We calculated the values of:

13



Cost heyristic -Cost moptimaln

Cost ngntimal®
using the exact cost function for both cost computations. We found that all but
16 of these values are within the range of (-.01, .01) and of the 16 remaining
values the largest was .02 and 12 were negative (i.e., the heuristic out-
performed the "exact" procedure). We also observed that the heuristic achieved
the specified fill-rate in all cases. Thus, the heuristic appears to perform
extremely well relative to the exact procedure as it would be applied in
practice.

Convergence results for the heuristic are displayed in Table 2 for 803
problems. The élgorithm achieved (and verified) convergence in 5 iterations or
less in over 94% of the problems. An examination of the problems in which
convergence was achieved slowly revealed a correlation between number of
iterations and the proximity of the E0Q/c ratio to its maximum permitted

value.

TABLE 2
The exact procedure generally converged in 3 or 4 iterations, as indicated
in Table 3. Unfortunately, however, this procedure required several times the
computation time of the heuristic, despite fewer iterations on average. (The
problems were run in BASIC on the IBM PC/XT and therefore detailed CPU times are
not available. However, it was observed that the heuristic generally solved the
problems in much less than a minute, while the optimal procedure required a few

to several minutes).

TABLE 3

14



6.0 CONCLUSIONS

The heuristic developed in Section 3 performs quite well when compared with
approximate solutions to the exact cost model whose optimal solutions would be
computationally prohibitive to obtain. It has the further advantage of being
applicable where negative safety stock is appropriate. However, it cannot be
used when o is large relative to the EOQ, and in such situations, it is
advisable to use another heuristic. When o is large, only very approximate
values of Q order can be obtained from the exact cost procedure. Further
research is needed to develop appropriate procedures to determine values of Q

and r when o> EOQQ.
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Table 1

Parameter Values

Parameter Values
S 10, 25, 100, 500, 1000
h .20, .25, .30, .35
a .02, .05
L .02, .04, .08, .16
D 500,000 h/S, 12,500,000 h/S
o/u .10, .25, .40

21



Table 2

Convergence Results for Heuristic Procedure

No. of Iterations No. of Problems Cumulative %
1 18 2.2
2 134 18.9
3 508 82.2
4 56 89.2
5 41 94.3
6 10 95.5
7 12 97.0
8 11 98.4
9 1 98.5

10 0

11 3 98.9

12 0

13 7 99.8

14 0

15 0

16 2 100.0
Total 803
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Table 3

Convergence Results for Exact Cost Procedure

No. of Iterations No. of Problems Cumulative %
2 5 5.3
3 60 69.1
4 26 96.8
5 3 100.0
Total 94
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Appendix

We want to show that

3Q/3r [g(Q,t)] « | 8Q/ar[h(Q,r)] |

where

g(Q,t) = (Q,r) satisfying
T+Q

SD/h =f (x-1) F(x)dx
iy

- Q2(1-0) [F(r+Q) + o-11/[F(r+Q) - F(1)] (15)
and

h(Q,r) = (Q,r) satisfying
T+Q
f F(x)dx/Q =1 - o
r

Observe that since we want to find 9Q/9r (.), it is desirable to express Q

as a function of r. It is then straightforward to show that
T+Q
39/ot [9(8,1)] = - {QF(1+Q) f F(x)dx
T

+ Q2[F(r+Q) (Ff(r) - f(r+Q)) - (1-a)f(r)]}/

[Q{F(r+Q) + 2 (1-a)2 [F(r+Q) - F(1)]

- 2(1-0) [F(r+Q) - F(2)] F(r+Q)} - @2 F(1+Q) f(1+Q)]
and 3Q/5t [h(Q,r)] =

T+Q

QF(£+Q) - F(r)1/IQF(2+Q) -fr F(x)dx]

Some simplification and utilization of inequalities such as
T+Q
o () f F(x)dx < GF(r+Q)

T

will yield the desired result.
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We also need to demonstrate that the Lagrangian of the approximate cost function

is convex. L, the Hessian of the Lagrangian is:

r . -
{250 + h [B(r)1%}/@% hB(r)[1-F(r)1/Q? T
no(r)[1-F(r)1/Q? h{b(r)f(r) + [1-F(r)12}/Q
- + A f(1) -

It can be demonstrated easily that L is positive definite for all non-negative

Q.
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