SEQUENCING TO MINIMIZE WORK OVERLOAD IN ASSEMBLY LINES
WITH PRODUCT OPTIONS

Candace Arai Yano
Department of Industrial and Operations Engineering

Ram Rachamadugu
School of Business Administration

The University of Michigan
Ann Arbor, Michigan 48109

October 1987
Revised November 1988
Revised August 1989

Revised November 1989

Abstract

We address the problem of sequencing jobs, each of which is
characterized by one of a large number of possible combinations of
customer-specified options, on a paced assembly line. These problems
arise frequently in the automotive industry. One job must be launched
into the system at equal time intervals, where the time interval (or
cycle time) is prespecified. The problem is to sequence the jobs to
maximize the total amount of work completed, or equivalently, to minimize
the total amount of incomplete work (or work overload).

Since there is a large number of option combinations, each job is
almost unique. This fact precludes the use of existing mixed model
assembly line sequencing techniques. We first consider the sequencing
problem for a single station which can perform two different sets of
operations. We characterize the optimal solution for this problem and
use the results as the basis for a heuristic procedure for multiple
stations. Computational results with data from a major automobile

company are reported.

SEQUENCING TO MINIMIZE WORK OVERLOAD IN ASSEMBLY LINES
WITH PRODUCT OPTIONS

1. INTRODUCTION

Paced assembly lines are commonly used to manufacture different
models of the same general product. Although the number of models is
normally limited, the presence of customer specified options can
enormously increase the number of distinct products that can be ordered.
For example, Weiner (1985) points out that there are potentially 2.5
million unique configurations for the Escort, Ford's subcompact car.
Most of the proposed approaches for mixed-model assembly line sequencing
assume that the number of distinct products is small and that the mix of
products is relatively stable. Various versions of the mixed model
assembly line sequencing problem exist (see, for example, Wester and
Kilbridge (1964), Thomopoulos (1967), Dar-el and Cother (1975), Dar-El
and Cucuy (1977), Monden (1983), and Schonberger (1982)). The main
theme throughout these articles is one of determining a sequence of
models (e.g., ABCABD...) so as to spread out a particular model or
models as smoothly as possible. A model might be selected for
consideration because of its high labor content or because it uses a
component which is being delivered at a constant rate, such as in a
just-in-time context. Thomopoulos (1967) discusses some of the issues
of concern in determining a sequence for mixed model assembly lines,
such as worker idle time and the cost of work incompletion.

This paper focuses on sequencing paced assembly lines with many
distinct products. We assume that each product is characterized by the
presence or absence of each of a set of available options or upgrades.
This situation is evident in the automobile industry, where each product

can be defined by the presence or absence of air conditioning, power

windows (versus manual windows), deluxe seats (versus standard seats),
presence or absence of rear defoggers, manual or automatic transmission,
etc.

The main characteristics that distinguish paced assembly lines from
other assembly systems are that the jobs arrive at each workstation at
equal intervals of predetermined duration, and that work can be performed
at a particular station only when a job is in a particular portion of
the assembly line (which we call a window). If a worker attempts to
perform work outside of that window, it is likely that the worker will
interfere with a worker in an adjacent station, or that the necessary
power tools will not reach the job. Also, additional unproductive
travel (walking) time is spent when a worker strays too far from his
workstation. (In the case of robotic assembly, it is evident that the
robot may not be able to reach the job, or in doing so, might collide
with another robot.) Of course, a human worker has the alternative of
performing operations more quickly than normal, but this often leads to
quality problems. These problems would need to be rectified later,
sometimes at great expense. Moreover, low quality has an adverse impact
on market share and on profitability. Thus, these quality problems need
to be avoided.

Okamura and Yamashima (1979) proposed a heuristic procedure for a
single station for the objective of minimizing the maximum distance an
assembly worker would need to proceed downstream from his workstation
(if he were permitted to do so) to ensure completion of all work.
Coffman et al. (1985) proposed the use of spacing constraints where K
out of N sequential orders are permitted to contain an option (K and N

may vary by station). This heuristic procedure was designed to

resequence a few dozen jobs after the original sequence was scrambled by
an upstream repair process. As each job becomes available for
sequencing, the algorithm places it in the first available position for
which none of the constraints is violated. One drawback of the
procedure is that it can leave gaps in the sequence, and constraints
will be violated when the gaps are closed. Burns and Daganzo (1985)
studied the relationship between the spacing of jobs having an option and
peak capacity requirements for a single station. Bird (1986) developed a
Markov chain approach to model the expected time to violation of a
(single) spacing constraint for a random sequence. Parrello (1988)
describes the difficulty of using an expert system to solve problems of
this type.

We address the problem of determining a sequence to minimize the
total work overload for a large number of (e.g., 1,000) jobs on a paced
assembly line. By work overload we mean the work (measured in
processing time) which would not be completed if the assembler works at
a normal pace and stays within the boundaries of the window. The impact
of sequencing on work overload is most easily explained by an example.
Consider a station that deals with the installation of sun roofs, and
assume that its window length and staffing level were specified to
accommodate sun roofs on 20% of automobile orders. If every fifth
vehicle has a sun roof, there will be no work overload. Depending upon
the window length and staffing level, it may be possible to complete all
the work in a sequence in which the spacing between jobs with sunroofs
alternates between four and six. Eventually, however, larger deviations

from the "every fifth vehicle" pattern will normally cause some work

overload unless there is a considerable amount of excess labor capacity
at the station.

The objective in the Okamura and Yamashima (1979) paper is similar
to minimizing the maximum work overload per job. (Under their
assumptions, it is equivalent to this criterion when there is one worker
per station, but is different when there is more than one worker at the
station.) Their objective, however, does not guarantee good average
performance, which is our concern. For instance, in the sun roof
example, once a subsequence of two sun roofs in a row has been
sequenced, the objective in the Okamura and Yamashima paper provides no
incentive to prevent additional subsequences with two sun roofs in a row,
whereas our objective does.

Normally, the work overload is handled through the use of utility
workers who either are dispatched to assist the regular workers during
peak load situations, or are stationed at various points along the
assembly line to complete the unfinished operations. The other
alternative, of course, is to staff the assembly line to handle estimated
peak loads. This is an expensive solution, so a typical "real" solution
would involve a combination of slight overstaffing and utility work. No
matter what the staffing policy is, it is clear that minimizing the work
overload contributes to reducing the total labor cost (and improving the
product quality).

The remainder of this paper is organized as follows. Section 2
describes the problem of scheduling work on jobs to minimize total work
overload at a station for a given sequence and characterizes an optimal
policy. These results are used in sections 3 and 4 to develop recursive

formulas for work overload and to develop optimal sequencing procedures

when only one workstation which is affected by the presence or absence
of an option is considered. Using these results, we develop a heuristic
procedure for minimizing the total work overload when many stations must
be considered. This is explained in section 5. Experimental results

appear in section 6 and concluding remarks are contained in section 7.

2. SCHEDULING (OR TIME ALLOCATION)

In this section we consider how to schedule work on jobs to
minimize work overload for a given sequence. We assume that the labor
available at a station is constant over the scheduling horizon, which,
in our application, would represent one shift or one day. Even though it
is possible to vary the work force levels, such changes are planned very
infrequently in practice. Scheduling can be done at each workstation
independently because the labor availability constraints are separable by
workstation. For simplicity, we use a discrete time version of the

problem. The scheduling (or time allocation) problem at a station is to

N +
min 'E (W, = T xg)
i=1 tel,

s.t. ¥ x,Sb Vt
i

xe 20 Vi, tel,

X = 0 Vi tel,

where
N = total number of jobs
i : jobindexi=1, 2, ..., N

(x)* = max (0,x),

Wy = work content for job i (e.g., person-minutes) at the
station,
I, = get of time periods in which job i is available at
station,
b = amount of labor available at a station (per unit time),
and
X = amount of time allocated to job i in period t.

The objective minimizes total work overload. The constraints
ensure that labor availability limits are satisfied and that each job is
worked on only when it is at the station.

Since the jobs are on a paced assembly line, each job spends the
same amount of time in the station (or window), whether or not it is
completed. Also, since one job is introduced to the line at equal time
intervals, both the arrival and departure times of the jobs are
monotonically increasing with the position in the sequence. In what
follows, we will assume that workers are never idle when there is work
to be done at the station; It is clear that there always exists an
optimal policy with this characteristic. The only issue is how to
schedule work on the jobs.

It can be shown that a non-preemptive first-come, first-served
policy provides an optimal solution to the problem. In our analysis, a
non-preemptive schedule denotes the practice wherein once the processing
of a job is started, it is stopped only when the work on it is completed
or when it leaves the workstation due to pacing of the line (whichever
occurs first). The first-come, first-served policy indicates that jobs
are processed in the same sequence in which they arrive at the

workstation.

-T=

In Appendix A we prove the following proposition.

Broposition 1: For any given sequence, a non-preemptive FCFS work
schedule provides an optimal solution.

We note, however, that the optimal solution is not necessarily
unique. Nonetheless, these properties help to simplify decision
problems presented later in the paper. These results have some useful
implications. The first implication is that the optimal work schedule
for jobs 1,..., i does not change when job i + 1 is added to the
sequence. Therefore, work overload can be expressed quite simply as we
will show in the next section. The second implication is that adding
jobs to the end of a sequence cannot decrease work overload since the
work schedule does not change for the earlier jobs. We also note that

the non-preemptive FCFS schedule is easy to implement.

3. MATHEMATICAL PROGRAMMING FORMULATION

Eormulas for Work Overload

The aim of this section is to develop formulas for work overload in
a fairly general situation where there may be more than one worker at a
workstation and labor efficiency may be less than 100% because of other
considerations such as union rules. The results in the previous section
allow us to restrict our attention to first-come, first-served, non-
preemptive policies.

Let the time unit be the interarrival time of jobs to the first
station (i.e., one cycle time). Also let

L = station (or window) length

= number of jobs at the station (or window) at any time

= number of time units a job spends at the station (or window):

R = rate at which work is applied per unit time
= number of workers multiplied by efficiency factor;

p; = processing time for job i = (work content of job i)/R;

s, = start time of work on job i;

f, = finish time of work on job i (this may be a forced finish if

work is incomplete when the job leaves the station);

z, = work overload due to job i.

If we let s, = 0, we can use the following expressions to find the
total work overload for a given sequence.

sy, =max(i -1, £,,);

f, = min(s; + p;, i =1 + L);

zg, =R(py +8;, - (1-1+ L)]+.

The expression for s, says that processing of a job starts when it
arrives at the station if the previous job has already been finished.
Otherwise, processing of the job starts at the finish time of the
previous job. :he equation for £f; says that work on the job 1is
terminated at the earlier of its completion time or when it leaves the
station. Finally, the expression for work overload simply is the amount
of work remaining to be done (if any) when the job leaves the station.
(Note that the expressions above can be modified to account for jobs
currently in the system.)

We can re-express the work overload as
. +
z, = R{p, + [8y = (i-1)] = L}

The expression s, - (i-1l) is the delay of the gtart of job i relative to
its arrival time at the station. Since s; = max(i - 1, £;_,), and z, is a

function of s,;, the entire effect of the finish time of job i - 1 on all

the work overload incurred by subsequent jobs can be reflected in sj.
This lays the groundwork for sequencing procedures which consider not
only total work overload but also this delay factor in finding a good

solution.

3.1 Eormulation

The problem of minimizing total work overload at a station is
equivalent to maximizing the total work completed. First, we will
consider the single-station problem. Let

- 1 if job i is assigned to the jth position
X3 0 otherwise

vy = amount of time allocated to the job in the jth position
Also assume that the first job in the sequence starts at time zero.
(Generalization to non-zero starting times to account for jobs already
in the system is straightforward.) For a single station, the problem

becomes:

maximize 2 vy

]

s.t. inj-l Vi
3
ZXH.I Vj
i
Vjszpixtj Vi

i

81233_1 +Vj_1 Vj

sy+vyS3i-1+L V3

-10-

This is a mixed integer (linear) program which at first appears to
be an assignment problem complicated by some side constraints. However,
one must also make decisions about the V48, which are continuous decision
variables. The main difficulty of the problem lies in the fact that any
assignment is feasible if one chooses vy = 0 for all j. As such, the
side constraints do not help to eliminate infeasible assignments; they
only help to eliminate some values of vy. Therefore, even if one chooses
to use a greedy policy with respect to time allocations (which 1is
consistent with the optimality of the non-preemptive FCFS policy for a
given sequence) a brute force approach would require the evaluation of n!
sequences.

An equivalent problem in job shop terminology is as follows:
Consider a one-machine job shop. One job is released to the machine
every time unit. The job leaves the machine L time units after its
release. Any work that is performed on the job at the machine must be
performed within L time units after its release. Given these
constraints, find a launch sequence of the jobs which maximizes the
amount of work completed.

For the multi-station problem, the equivalent job shop problem has
a serial flow shop analogy in which jobs must be processed in the same
sequence at all machines. The value of L and the processing times of
the jobs may differ across machines.

To generalize the formulation to multiple stations, we must weight
the single-station objective by the number of workers at the station and
sum over all stations. Let by represent the number of workers at station

k. The problem then is to

Maximize) by I vy
k j

s.t. Y xyy =1 Vi
3

Y xy=1 B
i

Vi S Z PycXyy v i,k
i

sp23-1 Y i,k

Sy 2 841, * Via,x v 3,k

Sy t Vg S] -1+ 1Ly v ik

where
vy = amount of time allocated to job in position j at station k
Sy = starting time of job in jth position at station k
Px ™= processing time of job i at station k

Ly = length of station k

Note that there are essentially different "time zones," one for
each station, but one time zone is used as a reference point. It is
also important to point out that the complicating constraints are
separable by station, so the nature of the problem and its complexity
are fundamentally the same as the single-station problem. The major
difference is that one needs to find several time allocations for each
job.

The single-station problem can be formulated as a dynamic program

which can be solved in O(N?) time (see Appendix B). However, the size of

the state space increases exponentially with the number of job types at
a station, and exponentially with the number of stations. Because of
the exponential growth of the state space with the number of stations,
we will focus on heuristic procedures for the multiple station problem.
In the next section, we consider a special case of the single-
station problem where there are only two alternative processing times, a
situation which occurs frequently in practice. This is a realistic
representation of the problem when each product option requires the
installation of special (sometimes additional) parts. At each relevant
work station, an order having the option would have a processing time
which differs from (and is normally greater than) the processing time
for an order without that option. An optimal procedure is developed for
this problem and this forms the basis for the proposed multi-station

heuristic.

4. QPTIMAL PROCEDURE FOR THE SINGLE-STATION PROBLEM

Consider a station having a window of length L where two different
sets of activities (e.g., one set for jobs having an option and one set
of jobs without the option) are performed. Suppose that p units of time
are required to complete jobs having the option (henceforth called
optional ijobs) and ® units of time are required for those without
(hereafter called hasic jobs). Without loss of generality, we assume
that ® < 1 < p.

Since p > 1, we cannot have long sequences of optional jobs without
incurring work overload. 1Indeed, even if the workers were to start at
the point where jobs enter the window (which we call the bheginning of

the window), the maximum number of consecutive optional jobs which can

-13-

be completed while avoiding work overload is given by X, where X is the

largest integer satisfying

Xp$X-1+L. (1)
This relationship arises because Xp time units are required to complete
these X jobs, and the Xth job would leave the window X = 1 + L time
units after the first of these jobs enters the window.

After the work has been completed on these jobs, the workers will
be near the point where jobs leave the window (which we refer to as the
end of the window). If the workers continually remain near the end of
the window, even a short sequence of optional jobs could cause work
overload. Thus, it is desirable to bring the workeré back to the
beginning of the window. We call such an instance a regeneration. This
can be accomplished by sequencing basic jobs after the X or fewer

optional jobs. Let m, be the number of consecutive optional jobs in a

cycle. To fully utilize the available labor, we would like to sequence

my; basic jobs where
mp +mR=m +m (my S X, my integer). (2)

Of course, there may not be an integer m; such that (2) is satisfied as
an equality. In such a case, optimal sequence may not have alternating
strings of optional and basic jobs. Later, we explain how such
situations can be handled. 1If, however, it is desirable to have a
sequence with this property, the maximum utilization (without work
overload) is achieved by sélving the following nonlinear integer

programming problem:

=14~

max (pmy + mmy)/(mg + my)
s.t. mosx
pmy + ™My, S my + My

my, my 2 0, integer

Since the upper bound on m, is usually small in practice, it is
possible to solve the problem by computing the utilization for each
possible value of my,. For a given value of m,, maximum utilization is

attained when we use the smallest value of m; satisfying
mp + X S my + m. (3)

Bolat (1988) derives error bounds for the repetitive sequence in which
m, = X and m; is specified by (3), when equation (2) cannot be satisfied
by an integer m,.

When choosing the value of m; to use in actual implementation,
consideration must be given to the actual option mix. If the fraction
of optional jobs is much greater than my/(my + my), it might be advisable

to incur a little (unavoidable) work overload in each cycle by choosing

the largest value of m; satisfying
mp + M 2 My + my. (4)

This would eliminate all idle time, which in turn, ultimately helps to
reduce work overload.

The repetitive schedule of my optional jobs followed by m; basic
jobs has three attractive features. First, where special tools are
involved in the operations,'the sequence minimizes changeovers from one
set of tools to the other, since it makes each cycle as long as possible

and changeovers occur only twice during each cycle. Second, it is quite

-15=

simple to construct a schedule that follows this pattern as long as the
mix of jobs permits. The balance of the schedule may have some work
overload (if there are too many optional jobs), but leaving these jobs
until the end of the schedule minimizes total work overload (we prove
this result in Proposition 2). Finally, as long as the schedule follows
the specified pattern, there will always be exactly my; optional jobs in
any subsequence of my + m; consecutive jobs, and the system regenerates
after each set of basic jobs.

The second and third points provide the basis for development of an
optimal sequencing procedure. We will assume throughout the remainder
of this section that an integer m; exists satisfying (2). Later in the
paper we discuss what happens when this assumption is not satisfied.
The sequence is constructed by alternately scheduling my, optional jobs
and m; basic jobs until the necessary positions have been filled. Then,
starting at the end of the sequence, jobs are modified until the number
of optional jobs is consistent with the actual problem. Thus, if there
are fewer optional jobs than in a perfect repetitive sequence, there
will be some idle time at the end of the day's schedule, but there will
be no work overload. On the other hand, if there are more optional jobs
than in a perfect repetitive sequence, there will necessarily be some
work overload. We next prove that this procedure minimizes work

overload for a single station.

Broposition 2: If there are no, optional jobs and n; basic jobs, where a

perfect repetitive sequence has mg optional jobs and m; basic jobs in

each cycle, an optimal sequence has

-16-

(a) C = minq3%/an,Ln1hmJ) cycles of my optional jobs (where |x| is
the largest integer less than or equal to x) followed by m
basic jobs, followed by

(b) min(ng - Cmy, my] optional jobs, followed by

(c) n; - Cmy basic jobs, followed by

(d) [ng - (C + 1)mg]* optional jobs, where applicable.
Broof: See Appendix C.

Since the proposed sequencing procedure minimizes work overload at
a station, it is possible to use it to derive lower bounds on total work
overload for the multiple station problem. These lower bounds are used

in the heuristic described in the next section.

5. HEURISTIC PROCEDURE FOR THE MULTIPLE STATION PROBLEM

In this section, we consider the situation when each job passes
through multiple stations. The amount of work to be performed at each
station depends upon whether or not a particular option is required. We
assume that each station is affected by (at most) a single option.

The heuristic is a greedy procedure which uses a lower bound on the
objective function (for the entire sequence) to sequentially determine
which job should be placed in the next position. One can view the
procedure as a heuristic branch and bound procedure in which branching
occurs for each position in the sequence, but only the node with the
lowest lower bound is retained at each level of the branch and bound
tree.

Since work overload at each station is measured in time units (not
person-minutes), in the lower bound for the system, the single=-station

objectives are weighted by the number of workers, then summed. This

-17-

function is a lower bound for two reasons. First, because each station
is considered separately, the sequences giving the lower bounds at each
of the stations will not necessarily coincide with one another. Second,
in computing the function, the work overload due to the current
assignment is computed accurately, but it is assumed that the system
regenerates immediately after the job and the work overload for the
remaining jobs is computed accordingly. Thus, the actual work overload
for the remaining jobs generally would be larger (and cannot be any
smaller) .

To compute the overload due to placing the candidate job in the
current position, one only needs to store the finishing time of the last
job in the sequence and to use the formulas in section 3 to compute the
actual work overload of the candidate job. Computing the lower bound
for the balance of the sequence is also quite simple. Recall that the
lower bound is derived from solutions for single station problems. When
we are choosing the job in the jth position, single station solution for
jobs j, ..., N can only have one of two forms: (1) there is a basic job
in the jth position, leaving one mix of basic and optional jobs for
positions j + 1 through N, or (2) there is an optional job in the jth
position, leaving a slightly different mix of jobs for positions j + 1
through N. Each of the two possibilities has corresponding work
overload which can be computed easily. To compute the lower bound for a
candidate job in position j, one only needs to sum the appropriate
single-station work overload values. It is clear that the computational
complexity of the heuristic is O(KN2) where there are K stations and N
jobs to be sequenced. For each sequence position j =1, ..., N,

N - j + 1 lower bounds must be computed for each of K stations and the

sum compared with the lowest lower bound. (A sorting procedure is not
required since it is sufficient to store the index of, and lower bound
for, the best candidate so far.) Finally, we note that the heuristic
can be applied even if there are jobs already in the system (e.g., from
the previous day), since the lower bound on the balance of the sequence

(jobs 3 +1, ..., N) does not depend upon initial conditions.

When (2) is not satisfied by an integer m;, this basic approach can
still be used but the lower bounds on work overload for each station
must be computed by using the dynamic programming procedure described in
Appendix B. We should note, however, that the values of the parameters
(p, ® L) from which m; is computed are only approximate in practice.

Thus, judicious rounding of m; may be adequate.

6. EXPERIMENTAL RESULTS

We obtained data for an assembly line of a major automobile
company. Daily production is approximately 1,000 wunits and
approximately 12 workstations (out of several hundred) are considered
critical with regard to work overload. For each of these workstations,
we obtained relevant processing times and current spacing rules, from
which we etimated window lengths. For each of twenty groups of 1,000
arbitrarily selected orders (each group represents customer orders
scheduled for assembly on a particular day), we generated two sequences:
one using a version of the company's current procedure, and the other
using the heuristic described above. The company's current procedure
attempts to ensure that for each important option, the cumulative
production of orders with that option is close to a specified fraction of

total cumulative production. Additional details cannot be disclosed

-19-

because of confidentiality considerations. 1In concept, the procedure is
similar to Monden's (1983), but the details differ.

A comparison of the two procedures appears in Table 1. Data are
scaled to preserve confidentiality. The proposed heuristic reduces
total work overload by 55 percent on average, and the difference is
statistically significant at the @ = .005 level. We also report lower
bounds which represent the amount of unavoidable work overload. Each
lower bound is computed by finding the difference between the total
available processing time at a station and the sum of the processing
times of the jobs, then summing these differences over all stations.
These lower bounds are very loose since they ignore the interactions
among stations and assume that each station can be scheduled with no

idle time.

Table 1 here

Both procedures were implemented without additional constraints
related to body models (e.g., two door vs. four door) or paint colors.
(The cost of paint color changeovers dictates some batching of jobs by
color.) 1In experimentation, we have found that even with additional
constraints, the new procedure significantly outperformed the existing
procedure. The additional constraints are easily incorporated by
confining each assignment to jobs that are feasible with respect to the
additional constraints. This can, of course, lead to some infeasible
assignments near the end of the sequence if a specific set of N jobs
must be sequenced. In practice, this problem is resolved by permitting
the procedure to sequence N' > N jobs and imposing the additional

constraints only on the first N positions in the sequence.

WORK OVERLOAD (IN TIME UNITS)

-20-

IABLE 1

FOR THE TWO PROCEDURES

LOWER BOUND % REDUCTION
PROBLEM ON CURRENT OUR IN
SET# OPTIMAL SOLUTION PRACTICE PROCEDURE WORK OVERLOAD
1 76 993 423 57.4
2 127 880 355 59.4
3 43 744 222 70.2
4 215 898 392 56.3
5 792 1527 1149 24.8
6 123 871 256 70.6
7 26 659 139 78.9
8 72 931 248 73.4
9 278 1075 481 55.3
10 434 992 675 32.0
11 343 946 507 46.4
12 147 845 254 70.0
13 353 1254 701 43.7
14 129 1109 585 47.2
15 140 922 510 44.7
16 117 987 351 64.4
17 34 808 200 75.2
18 326 1044 550 47.3
19 395 1026 571 45.3
20 228 1066 521 51.1

-21=-

Many of the ideas from the new heuristic have been incorporated
into the company's algorithm. In particular, there has been a move
toward identifying the most important options for inclusion in the
algorithm on the basis of work overload concepts. Also, there has been
an effort to educate production schedulers about tradeoffs among work
overloads at the various stations affected by options. At the time that
we began our research, there was tendency for production schedulers to
insist upon "hard" spacing constraints because the existing algorithm did
not adequately consider the relative importance of each option. This
resulted in sequences that did not permit the appropriate tradeoffs to
be made. Now, most of the unnecessary "hard" constraints have been
eliminated and the remaining "hard" constraints are due to technological
considerations.

We also were able to utilize the algorithm to evaluate the tradeoff
between paint color changeovers and work overload. This was
instrumental in moving the company toward a better (lower total cost)

color batching policy.

7. CONCLUSION

In this paper we investigated the problem of sequencing jobs, each
representing a combination of product options, on a paced assembly line.
We have developed an optimal procedure for the situation where a single
station is affected by an option. We also provided a heuristic
procedure for multiple stations. The procedure was compared with an
existing procedure used in industry. Results indicate that the new
procedure can provide a substantial reduction of work overload.
Computational time requirements for our procedure are minimal and the

procedure can be implemented on microcomputers.

-22=

In addition to the implications described in the previous section,
our research also has implications for the design of assembly lines. 1In
this paper, we addressed the input sequence issue. An important
consideration in the design of paced assembly lines is the station
length. This is dependent on the mix of options as well as the
processing times. Our procedure can help to quantify the effect of
station length on work overload, which also affects quality.

In the current study, we addressed the situation when the input
sequence can be maintained on the entire assembly line. However, 1in
practice unreliable upstream processes may make this very difficult, if
not impossible. A practical example of such a situation occurs in the
automotive industry where painting typically precedes the assembly
process. In such situations, the integrity of a predetermined input
sequence is difficult to maintain because defects in the paint process
necessitate rework on some jobs. However, one alternative to overcome
this difficulty would be to provide buffers between the two stages for

the purpose of resequencing. We are currently researching these issues.

Acknovledgement

We wish to acknowledge constructive comments made by the associate
editor and the referees. We appreciate the opportunity and funding
provided by one of the domestic automotive companies for investigating
this problem. This research was in part supported by the Graduate

School of Business at The University of Michigan, Ann Arbor, Michigan.

-23-

REFERENCES

Bird, C. G. (1986), "Sequencing Vehicles for Assembly Under Precedence
Constraints," Paper presented at the ORSA/TIMS conference in Los
Angeles, CA.

Bolat, A. (1988), "Generalized Mixed Model Assembly Line Sequencing
Problem," Unpublished Ph.D. dissertation, Department of Industrial
and Operations Engineering, The University of Michigan, Ann Arbor,
Michigan.

Burns, L. D. and C. F. Daganzo (1985), "Assembly Line Sequencing
Principles,”" Research Publication GMR-5127, General Motors Research
Laboratories, Warren, MI.

Coffman, P. E. Jr., S. E. Hoffman, and S. A. Weiner (1985), "An O.R.
View of Assembly Plant Modeling," Paper presented at the TIMS/ORSA
conference in Boston, MA.

Dar-El, E. M. and R. F. Cother (1975), "Assembly Line Sequencing for

Model-Mix," Interpational Journal of Production Research 13(5),
463-471.

Dar-El, E. M. and S. Cucuy (1977), "Optimal Mixed-Model Sequencing for
Balanced Assembly Lines," QMEGA 5(3), 333-342.

Monden, Y. (1983), Igyota Production System, Industrial Engineering and

Management Press, Institute of Industrial Engineers, Atlanta, GA.

Okamura, K. and H. Yamashima (1979), "A Heuristic Algorithm for the
Assembly Line Model-Mix Sequenc1ng Problem to Minimize the Risk of

Stopping the Conveyor," Interpational Journal of Production
Research 17(3), 233-247.

Parrello, B. (1988), "Car Wars: The (Almost) Birth of an Expert
System," AL Expert, 60-64.

Schonberger, Richard J., Japanese Manufacturing Techpniques: Nipe Hidden
Lessons in Simplicity, The Free Press, New York, NY, 1982.

Thomopoulos, N. T. (1967), "Line Balancing-Sequencing for Mixed Model
Assembly," Management Science 14(2), 59-75.

Weiner, S. (1985), "Perspectives on Automotive Manufacturing,”" in Ihe
, edited

by Paul R. Kleindorfer, Plenum Press, New York, 57-71.

Wester, L. and M. Kilbridge (1964), "The Assembly Line Mixed Model
Sequencing Problem," Proceedings, Third International Conference on
Operations Research 1963: Dunod, 1964.

Yano, C. A. and R. Rachamadugu (1987), "Sequencing to Minimize Work
Overload in Assembly Lines with Product Options," Technical Report
#87-22, Department of Industrial and Operations Engineering, School
of Engineering, The University of Michigan, Ann Arbor, MI 48109.

-24-

APPENDIX A
Proposition: For any given input sequence, a non-preemptive FCFS work

schedule provides an optimal solution.

Broof: We show that an optimal work schedule which does not satisfy the
above characteristics can be modified into a schedule that does, without
increasing work overload. We assume that the worker(s) work on one job
at a time. As long as the work accomplished is proportional to the time
spent, this is an optimal policy.

The proof is by recursion. We assume that we begin with an optimal
schedule. We show that the schedules for the first job in the sequence,
Ji, and some other job, Jx, can be modified in such a way that J; is
processed continuously, and so that it is either completed or leaves the
station before work commences on the second job. Then J; satisfies the
above characterization. Since the same arguments can be applied to jobs
2,..., N in sequence, the final schedule will satisfy the given
characterization.

Throughout the proof, Jx is assumed to be a job whose sojourn in
the station overlaps that of J; (i.e., there is some time interval when
both jobs are in the station simultaneously). Also, let us define:

ry = release time of job i,

1l; = departure time of job i from the station,

f; = (latest) time at which work on job i terminates.

The proof is divided into two parts. We first consider the case in
which the required work on J; is not completed. The second case pertains

to situations in which the required work is completed.

Case 1: All the required work on J; is completed.

-25=-

Suppose J; is preempted from t to t + At. (If there is more than

one preemption, the arguments below can be applied recursively to the

last preemption until all preemptions are eliminated.) If the worker

was idle during (t, t + At), the schedule can be modified so that the
processing occurs continuously from t to f; - At. The work overload
remains unchanged.

If, on the other hand, the worker was processing Jx during (t,
t + At), the schedule can be modified so that J; is processed
continuously from t until £; - At, and work is performed on Jy during
(£, - At, £;). Observe that this is feasible since f; S 1; < 1,.
(Release times and departure times of jobs are, by definition of the

problem, monotonic in time). Again, the work overload remains

unchanged.

Case 2: All work required by J; was not completed.

For this case, we assume that any preemptions of the type described
in Case 1 have already been eliminated. Thus, Case 2 pertains to
situations in which processing of J; is stopped prior to its completion
in order to begin processing of another job.

Suppose that the amount of incomplete work on J; is U, where
Us1l, - £5, and that work on J; was terminated to work on another job Jy
(or another set of jobs). Obviously, the worker could not have been idle
during (£, 1l;) since this violates our assumption that the original
schedule was optimal. The schedule can be modified so that J; rather
than Jx (or the set of jobs) is processed during (£;, £; + U). Observe
that after the change, J; is processed continuously. Moreover, the total

work overload remains the same.

-26~

Now consider the case in which U > 1; - §£,. Using similar
arguments to those above, it can be shown that the schedule can be
modified so that J; is processed continuously until 1;, and the new
schedule remains optimal.

The schedule modifications described in Cases 1 and 2 transform the
optimal schedule such that J; satisfies our characterization. The same
types of modifications can now be applied recursively to jobs 2,..., N.
Thus, any optimal schedule can be modified into another which is non-

preemptive, FCFS without increasing the work overload.

-27-

ARPENDIX B

The single-station problem with two types of jobs can be formulated
as a dynamic program which can be solved in O(N2?) time. 1In this
formulation, we assume that the schedule is non-preemptive, but for
simplicity, we relax the assumption that as much work as possible is
performed on a job before starting the subsequent job (FCFS assumption).
Thus, the procedure may provide an alternative optimal solution which is
not FCFS. However, given the solution, it is possible to construct a
FCFS schedule from it. The procedure can be applied even if the value
of my; satisfying (2) is not integer.

Without loss of generality, we assume that there is some time
duration T such that 1, L, p and ® are all integer multiples of 7. Let 7
be the duration of the basic time period in the problem. Thus, every
relevant time duration can be expressed as an integer multiple of this
basic time unit. We define a time interval as a set of consecutive time
periods, which is specified by its starting time and duration.

In this dynamic programming formulation, we use backward recursion
and start with the last position in the sequence. (For clarity, time is
measured forward from time zero, not backward from the end of the
horizon.) We use the term schedule to denote a feasible allocation of
time intervals to positions in the sequence. A schedule does not,
however, specify which job is assigned to each position. Our reason for
distinguishing these two sets of decisions will become evident as we
develop the dynamic programming formulation. We restrict our attention
to schedules in which the total available time is allocated. If it is
not possible to assign jobs to positions in the sequence in such a way

that the allocated times are fully utilized, there will be idle time.

-28-

Our objective is to minimize total idle time, and since the total

available time is constant, this approach implicitly maximizes the total

work accomplished.

The dynamic programming procedure simultaneously constructs a

schedule and assigns jobs to positions in the sequence. It is based

upon the observation that at any point in time at which a job can

commence processing, all decision alternatives can be captured in the

following three parameters:

(1)

the number of jobs sequenced (which can be reflected in the

stage variable),

the number of optional jobs sequenced, and

the candidate starting time of the interval for the position

under consideration.

For each state (reflected by (ii) and (iii)) within each stage, we must

decide the best duration and job type. A formal statement of the

dynamic programming formulation follows. Let

n, = number of optional jobs to be scheduled,

my

N

*

number of basic jobs to be scheduled,
total number of jobs (= n, + n,),
stage index

number of positions scheduled

number of jobs sequenced,

(candidate) starting time of the interval allocated to
position N - k + 1 (i.e., the kth position considered),

number of optional jobs sequenced at stage k,

duration of interval k (decision variable), 1/t S dy S p/T,

-29-

Dy(s,) = set of feasible durations at stage k if starting time is
Skr

{1 if an optional job is selected for position N - k + 1

0 otherwise,

£y (8, ny,dy,8) = idle time in a solution starting at s, with n,
optional jobs sequenced if duration d, and job type
3, are selected at stage k,

fo*(8,ny) =_ min £, (s,,n,,d,0).

O/ €Dy, ()

The dynamic programming recursion equation is:
£ (Sxrny dy) = [dy - ®(1 = &) = P&I* + £,_,% (s + d, ny = §).

The first term is the idle time for the job assigned at stage k and the
second term is the optimal value function for the remainder of the

horizon. The boundary conditions are:
fo(e) = 0
and 8= 0.

Since the total available time must be allocated, there are additional

constraints at stage 1:

where the right hand side of the above expression is the time of
departure of the last job from the station. These constraints can be
considered within the dynamic programming procedure.

The optimal solution is:

min £,*(0,n) .

-30-

Note that any solution in which fewer than n, optional jobs are assigned
can be modified by replacing each excess basic job with an optional job.
The resulting solution is now feasible, and the total idle time remains
unchanged. Although £,*(0,n) is non-increasing in n, there may be
solutions with n < n, in which there is zero idle time. 1In this case, it
is not necessary to compute the solutions for larger values of n, and
the computation time can be reduced accordingly. For a numerical
example, see Yano and Rachamadugu [1987].

For each (s,,n,) pair we need to evaluate several alternatives.
There are at most NL/T pairs (number of optional jobs sequenced
multiplied by number of possible starting times for a stage). The
maximum number of alternatives to be considered for each pair is 2p/t1
(number of durations multiplied by number of job types). Since there
are N stages, the computational complexity of the procedure is
0 (2LpN2/12) .

The procedure can be generalized to the case of more than two
choices at a station, but the size of the state space increases
exponentially with the number of choices. The procedure also can be
generalized to the case of multiple stations, but in this case the
number of choices is equal to the product of the number of types at the
various stations. Thus, even if there are only two choices at each
station, the total number of job types (and consequently the size of the
state space and the number of decision alternatives) increases quickly

with the number of stations.

m—mﬂm i Il 2.

Proposition: If there are no optional jobs and n; basic jobs, where a
perfect repetitive sequence has my optional jobs and m; basic jobs in
each cycle, an optimal sequence has
(@) C = min(ny/mg|,|n;/m|) cycles of m; optional jobs (where |x] is
the largest integer less than or equal to x) followed by m,
basic jobs, followed by
(b) min[ny - Cmy, my] optional jobs, followed by
(c) n; - Cmy basic jobs, followed by

(d) [ng - (C + 1)mg]* optional jobs, where applicable.

Progf: The first C cycles have no work overload and no idle time.
Moreover, a regeneration occurs at the end of this subsequence, so it is
not possible to make any modifications to this portion of the sequence
to reduce the possibility of work overload in the remainder of the
sequence.

Observe that after the first C cycles, the set of remaining jobs
must fall into one of the three categories below:

(1) there are fewer than m; optional jobs and m; or more basic
jobs;

(2) there are fewer than mg, optional jobs and fewer than m; basic
jobs; or

(3) there are fewer than m; basic jobs and greater than or equal
to my optional jobs.

If one of the three conditions is not satisfied, it would be possible to
construct another cycle, which cannot be true by the definition of C.

Plots of the position of the worker in the window for these three

-32-

mutually exclusive and collectively exhaustive scenarios are shown in

Figures 1, 2 and 3.

Figures 1, 2 and 3 here

If either case (1) or (2) above occurs, there are fewer than m
optional jobs, and a sequence with no work overload can be constructed
by scheduling the remaining optional jobs followed by the remaining
basic jobs.

We now consider case 3. We will show that there is no idle time,
which clearly minimizes work overload. There can be no idle time if the
system never regenerates. Consider the location of the workers during
their execution of these jobs (see Figure 3). While they are working on
the initial m; optional jobs, they are moving away from the beginning of
the window and upon completion, are near the end of the window. They
then proceed to work on the basic jobs. However, since there are fewer
than m; basic jobs available, they are unable to return to the beginning
of the window. For the remainder of the schedule, they work on optional
jobs which progressively move them toward the end of the window. Thus,
the system never regenerates within this portion of the schedule, and
there is no idle time. Consequently, the proposed sequence minimizes

work overload. []

Formal algebraic proofs of these results are omitted here for the
sake of brevity. The interested reader is directed to Yano and

Rachamadugu ([1987].

Position in the Window

0 denotes job with option

B denotes basic job

B BB
AAA

Time ————p>

Figure 1

Worker Position Diagram for Case 1

Position in the Window

0 denotes job with option

B denotes basic job

Time ———»

Figure 2

Worker Position Diagram for Case 2

Position in the Window

0 denotes job with option

B denotes basic job

B 0
0
0
Time —p
Figure 3

Worker Position Diagram for Case 3

TY O

JEEA
3 0

9015

MICHI

4732 6478

A

