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ABSTRACT

We investigate the effects of yield uncertainty in single-stage, single-
period inventory systems with both zero and positive setup costs, as well as
deterministic and stochastic demand. For each of the systems, we determine the
form of the optimal policy or present results which suggest what the form of the
policy may be. We also provide numerical results which indicate that increasing
uncertainty in systems with less-than-perfect yields may actually lead to
optimal policies that are more conservative., That is, fewer items are
purchased, and generally only in much more restrictive circumstances. This
differs significantly from rules of thumb which suggest that increased

uncertainty leads to optimal inventory levels which are larger as well,



SINGLE-PERIOD MODELS FOR SINGLE-STAGE
PRODUCTION/INVENTORY SYSTEMS WITH
UNCERTAIN YIELDS
1. Introduction

Much of the research on production systems with yield losses has focused on
inspection policies (e.g. Klein (1966), White (1967), and more recently Lee and
Rosenblatt (1984) and Porteus (1984)) but little work has been done on
production control for such systems. Two notable exceptions are papers by
Giffler (1960) and Levitan (1960) where the objective is to find a reject
allowance which optimizes the tradeoff between shortages and overages. Yet,
variable yield losses are pervasive in microelectronic fabrication and many
chemical processes, and optimal control of production is difficult but important
in such situations.

We present four single-period models of single-stage production systems in
which yields are uncertain. The four variants deal with (1) zero or positive
setup costs and (2) deterministic or stochastic demand. Our models differ from
that of Giffler and Levitan in that we assess a shortage cost per unit whereas
they use a penalty per stockout occasion.

The primary motivation for this model development and analysis is to build
a foundation for investigation of multi-period and multi-stage production
scenarios in which yields (and possibly) demand are uncertain. Yet, despite
this primary motivation, we recognize that there are existing production
scenarios in which many similar characteristics exist. For instance, production
of low-volume repair parts may be done infrequently, and lead times for input
materials may be long, so that each production run is effectively independent.
Changeovers on the various pieces of equipment required to produce a repair
part may be expensive because of disruptions to the normal schedule and because

long-forgotten calibrations must be done. Finally, demand for these parts may



be highly uncertain and shortages may necessitate expediting or expensive
alternate repair procedures. Many other direct applications exist in
procurement of seasonal goods, for which only one order will be placed (e.g.
Halloween costumes). The vendor may use a rationing policy so that orders are
partially filled. The percentage of orders actually received depends upon total
supply and demand at the vendor, making the actual "yield" rate uncertain at the
time the retailer places the order.

In the next section we discuss the assumptions common to the four models.
In each of the four subsequent sections we present a model along with related
results and solution procedures. We then provide some simple examples to
illustrate how the solutions change when yield uncertainty is introduced into
well-established inventory models. We conclude with a discussion of
implications of the models and results for analyses of more complex systems.
Throughout the paper, we use the notation listed in Table 1.

TABLE 1

2. Assumptions

Similar assumptions are made in the four models which follow. We assume
that the yield rate distributions, and where applicable, the demand
distributions, are assumed to be known, continuous, and twice-differentiable.
We assume that the actual yield rate may take on values between zero and one,
inclusive, but the models can be generalized quite easily to other yield rate
distributions with finite upper limits and to discrete situations.

Linear penalty costs are assessed for unused inventory at the end of the
period and for unfilled demand. A production cost is charged on each unit of
input, reflecting cost of materials and processing which is normally a function
of the input, not of the output. Defective units are assumed to be unusable and

to be disposed of at no additional cost.



Table 1
Notation
Parameter Definition

L Inventory holding cost per unit re-
maining at end of period

m Shortage cost per unit of satisfied
demand

A Setup cost

W Production cost per unit of input or

purchase quantity

D Demand for the product (may be
random

p Actual yield rate (as fraction of
input quantity

Fp(') Distribution of the yield rate

*
fp(') Density of the yield rate
P Average yield rate = 1 pf(p)dp
0

FD(°) Distribution of demand*

fD(') Density of demand*

I Initial inventory

u Input quantity (decision variable)

* Note: For simplicity, we drop the subscripts except where necessary for
clarity.



3. Model with Deterministic Demand and No Setup Costs

We begin with the simplest of the four models. One example of a relevant
scenario is the newspaper carrier who has a subscription-based route in an
apartment complex. The newspaper company delivers papers to an unsecure
location near the apartment complex and some newspapers may be stolen before the
carrier has a chance to distribute them. If a subscriber does not receive a
paper because of a shortage, the subscriber calls the newspaper to request a
paper and the carrier receives a demerit (and perhaps a financial penalty).
(This is a real scenario which the author observed as a subscriber!),

The objective in this problem is simply to choose the order quantity which
minimizes expected inventory holding costs, shortage costs, and purchase costs.

The problem thus is

minimize h f1 (pu-D)f(p) dp
p=D/u
1 [PU (D-pu)f(p) dp
p=0

+ wu = G(u)

Taking the first derivative, we get:

o = h L pf(p)dp - 1 [PY pr(p) dp + w
p=D/u p=0
which, after simplification, gives:
3G(u) -
el hp +w = (r+h [P/Y pr(p)dp. (1

p=0

To demonstrate that the objective function is convex, we note that:

______ = (m+h)(D2/u3)£(D/u) > 0 for D Lufo»



Thus, we can optimize by setting (1) equal to zero. Doing so gives us:

[D/u*  5e(p) dp = (np + w)/(7 + h)
p=0

Observe that u is finite for all positive values of h and strictly greater than
D for all positive values of m provided h > 0. The form of the optimal solution
has the flavor of the newsboy model but is considerably more difficult to solve
because it involves numerical integration, whereas the newsboy model only

requires finding a fractile of the demand distribution.

ki, Model with Deterministic Demand and a Positive Setup Cost

An example of a situation with deterministic demand and positive setup
costs might be the sale of Girl Scout cookies. The Girl Scouts take orders for
cookies but the troop must arrange for delivery from the cookie factory and pay
a delivery cost which is insensitive to the quantity delivered. Unfortunately,
some of the cookies may get damaged (or eaten) in transit, but it is
uneconomical to return them for replacement.

If there were no setup cost, the troop should order u¥* as indicated in the
previous section. However, if the setup cost is large enough, it would be
better to suffer the loss of profit. If the order is placed, the cost is

A + G(u¥)
If the order is not placed, the cost is
m(D-I) for I <D
where, in the case of the Girl Scouts, I=0. (If I>D, there is no need to order).
Setting these costs to be equal permits us to determine the largest value of D-I
at which we would place an order. So we have a policy in which we order u* if
(>-1)* > [A + G(u*))/7
Observe that the ordering policy has a very different form than in an

(s,S) inventory model. While there is still an "order-up-to-point," the



trigger quantity is net requirements.

5. Model with Stochastic Demand and No Setup Costs

Introducing stochastic demand into the first model leads to a problem
of the form,

minimize h [WI 1
JD=0 Jp=(D-I)/u
PO f(D-I)/u

(pu+I-D)f(p)f(D)dpdD

| ] (D-pu-I)f(p)f(D)dpdD
D=I ‘p=0

+ Wu = H(u)

Again, we take the first derivative and obtain

9H(u) po (w1

pf(p)f(D)dpdD
JD=o Jp=(D—1)/u

= ¢ [ [(ODU be(pyr(D)dpdD + w
JD=I Jp=0
= (n+n) B Fp(wel) = (ren) [¥ Rt pf(p)£(D)dpdD + w - 7p (&)

JD=I p=0

To ascertain whether the objective function is convex, we observe that the
second derivative is
------ - D31t T e (2hepyap] + Tpfp(utI) > 0.
du Jpa1 Py

The optimal solution therefore can be found by solving for the u that
equates (2) to zero. Observe that since the first derivative is strictly
increasing in u (since the absolute value of the second term (p Fp(ut+1) is
strictly greater than the double integral expression), for u to be positive, we
must have

w-1p < 0 or



One can interpret this as a requirement that the cost of the input must be less
than the expected contribution of that input to reducing shortage costs.

Since the second term in (2) vanishes as u -> », to ensure that u* is
finite, we must have

Fp(usI) > (m = w)/(x + h)p

for some u < @, But the riéht hand side is less than 1 for any w> 0 and h> 0,
or |h|5 < w if h < 0, so under these conditions, there exists some u < » which
satisfies (2).

It also can be shown that
{G—- = [(w+h)/u2] (U+I (D—I)f(giz) £(D)dD > 0

D=1

so as I increases, u¥* decreases, as intuition would indicate.

6. Model with Stochastic Demand and Positive Setup Costs

Generalizing the model to incorporate setup costs gives us the problem
of deciding whether to procure the product. If we place an order, the cost

is
A+ H(u*|I) (3)

on the other hand, if an order is not placed, we incur an expected cost of

+ [® -D)f(d +h [T (I-D)£(D)dD (1)
D=I Jp=0

where E(*) denotes expectation and (x)* denotes max (0,x).

Since demand is stochastic, we cannot simply use net demand as we did
in section 4. In addition, comparing?d H(u)/BI]u* and the derivative of (4)
with respect to I, does not provide any additional insight about the form of the
optimal policy. Thus, we cannot even conclude that the decision about whether
or not to order is monotonic in I, although intuitively we would expect it to be

SO.



T. Numerical Examples

In the numerical examples, we use binomial yield and demand distributions to
provide a relatively realistic view of the qualitative differences in the
solutions and costs, resulting from uncertain yields. We use the following

parameter values:

h =1

T =14

A = 10 (where appropriate)
w=2<mp=3.2

D = 10 (= D when demand is deterministic)

BD = ,5 (for demand; thus n=20 and og =5)
5y = .80 (for yields)

I = 0 except where it is a decision variable

Example 1, Deterministic Demand, No Setup Costs

If yields were deterministic, we would simply order D/p=12.5 units at
w=2 per unit for a total cost of $25. With uncertain yields, we would choose
u=12, giving a total cost of $27.32. Observe that it is optimal to order
slightly less, but the cost is greater due to the yield variability. Therefore,
optimal order quantities are not always monotonically increasing in the yield
variance, contrary to popular belief. Of course, the results depend upon the
actual yield distribution, but this example (which was selected arbitrarily)
demonstrates that "intuitive" solutions may not be optimal when yields are

uncertain,

Example 2. Deterministic Demand with Setup Cost
With deterministic yields, we would have the choice of ordering for units

at a total cost of 10 + 2(10-I)/.8 = 32,5 - 2.5I or of incurring a shortage cost



of 4(10-I) = 40 - 4I. Thus, for I 2> 5, we would not order., Otherwise, we
would order 12,5 - 1,25 units.

When yields are random, the optimal order quantity depends upon I. The
values of u* and G(u*) are listed for I = 0,...,9 in Table 2, For each value of
I, we must compare the cost of placing an order, or

A+ G(u*|I) = 10 + G(u*|I)
with the cost incurred if an order is not placed, which is

m(D - I) =410 - I),
It is evident that for I > 2, it is optimal not to order. Observe that the
initial inventory which triggers an order is considerably less than the
trigger value, when yields are deterministic.

TABLE 2

Example 3. Stochastic Demand with No Setup Cost

The single-period model with stochastic demand and no setup costs is
commonly referred to as the newsboy model. With deterministic yields we
would have an adjusted purchase or production cost ¢ = w/p = 2.5. We would
therefore find an order-up-to-point, S*, which satisfies

F(S*) = (m = ¢)/(m + h) = .5

This gives S* = 10 and we must actually order S*/p = 12.5 to account for the
yield loss. For each available unit of inventory, the quantity ordered
would be reduced by 1.25. The cost of the system would be $29.40 for I=0.

Using the model in section 5, we find that for I =0, u* = 12 and the
total expected cost is $30.84. Observe the change in the actual cost of the

system because of the yield uncertainty.



TABLE 2

Results for Example 2

u*
12
1

10

10

G(u¥)
27.32
24 .84
22.42
20.05
17.76
14,11
11.64
9.25
6.96

4.80



Example 4. Stochastic Demand with Positive Setup Costs

We determined the optimal value of u and associated cost for several values
of I as well as the expected system cost if no order is placed. These values are
listed in Table 3. With A =10, the optimal policy istouseu=12 if I =0 and
not to order otherwise., In this particular case, the optimal policy is of the
(s,S) type as we conjectured in the previous section.

TABLE 3

The results are notably different from those in Example 2. As we might
expect, the costs are higher (by 10% or more). The values of u¥, however, are
smaller than in example 2. Thus (as in example 1), introduction of uncertain
demand has led to more conservative policies, whereas typical practice is to

increase safety stock in response to greater uncertainty.

8.  CONCLUSIONS

We have presented models of and suggested solution approaches for four
single-product, single-period inventory models with stochastic yields. For the
cases with no setup costs, we found that a single-critical-number policy is
optimal. When there are setup costs, the optimal policy need not have a two-
critical number (e.g., (s,S)) type of policy. The order quantity is not
necessarily linear in the initial inventory so a constant order-up-to-value does
not necessarily exist.

There were two other interesting results. First, the "reorder" point in
models with positive setup costs appear to decrease when the yield variance
increases even with the same average yield rate. (This was evident in example
2). Second, introduction of demand uncertainty into a model with yield
uncertainty (with the average demand held constant) may actually decrease order

quantities, as we observed in several of the examples, Thus, increasing

"



10

12

10

TABLE 3

Results for Example 4

H(u*)

29
26

24,

19

14,

.85

09u

45

.Su

14

.21

.40

12

Expected Cost with u = 0

40.00
36.00
32.00
24.00
16.14

9.09

4,40



uncertainty in a system need not increase optimal order quantities. This
implies that ad hoc implementation of simple and "logical" policies which are
based upon our current understanding of safety stock in the context of demand
uncertainty may provide both incorrect results and incorrect intuition about the
form of optimal policies when yield uncertainty is present.

Much more research needs to be done to develop an understanding of the

effects of yield uncertainty in multi-period and multi-echelon systems.
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