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SETTING PLANNED LEADTIMES IN SERIAL
PRODUCTION SYSTEMS WITH TARDINESS COSTS

ABSTRACT

We investigate the problem of determining optimal planned leadtimes in
serial production systems in which the actual procurement and processing times
may be stochastic. The objective is to minimize the sum of inventory holding
costs and job tardiness costs given a customer specified due-date. We present a
general solution procedure for two stage serial systems, which for most cost
structures and leadtime distributions is a single-pass algorithm. We also
indicate how the procedure can be extended to N-stage systems. We present
computational results which provide some insight into the characteristics of

optimal safety time policies.



SETTING PLANNED LEADTIMES IN SERIAL
PRODUCTION SYSTEMS WITH TARDINESS COSTS
1.0 INTRODUCTION

Uncertainty in production and delivery leadtimes is a major problem in
production systems. It hampers effective coordination, resulting in parts
shortages, workforce idle-time, and excessive expediting. Delivery leadtimes
vary depending upon purchased product availability from vendors and
transportation time. Production leadtimes vary due to many factors, including
machine breakdowns, queueing resulting from capacity limitations and changes in
the mix of products being produced, and rework. The effects of leadtime
uncertainty are particularly problematic in multi-stage production systems,
because late availability of an item may delay all subsequent stages of
production.

In simulation studies Whybark and Williams (1976) have found that safety
time is a more effective and efficient buffer against leadtime uncertainty than
safety stock. Weeks (1981) shows that the single stage problem with tardiness
costs is a simple "newsboy" problem. Grasso and Taylor (1984) have found
through simulation studies that leadtime variability, the quantity and type of
buffers used, the lot-sizing rules, and the cost structure have statistically
significant effects on system performance.

We address the problem of optimizing planned leadtimes (and hence safety
times) at each stage in the production proéess. We use the term safety time to
refer to the excess of the planned leadtime above average leadtime. Two
entirely different scenarios may give rise to this problem. The first involves
situations in which efforts have been made to reduce leadtime uncertainty, and
the issue at hand is how to deal with the remaining uncertainty. In such
systems, transport time (for both inbound freight and internal material

handling) and queueing are often the primary causes of leadtime variability.



The second scenario, unforpunately, occurs more frequently. Leadtime
variability has not been reduced to a minimum; the question is where to focus
the effort and how to quantify the economic benefits of reducing the leadtime or
its variability through better scheduling or control, new equipment, or
different operational policies. For instance, we may wish to examine "cost-
dependability" tradeoffs that often exist for both suppliers and transporters.
We may also want to quantify the benefits of employing additional resources
(e.g., machines or labor) at production stages with highly variable leadtimes
resulting from high traffic intensity (i.e., bottlenecks).

The sources of leadtime variability are not examined in detail in this
paper. Therefore, we do not address the effects of queueing or capacity
explicitly in the model. There are also some behavioral phenomena--particularly
"Murphy's law" of scheduling (everything takes at least as long as the planned
leadtime)--that cannot be incorporated into our model. We are taking a planning
perspective--a "macro" view--realizing that implementation of the policies that
we prescribe may affect the actual leadtime distributions. We recognize that
this is an important limitation of the analyses that follow. Nevertheless, this
represents a first step toward gaining intuition into the optimal "location" and
size of safety-time buffers.

We also believe that iteratively using the algorithm to determine planned
leadtimes and simulating the resulting policy (or, where possible, using
analytic results for tandem queues) to provide revised estimates of the leadtime

distributions may converge rapidly to optimal policies which fully incorporate

the queueing and scheduling effects. This belief is based upon results from

recent work by Rees et al. (1985) where the problem was one of determining the
number of kanbans for a single stage within a just-in-time inventory system.

They used observed leadtime distributions to determine the number of kanbans



(using the model of Weeks (1981)), simulated to find the new leadtime
distributions, and repeated until convergence was obtained (within a few
iterations at most). There is a direct correspondence between the planned
leadtimes in our model and the number of kanbans in the Rees et al. paper.
Thus, we would expect that the approach would be applicable and very workable in
our scenario as well. —

A description and formulation of the two-stage problem are given in
Section 2. In section 3 we discuss our approach to the problem and solution
techniques. A discussion of extensions to N-stage systems is in Section 4.
Computational results are reported in Section 5. We conclude with a summary and

discussion in Section 6.

2.0 DESCRIPTION AND FORMULATION OF THE TWO-STAGE PROBLEM

We first address the problem of determining optimal planned leadtimes in a
two-stage serial system in which a fixed quantity (predetermined) batch is
processed at each stage. The actual leadtime at each stage is stochastic but is
assumed to have a known or estimated distribution. We assume that the actual
leadtimes are mutually statistically independent and are twice differentiable.
Each stage in the production or procurement process incurs a non-negative cost,
increasing the "investment" in the production batch, and therefore inventory
holding costs as well. The objective is to minimize the sum of inventory holding
costs resulting from "early" completion and tardiness (or shortage) costs.

We assume that each order has a specified due date. The decision variables
are how much time to allow for each stage in the production or procurement
process. These planned leadtimes, in turn, are used to determine planned
dispatch times at each stage. The planned dispatch time at each stage is the
due date less the cumulative planned leadtime (i.e., the sum of the planned

leadtimes of that stage and all succeeding stages). The batch is dispatched at



the planned dispatch time for that stage if the previous stage of production has
been completed on time. Otherwise, it is "tardy" and should be dispatched
immediately.

The primary reason for holding back a batch that finishes a stage "early"
is that the cost of holding it at subsequent stages makes it uneconomical to
dispatch it immediately to the next stage despite potential penalty costs for
tardiness. Kanet and Christy (1984) provide an extensive discussion of systems
with "forbidden early-order departure," and provide an analysis for a single-
stage system.

Our objective is not simply to solve the two-stage problem, but rather to
develop a solution approach which may be useful for N-stage serial systems and

more general systems.

2.1 Problem Objectives

Organizations faced with the scenario described above may have differing

objectives, including:

(1) minimizing the sum of inventory holding costs and tardiness costs,
where penalties may be charged for tardy delivery to the customer or to
any intermediate stages, or

(2) minimizing inventory holding costs subject to maintaining a
specified on-time percentage for customers.

Penalties may be of the binary type (positive if tardy, zero otherwise) or some
other function of tardiness. We note that objective (2) above is equivalent

to a problem with objective (1) in which an appropriate binary penalty is
imposed.

The reasons for imposing a penalty for tardy delivery to the customer are.

evident. Penalties are applicable at intermediate stages in the production

process if, for instance, rescheduling, expediting, or an additional machine



setup is necessary.

In this paper we use a linear penalty for tardy delivery to the customer.
We believe that using penalties only for tardy delivery closely represents the
objectives of many manufacturing firms, since tardiness costs for the finished
product generally dominate tardiness costs at intermediate stages.

Throughout the remainder of the paper, stages of production are numbered so
that stage i is a predecessor of stage j if i > j (i.e., the last process to be

performed is stage 1).

2.2 Formulation of the Problem
Let
hi = holding cost (per batch) per period at stage i
P = tardiness penalty (per batch) per period for the finished product
T = actual leadtime at stage i
X; = planned leadtime for stage i (decision variable)
fi(y) = density of leadtime at stage i
F;(y) = leadtime distribution at stage i
E( *) = expectation

(*)* = positive part

F*G = convolution of two cumulative distribution functions (c.d.f.s)

We assume that hi < hj if 1 > j, since otherwise it would always be more

economical to dispatch immediately (i.e., X,

i = 0). 1If hy > hj, i>j, stage i

can be omitted from the analyses by letting the adjusted leadtime distribution

at stage j be the convolution of the distributions of stages i and j.



The problem can be formulated as:

X
minimize h, / 2(X2-u)f‘2(u)du (1)
0
X4
+ hy(Fy(X,) [ (Xy=t)f(t)dt (2)
0
X1 +X2 X1 +X2‘U
J J (Xq#Xy=t-u)f, (u)f, (t)dtdu} (3)
X2 0

+ p {Fp(Xy) ﬁm (t-X,)f; (t)dt
1

VA (E+u=X, =X, )£, (W, (t)dtdu) (1)
X5 X1+X2—u

subject to Xi 20, i=1,2.

The five terms represent: (1) expected holding costs incurred at stage 2,
(2) expected holding costs incurred at stage 1 when stage 2 is on time and stage
1 is early, (3) expected holding costs incurred at stage 1 when stage 2 is tardy
but the sum of the two leadtimes does not exceed the sum of the planned
leadtimes, (4) expected penalty costs.

This is a nonlinear optimization problem whose objective function may not
be convex for some combinations of costs and leadtime probability density
functions. The Hessian and sufficient conditions for convexity are presented in
the Appendix. However, as in most real-world inventory-related problems, the
principle of decreasing marginal returns generally holds, and the total cost
function is reasonably well-behaved. For the two-stage problem, more
specifically, given any value of X1 (the planned leadtime for stage 1) such that

F1(X) < (hy+p)/(hy+p), (5)

the Hessian is positive semidefinite for all probability density functions. In



addition, the Hessian is positive definite if leadtime probability density
function at stage 1 is such thaﬁ

£,(t) > 0 for 14 <t < T (6)
where T is the minimum value of T and ?1 is the maximum value of Ty (i.e., the
support of T has no gaps). For larger values of X1, the total cost function may
still be convex, but the conditions on costs and the probability density ‘
functions are much more restrictive. However, the optimal value of X1 does not
fall into this range, as we will demonstrate in Section 3. We will return to

the issue of convexity below.

3.0 SOLUTION APPROACH

Dynamic programming or enumeration can be used to solve discrete versions
of the two-stage problem, but more efficient procedures are needed for N-stage
and continuous-time problems. We first numerically confirmed convexity of the
total cost function since it might be ill-behaved in regions where convexity is
not guaranteed by the results in Section 2.2. For a few combinations of costs
(h2 <hy < p) and leadtime distributions (Poisson and negative binomial) the
total cost as a function of the two decision variables had a trough-shaped
response surface. One example is illustrated in Figure 1 for a case of
leadtimes having negative binomial distributions. Contour-lines indicating
level-sets have been included to highlight convexity of the surface. Also
indicated is the region in which X, < F1_1[(h2+p)/(h1+p)] where convexity is
guaranteed for continuous problems. We observed that the objective function was
quasi-convex even outside this region. With this added assurance that the
response surfaces appeared to be well-behaved even for values of X >
F1'1[(h2+p)/(h1+p)], we decided to proceed, assuming quasi-convexity of the cost
functions.

FIGURE 1



Taking first partial derivatives of the objective function with respect to

the two decision variables and setting them equal to zero yields:

X, +X
1
(hy+p) J 5 (WP (Xy+Xpmu) + (hy+pP)F(X5)F(Xy) = p = 0 (7)
X :
2
X +X
(h1+p) I fz(u)F1(X1+X2-u)du + (h2+p)F2(X2) - P = 0 3 (8)
X
2

Since the first and third terms of these equations are equivalent, the second
terms must be equal. Therefore, a necessary condition for a relative minimum
is:

Fi(X) = (hy + p)/(hy + p) if Fy(Xy) > 0 (9)
It is interesting to note that this is simply the solution to a standard newsboy
problem with adjusted costs. That is, if we set

p' =p+ hy

h' = h1 - h2
then F1(X1) = p'/(p'+h'). The penalty cost is adjusted upward to account for
upstream ramifications while the adjusted holding cost is the echelon holding
cost at stage 1.

Setting X, using equation (9), X, can be found by a one-dimensional search
using either (7) or (8). If the resulting X, is such that F2(X2) > 0 then we
are done. If, however, there is no solution to the equation such that F2(X2) >
0 then X, can be set to any value in [0,12) (i.e., stage 2 is always late) and
X, can be found using a one-dimensional search using (7) or (8).

In fact, if X2 = 0 then X, is found by solving a standard newsboy problem

using the convolution of the two leadtime distributions. More formally

where G12 = F1*F2.

Following is an algorithm for the procedure described above.



ALGORITHM
1. Find X, = F;"" [(hy + p)/(h) +p)]
X1+y
2. Find X, = {y > 0| (hy+p) [ = fo(u)F{(Xq#y-uldu + (hy*p)F,(y) = p}
y
if possible. Otherwise go to step 3.

3. Set X,=0. Find X =Gy, '[p/(p+h;)]where Gy, = Fy * F,

Step 1 finds the optimal value of X, assuming Fo(X,) > 0. Step 2 finds the
optimal value of X, given Xy from Step 1. If it is positive and Fo(X5) > 0, we
are done. Otherwise we set X, = 0 (or any value less than the minimum possible
leadtime at stage 2) and solve for X1 as if the two stage system were collapsed
into one stage.

Obser ve that there is another solution to the first-order necessary
conditions, namely X; = G12'1[p/(h1+p)] and X, = 0. It can be shown (see
Appendix) that if a solution with X1 > 0 and F2(X2) > 0 exists, the alternate
solution to the first-order conditions is non-optimal. (The determinant of the
Hessian matrix is strictly negative at this point). Furthermore, if the
solution with X2 = 0 is the only solution to the first-order conditions,

X, is strictly less than F;~' [(hy + p)/(ny *+ P)].

Given X, from either step 1 or step 3 of the algorithm, X, satisfies (8),
yielding a value which is strictly less than F2'1[p/(p +h,)] for any positive
value of X1. Thus X1 is greater than the solution of the standard newsboy
problem for Stage 1 alone, while X2 is less than if stage 2 were treated
separately. In most situations p > h1 and h2 is fairly close to h1. Therefore,
Xy 1s usually significantly larger than the median stage 1 leadtime.

The allocation of the total planned leadtimes between the two stages is
affected primarily by the relative magnitudes of h1 and h2 and by the absolute

magnitude of p. With large p, (i.e., p >> hy), there will be considerable



safety time at stage 1 regardless of the values of h1 and h2. On the other
hand, when p is closer to the value of h1, h2 is the primary determinant of X1.
A general conclusion is: the greater the values of p and hy,, the greater the
planned leadtime at stage 1.
We can also put a bound on the sum of X, and X,. Rewriting equation (7) we

have

X1+ X

Xo
But the left hand side of the equality is bounded above by G1Z(X1 + X2), SO we

have

Gyp(Xy * X5) > p/(p + hy)
and the equality holds whenever F2(X2) =0

3.1 Convexity Revisited

Recall the conditions required for convexity discussed in Section 2.2, If
Fy(Xy) < (hy+p)/(hy+p) then the objective function is positive semidefinite for
all leadtime distributions. Notice, however, a first order necessary condition
is F(X;) = (hy+p)/(h,+p) if F,(X,) > 0. Otherwise, F,(X,) = 0 and
Xy = 612_1[p/(p+h1)] < F1_1[(h2+p)/(h1+p)]. Therefore, the cost function is
convex over the relevant range provided (6) holds. This condition is
relatively mild and would be satisfied in most applications. Thus any solution
procedure which keeps X1 and X, within the relevant range and identifies a local

minimum will provide the global optimal solution.

10



4,0 EXTENSIONS
This basic approach can be applied to any N-stage serial system. The

resulting first-order conditions have the general form:

N N
(hy+p) PLI 15¢T X3]-p=0 (10)
j=1 J=1 :
N N m-1 N N
PLI t5¢ I X102 (y+pPLL 158 1 Xy,
j=m Jj=m n=1 j=n j=n
N N
I 1;> I Xy, k>n]
g D e
- (hy+p)} = 0 m=2,3,...,N (1)

where again the probability terms reflect the dispatching policy.

Thus, the equations required for the algorithm can be written easily and
need not be derived for each special case. Using the mth indexed equation
sequentially for m = 2, ..., N, one can solve for Xm_1 using the bracketed

terms, assuming that given the dispatching policy,

N N
PLE < IX]>0 (12)
J=m J=m

This assumption is quite innocuous in most cases. For instance, if X; > 1; for

all i (i.e., it is desirable to have the planned leadtime at least as large as
the minimum possible leadtime at that stage), this assumption will always be
satisfied.

In the event that XJ = 0 for some j, one may have to re-solve for the last

j that was found, if a first-order condition which was

originally satisfied assuming that X

positive value of X
j > 0 is now violated. (This generally is

true whenever an Xj is set to zero). One then continues with Xj+1. The value
of Xy is determined using equation (8). A flowchart for the three-stage problem

appears in Figure 3 to provide a flavor of the general approach.
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We have discussed characteristics of optimal solutions for two stage
systems in section 3.0. Analyses for N-stage systems reveals that for an N-
stage system,

X,* = min (F;"'[(hy + p)/(hy + p)1,Gyp ' Ling + p)/(ny + P)I,

Gip3 | Llhy + p)/(hy + D], o ..
Gyewey ! [p/(p + 1) D)

Obser ve that as N increases, each element added to the set of values in brackets
is at least as large as the minimum element in the previous set. For example,
in going from three stages to four stages, the first two terms remain the same.
Howe ver, G123-1[p/(p + hy)] is replaced by G123'1[(hu + p)/(hy + p)] which is
clearly at least as large. The term G123u'1tp/(p + h1)] is at least as large as
G123-1[p/(p +hy)] for any stage 4 leadtime distribution with mass not all at
zero. Thus X1 is non-decreasing with the number of stages.

Let us now examine what happens to X, as the number of stages increases.
Suppose that F,(X,) = (hy + p)/(n; + p) in both the two-stage and three-stage
problems. Then, for the two-stage problenm, X2 satisfies

X1+X
B 0) + ] Fp(u)Fy(X) + Xy = w)du
X2
=p/(p +hy)
For the three-stage problem, X2 satisfies
X1 +X2
Yo(Xy # X5) = F1(X1)F2(X2) +J fo(u)F Xy + X5 - u)du
X2
= (hg + p)/(hy *+ D)

assuming F3(X3) > 0.

It is evident that for fixed X1, X2 increases with the number of stages. If X1
increases, as indicated in the foregoing discussion, X, may decrease, but the

exact amount depends upon X1, the leadtime distributions, and the cost
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parameters. However, the combination of X1 and X, change in such a way that
Y12(X1,X2) which represents a measure of the aggregate level of leadtime
protection is non-decreasing in the number of stages.

Interpreting these results, we may conjecture that as the number of stages
increases, the aggregate level of protection for any set of consecutive stages
{1, «e, 1 } increases. This is consistent with our intuition that greater
uncertainty (by way of additional stages with uncertain leadtimes) necessitates
greater levels of safety time in successor stages. There may be economic
ad vantages in reducing the number of production stages (by enlarging each
stage), which the procedure can help to quantify. Further research is needed to
determine what types of cost parameters and leadtime distributions would
encourage this and how it can be accomplished from a managerial viewpoint.

The effect of the absolute magnitudes of leadtime variances on the optimal
planned leadtimes is apparent at all stages in the system. However, the effects
are most apparent at stage 1. The primary reason is that there is a portfolio
effect as n increases. Inmost cases (i.e., when F(X,) > 0), X, depends only
upon the leadtime distribution at stage 1, whereas the value of XN depends upon
on a distribution which is somewhat similar to the convolution of all the
leadtime distributions. Xj, j= 2,"7N therefore provides a buffer only against
the marginal effect of leadtime variance and has the added benefit of the
portfolio effect, keeping safety time quantities relatively small, even when
leadtime variances are high.

Relative values of leadtime variances (among the stages) affect the
"location" of safety time more significantly than do their absolute values. As
an example, consider the case of a two stage system. If stage 1 has a low
leadtime variance and the variance of the leadtime at stage 2 is high, it is

likely that a solution with X, > 0 will be optimal because Xy will be relatively
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small. On the other hand, if the variance at stage 1 is high and the variance
at stage 2 is low, it is more likely that X, = 0 will be optimal (i.e.,

Gy, 1 p/(p+hy)] < Fy 7 [(hy*p)/ (g +p) ).

5.0 COMPUTATIONAL RESULTS

The purpose of the computational study was to obtain some further
insight into the optimal location and quantity of safety time. We
constructed a large set of two- and three- stage problems (1780 two-stage
problems and 2160 three-stage problems) with leadtimes having Poisson and
negative binomial distributions. Although the Poisson and negati ve binomial
distributions result in zero leadtimes with positive probability, the
solution technique is unaffected for distributions without this
characteristic. We used discrete leadtime values for computational
simplicity and because many manufacturing control systems use discrete
leadtime data.

Typical numerical results for the two-stage problems gave positive
safety time at stage 1 and negative safety times at stage 2. However,
"degenerate" solutions with X, = 0 occurred in very few instances. Thus,
while the item would be dispatched immediately to stage 1 most of the time,
it would be held back if stage 2 were completed very early. Similar results
were obtained for the three-stage problems, with most of the safety time
near the end of the production process, and frequent occurrences of negative

safety time at the earlier stages.

6.0 CONCLUSIONS

We have developed a procedure to determine optimal planned leadtimes (and
therefore safety times) in two-stage production systems with stochastic
leadtimes. When extended to the N-stage system, the solution procedure provides

some insight into the character of the optimal solutions, and how solutions
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would be expected to change as the number of stages increases. This represents
a first step in the study of leadtime uncertainty in multi-stage production
systems, and is general enough to include most leadtime distributions.

One interesting result from these analyses and the computational study is
that immediate dispatching is usually not optimal. While it would be poséible
to make a comparison of the optimal policy and immediate dispatching, the
shape of the cost function suggests that the cost of the system may be fairly
sensitive to even small deviations from the optimal policy. This is evident for
X1 and much less so for X, in Figure 2, but one would expect decisions at
intermediate stages of production to be much more critical as N grows larger.
There are, of course, situations where immediate dispatching would be optimal or
nearly so. Such systems would have inventory holding costs almost constant
across stages (i.e., small echelon holding costs), and/or leadtimes at the
initial stages of production which have low variances. However, typical
production systems have higher leadtime variances (attributable to
longer average leadtimes and larger batch sizes) at the earlier stages of
production, so one might expect the echelon holding costs to play the most
important role in determining whether or not immediate dispatching is desirable.
In any event, the proposed algorithm can aid in clarifying these issues.

One important benefit from this approach is quantification of the savings
resulting from reducing the mean, variance, and/or skewness of the leadtime
distribution at each stage. The savings can be measured in terms of either
reduced planned leadtimes (and hence, the corresponding reduction in safety time
and work-in-process inventory) or reductions in total cost. Until now, it was
necessary to use simulation (or even real systems!) to set planned leadtimes by
trial and error. Our approach will permit both optimization and sensitivity

analysis to be done much more efficiently.
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Incorporation of uncertainty into the selection of planned leadtimes
represents an important step toward increasing robustness of manufacturing
planning and information systems. An area for further research is an
investigation of the robustness of solutions and system cost to errors in
estimation of cost and leadt;me distribution parameters. Nevertheless,
rudimentary sensitivity analyses can be done by varying the relevant parameters
and using the algorithm to determine corresponding solutions.

The insight obtained from the solution procedure may permit more complete
inclusion of queueing phenomena, and extension of the basic approach to more

complex systems. We are investigating generalization to such systems as well

(see Yano, 1985a, b, c).*

This research was partially supported by National Science Foundation grant
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Fi(X;) = (hy*p)/(ny+p)

X, determined using (1)

G12(X1)= (h3+p)/(h1+p) X3 determined géing (10)

X3 determined using (10)

G123(X1) = p/(hy+p) X, determined using (10)
DONE with X3 =0 DONE
DONE DONE
Figure 2

Flowchart for Three-Stage Problem
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APPENDIX

The Hessian for the two-stage problem has the following

components:
X +X
H11 = (h1 + p) [ f f2(U)f1(X1 + X2 - U)dUJ
X2
+ (ny + PIF,(X)E(X,)
X, +X
H12 = H21 = (h] + p) [f fz(U) f1(X1 + X2 - U)dU]
X2
X1+%,
H22 = (h1 + P) [fx fz(U) f](X1 + X2 - U)du]
2

= (h1 + p) fz(X2) F}(X1) + (hz + P) f2(X2)

Observe that Hyp 2 0 for all X1 and X5. In addition,
Xy +X5
det H = [(hy +p) J £o(Wf (X + X5 - u)du]
Xo
* {(hq + PIF(X5)f1(Xy) + £5(Xp)[hy + p = (hy + P)F (X)) ]}
2 -
+(hy +p)FE(X,)F 1 (X1 )E5(X,) [hp#p = (g +p)Fy(X;)]
which is clearly non-negative for all X, < F1‘1[(h2+p)/(h1+p)]. One simply=
stated sufficient (but not necessary) set of conditions for positive
definiteness is:
Xy > 0,f1(X1),and FZ(XQ > 0,
The first condition is always satisfied for any reasonable cost structure and

the second condition leads to (6) in section 2.2. The third condition is the

most interesting and we discuss it in more detail below.
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Obser ve that there are two possible solutions to the first order conditions
in (7) and (8):
(1) X, = F1'1[(h2+p)/(h1+p)] and X, satisfying (7) or (8) given this
value of X; such that FZ(XZ) > 0 (essentially X5 > 0), and

(2) X4 = G12"1[p/(p+h1)] and X, = 0.

We next demonstrate that if a solution of the first type exists, a solution
of the second type cannot be optimal. We use some graphical "proofs" because

they provide insight that an analytic proof cannot.

PROPOSITION: If a solution to (7) and (8) with X; = 5‘1'1[(r12+p)/(h1 +p)] and

X2 > 0 exists, it is optimal.

PROOF: We first note that both (7) and (8) are monotonically increasing in both
X1 and X2. Furthermore, since H12 > 0, the slopes of the curves representing
the sets of points satisfying (7) and (8), respectively, are negative (but
finite) over their entire range.

Let us examine a case where both types of solutions exist. Figure A-1
depicts some representative curves composed of points satisfying (7) and (8).
Observe that they intersect in two points. Since the slopes of both curves are
negative (but not infinite), the intersection at X, = 0 necessarily has X,
strictly greater than F1'1[(h2+p)/(h1+p)]. At this intersection point, Hyy > O
but it is easily shown that det H < 0, so this point cannot even be a local

minimum. (O

We next demonstrate that if the only solution is of the second type, the

optimal value of X; is strictly less than F1-1[(h2+p)/(h1+p)].
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PROPOSITION: If a solution of the first type does not exist,

X; < FyT1L(hp*p)/(hy+p) L.

PROOF: Since a solution of the first type does not exist, the set of points
satisfying (7) and (8) intersect in only one point (depicted in Figure A-é), and
at X; = F1’1[(h2+p)/(h1+p)], there is no point on either curve where X, > O.

For (8), a solution exists when Xy is as small as zero. Thus, (8) extends from

X1 0 to the point of intersection of the two curves, and at all points has
X5 > 0. Thus, F1h1[(h2+p)/(h1+p)] must be strictly larger than the value of X,
at the point of intersection and we must have

0 < X < F1’1[(h2+p)/(h1+p)]. O

FIGURE A-2

The only point that remains to be clarified is that the solution in which
X2 = 0 is not unique, since when F2(X2) = 0 the Hessian is only positive

semidefinite. This point is discussed more fully in Section 3.
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points satisfying (7)

points
satisfying (8)

-1
BT [(hy#)/ () ] X,

Figure A-1

Situation where Solution with X2>0 Exists
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points satisfying(7)

points satisfying(s)

6, To/pHh )]

Figure A-2
Situation where Solution with X2>O

Does not Exist
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