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ABSTRACT
For the first steps of cavitation researches the very impor-

tant general peculiarity of supercavitating flow was found 
which discovered practical independence of cavity sections 
expansion in motionless fluid.  This peculiarity gave the possi-
bility for practical estimation of the cavities in the most part of 
applications.  The paper presents    the system of the simple 
dependencies for practical calculations of axisymmeric and 
near to one supecavitation flows with account of its perfection 
on the base of modern achievements of the theoretic and ex-
perimental research which based on the property of independ-
ence of the cavity section expansion. Main attention is paid to 
asymptotic dependencies on the base of Slender Body Theory 
and   heuristic models. The calculations examples of steady and 
unsteady cavities for motion under gravity, axelration, har-
monic oscillation of pressure are given. The problems of venti-
lated cavities and possible ways of drag reduction for motion 
with supercavitation are considered. 

Key words:  high speed hydrodynamics, supercavitation, cav-
ity, drag reduction.

INTRODUCTION
The supercavitation application give the possibility isolated 

body against water avoids the viscid losses of boundary layer 
and considerably reduces resistance at high speed motion in 
water. Application of supercavitation regime give the possibil-
ity to reach very small drag coefficients   and the smaller - the 
smaller is cavity aspect ratio. These values can reach values   
~ 0.01 and less and are restricted by maximal body aspect ra-
tios from point of view of its strength. The most important for 
realization of motion the problems of hopeful defining of the 
form, main sizes of the cavity and cavitation drag are together 
with possibilities of the drag decreasing.

The base of the theory for the most typical range of high 
speeds 100 200 м/с   and over is the problem of mathematical 
statement for potential flow of ideal incompressible fluid with 
unknown before solution free boundaries. Basic parameter de-

fining cavitation flow is Cavitation Number
2

c2(P P ) / U     , where: cP P P    is pressure difference 

in the flow and cavity,  -  water mass density, U - flow speed 

at infinity. Bases of  supercavitation are expounded in a num-
ber of known publications [ 3, 7-9, 13, 14 , 31]. Under the first 
steps of researches for 1940-50 these problems were solved in 
the most part on the base of simplest heuristic approaches and 
integral conservation laws with basic on experimental dates. It 
was found here: ellipsoidal steady axisymmetric cavity form  
R R(x)  (1a) ( r, x - cylindrical coordinates system connected 

with cavitator),  first order dependence for maximal cavity ra-
dius (1b kR  (H. Reichardt, G. Logvinovich, L. Epshtein [7, 8,

17]  and first order dependence for aspect ratio of slender axi-
symmetric cavity  (1c) (P. Garabedian) [11], known asymp-
totic for expanding of the cavity section for 0  at infinity 
was found (1d) (М. Гуревич, N. Levinson) [13, 16]:
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n nx x / R ,  R=R/R ,

(1)

where: n d doR ,c ,c - accordingly: radius, drag coefficient of 

cavitator and it’s value for   0  .  kL - semi-length of steady 

for const   cavity. 

LINEARIZED THEORY - BASIC RESULTS
It is need to note that the most important for applications 
namely the maximally slender cavities are as the most impor-
tant for providing the minimal cavitation drag.  With account of 
this fact further more deep advancing of supercavitation re-
searches was achieved under next steps in the fields of devel-
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opment of linearized theory of axisymmtric supercavitation [18, 
20-29,33] on the base of known Slender Body Hydrodynamics 
(SBH) [2, 10], theory of small perturbation of axisymmetric 
cavities [34, 36] and development of nonlinear numerical meth-
ods for prediction of flows with free boundaries [4-6, 12, 15, 
35] ]. Below the attempt to analyze and precise existing system 
of the simplest dependencies (1) on the base of results of lin-
earized theory with ground on known nonlinear numerical cal-
culations and experimental date are undertaken. Idea to develop 
linearized theory of axisymmetric supercavitation was proposed 
by F. Francel and E. Karpovich, 1948  in their known book on 
gas dynamics of slender bodies [10]. Note here the results of 
the linear 2D supercavitation by M. Tulin  [31]  stimulated re-
searches in axisymmetric case.
Base of linearized theory of axisymmetric supercavitation on 
the base of Matched Asymptotic Expansion Method (MAEM)
[32] under approximation of the Slender Body Hydrodynamics 
(SBH) [2, 10] were developed in works [18, 20-29, 33]. Basis 
here is integer-differential equation for slender axisymmetric 
cavity r R(x)  which in the case of slender cavitator 1r r (x) is:
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(2)
Here   is slenderness parameter with value  O(1/ )   ,  -

cavitator and cavity as whole  aspect ratio. Below for each term
of equations it’s order for 0   is indicated. In the case of 

small disc type cavitator with radius 2
nR ln1/    the cavi-

tator action is described by pressure sources instead of integral 
term for case of slender cavitator. For development of asymp-
totic theory    outer second order solution for largest middle 
part of the cavity for given cavity semi-length and 

const  was found and defined second order dependence for 
cavity aspect ratio (2a) [21] which have been précised first or-
der dependence (1d.) [11]. Further researches advancing [18, 
20, 26, 33] given the possibility to define third terms in asymp-
totic (2a.) and, matched it with the outer solution [21], to find 
second order dependencies for cavity maximal radius kR (2b)

and  cavity semi length kL (2c.):
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(3)

which are applicable also for subsonic flow,  2m 1 M ,
M - Mach Number. Comparison accuracy of dependencies (3) 

with results of nonlinear numerical calculations [12] is given in 
in Tab.1.

\ 0.03 0.04 0.05

   dependence  (3a.) 11.33 9.291 7.924

 numerical calculation [12] 11.46 9.453 8.132

kR  dependence (3b.) 5.537 4.834 4.357

kR  numerical calculation [12] 5.554 4.845 4.362

kL  dependence (3c.) 63.497 45.583 36.109

kL  numerical calculation [12] 63.518 45.8 35.473

Table 1: Comparison of calculations results  on the base of   
linearized theory (3) as compared to nonlinear numerical cal-
culations date  [12]

Табл. 1 and also experimental date discover stricken good co-
inciding theory with numerical and experimental date along 
very wide range of the cavity aspect ratios essential for applica-
tions. So these results are applied for further consideration as 
base for receiving more simple and convenient dependencies 
for practical calculations of supercavitation flows. The signifi-
cations in essential part of paper are similar as in known book 
by G. Logvinovich [17]. 

STEADY AXISYMMETRICAL CAVITIES
Simplest flow model

Figure 1:  Radial flow model.

Creating a slender axisymmetric cavity can be explained 
with help of a simple model of radial flow, Fig. 1. In the case of 
prolate cavities the cavitator size is small and its drag is practi-
cally independent on the cavity form, additionally the cavity 
form is independent of the cavitator form which is defined by 
the cavitator drag only. The moving cavitator pushed the mo-
tionless fluid aside and its work is transformed into kinetic en-
ergy of mainly radial near cavity flow in the each motionless 
section which the cavitator has passed. In the main perturbed 
zone the main part of energy and impulse of flow is concen-
trated in finite region limited with a boundary  r (x, t)   with 

extension of some more as compared to the semi-length of the 
cavitator and the cavity surface. This fact makes the cavity 
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alike as a wake of definite type.  Further the expansion of the 
cavity section together with the radial flow near the cavity is 
controlled by inertia and the pressure difference in the undis-
turbed flow and inside the cavity.  In doing so the expansion 
process depends weakly enough on the surface r (x, t) 
form (x, t – axial coordinate, time) and the less the more slen-
der is surface of cavitator and cavity as whole.  The cavity sec-
tion reaches the maximal radius in the middle part and further 
starts to decrease by the action of the external pressure. Shrink-
ing of the cavity section is leads to an unstable closing regime 
with chaotic flow where the energy of radial flow is trans-
formed into energy of the wake behind cavity. 
Some elements of this simplest model on mention of G. Birk-
hoff (1971) [7] were offered by him in a coauthor with R. 
Isaacs as early as 50th. The completed type of this model [18,
22] is developed on the base of SBH and  is one of  the bases of 
practical methods for calculation of supercavitation.

Cavitators drag
Drag D of disc type cavitators: disc, blunted cone and i.e. 

with fixed section of separation practically depend not on fluid 
viscosity and are defined by known dependence: 

a)   
2

2
d n

U
D D( ) c ( ) R

2


     ,

b)  d doc c (1 )  ,        c. d doc ~ c   ,

(4)

where nR  cavitator radius in the section of separation, in case 

of disc: doc 0.82 0.83  . Dependence for drag coefficient in 

the case of cone for doc ( )  at 0   where  - cone semi-

angle is illustrated by Fig. 2. Here the most hopeful date for  

doc ( )  applied on the base of date of nonlinear numerical date 

of numbers of authors and with account of  also experimental 
date in particular presented in [17] and some different as com-
pared to nonlinear numerical calculations.

Figure 2: Dependence  for  cone drag coefficient doc ( )
———  nonlinear numerical calcullations [12,15]
    asymptotic approximation  (5)

For small cone angles the preference is given to the date of spe-
cialized for this case of nonlinear numerical calculation [15] 
and also with account of date of linearized theory. For consid-
erable angles including disc the preference is given to date of 
nonlinear numerical calculations [12] which are turned out to 
be near enough to date of specialized calculations for small 

cone angles. For estimation of doc  till semi-angles o2 90  , 

tan     the asymptotic approximation can be used:

2
do

3 (1 (4 / 3) )
c 2 ln

2e m

      
(5)

In the case of disc type cavitators dependence d dc c ( ) 
is described good enough  by formula (4b). At present there are 
here more accurate approximate formulas for disc on the basic
of  nonlinear numerical calculation, however dependence (4b) 
is applicable enough for practical estimations. In the case of the 
slender cavitators the formula (4c) is valid in case of cavitator 
essentially more slender as compared to cavity only. 

Disc cavitator is the most effective for applications from 
point of view of the motion stability. For deflection of the disc 

plane for angle  :  90   ,  - attack angle normal com-
ponent of drag coefficient on the base of experimental date of  

[17] is described good enough by dependence til ~ 45  :  

don doc ( ) c cos 

Here   is attack angle, (without of disc deflection:  
o90 ,  0    ). In doing so the components of longitudinal  

doxc  and lateral doyc  forces relay to motion direction are de-

fined accordingly by dependencies:  

2
dox doc ( ) c (cos )  , doy doc ( ) c (cos )(sin )   . (6)

In the case of slender cavitators, included slender cone, lat-
eral force yF  and inductive drag xF  can be estimated by known 

aerodynamic dependence on the base of lateral added mass in 
the section of the flow separation:

2

y n
U

F 2 S
2


  ,  
2

2
x n

U
F S

2


  ,

where  nS cavitation  cavity square in the separation section, 

 cavitator attack angle. 

Simplest solutions for the cavity form
The most simple form of slender axisymmetric cavity for 
const   is known ellipsoidal one k kR R / L ,  x x / L  :

2 2R (1/ )x(2 x)   .

Developing of heuristic approach of  G. Birkhoff and R. Isaacs 
[7] for prediction of steady cavities of constant pressure only 
gave the possibility to generalize this approach on the base of 
(SBH) for calculation of the most general case of unsteady 
cavities  under changing  on  x, t   pressure difference 

cP (P P ) P(x, t)      between outer pressure and pressure 

on the cavity surface 1972 [21-24]. Elementary to the limit 
variant of these equations for steady cavity is: 

a)   
2 2

2

d R
(x) 0

dx
   

b)  
2

2
x 0

dR D
 2

dx k U




2

x 0
R 0 ,     




(7)
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Here in the first initial condition the energy conservation law is 
used for the energy which passed by cavitator into radial flow 
behind cavitator at initial moment. In doing so in the second 

conditions (7b) for cavitator sizes  2
nR ~ O( ln1 / )   is ne-

glected for  0  , ~ 1/  For const   these equations 
define ellipsoidal cavity  and known dependencies for it’s sizes:

2 2d
n

2c
R R x x

k 2


 

 
(8)

d
k n

c
R R

k



,  d

k n

c 2 / k
L R





, 2 2
 


(9)

Figure 3: Ellipsoidal cavity form

    -- -- -- dependence (14),    numerical calculation [12]

The equations (7-9) can be used for calculations of the cavities 
of alternate pressure and in particular steady vertical cavities.
The equations include 2 typical values which have clean phys-
ics. Key idea to obtain these equations system is following. We 
approximate cavity form by equation of first approximation of 
type (7a), but in doing so we find the coefficients  , k  as  de-

fined on the base of more accurate second order  theory  in par-
ticular on the base of integer- differential equations (IDE) for 
slender cavities. Initial base for defining      value is depend-

ence (2a, 10a). Value of  characterizes inertial properties of 

the cavity sections and is alike as definite inertial coefficient 
similar added mass value and defined by dependencies (10):

a)  ln
me


 

b)  
2

2 2

 ~0.04 0.02

ln 2 / m 1.5
ln 0.5ln

em m
 


 

 
 , (10)

~0.04 0.02
~ 1.8 2.2  

Initial base for defining of k  value is dependence (2b).
Howe ever notes that experiments [8, 17] discover not high 
increase  of k    ~ 2-3% as compared to theory on the base of 
ideal fluid due to viscose loss.

  
2

 ~0.04 0.02

2 ln 2 / e
k 1 ~ 0.92 0.93

ln 4 / m  

  


(11)

Dependencies (10, 11) (especially the first of its) give the 
possibility to obtain the solutions with very accurate signifi-
cances of main cavity sizes in the case of prolate cavities which 
are close enough to steady cavity for  const  . They are ap-

plicable in very wide range including even case of super slen-
der cavities under super high speeds in water compared with 
sonic speed. It’s more rough dependencies and significance 
correspond to range of ~ 0.04 0.02  . In the case of cavities 
of alternate pressure which are not strong differenced of

const   this values    and k   can be applied as   for 

const  .  Under considerable difference the values    and in 

less measure k   should be found on the base of (IDE).

Figure 4 :  Dependence of inertial coefficient ( ),  ( )   
    ———  Eq. (10),  -- -- -- values of 5% deflections for  ,

       - numerical calculations 2 / 2  [12]

Figure 5:  Dependence for coefficient k k( ) 
———  Eq. (11),  - - - - - H.  Reichardt dependence, 

   -  numerical calculations [12]

The calculations results of the dependencies (10, 11) for  
and  k  values as compared to nonlinear numerical calculation 
date [12] are illustrated by Figs. 4, 5. 

Equation (7) for const   have clear energetic physics 
expressed law of full energy kinetic kxE  and potential pxE   

conservation in the each section which passed  by cavitator at 
the initial moment. 

22
2 2

k x px
dR

E E U R P D / k
4 dx

 
        

 
(12)
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k \  0.01 0.02 0.025 0.03 0.04

Dependence (11) 0.936 0.927 0.924 0.921 0.916

Numerical calcula-
tion [12] 0.936 - - 0.920 0.916

Approximate de-
pendence [12] 0.96 0.942 0.936 0.931 0.924

H. Reichardt [12] 0.987 0.981 0.979 0.977 0.974

G. Logvinovich [17] 0.96 1

Table 2: Comparison values k  with dates of different authors 

\  0.01 0.02 0.025 0.03 0.04
0.0002

0.7M

Numerical calcula-
tion [12]

23.00 - 12.82 11.46 9.45 -

Dependence (17a) 22.69 14.90 12.91 11.46 9.47 220.65

Dependence (17b) 22.38 14.69 12.80 11.55 9.52 211.22

P. Garabedian (1c) 21.46 13.99 12.15 10.81 8.97 206.36

Dependence (17c) 20.00 14.14 12.65 11.55 10 141.42

H. Reichardt  [12] 21.69 14.00 12.17 10.83 8.96 618.02

G. Logvinovich [17] 20.52 14.21 12.58 11.34 9.63 148.07

L. Epshtain [8] 16.58 11.67 10.41 9.48 8.17 117.84

Table 3: Comparison values    with dates of different authors  

Tables 2, 3 illustrate results of comparison of key for pre-
diction of the steady cavities values  ,  k  of different authors.

Elementary variant of equations   (7) is the most conven-
ient for theoretical consideration giving accurate enough sig-
nificances for main cavity sizes ant it’s volume. More accurate 
equations system roughly applicable also near disc  is:    

2 2

c 2

d R
0

dx
    ,

2
d

n
cx 0

2(c k )dR
R

dx k


 



, 2 2

nx 0
R R


 ,

(13)

where value c   some precise solutions with account fi-

niteness of  back closer. For const   we have here also ellip-
soidal cavity, but starting from cavitator of finite sizes.  

2 2 2d
n n

c c

2(c k )
R R R x x

k 2

  
  

 
(14)

Calculation results Eq. (14) on the base of Eq. (13) are illus-
trated in Fig. 3 as compared to nonlinear numerical date [12].

Steady axisymmetric cavity main sizes 
Systems of very accurate dependencies for maximal cavity ra-
dius kR , cavity semi length kL  and it’aspect ratio   for 

steady const   cavity on the base  of approximations  of sec-
ond order solutions of linearized theory  together with ap-
proximation of this values for the range  of ~ 0.04 0.02   are:

d
nk

c
R R

k



,    

2

2ln2 / e
k 1 ~ 0.92 0.93

ln 4 / m
  


(15)

a)   
2

dn
k 2

cR ln(2 / m )
L ln

k em




 

b)  dn
k 2

cR 1.5
L ln

k m


 
,      c) n

k
2R

L ~


(16)

a)
2

2

1 ln(2 / m )
ln

em


 

 
, 

b)   
2

1 1.5
ln

m
 

 
          c)     

2
~



(17)

Here for 0.7 0.8 M , 2 2m 1 M ,  M is Mach Number.

Figure 6:  Dependence for cavity aspect ratio ( )   

———  Eq. (18a),        numerical calculations [12].

Fig. 6 illustrates calculation results for aspect ratio for 
const   cavity as compared of nonlinear numerical date

[12}.  With account of excellent coinciding date of asymptotic 
solutions for slender cavities with date of nonlinear numerical 
calculations and experimental date presented dependencies can 
be considered at present as the most hopeful ones for very wide 
range of  . The form of stable cavity form usually is good
enough described as fixed one for more ~ 2/3 of its length.

Nonlinear approximation of steady axisymmetric cavity 
It is possible to note as it can see on  Fig. 3 that ellipsoidal 

approximation rough enough describes the cavity near to type 
disc cavitator. However more important here is the fact that real 
cavity far enough from cavitator is in considerable more long 
region near to known asymptotic  M. Gurevich, N. Levinson 
(1d) which is essentially different of paraboloidal cavity form
for ellipsoidal approximation of the cavity. Approach of lin-
earized theory give the possibility to construct accurate enough 
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asymptotic approximation of the form of steady for 
const  cavity behind disc nR 1 :

2
2 2 k m

n 2
xx k kc

L x x
R R 2

L L

 
     

,   2 2
c k   ,

2

2

k k

42
2 2 k

n 2
* k k kc

xx

x
(x e ) 2 e

L L

L x x
em R 2 1 e

L L L

0.5ln


   

 
  



           
     
     

     



n d
d

1
0.5R c

c

 
    

 
,   

km x x L|    .

For: ~ 0.01 0.05  : * ~ 2

(18)

Figure 7: Nonlinear approximation of the cavity form 0.04 

      ellipsoidal cavity form,
———  nonlinear approximation  Eq. (18),
+  +  +  +  G. Logvinovich experimental date [17], 

           nonlinear numerical calculation [12]

Approximation (18) give good enough results start from 
~ 0.05  and   till range of super slender cavities for subsonic 

speeds 0.7 0.8 M .  Fig. 7 illustrates calculation results on 
the base of approach (18) as compared to ellipsoidal approxi-
mation and non linear numerical prediction results [12]. 

UNSTEADY CAVITIES PREDICTION: “PRNCIPLE OF 
INDEPENDENCE OF CAVITY EXPANSION” 

For prediction of unsteady cavities application of the coor-
dinate system r,  x,  t  ( t -time) connected with motionless fluid 
is the most effective. One of the most important properties of 
axisymmetric cavitation flows in the case of slender cavities is
essential independence of expansion of the cavity section de-
pend on expansion of neighboring cavity sections and also
cavitator and cavity form as whole. This property was discov-
ered in experiments long ago by H. Reichardt what gave the 
possibility for G.Logvinovich to formulate this fact with help 
known “Principle of independence of the cavity expansion”:
"Each lateral section of the cavity is expanded relay to trajec-
tory of the body center near independently on the body motion  
before and after passing of this section  along definite law 
which depend on pressure difference at infinity and cavity, 
speed, sizes and drag of body only at the moment of passing by 
it the plane of the section under consideration. This formulation 
is approximated and can not be proved rigorously but is acted 

the more accurate the more near body motion to the direct line 
and with const speed.”

On the first steps of caviitation researches the property of 
cavity expansion independence was applied on the base of this 
principle along following way.  Defined by some or another 
way form of steady for const   cavity is presented in the 
motionless coordinate system and expansion of the sections of 
unsteady cavity is defined on the base of the dependence for 
this steady cavity depend on date for initial moment of passing 
by cavitator of this section. This way conserve some of its
value and even till now day.  

Figure. 8: Cavity under step increase  of the cavitator size

      undisturbed cavity under o 0.04 
———  cavity under step type decrease of   nR

However this way gave not the possibility to calculate the 
cavities in the important for applications case of cavities under 
alternate pressure difference. Generalization of the steady sys-
tem (13) for prediction of wide range of unsteady steady cavi-
ties with changing pressure difference is:

2 2

2

R 2 P(x, t)
(x) 0

t

 
  


,

 2
d

n

t t (x)n

2 c (x) k(x) (x)R
R (x)U(x)

t k(x) (x)


 


 

2 2
n

t (x)nt
 R R (x)


 (19)

By the first primitive  way  the number of cavitation flows in 
particular for enter into water and motion with acceleration was 
calculated by H. Abelson, 1970 [1], Yu.  Zhuravlev, 1970,  
[34], A.  Boldurev 1973 and other ones. All these solutions can 
be found also on the base of equations (19) too as some special 
cases.  The system of equations (19) what was obtained on the 
base of lineariszd theory in (SBH) approximation is really as 
modern presentation of the “Principle of independence of the 
cavity expansion” and has very clear physics. Cavitator for 
general case with  alternate size nR (t)  and drag coefficient 

dc (t)  moving in motionless fluid with alternate speed on law 

nx x (t)  at the moment of time nt t (x) passes motionless

coordinate х. In doing so the cavitator create initial section of 
the cavity and energy of his resistance is transformed with
some correction   k(x) to the radial flow at initial section cavity 
behind cavitator. After that the process of independent expan-
sion of cavity section under pressure difference P(x, t) without 
action of neighboring sections is started. All initial values in the 
system (19) are applied for the initial moment when cavitator 
passed given motionless section of fluid : 
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n
n n t t (x)

R (x) R (t)  ,
n

d d t t (x)
c (x) c (t)  ,

nt t (x)
(x) (x, t)    ,

 where function nt t (x) is defined as reversed to function 

nx x (t) . For dc (x) its quasi steady significances are used. 

The solution of the system (19) in general case nR (t) , 

dc (t) , U(t) , P(x, t)  is defined  by integral:

 

n n

2 2 d
n n n

t t

t (x) t (x)

c (x) k(x) (x)
R R (x) 2R (x)U(x) t t (x)

2k(x) (x)

2
P(x, t)dtdt

(x)

 
   



 
  

(20)

In particular case P P(x)   universal dependence is: 

 

 

2 2 d
n n n

n
2

c (x) k(x) (x)
R R (x) 2R (x)U(x) t t (x)

2k(x) (x)

P(x)
t t (x)

(x)

 
  




 



(21)

and in particular for 2  express solution for the case pre-

sented in Fig. 11. This integral for  constant cavitator speed and 
pressure difference define ellipsoidal cavity and includes really 
all obtained earlier by traditional way simplest solutions on the 
base of principle of independence.  With account of week 
change of the values of   , k  simplest variant for estimation 
of cavities, which are  not very strongly different as compared 
ordinary steady cavity, is to apply   this values in the range of 

~ 0.04 0.02   as universal constants  ~ 2,  k~0.93-0.96 .

Figure 9: Cavity under acceleration - desecration of speed

      undisturbed cavity under o 0.04 
———  a 0 - acceleration , a 0 - deceleration 

 More accurate solutions are obtained for using of this values as 
functions (x),  k(x)  defining characterize significances of this 
values for each expanding section which the most  easy to de-
fine on the base of steady solutions. Application of (x),  k(x)
is some averaging of this values along time for each cavity sec-
tion what can limit  applicability of this solution by conditions 
of the type  

* * *U T L O(1)   for typical values of speed, cavity 

length, time length of this process. More precisely construction 
of the values for (x, t),k(x, t) provided more accurate solutions 
we can provide if will calculate these values with some delay 
defined on the base of dependence for  semi-length of steady 
cavity KL . Here dependence for steady const   cavity (16) 

can be used calculated on the base of values for considered 
section as:    k( x L (x) , t)  ,  kk (x L ), t . Here calculation 

until kx L  started on the base of values without delay and for 

kx L  delay correction is included.  For very strong differ-

ences cavity form of steady const  cavity for example in the 
case of vertical cavity under gravity with sharp end the values 

,  k  should be found separately on the base second order equa-
tions. One of the way to precise   here is prediction of this 

value on the base of steady dependency but with more close to 
reality cavity typical aspect ratio of the cavity values.

Figure: 10: Cavity - harmonic oscillations of pressure 

      undisturbed cavity  o 0.04 
———   cavity  for harmonic oscillations of  pressure on time 

Solutions (20-21) give the possibility to analyze typical 
cavity form for different cases of flow. Below for calculations 
of the solutions the values of ,  k  for first approximation are 
accepted as for o ~ 0.04   . Cavity form is presented finally 

in the coordinate system connected with cavitator.

Figure 11: Cavity for water entry, experimental date  [34] 
Points corresponds calculation by Eg. (19, 21) for ~ 2

Step change of nR (t) , dc (t) , and cavitator speed nU (t)  under 

const pressure difference in particular close to step type change 
found similar typical disturbances of the cavity form of local 
type. Fig. 8 illustrates change of the cavity form in the case of 
step change of cavitator size. Acceleration action is calculated 
for the case when accelerated and decelerated motion is started 
from the same speed under not changing of other parameters.  
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Fig. 9 illustrates the cavity form at the moment when cavitator 
reach distance which equal of the length of undisturbed cavity 
at initial moment.
 Analogously on the base of equations (21) the cavity under 
alternate pressure difference are estimated.  Fig. 10 illustrates 
action of pressure difference corresponding harmonic oscilla-
tions of the pressure in the cavity. Like this forms are observed 
in particular for the case of cavity oscillations in known theory 
by E. Paryshev [19] of ventilated axisymmetric cavities oscilla-
tions based on equation system (19). Accuracy of prediction of 
unsteady cavity form is illustrated by Fig.11 with date of ex-
perimental study performed by Yu. Zhuravlev [34] in the case f 
vertical enter body into water. Calculated points corresponds 
estimation on the base of system (19) – universal solution (21 ) 
for   ~ 2 .

Figure 12: Correction  coefficient (x)   distribution in 

case of  steady cavity for 0.04 

Linearized theory gives the possibility correct solutions (20, 
21) near cavitator  zone in the case of blunt disc type  cavita-
tors. This correction in general case can be made for final step 
of solutions on the base of Eq . (20) with help   précising.
Steady case: It is  supposed  disc  with radius nR 1 , coordi-

nate system is connected with cavitator, FR is corrected solu-

tion applied also near cavitator zone: 

2 2
FR (x) 1 (x) R (x) 1      ,   x

x

(x)
(x)

(x)

  
 


,

 x 0.5ln 1 x(2 x / (L 1)    

(22)

Correction result of simplest solution   in the form of ellipsoidal 
cavity (14) which was received on the base of dependencies 
(22) is presented in Fig. 3 by solid line and practically coin-
cides with date of nonlinear numerical calculations.   
Unsteady case, coordinates system is connected with mo-
tionless fluid; corrected solution FR  is defined by dependen-

cies:

2 2 2 2
F n nR (x, t) R (x) (x, t) R (x, t) R (x)     

x xt

x xt

(x) (x, t)
(x, t)

(x) (x, t)

  
 

 
  

c n nT (x) [L (x) R (x)] / U (x)  

(23)

U (x) [t t (x)]U (x) / R (x)n n n n(x, t) 0.5ln 1 [t t (x)] 2nR (x) 1 T (x)U (x) / R (x)n n n

         
    

where L ,T   the cavity semi-length and semi-term    until sec-

tion cavity with  radius what is  equal nose cavitator radius. For 
steady const  kL L  ,  k kT T L / U   .  Correction 

dependencies (21, 23) are essential for not large forward and 
back parts of cavity only, so these corrections are applicable for 
very wide range of different cavities what is used in applica-
tions. Fig. 12 illustrates values of correction coefficient

(x)   for case of steady cavity for  0.04  Dependencies 

(22-23) can be used for correction  in the cases when nose ra-
dius are not the same value as cavity back closer. For such case 
correction dependencies are applied separately for forward and
back part of the cavity. The radius of equivalent disk of cavity 

closer can be  found on the base of value of 
2

R

t




at the back of 

the cavity.

3-D PERTURBATIONS OF AXISYMMETRIC CAVITIES
The most interesting here is possibility to estimate action of 

lateral gravity and attack angle of cavitator on cavity form. The 
main part of deformations here is lift of the cavity axis 
h h(x) .    Approach for estimation of these deformations was 

proposed by G. Logvinovich 1969, [17]. It is supposed that 
cavity section is near to circle and impulse theorem is used for 
laterally moving sections of the cavity. Dependence for cavity 
axis lift under action of lateral gravity for steady flow in the 
system coordinates connected with cavitator is: 

x x
2

g o2 2
o o0 0

g 1
h R (x)dx dx

U R (x)

 
 
   
  (24)

Elementary solution for const   on the base of undisturbed 
ellipsoidal cavity oR R (x)  is:

a) 
2 2
k

g 2
o

g L 1 x x
h x 2ln 1

3 2 2U

       
   

,  b)
2 2
k

g 2
o

g L x
h

3U
 . (25)

Here g  is gravity.  Dependence (25b) proposed by Yu. Zhurav-

lev, 1972, [34] can be defined by Tailor expansion  on the base 
of dependence (25a).

Figure 13: Axis lift of cavity under gravity and cavitator at-
tack angle actions

    gh - dependence (26a), 

  - - - - - -  gh  - dependence   (26b)

  ———    h - estimation on the basic of undisturbed

  ellipsoidal cavity form 
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Analogously dependence for axis curvatures under cavitator 
attack angles is obtained: 

x
y

2 2
o o0

D dx
h

U R (x)
  

  . (26)

However application here oR  on the base of ellipsoidal form 

gives more rough results so main effects here as distinguished 
from gravity case are concentrated namely in the nonlinear 
zone   near cavitator.  For more corrected prediction here de-
pendencies for more accurate cavity form (18) can be used.  
Fig. 13 illustrates action of the gravity on cavity axis gh , ac-

tion of  deflection of the cavitator plane on cavity axis h  ( on

the base of ellipsoidal form of undisturbed cavity) in the form 
of the dependencies:

2
g o

g
k k

h U
h

L gL
 ,  dx

k dy

ch
h

L c  
 , kx x / L (27)

Dependency (25) indicates lift increasing for decreasing of the 
Froude Number relay to cavity semi-length. Axis curvatures 
under action of the deflection of the cavitator are near linear 
dependence on lateral force coefficient and cavitator size. De-
pendencies of type (25-26) analogously can be written in the 
coordinate system connected with motionless fluid and can be 
applied for prediction of this type deformations of unsteady 
cavities too.

Figure 14:  Cavitation drag coefficient DfC ( , )   Eqs. (29, 

29a) depend on given  f ,  , for f 8,  16  , p 1 

———   - dependencies (29)

       - dependence (29a) for   x  

CAVITATION DRAG
More informative the drag coefficients per definite cavity 

section are. This is drag coefficient for forward part of the cav-
ity D0C  under 0   for motion in the forward part of the cav-

ity and drag coefficient per middle cavity section DC :

f
D0 2

f

ln(4 / e)1
C

8





,  D 2

2
C k ln

2


  


 ,  (28)

More universal is dependence for DFC  per interstitial forward 

part of cavity until maximal body   section touched with cavity 
which have  aspect  ratio f : 

2
2

DF N
U

D C R
2


  , 

2 2
f x

DF x 2
f

[1 2 / ]
C k ,   =

8

    
  


,

22
2 f

x f 2
f

2 /16
0.5ln ( 1) 1

e 1 2 /

           
       

,

(29)

where NR - cavity radius in the touched by cavity body 

maximal section, f aspect ratio of this forward part of cavity, 

e ~ 2.72... .  For x ,  1       DFC  expression [10] is defined 

on the base of ellipsoidal cavity form.  Simplest variant of Eq. 
(29) defined on the basis of ellipsoid cavity form is: 

2 2
f

DF 2
f

[1 2 / ]k
C

8

   



(29a)

Here f  is aspect ratio of part of body to his maximal section, 

rounded a cavity.   For rough understanding of sizes the  values
k ~ 0.93 0.95 , ~ ln 0.7 ~ 0.5ln1/ ~ 2.2   ,  are suitable. 

More general is presentation of body drag D  and drag of unit
of his volume bD / V by dependencies: 

2
2/3

VF b
U

D C V
2


 ,  
2

VF

3
b b

C UD

V 2V


 ,   

2 2
f

3VF 2 2 4/3
p f

[1 2 / ]k
C

8 ( )

    


 
,

(30)

where VFC - coefficient of volume, p - relation volume of 

body to the volume of the paraboloid to be entered in a cavity .
These expressions are received on the base of simplest variant 
of dependencies (29a) on the base of ellipsoidal cavity form for 
paraboloidal form of body in cavity.

Figure 15:  Coefficient of volume VfC ( , )  Eq. (31) depend 

on given f  , for f 8,  16  , p 1 
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Figures 14, and 15 illustrate values of cavitational drag coeffi-
cients DfC and coefficient of volume  VfC  depend on cavita-

tion number under given body aspect ratios  f 8,  16  . Using 

ellipsoidal cavity form for receiving of these dependencies 
make them not applicable close to ~ 0 .Most typical  values
of volume coefficients  at motion  in front area of cavity 0
and at the dense inscribing in a cavity  are:

f
3 3V0 2 2 2 2

p f p f

ln 4 / ek k
C

8 8
  

 
   

,    

4/3
3 3V 2 2 4/3 2

c c

3 4 ln / 2 3 2
C k

2 43 ( ) 3

  
  

   
,

where: p - relation of real body motion per inserted in the 

forward part of cavity  parabolic form, c - relation of real 

body volume per  finite cavity volume,     some typical 

values for range of  under consideration, usually ~ 2.2


  is 

used practical estimations.

MAIN WAYS OF DRAG REDUCTION FOR MOTION 
WITH SUPERCAVITATION

There are 2 typical cases of body motion in cavity.
 It can be motion of body maximally closely inserted in 

cavity. For this case  body f and cavity  aspect ratios  are  

near to be coinciding.  The larger is aspect ratio – the less is 
cavitation drag coefficient DC  and coefficient of volume VC . 

Under given body aspect ratio f  what can not be too large 

over f ~ 15 17  from the point of view of strength restrictions   

considerable less value of the drag coefficients DFC   coeffi-

cients and coefficients of volume VFC can be reached for body 

motion in the forward part of cavity. In doing so cavity aspect 
ratio   can be considerable larger as compared to body aspect 
ratio f . As it follow from Fig. 14, 15 the values of both coef-

ficients DFC , VFC  are the less - the larger aspect ratios of body 

and cavity are.  In doing so minimal energy expenses per unit 
of distance for motion in cavity under given pressure difference 
are realized for motion of body in ahead half  of the cavity for 
condition f / 0.5   . In both cases considerable drug reduc-

tion can be arrived at the considerable increase of motion speed 
or gas injection. In doing so gas loss very quickly grows at the 
increase of the cavity aspect ratio and  hydrostatic pressure.
Physically energy of cavitation resistance is lost in dulled end 
of cavity where a loss of stability of flow is with formation of 
chaotic flow of liquid of transforming energy cavitation flow in 
energy of wake after a cavity. 

 One of basic ways of diminishing of resistance at motion
of body densely entered in a cavity there is the use of the proper 
closers in the back-end of body. In an ideal model the law of 
Dalamber - Euler takes a place during complete indemnifica-
tion of resistance. However in reality even partial realization of 
a compensate force is related to considerable difficulties in 
connection with instability of flow in the blunted   back-end of 
cavity. 

At the changing along cavity length number of cavitation, in 
particular in the case of vertical cavities, the possibility of exis-
tence of cavities with sharpening in a back point are defined by 
dependence 31a [36] .  Fig. 16 illustrates vertical cavity form 
with sharpening at the cavity end as compared to form of ordi-
nary const   cavity. 

Figure 16:  Vertical cavity with sharp end – dash
as compared to ordinary cavity – solid

From one side the sharpening of back-end of cavity diminishes
possibility of origin of instability in this area. From other side 
dependence (32a) defined conditions of sharp end existence   
means possibility of the cavity form without the losses of en-
ergy in wake.  It was found out analogical possibility also in the 
case of ordinary cavities with a partition, separating the back-
end of cavity with the more high  pressure  2 0    as com-

pared to the forehand of cavity 1 0    [37]. The solutions in 

both cases of vertical cavity and cavity of part by a partition
with different pressures in each of parts easily are defined on 
the basis of equations (7). Conditions of existence of points of 
sharpening in the back-ends of vertical cavity Eq. (31a) and in 
the case of more high pressure in the back section of ordinary
cavity (31b) are defined by dependencies:

a)  L
2Fr 4 / 3  , b)  

2
1 1

2
1 1

(L 1)

2 L (1 L / 2)

 
  


, (31)

where:  LFr U / gL ,  1 1 kL L / L define distance until 

section  where second cavity part under 2 0    is started, 

kL 2L - cavity length.  More general is conditions for the

cavity back part what provides wake with zero kinetic energy 
both behind some body or first section of the cavity . In these
cases back cavity is closed on cylinder with given radius   cr . 

For  cr 0  dependence (32b) is transformed into Eq. (31b) 

corresponds to   point closer. Here   is cavity angle at the 

back initial section with radius sR .

a)   
2

2
c s

2 (tan )

(1 r / R )

 
  


,  

 b)  
2

1 1
2 2 2

1 1 c k

(L 1)

2 L (1 L / 2) r / R

 
  

 

(32)

It is need to note the closer of the forward cavity part with help 
of dividing of the cavity into two parts with more high pressure 
in the back part in the case of sharp closure defines surface 
form what is  very close to the cone surface. Fo cavity smooth 
closing on some cylinder  this surface is  essentially different 
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as compared to cone. The   values for back cavity part with 

more high pressure can be considerable different as compared 
its value for forward cavity part. So here second order asymp-
totic solutions for the back cavity form were found. The solu-
tion is looking for on the base of  IDE (2) in the form of asymp-
totic expansions:

2
2 2 2 1

o 2

R
R R

ln1/

 
     

, 2 1
o2 2

1
ln

ln1/

        
,    

where  cavity length is supposed as given cL 1 , for 

s cR / L   and  initial and boundary conditions:

2

x 1

dR
0

dx


 , 2

x 0
R =1


,  2

c sx 1
R r / R


 ,   

In doing so asymptotic solution is transformed to the series of 
problems. First order problem is: 

2 2
o

o2

d R
2

dx
  , 

2
o

x 1

dR
0

dx


 ,  2
o x 0

R =1


,
2

2 c
o x 1

s

r
R

R

 
  
 

.   

Second order problem:

22 2 2 22 2
o o o1

12 2 2
o

dR d R Rd R 1
ln 2

dx 4x(1 x)dx 2R dx

 
        

1

2 2 2 2 2

2 20
x Lo

1
1 oLo

x x

d r d R dr
dx dx dx

dx
| x x | L x









 
  ,

2
1

x 1

dR
0

dx


 ,  2
o x 0

R =0


, 2
1 x 1

R 0

 .   

Here  r r(x) is form of body or the forward cavity, oL - body 

or forward cavity part length until section with radius sR .

After each problems solution the asymptotic solution of the 
equation for defining of  is required on the base of equation:

2

s

x 0

dR
2R tg

dx


 

The second order solution of the problem   in the case of sharp-
ening point closure and neglected body influence is:

2 2 2

2 2 2
2

R (1 x )

1 1 1 1 1 1
(1 x ) ln(1 x) x ln x x

4 2 2 4 4 ln1 /

   

                 

,

2 2
2

1
(tan ) 1

ln1 / (tan )

 
    

 
, 2

2 2

1 ln 4 / e
ln 1

ln1 /

           

In the case of back sharpening the back cavity form was oc-
curred as very close to the cone surface, but in doing so the 
values of  for the back part are essentially corrected as com-
pared to using of the first approximation dependencies only.
Realization  of pressure value in the back-end of cavity greater 
as compared to hydrostatical pressure in a stream can be related 
to the considerable problems. One of possible ways for realiza-

tion of flowing  around of back-end of cavity with sharpening 
and accordingly with indemnification of resistance there can be 
application of back hard sharp cowling the surface of which is 
insulated from water by   flowing  around of high speed flow of 
gas a thin layer.  Simplest approximate approach on the base of 
model of ideal gas can be defined by the system of equations:

a)  

k 1

k 2 2c1 c c1
c 1

c1 c1 c1
c

P P P2k 2k
U U

k 1 P k 1

 
 
                           

,   

b)     2 2 2 2
c1 c1 1 1 c1 c1R B U R B U     ,

c)   
1/k

c
c c1

c1

P

P

 
    

 
,     d)   

2 2 2

c 2

U d R
P P

2 dx





  .

(33)

Here: r B(x) is the rigid surface in the cavity equation, k  is 

the adiabatic coefficient, c c1,    , c c1U , U , c c1P , P are gas mass 

density, speed, pressure at arbitrary and initial locations. Sys-
tem (33) for a given cavity form r R(x)  is transformed to the 

equation defining the surfaces r B(x) . For a given r B(x) , 

the system solution is transformed to the ODE for the cavity 
form. The system of equations (33) approximately describe the 
gas layer flow where prolong speed and pressure is as constant 
along radius and is defined by pressure on the cavity surface. 

Figure 17: Cavity with account of gas layer
- - - - - r R(x) - cavity form
———  r B(x) - rigid surface form

For very high speeds 2
c1 c1 c1P / U 0   the nonlinear equation is 

simplified to the equation ( 1 correspond to the initial section):

k2 22 2
c11 1 1

2 2 2 2

P R Bd R 2
1 0

dx U R B

               

(34)

Analogous equation based on the incompressible gas model 
flow for comparison is:

22 2 22 2
c c11 1 1

2 2 2 2

U R Bd R 1
1 0

dx U R B

               

(35)

Here 1 1R ,B cavity and body radiuses in initial section. It is need to 

note the qualitative nature of equations (33-35). Significant 
influence of viscosity and centrifugal forces on lateral pressure 
gradients is possible here. Limited is adiabatic approximation. 
The ideal gas model has limited applicability for super over-
heated vapor only and heat-mass transfer with phase changes 
can be significant here. The perfection of the model is required.
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Fig. 17 illustrates calculation results based on equation (34) in 

the case of air for: k ~ 1.4 ,  1 ~ 0.04 , 2
c12P / U ~ 0.02 , 

'

x 0
R 0


 , where ~ 2  is used for a rough estimation.  As 

follow from calculation results for sufficiently high gas speeds: 
it is possible to significantly control cavity form,  however due 
to gas compressibility we have an elastic system where high 
frequency oscillations and waves on the cavity appearance are 
possible and can disturb flow at the cavity end with violation of 
flow stability.  Thus, oscillations can appear even in the case of 
cylindrical rigid surfaces, but it can suppose that in the case of 
rigid surface form similar as cavity forms under constant pres-
sure for 0    (32b) these oscillations can be minimized.
Another ways of drag reduction can be realized with account of 
work of definite mover as whole propulsive system only.

CAVITIES VITH GAS INJECTIONS
Possibilities for calculation of ventilated axisymmetric 

cavities are  depended on 2 key factors:   possibility of gas loss 
prediction by end part of the cavity prediction;  possibility of 
calculation of unsteady supercavitation under alternating pres-
sure in the cavity.

Gas loss problems
In reality supercavity is under action of gravity cavitator at-

tack angle and body gliding in cavity lift and here 2 main forms 
of gas loss can be realized realized. Under strong gravity action 
strong and sometimes catastrophic gas loss along vortex tubes 
are realized.  This phenomenon firstly was studied in the work 
[38] and after that in the works [8]. Under high enough speeds 
gravity influence become as not essential and gas loss are real-
ized by unsteady chaotic flow at the cavity end.  In reality for 
the most part cases the mixed form of gas loss is realized de-
pend on cavity volume value and values of lateral forces.  For 
the first steps the experimental dependencies for prediction of 
the gas loss including mixed gas loss form were proposed [8, 
17].  However the prediction results by these dependencies for 
the flows along different conditions not always gave satisfied 
enough results.  Number of main experimental researches in 
this field are reflected in the works [8,17,41] and others. One of 
the hopeful is approach developed by J. Spurk  [39]  and veri-
fied by semi-natural scales experiments is for high speed with 
chaotic flow in the cavity end. Dependence for volume gas loss 
Q corresponding pressure in cavity is defined by dependence:

2
do n

1 1
Q Q / c d U 0.013 ln

 
 

 
, (36)

were nd - disc cavitator diameter.  Main physics idea of this 

approach is that gas involved by boundary layer on cavity walls 
only is evacuated from cavity. In doing so boundary layer in 
small scale experiments in cavitastional tubes is laminar but for 
nature scales and speeds is turbulent one what provides very 
strong scale effects.  This idea is very fruitful but it would 
rather developed approach is for definite interstitial range of 

0.01 0.02    only.  

Possibilities of ventilated cavities prediction
For calculation of unsteady ventilated cavity the equations 

system to obtain alternating pressure in cavity Pc(t) can be  

used. In general case this system should take into account heat 
transfer process what can be essential [40] with using of ideal 
gas law. However the researches found  for considerable part of 
cases  the possibility of more simple approaches on the base of 
polytrophic (adiabatic – isothermal) approximation of ideal gas 
equation what give the possibility to apply the gas mass con-
servation equation only. Simplest system of equations for pre-
dicting unsteady cavities with gas injection is shown below:

                  

 

x (t)
2 2

bx x (t)
x t

e

e
n

R 0,   V R dx V


    

T

m _ in m _ out
cVPd

( ) (Q Q )
dt


 


,      

T

c
co

t 0

VP
M








(37) 

Figure 18: Cavity form evolution
— — —   steady cavity for 0.035 
- - - - - - -  gas injection  increasing, decreasing t 50,  100  ,

———  + gas injection increasing,  –  decreasing , t 400   

This system of equations should be solving together with sim-
plest variant of the equations system for defining of the un-
steady cavity form (19). Here n ex (t),  x (t)  are laws of motion 

for the cavitator and  the end of the cavity; Tc cP     is the 

isothermal dependence of pressure on gas mass density c  in 

the cavity; Tc cVP / M (t)    , 
bcM ,  V=(V V )  are the 

mass and volume of gas in the cavity, respectively, bV is the 

volume of the body. m _ in  m _ outQ ,   Q are the gas injection mass 

flow in and losses out of the cavity end, respectively. 

Linear variants of the similar system were used by Paryshev 
[19] for development   known theory of slender cavities pulsa-
tions. He firstly used similar (37) systems for prediction of un-
steady ventilated cavity. Ventilated cavity for enter disc and 
cone into water were calculated in the work [42]. Experimental 
study of unsteady cavity with gas injection is presented in par-
ticular by work [41].  On the base of this statement the quasi 
steady approach for prediction of unsteady axisymmetric cavity 
with gas injection was perfected too in the form the most suit-
able for practical calculations [29]. Below modified equations 
of quasi steady approach are presented with account date for 
gas loss (36) in the case not essential gravity influence: 

3/2
1/n2 3/2

v do n b2

1/n2
q do n n m _ in

d (1 )
a (c d ) V P (1 / E)

dt

(1 )
a c d U P (1 / E) Q ,





               
               

v q3/2
~0.02 ~0.02

2 2
a ~ 1.26,    a 0.011 ~ 0.026

6 kk
 

 
 

(38)
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Simple equation with averaging of weakly changing values is:  
2 3/2

1/ndo n
b2

2
1/ndo n n

m _in

(c d )d
1.29 V P (1 / E)

d t

c d U
0.27 P (1 / E) Q





             
              

,
(39)

Here doc    - of disk type cavitator drag coefficient under zero 

cavitation number,  n n nd d / 0.82d  , nd   cavitator diameter 

and its typical value nd   ,  n n nU U / U  , nU - cavitator 

speed;  aP P / P  , P - hydrostatic pressure,  
2
nU

E (P ) /
2


 , n -polytrophic coefficient ( n 1 - isotherm ), 

2
m _ in m _ in a n nQ Q / U 0.82d   , m _ inQ -mass gas injection,  

3
b b nV V / ( 0.82d ) , bV - body in cavity volume.  Dimen-

sional values n0.82d  ,  a - characteristic gas mass density 

under 1 Atm. pressure aP P , nU  - characteristic speed pre-

sent characteristic scales for non dimensional values. Under 

given alternating as function of n nt t 0.82d / U    the equa-

tion   (39) solutions are found for the function    
2
n

c
U

( t ) (P P ) /
2


       and initial condition ot 0

( t )


   . 

Obtained ( t )    defines dependence c cP P ( t ) . Unsteady 

cavity form after that can be estimated by the Eq. (19-21) or by 
more accurate equations.   Fig. 18 illustrates calculation results 
based on equation (39) (applied to conditions for cavitational 
tube at U ~ 8m /s , P ~ 1.025atm. ) for the evolution of the 

cavitation number and cavity form given steady variations in 
mass gas injection rate leading to instantaneous values of gas 
injection of 50% to 150% that of values of mass gas injection 
for a steady cavity at 0.035  .  For a more pronounced illus-
tration, a considerably larger value of  qk as compared to given 

in Eq.( 36) qk ~ 0.013  is used. Considered quasi steady ap-

proach is essentially different as compared to usual presentation 
of unsteady cavity as steady one and is considerable more accu-
rate. Calculation results based on equations (39 are compared 
with experiments for unsteady cavities with changing gas injec-
tion [41] and others dates. Instead of essential restrictions this 
approach  can be very convenient for practical estimations  
thank simplicity and are occurred as applicable enough for the 
most part of real cases for not very fast changing of the motion  
speed and gas injections. It is need to note that presented con-
sideration of ventilated cavities is very particular only and can 
not fully enough reflect situation in this very wide field. More 
details here can be fund in current publications in this field.   

CONCLUSIONS 
The most part of practical approaches for estimation of su-

percavitation is connected with property of independence cavity 
section expansion. In doing so all dependencies (7, 13, 19-21, 
24-27) can be considered as the most general presentation of 
the “Principle of independence of the cavity expansion”.  This 

approach have stricken universality  together with simplicity 
and clear physics and give hopeful estimation of the forms and 
cavity sizes in  the most part important for application cases. 
Possibility to correct solutions near disk type cavitators and 
also  obtaining of the solutions in the cases of considerable dif-
ference the solution as compared  usual cavity for const   by 
linearized theory approach make as possible accurate enough 
calculations of different steady and unsteady cavities in very 
wide range of possible applications.  Calculations here even by 
traditional way of “principle of independence” application al-
ways gave hopeful results multiply verified by numerous ex-
perimental dates. It is need to note also that at present this prin-
ciple is not pure empirical and fully based and are as conse-
quence of the linearized theory and is as one of it’s results. Ac-
curacy of this approach for  3-D distribution of the cavity form 
is limited by linear theory. In the case of axisymmetric forms 
the independent of expansion is limited by not very small val-
ues O(1/ ln ) where    is some typical aspect ratio of the 

surface of the cavitator and cavity as whole. So here it is possi-
ble to say on not independence but it would rather on almost 
independence of cavity section expansion. In doing so this de-
pendence is very weak and give the possibility even in the case 
of the cavities considerable different as compared to usual 
steady cavity to apply steady dependencies for    ,  k  .  How-

ever in doing so sometime accounting of aspect ratio change 
existing in specific concrete cases become as essential for esti-
mation of   as compared to it’s values for steady cavity. 

NOMENCLATURE
r, x, t Cylindrical coordinates, time
r R(x, t) Axisymmetric cavity form

k k kR , L , Maximum radius, semi-length, aspect ratio of 
ordinary cavity for const 

U , P ,  Speed, pressure, mass density at infinity 

2

P

U / 2 


 


Cavitation Number ( P -pressure difference 
hydrostatic and in cavity)

D ; doc , dc Drag,  cavitator drag coefficients 

D0 DC ,C Cavitating drag coefficients for 0  , 0     
per forward  and  maximal cavity section 
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