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ABSTRACT
The surface stability problem of an encapsulated microbub-

ble in an ultrasound field is numerically addressed. To predict
the nonlinear process, the continuity equation and Navier-Stokes
equation are directly solved by means of a boundary-fitted finite-
volume method on an orthogonal curvilinear coordinate system.
The bubble is insonified by an ultrasound pulse consisting of a
burst of 10 cycles, of which the first and last two periods are mod-
ified by a Gaussian envelope. The simulation code reproduces a
shape oscillation of a gas bubble with an initial radius of 30µm
at a pressure frequency of 130kHz as shown in experimental and
theoretical studies [1]. The effects of the membrane on the shape
oscillation are investigated through simulations of a micrometer-
sized bubble encapsulated with a neo-Hookean membrane at an
ultrasonic frequency of 1MHz. The encapsulated bubble presents
a second-order shape instability, while the gas bubble of the
same size keeps spherical because the surface tension signifi-
cantly suppresses the shape oscillation. The strain-softening fea-
tures with increasing the oscillation amplitude are characterized
by a larger expansion and the higher harmonics when the bubble
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contracts.

NOMENCLATURE
a amplitude of shape mode
e rate of strain
Eb bending modulus
f frequency of driving acoustic pressure
F membrane force
g acceleration of gravity
Gs surface shear elastic modulus
h metric coefficients
K bending strain
m bending moment
p pressure
q transverse shear tension
r radius of bubble
s azimuthal direction
t time
Tf period of driving acoustic pressure
u velocity
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V volume of bubble
γ surface tension
ε amplitude of driving acoustic pressure
η η-direction in computational space
κ curvature
λ rate of extension
µ viscosity
ξ ξ-direction in computational space
ρ density
σ distance from axis of symmetry
τ in-plane tension
υ Poisson’s ratio
ϕ meridional direction

Subscript
0 initial state
l liquid
g gas

Superscript
R reference state

INTRODUCTION
Dynamics of an encapsulated microbubble is practically rel-

evant to medical ultrasound diagnostics and therapeutics. Ul-
trasound contrast agents (UCA) in traditional medical sonog-
raphy are gas-filled microbubbles coated with polymeric mem-
brane [2]. Due to the compressibility of gas core, the UCA has a
high degree of echogenicity, and thus is able to enhance the ultra-
sound backscatter and to yield high-quality image. The coating
membrane protects the gas core from dissolving and withstands
bursting under acoustic energy. Drug delivery system (DDS) is
another rapidly developing medical application. The DDS uti-
lizes localized ultrasound energy to rupture the encapsulating
membrane and under controlled conditions makes the drug reach
the targeted [3]. In the rupture process, inhomogeneity in the
interfacial stress resulting from deformation is an important in-
gredient to be examined, in addition to the homogeneous stress
increase due to the radial oscillation. In particular, the shape in-
stability enhances the inhomogeneity at a preferred frequency.

The stability problem of a gas bubble was firstly addressed
by Plesset [4] limited to the small disturbances of spherical in-
terface in an incompressible and inviscid liquid. Introduced an
infinitesimal distortion in shape, the equation about the pulsa-
tion amplitude is reduced to the Mathieu’s equation characteriz-
ing the parametric instability [5]. This instability occurs when
the pulsation amplitude exceeds a threshold value that depends
on the bubble radius and the frequency of the driving acoustic
field [6]. The shape instability interacting with radial oscillation
will lead to a resonant response [7], during which periodic energy
exchange between the radial and shape modes takes place [8].

This process has been studied experimentally by Mao et al. [9],
and simulated by McDougald et al. [10, 11]. When the bubble is
exposed to an ultrasound field, surface modes up to n = 7 were
experimentally observed and theoretically analyzed by Versluis
et al. [1].

Since the membrane, which encapsulates gas or drug, will
influence the behavior of the bubble motion, its dynamics has
become of great interest in recent years. The shape instability
and final destruction of different kinds of UCAs were captured
by high-speed imaging systems [12, 13]. The pioneering theo-
retical studies were made for the spherical motion based on the
Rayleigh-Plesset equation with additional terms regarding the in-
ternal friction inside the shell and the restoring force account-
ing for shell stiffness [14], and with viscous damping mecha-
nism [15]. A more comprehensive model considers the mem-
brane as a hyperelastic material, which has a shape-reversible
structure [16]. The constitutive laws, which connect the mem-
brane strain with the in-plane stress, are derived from the sur-
face energy function. Three typical hyperelastic constitutive laws
were compared by Barthès-Biesel et al. [17] in the context of a
capsule’s motion in a linear shear flow. Using these constitu-
tive laws, Tsiglifis and Pelekasis [18] investigated the nonlinear
radial oscillations of an encapsulated microbubble subject to ul-
trasound.

In the present study, we investigate the surface stability of
the encapsulated microbubble subjected to an ultrasonic pressure
wave by means of a direct numerical simulation. The boundary-
fitted simulation code, which has been developed for the ax-
isymmetrically deformed motion of an incompressible gas bub-
ble [19, 20], is extended to consider the compressibility of the
bubble and to couple with the membrane mechanics [21]. We
treat the hyperelastic membrane as the neo-Hookean law. First,
we examine the shape oscillation of the gas bubble to validate
the numerical computation through comparing with the exper-
imental and theoretical results [1]. Second, we investigate the
influence of the membrane on the stability of the shape oscilla-
tion and the effect of the amplitude of applied ultrasonic pressure
on the nonlinearity in hydrodynamics.

PROBLEM FORMULATION

Here we deal with an axisymmetric system, i.e., we do not
consider the azimuthal mode in the fluid flow or the interfacial
deflection. We adopt the boundary-fitted finite-volume method
on an orthogonal curvilinear coordinate system. The grid and
the coordinate system are schematically shown in Fig. 1. All the
governing equations and the boundary conditions are expressed
in the form of curvilinear coordinates.
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Figure 1. GRID AND COORDINATE SYSTEM

Governing Equations
The flow field in the liquid is governed by the mass conser-

vation and incompressible Navier-Stokes equations.

Equation of Continuity:
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where Sξ represents the apparent source term due to the changes
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Figure 2. APPLIED ACOUSTIC PRESSURE.

Momentum Equation in η-direction:
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where Sη is the one, in which ξ and η of Eqn. (3) are inter-
changed.

Boundary Conditions
On the far field: The transmit ultrasound is expressed

by a pressure pulse on the far field consisting of a burst of 10
cycles, characterized by a dimensionless amplitude ε and driv-
ing frequency f . The first and last two cycles are modified by a
Gaussian envelope. In Eqns. 5 and 6, pst and pac are the ambi-
ent static pressure and the applied acoustic pressure, respectively.
Fig. 2 shows the normalized applied acoustic pressure pulse p̄ac,
that is, the shape of one pressure pulse.

p∞ = pst + pac, (5)
pac = p̄ac · εpst . (6)

At the bubble surface: The normal and tangential force
balances at the bubble surface are derived from the traction jump
across the membrane, in which the viscous friction, surface ten-
sion at the gas-liquid interface and membrane tension (Eqns. 7
and 8) are considered. We assume the water and air system under
the atmospheric pressure. The gas pressure pg inside the bubble
is considered as uniform distribution due to the sufficiently high
speed of sound. The viscosity of the gas is negligibly smaller
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Figure 3. THE ELASTIC TENSIONS AND BENDING MOMENT DEVEL-
OPING ON A PATCH OF MEMBRANE.

than that of the liquid. The normal stress balance is given by the
modified Laplace’s law

−pl +2µeηη =−pg + γ(κs +κϕ)+Fn, (7)

where Fn denotes the normal membrane traction. The shear stress
balance is

2µeηξ = Ft , (8)

where Ft denotes the tangential membrane traction. On the basis
of the modelization in [21], Fn and Ft are written as the surface
divergence of the elastic tension tensors on a patch of the mem-
brane, i.e.,

Fn = κsτs +κϕτϕ−
1

hξσ

∂
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(σq), (9)
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]
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where τs and τϕ are the principal in-plane tensions, and q the
transverse shear tension (see Fig. 3), which is obtained from a
torque balance in terms of the bending moments ms and mϕ

q =
1

σhξ
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]
. (11)

Constitutive Laws
After establishing the force balance model, we proceed to

specify the membrane material in order to relate the tensions
of the membrane to its strains. Therefore, we should find some

constitutive laws to approximate the physical behavior of a real
material. One of the simplest constitutive models is the well-
known Hooke law, which describes the linear relation between
stress and strain. However, since the Hooke law assumes the in-
finitesimal displacement, its linearity restricts the reversibility in
shape when the deformation is large. The hyperelastic materi-
als, for which the surface energy function is defined as a func-
tion of the surface Green-Lagrange strain, are often employed to
relate the finite deformation to the in-plane stress. There exist
two common families, i.e., strain-hardening and strain-softening
models. For strain-hardening material (e.g., red blood cell), the
elastic modulus will rise as strain grows; in other words, the reso-
nance frequency increases with the sound amplitude. The Skalak
law [22] belongs to this kind of material. The strain-softening
material (e.g., rubber) behaves in an opposite way to the strain-
hardening material. One of the famous strain-softening models is
the Mooney-Rivlin law. We use the neo-Hookean law, which is
a special form of the Mooney-Rivlin law. The constitutive equa-
tions for the in-plane tensions are
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)
, (12)

where Gs is the surface shear elastic modulus, which character-
izes the stiffness of the membrane. λs and λϕ are the principal
stretches respectively along the arc-length direction and along
the azimuthal one, given by

λs =
ds

dsR , λϕ =
σ

σR . (13)

The constitutive equations for the bending moments are

ms =
Eb

λϕ

(Ks +υKϕ), mϕ =
Eb

λs
(Kϕ +υKs), (14)

where Eb is the bending modulus, which characterizes the bend-
ing resistance, and υ is the Poisson ratio, which is set to 0.5 in-
dicating an incompressible material. Ks and Kϕ are the surface
bending strains given by

Ks = λsκs−κ
R
s , Kϕ = λϕκϕ−κ

R
ϕ (15)

RESULTS AND DISCUSSIONS
Both the results of gas microbubble and encapsulated mi-

crobubble are presented in this section. The shape oscillation of
a gas bubble is compared with experimental and theoretical re-
sults to validate the numerical computation. Following that we
will study the influence of membrane on the stability of the bub-
ble surface and the effects of the amplitude of applied ultrasonic
pressure.
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Figure 4. THE 3rd ORDER MODE OF GAS BUBBLE.

Gas Bubble
We firstly consider a bubble without encapsulated mem-

brane, which is called a gas bubble here, exposing in the ultra-
sound field. In this case, the bubble is purely subjected to surface
tension, that is, the usual Laplace law (Fn = 0 in Eqn 7) and the
free-slip condition (Ft = 0 in Eqn 8). In order to compare with the
experimental and theoretical results of Versluis et al. [1], we set
the bubble initial radius to 30µm, the frequency of driving acous-
tic pressure to 130kHz, and the amplitude to 0.4 of the ambient
averaged pressure.

Expressing the bubble’s shape in a spherical harmonics ex-
pansion form, we find that the third-order shape mode a3 is pref-
erentially unstable. The temporal evolution of the third-order
mode a3 normalized by the initial bubble radius R0 is shown in
Fig. 4. After several cycles of large-amplitude pulsations, the
surface instability is excited for the higher-order modes. With the
accumulation of parametric instability, the shape oscillation gets
obvious. The surface modes are gradually damped due to the vis-
cous effect after withdrawing the pressure pulse. Several snap-
shots of the computed bubble shape are presented in Fig. 4 with
respect to the largest deformations. The preferred shape mode of
a bubble with the specified radius and driving frequency is con-
sistent with the experimental observation of Versluis et al. [1].

As shown in Fig. 5, the temporal change in the bubble vol-
ume is compared with the solution of the standard Rayleigh-
Plesset equation which presents the radial motion of the spher-
ical bubble. The beginning behavior of the present simulation
before the shape oscillation gets obvious is in good agreement
with the Rayleigh-Plesset solution. When the shape deformation

(V
‐V

0)
/V

0

t/Tf

Present gas‐bubble
Rayleigh‐Plesset

Figure 5. THE VOLUME RESPONSE OF GAS BUBBLE COMPARED
WITH THE RAYLEIGH-PLESSET RESULTS.

becomes significant, the amplitude of our volume oscillation is
smaller, and the damping is faster than in the Rayleigh-Plesset
solution. This implies that the shape oscillation causes energy
transfer from the purely radial oscillation, and thus more kinetic
energy is consumed.

Encapsulated Bubble
In practical ultrasound contrast agents or drug delivery sys-

tems, the bubbles are encapsulated by membrane which is com-
posed of albumin, galactose, lipid, or polymers. We here con-
sider the hyperelastic membrane. The size of the encapsulated
bubble is at the magnitude of micrometer allowing for safe med-
ical application. Here we choose a bubble with equilibrium ra-
dius of r0 = 1µm. For the membrane parameter, the surface shear
modulus is set to Gs = 0.03N/m, and the bending modulus is set
to Eb = 2×10−14N · s.

As shown in Fig. 6, we firstly compare the volumetric vari-
ation of the bubble with and without membrane. A continuous
pressure wave is imposed with a frequency of 1MHz and a di-
mensionless amplitude of 0.8. Under such a high frequency and
large amplitude, the gas bubble presents higher harmonics when
contracting (black line in Fig. 6). This is the famous Taylor in-
stability happening at an interface between two fluids of different
densities with the lighter fluid accelerating into the heavier fluid.
The surface tension plays an important role on the stabilization in
the radial motion for such a small bubble (r0 = 1µm). Therefore,
the emergence of the higher-order shape oscillation is suppressed
so that the bubble keeps spherical all the time. When we add a
membrane to the gas bubble, the amplitude is considerably at-
tenuated. And the higher harmonics is further restrained. This
indicates a more stable oscillation (blue line in Fig. 6). In real-
ity, however, when a bubble is encapsulated with a membrane,
the surface tension will be greatly reduced and can be negligi-
ble. Hence, we examined the case with membrane and zero sur-
face tension. The volume of the encapsulated bubble (red line
in Fig. 6) is larger than of the gas bubble when the bubble ex-
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Figure 7. THE 2nd ORDER MODE OF ENCAPSULATED BUBBLE.

pands. The strain-softening characteristics involved in the con-
stitutive law is reflected on this result. Further, when the bub-
ble contracts, the higher harmonics are enhanced. In particu-
lar, a second-order shape mode emerges during oscillation in this
condition (Fig. 7). The oblate and prolate shapes take place at
the crest and trough, respectively. In addition, the oscillation
of the second-order mode presents subharmonics characteristics,
which is considered as a potential clinical application for ultra-
sonic imaging.

Finally, we investigate strain-softening characteristics of the
membrane. The oscillatory amplitude of the bubble is increased
through enhancing the acoustic pressure. We choose three pres-
sure amplitude 0.1, 0.4 and 0.8, and compare the results with that
from a modified version of Rayleigh-Plesset equation [23].
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r
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of which the last term inside the bracket in the right-hand-
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Figure 8. THE VOLUME RESPONSES OF ENCAPSULATED BUBBLE
UNDER DIFFERENT ACOUSTIC PRESSURE.

side represents the normal stress based on the linear membrane
model. Figure 8 shows the volume response of the encapsulated
bubble for various acoustic amplitudes ε. For the smallest acous-
tic amplitude (ε = 0.1), the result based on the neo-Hookean
model is in good agreement with that on the linear model, since
both obey linearly perturbed oscillations. With the acoustic am-
plitude ε increasing, the neo-Hookean membrane bubble shows
the enhanced symmetry breaking in the oscillation — larger ex-
pansion and smaller contraction — because of the augmented
strain-softening effect. For the largest amplitude (ε = 0.8), the
expansion approximates twice that of the linear model, and the
higher harmonics appear during constriction as well.

CONCLUSIONS
We numerically investigated the dynamic behavior of encap-

sulated bubble in the ultrasound field. The mass conservation and
Navier-Stokes equations were directly solved to obtain the flow
field. The basic equations were discretized on a boundary fitted
grid in order to accurately deal with the deformation of bubble.
The dynamics of bubble surface was controlled by the traction
jump equation coupling the membrane mechanics. In order to
enclose the set of equations, we chose the neo-Hookean model
as a constitutive law to describe the in-plane stress due to the
finite surface deformation.

The numerical methods were firstly validated through com-
puting the shape oscillation of a gas bubble driven by an applied
pressure pulse. The results are qualitatively consistent with ex-
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perimental and theoretical results [1]. Secondly, a bubble encap-
sulated by a neo-Hookean membrane was investigated. The non-
linear behavior of the membrane is presented referring to a linear
model based on the Rayleigh-Plesset equation. With the increase
of oscillatory amplitude, the membrane will experience a larger
expansion and the higher harmonics when the bubble contracts.
During this process, the second shape mode gets obvious and
shows subharmonics characteristics.
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