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ABSTRACT 
      The very important problem of the underwater hulls drag 

reduction was investigated analytically and numerically with 

the use of the axisymmetric flow of the ideal and the viscous 

fluid approaches. Different effectiveness criteria, such as: the 

volumetric drag coefficient, the drag coefficients, based on the 

maximum body cross-section area and the squared hull length, 

and the ranges of the inertial motion were applied. 

      With the use of known analytic dependences for the slender 

axisymmetric cavity shapes after the slender or the non-slender 

cavitators, it was shown that the value of the volumetric drag 

coefficient and the similar coefficients, based on the squared 

values of the length and the caliber, can sufficiently be reduced 

at cavitation number less than 0.01. The smallest values of 

these drag coefficients correspond to the largest aspect ratios 

and the slender cavitators. Comparison of the drags of the 

supercavitating and unseparated flow patterns showed the 

existence of the critical values of the volume and sizes. The 

supercavitating flow pattern is preferable for the values of these 

parameters smaller than critical ones. For the horizontal 

supercavitation motion, the necessity of the Archimedes force 

compensation sufficiently diminishes the critical values of the 

vehicle volume or its sizes, which achieve maximum at a 

certain value of the motion velocity. In the case of the base 

cavity existence, the estimations of the supercavitating hull 

pressure drag and the comparison with the unseparated flow 

pattern are presented. The critical values of the body volume 

have a maximum at a certain value of the movement velocity 

and drastically increase with the aspect ratio increasing. 

       Maximum range problems are considered for the 

supercavitating motion of the axisymmetric body on inertia 

under an arbitrary angle to horizon in the case of very high 

velocities and non-slender cavitators. Different isoperimetric 

problems were formulated and solved with the fixed values of 

the body mass, kinetic energy, aspect ratio and caliber. Two 

dimensionless parameters are proposed which influence the 

solution. At small values of these parameters the optimal body 

shapes may use the nose part of the cavity only.  Analytic and 

numeric solutions for the maximal range and the optimal body 

shapes are obtained. It was shown that infinite small exceeding 

of some critical value of the initial depth can cause a jump of 

the range and coming to the water surface. The corresponding 

values of the critical initial depth are calculated.  

INTRODUCTION 
The very important problem of the drag reduction of the 

high-speed underwater hulls can be solved with the use of 

different flow patterns. Some axisymmetric examples are 

shown in Figs. 1 and 2. 

.  

Figure 1: Different axisymmetric flow patterns. 
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Figure 2: Non-standard cavitator and cavity which needs 

                 no closing body 

 

The patterns, shown in Figs. 1a and 1f correspond to the 

flow without boundary layer separation and low pressure drag. 

The supercavitating flow patterns, shown in Figs. 1b, 1c, 1d, 

1e, ensure low skin-friction drag due to the small surface of the 

cavitator wetted by water, but the pressure drag can be rather 

high. To create a cavity, the slender (Figs. 1c and 1d) and non-

slender slender (Figs. 1b and 1e) cavitators can be used. The 

non-standard flow pattern with a cavity which closes without 

any artificial closing body or re-entrant jet (shown in Fig.2, see 

also [2])  could provide minimal pressure drag (due to the 

Dalambert paradox) and the skin-friction drag is reduced in 

comparison  with the unseparated flow pattern shown in Fig. 1a 

(due to the smaller area wetter by water).  

To compare the effectiveness of the different flow patterns 

different criteria can be used. If the vehicle velocity ∞U  and 

the hull volume bV are fixed the simplest and effective criterion 

is the volumetric drag coefficient:  
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When the hull caliber bD  or its length bL  are fixed, the 

coefficients DC or LC can be used: 
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     The estimations of VC  for the axisymmetric slender body 

without the boundary layer separation are presented in [1, 2]. 

For the pure turbulent boundary layer the following formula 

was obtained 
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The VC estimations for the supercavitating hull which use the 

total cavity volume (Fig. 1b) can be found in [2] both for 

slender and non-slender cavitators. In particular, in [3] the 

following formula was obtained 
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for conic cavitators with the angle 
025,2 >θθ . Equation (4) 

follows from the well known semi empiric formulas of 

Garbedian [4]           
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Here σ  is the cavitation number σ ; )(xR  is the cavity radius; 

nR  is the cavitator radius; λ is the cavity aspect ratio; D  is 

the maximal cavity diameter; L  is the cavity length; xC  is the 

cavitation drag coefficient related to the base section area of the 

cavitator 2
nRπ . It must be noted that the value VC  does not 

depend on θ  for these non-slender cavitators and tends to zero 

with diminishing of the cavitation numberσ . The relationship 

(5) is represented in Fig. 3 by the dashed line. The results of 

non-linear numerical calculations for slender cones with the use 

of the method from paper [5] are presented by dots. The linear 

calculations with the use of formulas [6, 7]  
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( β  is the derivative of the radius at the point of cavity origin) 

are shown in Fig.3 by solid lines.  

         
 

           Fig. 3: Volumetric drag coefficients for cones. 
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Unfortunately, for the hull, which uses the total cavity 

volume (see Fig. 1b), the cavitation number cannot be 

diminished to zero, since the appropriate cavity aspect ratio λ  

tends to infinity (see, for example, (5)) when 0→σ . The 

same value of bλ  has also the hull located in the cavity. The 

constructive considerations restrict the body aspect ratio. For 

example, if bλ  is limited by the value 20=mλ , the possible 

cavitation numbers cannot be less than 0.01 for both the slender 

and the non-slender cavitators, and 
3

105.1
−⋅≥VC  (see 

Fig.3).  

       Formula (3) shows that   
3105.1 −⋅<VUC  for   

7
10Re >V  and 20=bλ . Thus, the standard supercavitating 

flow pattern (Fig. 1b) is preferable for smaller values of the 

volumetric Reynolds number 
710Re <V only. The cavitation 

number has to be close to minimal possible value 01.0≈σ . 

The critical value of the volumetric Reynolds number can be 

increased for the hulls with the greater aspect ratio and 

corresponding less values of the cavitation number. For 

example, if 100=bλ , the corresponding values of the 

cavitation number and VC (according to the formulae (4),(5)) 

can be estimated as follows: 00072.0≈σ  ,  
5104 −⋅≈VC .  

It means that the drag is 37 times smaller in comparison with 

the case 20=bλ . The supercavitating flow pattern is 

preferable for such slender hulls (in comparison with the 

unseparated one shown in Fig.1a) at all the values of the 

subsonic velocities and the vehicle dimensions of practical 

interest.   

       In the cases, when the aspect ratio increasing is impossible 

the only way of the supercavitation drag diminishing is to use 

the initial part of the cavity only (as shown in Figs. 1c and 1d). 

It looks confusing. Really, if the hull uses only a part of the 

cavity, then the volumetric drag coefficient increases (see 

formula (1)). But this fact enables us to use smaller cavitation 

numbers and larger cavities. As a result, the volumetric drag 

coefficient can be smaller for the flow patterns 1c and 1d in 

comparison with the 1b one. The detailed proof can be found in 

[8]. The main results for different values of the maximum hull 

aspect ratio mλ  are presented in Section 1. 

        The case of the flow patterns with the base cavity (see 

Figs. 1e and 1f) is also presented [8]. The principal results are 

reported in Section 2.  

The maximum range problems are considered in [9] for 

the supercavitating motion of the axisymmetric body on inertia 

under an arbitrary angle to horizon in the case of very high 

velocities and non-slender cavitators. The vehicle can use the 

initial part of the cavity only. The main results are presented in 

Section 3 for different values of the maximum hull aspect ratio 

mλ . 

 

 

1. THE UNDERWATER HULLS DRAG DIMINISHING AT 
VERY HIGH SPEEDS 

If the hull is located in the initial part of the cavity only 

(such as shown in Figs. 1c or 1d), the appropriate volumetric 

drag coefficients can be easily defined with the use of (1) and 

(5) for non-slender cavitator (or (6) in the case of the slender 

one). The analytical formulas can be found in [8], the 

calculation examples are presented in Fig. 4 for different values 

of the maximum hull aspect ratio mλ . The lines correspond to 

the non-slender cavitators (the results do not depend on θ ); the 

dots show the case of the slender cavitator with 1.0=β . 

 

 
 
   Fig. 4: Volumetric drag coefficients for different values of the  

               hull aspect ratio. 

 

It can be seen from Figs. 3 and 4 that VC  can be 

sufficiently reduced for 01.0<σ . The smallest values of  

VC  correspond to the largest values of the hull aspect ratio. In 

the case of the non-slender cavitators the function )(σVC  has 

a minimum. May be this fact is connected with the limited 

accuracy of the Garabedian formulae (5) for very small 

cavitation number in the region close to the cavitator. Usually, 

the slender cavitators yield smaller values of VC . May be it is 

due to the limited accuracy of the equations (6). I any case this 

interesting fact needs additional investigations with the use of 

the second approximation equation [10] or a nonlinear 

approach.  

An example of the optimal shape with 10=mλ , 

1.0=β , the velocity 700 m/s (the corresponding value of the 

cavitation number at small depth without ventilation is 0.0004, 

62.62/ =nb RL , 00099.0=VC ) is shown schematically 

in Fig. 1c. The optimal hull shape must be as close as possible 

the form of the initial part of the cavity. In the cases when the 

hull caliber or its length are fixed, the optimal hull must be only 

inscribed into the initial part of the cavity, but its caliber must 

coincide with the diameter of the cavity at the body end (see 

Fig. 1d). The dependences for coefficients DC  and LC , which 

can be obtained with the use of formulae (2), (5) and (6), are 
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shown in Figs. 5 and 6 (see details in [8]). The lines correspond 

to the non-slender cavitators (the results do not depend on θ ); 

the dots show the case of the slender cavitator with 1.0=β . 

 

 
 

  Fig 5: The drag coefficients DC  for different values of the  

               hull aspect ratio. 

 

 

 
 

  Fig 6: The drag coefficients  LC  for different values of the  

               hull aspect ratio. 

 

The following equation  

 

VUV CC =                                 (7) 

 

can be used to calculate the critical value of the volumetric 

Reynolds number *ReV which corresponds to the equal 

efficiency of the unseparated (Fig.1a) and supercavitating (Fig. 

1b, 1c and 1d) flow patterns. The supercavitating hull is 

preferable for *ReRe VV < . The drastic diminishing of 

VC showed in Fig. 4 enables to increase the value of *ReV at 

small cavitation numbers without increasing the hull aspect 

ratio. 

For example, the optimal shape with 20=mλ , the non-

slender cavitator, the velocity 1000 m/s and a small depth of the 

horizontal movement (the corresponding value of the cavitation 

number is 0.0002, 00028.0=VC ) yields the critical values 

12

* 102.1Re ⋅≈V , 
39* 10 mV ≈  . Therefore, the 

supercavitating flow pattern is preferable for all possible 

vehicles of practical interest. 

On the other hand, the supercavitating hull moves in the 

gas (see Fig. 1b, 1c and 1d) with very small value of the 

Archimedes force in comparison with the wetted by water case 

shown in Fig.1a. Therefore, for supercavitating vehicles the 

problem of their weight compensation must be solved (as in the 

case of airplanes). For this purpose the hull planning on the 

cavity surface or underwater wings are used. This situation 

causes an additional drag with the coefficient VC∆ , which can 

be estimated with the use of the aerodynamic effectiveness 

xy CCk /= . To calculate the critical Reynolds number, a new 

equation 

 

VUVV CCC =∆+                                 (8) 

 

should be solved instead of (7). 

The numerical examples of solving equation (8) are 

presented in Figs. 7 and 8. The values sm /103.1 26−⋅=ν , 

10=k (solid lines) and 1=k (dots) were used for 

calculations. 

 

Fig 7: Dependences of the critical volume at different values of  

the volumetric drag coefficient VC . 

 

From Fig. 7 it can be seen that dependences have a 

maximum. The presented in [8] analysis enables obtaining the 

maximum values of the critical volume and the velocity 

corresponding to this maximum (see details in [8]). The critical 

volume decreases drastically with the increasing of VC . Figs. 7 

and 8 show also that the necessity of the Archimedes force 

compensation diminishes the critical volume (especially at 

small values of k and large values of VC ).The same 
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estimations of the critical hull calibre and its length can be done 

in the cases when these parameters are fixed (see details in [8]). 

 
 

Fig 8: Dependences of the critical volume at different values of  

the velocity.  

 

2. COMPARISON OF THE SUPERCAVITATING AND 
UNSEPARATED FLOW PATTERNS WITH THE BASE 
CAVITY 

 For the flows with the base cavity there are two options: 

1) the hull is covered by another cavity (the two-cavity flow 

pattern shown in Fig. 1e); 2) the hull is wetted by the water 

flow without the boundary layer separation as shown in Fig. 1f. 

The comparison of efficiency of these two patterns was done in 

[8] with the use of formulae (6) for the pattern 1e and the 

parabolic unseparated shape 
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for the flow pattern 1f. 

Equation (8) was used to calculate the critical volume. The 

numerical examples are presented in Fig. 9. The values 

sm /103.1 26−⋅=ν , 1.0=β , 10=k (solid lines) and 

1=k (dots) were used for calculations. 

 

 
 

Fig 9: Dependences of the critical volume at different values of  

the hull aspect ratio for the base cavity flow pattern.  

It can be seen from Fig. 9 that some curves have a 

maximum (similar as ones shown in Fig.7). The corresponding 

velocity increases with the hull aspect ratio increasing and may 

approach to the sonic velocity in water. The critical volume 

increases drastically with the increasing of the hull aspect ratio. 

Fig. 9 shows also that the necessity of the Archimedes force 

compensation diminishes the critical volume (especially at 

small values of k and large values of  mλ ) 

3. OPTIMIZATION PROBLEMS FOR HIGH-SPEED 
SUPERCAVITATION MOTION ON INERTIA 
      The results obtained in Section 1 stimulated the 

investigation of the effectiveness of the supercavitating flow 

pattern for the inertial motion with very small cavitation 

numbers. The horizontal supercavitating motion on inertia and 

the problem of range maximization were considered by Putilin, 

Gieseke, Serebriakov, Kirschner, Schnerr [15-18] and other 

authors. The case of the non-horizontal inertial motion with 

different isoperimetric conditions was investigated in [2, 11-

14], but it was taken into account only the case of complete 

using the cavity volume (Fig. 1b). The case of partial cavity 

using (Fig. 1c and 1d) is typical for very small cavitation 

numbers and was investigated in [9] for non-slender cavitators. 

Here will be shortly reported the results of the paper [9]. 

Let the model start with the velocity 0U  under an 

arbitrary angle γ  to horizon and then move in water on inertia. 

The distance S , passed by the supercavitating body, must be 

maximal (see Fig. 10).  It was shown (see, for example, [12, 

and 13]) that in many cases the flow may be supposed as quasi-

stationary and the gravity effect on the cavity and body motion 

may be neglected. If the cavitator is non-slender, the semi-

empirical relations (5) by Garabedian may be used with the 

current cavitation number σ at the cavitator immersion depth. 

If we neglect changes of the cavitation number 1<<σ , then 

xC  may be considered to be constant and the distance S  

passed by the body is defined by the following formula:                           

 

U
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where m  is the body mass; U  is the final body velocity. 

 

 
 

Fig. 10: The maximum range problem for the supercavitating   

 motion on inertia 
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      In [9] formula (9) is analyzed for different isoperimetric 

conditions. If the body mass, its caliber and aspect ratio are 

fixed, there is no need to investigate the case of the fixed body 

length. The volume of the hull located in the initial part of the 

cavity after a non-slender cavitator can be estimated as a cone 

volume (see Figs.1c and 1d); therefore there is no need to use 

the isoperimetric condition with the fixed volume. Thus, it is 

necessary to investigate the first problem only from the list, 

presented in [13, 14]: 

1. The body mass and its caliber bD  are fixed; 

2. The body mass and its length bL  are fixed; 

3. The body mass and its volume bV  or the average 

  body density bb Vm /=ρ  and its volume are fixed; 

4. The average body density and its caliber are fixed; 

5. The average body density and its length are fixed. 

     Both the natural and the ventilation cavitation will be taken 

into account with the given value of the cavity pressure cp at 

the final moment of the hull washing off and the vehicle stop. 

The cavitation number can be rewritten as follows: 

 

22

0

22

UU

gh
=σ ,                  

0U

U
U =     ,               (10) 

The final depth  h  and cphh −+=102  are measured in 

meters. 

3.1 PROBLEMS WITH THE FIXED FINAL DEPTH 
If in addition to the body mass, caliber, aspect ratio, final 

depth its final velocity is also fixed, the final cavitation number 

will be also fixed (see (10)). Then the Garabedian formulae (5) 

allow calculating the hull shape and the cavitator diameter. 

Equation (9) shows that maximum range corresponds to the 

maximal starting velocity. The same trivial solution will be in 

the case of complete cavity volume using (Fig. 1b) and for all 5 

problems listed above. 

If instead of mass the initial body kinetic energy 0T is fixed, 

then the optimal values of final velocity and body mass can be 

calculated (see details in [9]) 

 

  607.05.0* ≈= −
eU ,                               (11) 

 

2

0* 2

eU

T
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The fixed initial velocity case is more difficult. But if the 

cavity volume is used completely (Fig. 1b), the same 

relationship (11) was obtained in [11]. For other 4 listed 

isoperimetric condition, other relationships for the optimal 

velocities ratio were obtained in [11] with the use of the 1b 

pattern. The case of the partial using of the cavity volume (Fig. 

1c and 1d) needs solving the non-linear equations and depends 

on the dimensionless parameter H  

2
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H = ,       
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U

DS
S b ρ
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*
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The results for the dimensionless maximum range 
*S  

(solid lines) and optimal final cavitation number 
*σ (dashed 

lines) are presented in Fig. 11 for different values of the hull 

aspect ratio. The range increases with the increasing of the 

aspect ratio, but the differences are sufficient for the very small 

values of the parameter H only. For 001.0>H  and 

15>mλ the obtained solution is practically independent of 

H  and coincide with the results for the flow pattern 1b 

reported in [11].   

 

 
 

Fig 11: Dependences of the maximum range and optimal final 

cavitation number for different values of the hull aspect ratio.  

 

The conclusion that the optimal hull caliber must coincide 

with the maximum final cavity diameter (see [11]) is no more 

valid for the case of very high velocities (small values of H ). 

To illustrate this fact, an example of optimal shape is shown in 

Fig. 12. The parameters of this supercavitating hull are 

3=mλ , 001.0=H . The optimal range 083.0* ≈S exceeds 

the ranges of any other hull with the same values of H and 

mλ . For example, if the hull caliber coincides with the 

maximum final cavity diameter, then 063.0* ≈S only. 

 

 
 

Fig 12: An example of the optimal body shape for 3=mλ ,  

001.0=H  
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3.2 PROBLEMS WITH THE FIXED INITIAL DEPTH 

       When the initial depth 0h is fixed, the relation for 2h can 

be rewritten as follows:  

 

γsin
12 Shh −=  ,      cphh −+= 01 10 . 

 

It means that the cavitation number and the solutions of 

the problem will depend on the angle γ (see 10). The nonlinear 

dependences make the search for the optimal solution more 

complicated. 

If in addition to the body mass, caliber, aspect ratio, initial 

depth its final velocity is also fixed, the maximum range 

corresponds to the maximal starting velocity. The same trivial 

solution will exist in the case of complete cavity volume using 

(Fig. 1b) and for all 5 problems listed above. 

If instead of final velocity the initial one is fixed, the 

solution is non trivial and depends on the dimensionless 

parameters N , 1h   

 

22

0 bDU
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The results for the dimensionless maximum range 
*S  (solid 

lines) and optimal final cavitation number 
*σ (dashed lines) are 

presented in Fig. 13-15 for different values of the hull aspect 

ratio. The range increases with the increasing of the aspect 

ratio, but the differences are sufficient for the very small values 

of the parameter N only. For 
7103 −⋅>N  and 15>mλ the 

obtained solution is independent of N  and coincide with the 

results for the flow pattern 1b obtained in [13]. 

 

 

 
 

Fig 13: Dependences of the maximum range and optimal final     

 cavitation number for different values of the hull aspect 

ratio at 
710−=N , 

o90−=γ .  

 

 
 

Fig 14: Dependences of the maximum range and optimal final     

 cavitation number for different values of the hull aspect 

ratio at 01 =h , 
o90−=γ .  

 

 

 
 

Fig 15: Dependences of the maximum range and optimal final     

 cavitation number for different values of the hull aspect 

ratio at 
710−=N , 

o90=γ .  

 

The numerical analysis showed that for 0>γ  the 

solution exist only for the values of 1h which are greater than 

the critical one 
)(

1

cr
h . The situation is similar to the flow 

pattern 1b investigated in [13]. It means that for smaller values 

of the initial depth the body can reach the free water surface 

without a loss of the supercavitating flow pattern. The critical 

values 
)(

1
cr

h can be seen in Fig. 15. Increasing the hull aspect 

ratio increases  
)(

1
cr

h , which tends to the value  

 

π

γ

e
h

cr sin8)(

1 =  

 

obtained in [13l for the flow pattern 1b. 
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CONCLUSION 
      The value of the volumetric drag coefficient and the similar 

coefficients, based on the squared values of the length and the 

caliber, can sufficiently be reduced at cavitation number less 

than 0.01. The smallest values of these drag coefficients 

correspond to the largest aspect ratios and the slender 

cavitators. Comparison of the supercavitating and unseparated 

flow patterns showed the existence of the critical values of the 

volume and sizes. The supercavitating flow pattern is preferable 

for the values of these parameters smaller than critical ones. For 

the horizontal supercavitation motion, the necessity of the 

Archimedes force compensation sufficiently diminishes the 

critical values of the vehicle volume or its sizes, which achieve 

maximum at a certain value of the motion velocity. In the case 

of the base cavity, the comparison the supercavitating and the 

unseparated flow patterns is presented. The critical values of 

the body volume have a maximum at a certain value of the 

movement velocity and drastically increase with the aspect 

ratio increasing. 

       Maximum range problems are considered for the 

supercavitating motion of the axisymmetric body on inertia 

under an arbitrary angle to horizon. Different isoperimetric 

problems were formulated and solved with the fixed values of 

the body mass, kinetic energy, aspect ratio and caliber. Two 

dimensionless parameters are proposed which influence the 

solution. At small values of these parameters the optimal body 

shapes may use the nose part of the cavity only.  Analytic and 

numeric solutions for the maximal range and the optimal body 

shapes are obtained. It was shown that infinite small exceeding 

of some critical value of the initial depth can cause a jump of 

the range and coming to the water surface.  
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