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NOMENCLATURE

a reservoir time constant, relafting the actual time
to dimensionless time(6), (7)

aO, a5 85 a3 constants

b2, b3 constants

Ce electrical capacitor, mfd

D differential operator

fl Laplace transform of Q'ip

G forcing function

g Laplace transform of G

K Machine time constant sec/month
L Laplace transform

P pressure

Pl’ P2.,, potentiometer settings

Q'tp Unit step response

Q £D system response for specified G function
Rf, Ri electrical resistors

h dimensionless radius(6) (7)

S Laplace transform varisble

tD dimensionless time

T time varieble

e actual time



INTRODUCTION

The study of transient behavior has become an important sub-
Ject in chemical engineering applications. When an input to a system
fluctuates, one is interested in predicting how the system will respond
in order to prepare for the response or to prevent unwanted fluctua-
tions. Because of the dependence upon past history a computational
scheme is needed to integrate the effects of past action and thereby
determine the present state of the syétem¢ Even though the need 1is
frequently encountered in practice, the computational techniques for
solving systems with time-varying inputs or time-varying coefficients
are not widely known.

For a linear system the separate solutions, obtained by
using each driving force alone, can be added to obtain a composite
solution with all the driving forces present. This principle of adding
solutions is called the Principle of Superposition. The integral ex-
pression of the principle is known variously as the convolution inftegral,
superposition integrael, Faltung integral, or Duhamel integralo(l) Com-
putation of this classical integral gives a solution for the case where
a linear system is subject to a time-varying input. This paper presents
a method of direct computation of this integral by simulating the system
on an electronic differential analyzer,

In a chemical process, the driving force may be ftemperature,
pressure or concentration. Only one time-varying input is examined at

a time while holding the rest of the varisbles constant.



Theory

When a system is linear, it is possible to describe the system
characteristics by a linear differential equation or by its solution.

Using the superposition principle (owing to its linearity), the response

2

can be described by the following convolution integral:( )

tp

dG /o

0

where
Q'tD = response to a unit step, assuming initial
conditions are zero.
G = forcing function (assumed equal to zero

for t <0).

system response for a specified G.

Qp

Equation (1) can be used to find the response of a linear system with
constant coefficients for an arbitrary forcing function when the unit
step response is known. The response to a unit step input is a system
characteristic and is unique. When the system is nonlinear, the step
response is no longer unique in form but depends on the input level,
The unit step input and its system response are illustrated in Figures 1
and 2.

The essential feature of analog simulation is to obtain the
desired process performence as an output by feeding in known informe-
tion as an input signal. A pictorial representation of the simulation
is shown in Figure 3. The discussion is devoted to the representation
of the transfer function.

Upon teking the Laplace transform of Egquation (1) we obtain

Qp(s) =5 &(s) * £,(s)



INPUT

UNIT STEP RESPONSE

TIME

Figure 1. Unit Step Input.

SYSTEM A

SYSTEM B

TIME

Figure 2. Unit Step Response.
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or
5
Q’tD( ) =8 fl(S)
g(s)
where
g(s) =L {6}
£,(s)= L {Q';p}
Note that fl(s) is the Laplace transform of the unit step response.
Therefore, sfl(s) can be approximated from fthe golution of the con-
stant input case, If the initial value'of the unit step response is
zero, from the well-known property of the Laplace transform ruie for
the derivative(2>, sfj(s) can be expressed in the form
4Q'¢p
L =
{ Gl tD} s 1 (s)
. . ; d QS+D
This relationship can be used to approximate s fl(s) from - £* or
D
directly from Q'tD'
a
Suppose that s fy(s) is approximated as a sum of 85 5;’
8> , and 83 or
1+ 8 1+ 8
bo b3
]
QtD() =g £, (s) = a +8‘l+a2 a3
1 o — - —5
g(s) s 8 8
L+~ 1+
2 3

Then one can write

The inversion of QtD(s) to obtain the response 1s the sum of inverse

transforms of the individual terms.

Up(tp) = [Qp(tp)ly + [Qp(tp)ly + [Qep(fp) T, + [Agplen)]

3



where
L{lag(tp) ]} = a5 &(s) (4)
L {[ag(tp) 1y} = alsg(s) (5)
an g(s) p
L{lap(tp) =T+ & (6)
Do
L {[QtD(tD)]3}= =3 &(s) (7)
Ly

These individual terms are to be considered for thelr theoretical pos-
sibilities for analog simulation.
Equation (4) can be written directly in the time domain as

[QtD(tD)]o
G(tp)

o

The analog simulation for this relationship is represented by amplifier 1
in Figure 4. (Those who are not familiar with snalog computers are refer-
red to the Appendix and also to references (3) and (L).

Equation (5) needs to be written in the time domein. Since

Q‘tD(O> =0,

sL {[QtD(tD)]l} =L {~dd§§§} = ay &(s)
. Lol L,
° {d tg}l 1 &)

i Gl o

q
where D 1is the differential operaton.affg*“

this relationship is obtained by amplif%er 2,
D

[ap(tp)]; = "alfo -G(tp) 4 tp

The analog simulation for
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Figure 4 - Analog Simulation Circuit.



or

[Q"bD(tD) ]]_ _ -8
-G(tD) D

Similarly, Equation (6) can be written as

55 [Ap(e)lp + [Rp(s)], = o, &(s)

Since QtD(O) = 0,

1 a4 1
1 dQp [0, ()], = 85 Cltp)
by dtp o
or
[Qp(tp) 1, 3
- D
G(tn) 1+ =
D b,
Amplifier 3 performs this operation.
t - -R_/R
D
-G(tD) 1+7% 1+ ReC, D
2

Equation (7) is much the same as Equation (6). Thus, summing
up the individual terms with amplifier 5, the system can be simulated cn
an electronic differential analyzer as shown in Figure 4.

The consequence of this simulation is that Equation (2) can be
represented by analogous voltages on the electronic differentilal analyzer
and can be regarded in terms of a system transfer function. The system

he rela-

ct

transfer function is an operator expression that establishes
tionship of output and input variables. Once an adequate check is ob-
tained for a step input to a linear system, the response to an arbitrary
input can be obtained with the same circuit by simply applying this in-

(1)(5)

put to the circuit.



Example
In order to demonstrate the application of the method to prac-
tical problems, an underground reservoir problem is chosen.,
The flow of liquid through a homogeneous porous medium can be

(6)(7)

described by the radial diffusivity equation.

2
oP , L op _ oP
dr_ 2 - 3 T
where P = pressure
rp = radius

The solutions to this partial differential equation for comsftant Ser-

minal reservoir conditions are available in tabular form in the litera-

(7)(8)(9)

ture. For the terminal pressure case, the following approximate

transfer function is found:

* : 52
0.75 2.6 18 0.28a  2.kx10 s
sfl(s) =T, 5. + oo + - + — - =
0.8a 0.I0%a 5ot 8 (8)

where a is the reservoir time constant. In Equation (8) the Laplace
transform is taken with respect to the actual time in months. Basel or
this equation, the circuit shown in Figure 5 is obtained for a = 4 and
K = 5. The result obtained from this circuit is compared with the
theoretical constant pressure case solution in Table I.

The circuit of Figure 5 can now be used for the arbitrary
input case by simply generating the appropriate input voltage variation.
The machine time constant is made large enough (i.e., the computer solu-~
tion rate is made slow enough) so that the input voltage can be gener-
ated manually with a potentiometer. An exampie of the arbitrary input

case is given in Figure 6.
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Figure 5 - Analog Computer Circuit Diagram to Get Cumulative
Flux Function for Infinite Aquifer.
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Complex Systems

We have shown how to simulate a time invarian® linear system
using approximated transfer function expression., For large number of
problems the assumption of constant coefficient results in good approxi-
mation., However in some problems the system actually changes i%ts char-
acteristics as a function of time. In other words, the coefficients of
the equation change with time in a definibe fashion, Therefore, 1t is
necessary to modify the system characteristics %o adapt to the new
situation at all times. A block diagram of a client adaptive system

is shown in Figure 7(a) below:

Input Client Outpat
System -
\
7 - ]
Adeptive
System |

Figure 7 (a)
One probable practical application of the client-adaptive system may
be the classical moving boundary problem. The adaptive sys®em will
change the characteristics of the client system as the boundary movas,
In the analysis the change of coefficients can be handled by the use of
servo-multiplier. Once the system is successfully simulabed, confrol
schemes can be added on to the process to shtudy its behavior or %o im-
prove the transient response. See Figure 7 (b).

-18-
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Input

Control

Yy

Process » Ouhputh

Figure 7 (b)

Conclusion
The proposed method of handling an arbitrary input to a
linear system provides a quick and easy way of obtaining an engineer-
ing solution. The method can be used to check theoretical model studies
or the effects of nonlinearities when experimeﬁtal data are available,
The method can also be used to predict system behavior for the case of

an arbitrary input, based on a knowledge of the step response.
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APFENDIX

EXAMPLE OF THE DERIVATION OF A SIMULATION CIRCULT
FROM THE TRANSFER FUNCTION

In order to show the detail derivation for a simulation cir-

cult from the transfer function, an example calculation is shown here.

A. Basic Characteristics of the Electronic Differentiali

Analyzer. Before any attempt to show how numbers are selected in *he
analog circuit, it would be well to describe some basic features of an
electronic differential analyzer in order to understand the symbols used
in the circuit. Referring to Figure 8, there are four symbols that
must be explained. First, the most important components are the high-
gain d-c amplifiers or operational amplifiers which are designafied by
triangles with the output at the point. It is these amplifiers that
become summers or integrators or simulate each term of the transfer
function expression. The second symbol is the circle which designates
a potentiometer. The potentiometer is used to multiply by a consbtant
less than unity, the value being determined according to the dial zeuting.
This dial setting is written in or by the circle, The third and fourth
symbols are for resistors and for capacitors and need no explanation.
The input to the computer circuit is at the left and the output is at
the right.

Since the independent variable is always time on the analog
computer, a machine time constant K plays an important role in relating

the actual time and the machine running time, The details arc explained

as the calculation is carried out.

-15-
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Figure 8 - Analog Computer Circuit Diasgram for Simulation of Equation (9).
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B. Derivation of the Computer Circuit, Suppose the trans:

function of a system is given by

21,
s £(s) = 2.20 {»1 g R ‘} (9)
14+ -5 _
0.0122s

Equation (9) is a combination of Equations (4) and (6). We will show
how the numbers are obtained from the transfer furction as expressed
in Equation (9) to give the circuit of Figure 8.

One of the basic requirements in deriving an analog circull
is to keep the outpuh voltage magnitude for each amplifisr less than

100 volts but not too small, Suppose, for example, that a unit magri-

[

w

tude in the equation is represented by one vol: on the compuier., Then

a unit input should produce an output corresponding to the firsh Herm

of Equation (9) of 2. 20 volts. This can be accomplished by chkoosing

the output of potentiometer 8 to be -22 volts, The potentiometer set.

ting is

. -22
P8 = -lOO = 00220

This -22 volts is fed into amplifier 4 giving an output as follows:

Amplifier U output = (-22) (:%Li) = 11 volts

The 11 volt signal is applied to emplifiers 5 and 6. Ampiifisr € has
an output of -11 volts which goes through potentiometer 7 and ampli-
fier 1, being reduced to the required 2.20 volts. The calculafion of
the required setting of potentiometer 7 to give this voltage is
given as follows:

2.20 = (-11) (B) (-%)
or

P_ = 0.4
- 0.400
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Next consider the second term, Ag shown iz the simulafion of

Equation (6),

RO - 1

Rf Ce = —l —
or

R = K

£ (0.0122a) (C.K)
Choosing C,K = 1 and letting K = 10 and a = 7.52, we find that

Rf = 109 megohm

It is actually represented by a 20 megohm resistance driven by potenti-

ometer 1 set to

20

P1 159

= 0,183

The steady state output at amplifier 1 due to this second term is (2.2)
(21.5) = 47.3 volts. Therefore the dial setting of potentiometer 4 is

found from

10
Tg) = 47.3

(11) (By) (

or
P) =0.197
The outputs of amplifiers 5 end 6 are summed by amplifier 1
giving the oversall trensfer function of Equation (9). Since the input
to asmplifier 4 was set st -22 volts in checking out the step function
response it actuelly corresponded to an input amplitude of -22, So if

the negative of the actual input is generated at one volt per unit by

potentiometer 8, the output will be G%D/EQ as shown in Figure 8,



