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ABSTRACT
The results of research for supercavitating motion in water at 
very high speeds – comparable with sonic speed ~1500m/s –
are presented.  At such speeds the water is a compressible fluid 
and the basic compressible hydrodynamics of supercavitating 
flows together with practical approaches and experimental data 
are considered.  The theory of ballistic projectiles motion is
developed with emphasis on the problems of maximal range, 
lateral motion prediction and problems of minimal declination, 
hydro-elastic effects, and resonant oscillation frequencies.  One 
main purpose of the article is an attempt to advance the level of 
understanding of the problem of very high-speed underwater 
launch by a comprehensive review of previous research on this
topic.
Key words: supercavitation, super high speeds in water, 
compressibility, dynamics 

INTRODUCTION
One of the most important applications of supercavitation is 
connected with the motion in water of small inertial projectiles 
of mass ~ 0.1 0.5 kgM  at very high speeds that are on the 

order of sonic speed in water, a ~ 1450 :1500 m/s .  For such 
speeds the motion occurs within a cavity that isolates most of 
the projectile surface from the ambient liquid in a process that 
gives the possibility of reaching very small drag coefficients.  
With this approach, small, non-propelled projectiles with very 
high initial speed can traverse considerable distances under 
water, distances comparable with distances that are similar to 
projectiles launched at a similar speed in air.  Stable motion of 
such projectiles over relatively long distances has been 
repeatedly proved by experiments.
One of the most important problems here is maximization the 
range while conserving sufficient projectile kinetic energy at 
the end of the trajectory.  This problem is especially closely 
connected with the problems of compressible flow in water. 
The flow processes are different for sub-, trans-, and supersonic 
speeds. Especially wave drag in the supersonic range is 
essential and causes considerable decrease of the cavity sizes 

and cavitation drag increase. Due to it achieved distances for 
supersonic speeds can be occurred considerable less as 
compared to the case of motion with subsonic speeds under the 
same initial conditions. Nevertheless this case conserves its 
importance for applications thank to considerable decreasing of 
time for overcoming given distance. This fact is important from
the point of view of considerable increasing of speeds of 
modern high speed vehicles. One of the important problems is 
also the minimization of the deflection of the trajectory from a 
straight line due to initial perturbations during the launch 
process.  This requires the development of a theory of projectile 
motion. The motion of a projectile in a cavity occurs in general 
along a curved trajectory, and at such high speeds, it causes 
very high lateral forces. Accordingly, hydro-elastic effects must 
be taken into account. The motion is of oscillatory nature that 
requires the consideration of the possibility of resonance 
processes.  The problem as a whole is of complex nature and 
requires research in different directions. In this paper the 
attempt is made to improve the understanding of this problem 
as a whole and to develop practical approaches for estimating 
basic parameters which are necessary for the development of 
systems operating with very high-speed launch in water.

1.  SHORT OVERVIEW
1.1 Experimental research
Due to the enormous high speeds, this research is complicated 
and expensive. However, it should be noted that a considerable 
subset of this research are of semi nature due to small enough 
projectile sizes that are convenient for further applications.  
One of the first experiments in this field is presented in 
reference [1].  The basic modern experimental research in this 
field started from subsonic experiments by Yu. Yakimov with
his group [2-4] at the Institute of Mechanics of Moscow 
University, where around 1990 speeds up to ~ 1000 m/s  were 
achieved. After that, very high subsonic speeds until 
~ 1450m/s  were achieved at the Institute of Hydromechanics

of NASU, Kiev, Ukraine [5-6].  Later, supersonic experiments 
at speeds with ~ 1600m/s  were performed at the Naval 
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Undersea Warfare Center Division, Newport, Rhode Island, in 
the United States [7]. The results of small scale subsonic
experiments are presented in [8] and for very high ultrasonic 
speeds in [9]. These references reflect part of similar
experiments only.

1.2 Theoretical research
Supercavitation is one of the complicated mathematical 
problem for flow with a priori unknown free boundaries. The
basis of classic theory for incompressible fluid is presented by a 
number of well known publications [10-14]. Methods for 
nonlinear numerical computation of axisymmetric 
supercavitating flows in incompressible fluid are presented in 
particular by publications [15-17]. Nonlinear numerical 
computations with account of compressibility on the basic of 
isentropic compressible fluid approach are presented by 
publications [18-21], semi-numerical approach – [22]. More 
complicated model for hyper high speeds is used for 
computation in paper [23].  Very important is the case of 
slender cavities which provides the minimal cavitating drag. 
The problem here can be essentially simplified on the basis of 
slender body theory. Here on the base of Matched Asymptotic 
Expansion Method a linearized theory and effective practical 
approaches for prediction of axisymmetric supercavitation were 
developed [24-33]. Very important is the problem of cavitator 
penetration into water considerable part of the results in this 
field and references can be found in the book [34].  Specific 
gliding in the cavity problem was considered starting from 
known statement of blow of circle against circular free 
boundary [35] in number publications [36-38]. For the motion 
inside the cavity the interaction of the body stabilizing surfaces 
and devices is realized what is connected with consideration of 
2 dimensions flows and other problems. Results related to this 
topic are presented by publications [39-42]. The problems of 
prediction of the motion inside the cavity were considered in
publications [30-32, 43-44].
The problem of high-speed launch consideration as whole 
touches number of different fields with considerable volume 
information and especially in the field of compressible flows. 
So we try to outline the basics of the main approaches and to 
indicate the main physical ideas which are important from the 
point of view of further advancing theory and application of 
projectiles dynamics. 

2. GOVERNING EQUATIONS OF FLOW
2.1 Simplest flow model
The basic idea to reach small drag coefficients for high-speed 
motion in water is to avoid the direct contact with the liquid by 
encapsulating the body in a vapor filled cavity. Creating a 
slender axisymmetric cavity can be explained with help of a 
simple model of radial flow, Fig. 1. In the case of prolate 
cavities the cavitator size is small and its drag is practically 
independent on the cavity form, additionally the cavity form is 
independent of the cavitator form which is defined by the 
cavitator drag only. The moving cavitator pushed the 
motionless fluid aside and its work is transformed into kinetic 
energy of mainly radial near cavity flow in the each motionless 
section which the cavitator has passed. In the main perturbed 

zone the main part of energy and impulse of flow is 
concentrated in finite region limited by the boundary  
r (x, t)   with extension of some more as compared to the 

semi-length of the cavitator and the cavity surface.  This fact 
makes the cavity alike as a wake of finite type.  Further the 
expansion of the cavity section together with the radial flow 
near the cavity is controlled by inertia and the pressure 
difference in the undisturbed flow and inside the cavity.  In 
doing so the expansion process depends weakly on the surface 
r (x, t)   form (x, t – axial coordinate, time) and the less the 

more slender is surface of cavitator and cavity as whole.  The 
cavity section reaches the maximal radius in the middle part 
and further starts to decrease by the action of the external 
pressure. In the back part of cavity unstable chaotic flow is 
realized where energy of radial flow is transformed into energy 
of the wake behind cavity. The least cavitating drag coefficient 
per cavity middle section DC  (the body close enough inserted 

in cavity) are reached for maximally slender cavities and the 
possibility of further decrease is limited by maximal aspect 
ratios of the bodies from the point of view of its strength. 

Figure 1:  Radial flow model.

 For real high speed of motion of supercavitating bodies in 
water values of DC 0.05 : 0.001  and less can be reached, for 

some cases the drag in water can be compared even with that in 
air.  The basic parameter of cavitation flow is the cavitation 

number  2P / U 2    , where P - pressure difference 

between hydrostatic pressure in the flow and the pressure in 
cavity which is approximately zero for vapor cavities,  -

density of water , U - speed of the undisturbed flow.  The 

cavitation number   in the case of a disk type cavitator defines 
the cavity aspect ratio   which quickly increases if 
decreases. For very high speeds another basic parameter is the 
Mach number, U / a    M  where  a - sonic speed in 

undisturbed flow.  Flows with account for the compressibility 
are described by the same simplest model but with essential 
differences.  In the case of incompressible flow we have 
essentially conservation of total kinetic and potential energy in 
each motionless section. But in compressible flow we have 
appearance of the wave drag of supersonic speeds especially of
forward parts of the cavities and essential increase of the 
extension of the disturbed flow regime near cavities in the 
transonic range of Mach numbers.
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2.2 Nonlinear approach
A typical nonlinear statement considers the cavitation problem 
in case of steady motion in an unbounded, ideal incompressible 
fluid with constant density   of the liquid. The Riabouchinsky 

closure (e.g., disk) scheme for the closure region of the cavity
is usually used [15]. The cylindrical coordinate system (r, x) 
shown on figure 2 is used. The flow potential of perturbations 
  satisfies the Laplace equation. For a given cavitator shape 

1r r (x) , the impenetrability condition on the cavitator  is  

provided. The impenetrability condition   and given pressure
difference P  between the undisturbed flow and the cavity are 
assumed on the apriority unknown cavity shape r R(x) . The 

perturbations at infinity tend to zero, the location of flow 
separation from the cavitator at ox x  is assumed to be fixed.

Figure. 2:  Schematic of flow

In case of account for compressibility effects instead of the 
incompressible Laplace approach the potential flow model as 
known from gas dynamics including the equation for the sonic 
speed is used and is completed by an equation of state of water 
in the form of the Tait adiabatic curve Eq. (1): 

n n

P BP B 






 
,  (1)

which gives the possibility to derive a compressible Bernoulli 
equation and the sonic speed of water:

2 2 2(U u) v P B Un P B n

n 1 2 n 1 2
  



  
  

   
(2)

2 dP n(P B)
a

d


 

 
, (3)

where:  B 2985bar , n 7.15 . The subscript   indicates 

undisturbed free stream conditions at infinity. The quantities u
and v  are the axial and radial perturbation velocities along 
stream lines. For 1 M  shocks and their related losses have 

also to be taken into account.

2.3 Approximate approaches
In case of small disturbances the Prandtl-Glauert 
transformation of the Laplace equation is used. For 1 M

this is the acoustic equation for subsonic flow, for 1 M  this 

yields the wave equation for linearized supersonic flow.

 
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M (4)

On the basis of this equation the expansions of known slender

body theory with accuracy of ( 2 2r ln1/ r , 2 2ln1/  ) are
received,  - slenderness parameter.  Using these expansions 
the equations for slender cavities are defined. 
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In the case of slender cavities point closure is used where back 
closure action is modeled by source of pressure which is follow 
automatically on the base of Slender Body Theory expansions.
For supersonic flow modeling we have not back response of 
flow to the its forward part and back closer is not required. 

Here 2 2|1 | m M . In the case of transonic flow the small 

disturbances theory results in the following nonlinear equation 
for the potential:

    22 2
2

2 2

n 11
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r r U xr x



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M
M (7)

In case of flows of liquids the accuracy of Eq. (7) can be 
considerably less for the same cavity slenderness as compared 
to that of the equivalent equation for flows of gas/air. In 
addition the transonic range in water flows can be essentially 
wider as compared to that in air. The reason is the higher 
adiabatic coefficient in the equation of state for water. 

3.  PRACTICAL APPROACHES
Supercavitating flows are described by complicated equations.  
Further we present results and equations which were obtained 
in different ways including asymptotic expansions, slender 
body theory and by heuristic approaches. All equations are 
considered for the most interesting range of Mach numbers 
starting from incompressibility till ~ 2 : 2.5M . Most of these 

equations are verified by experimental and numerical data and 
are improved from point of view of more effective practical 
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use.  Details of the derivation of these equations can be found 
in the publications of the list of references.

3.1 Estimation of cavitator drag
The practical dependence of the drag in steady incompressible 
flow for disk type cavitators (disk, blunted cone and i.e.) is :

2
2

d n
U

D c R
2


  , d doc c (1 )  , disc: doc 0.82 : 0.83 , (8)

Rn  is the radius of the cavitator in the section of separation.

Figure 3: Values in stagnation zone for steady flow
———  - P  pressure 

     - mP -  impact pressure  for disc penetration [18] 

 ­ ­ ­ ­ ­ ­ - -  - mass density, - - - - a - sonic speed

The simplest approach for estimation of the drag with account 
for compressibility is on the basis of the equation for the 
pressure coefficient *c  at the stagnation point, also applicable 

in the transonic range, is:

n
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,

1M < : dc 0.82c (1 )    , 1 M :     dc 0.82c  

(9)

The influence of the compressibility near disk type cavitators is 
illustrated by values in the stagnation zone - pressure, density, 
sonic speed P  (bar) ,       , a a a   :

2U
P c

2
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 
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2
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 
M , (10)

Data for estimation of the values (10) are presented by Fig. 3

where 4P P /10 (bar)   the pressure impact values: 
4

m mP P / 10 for disc penetration in water is indicted on the 

basis of nonlinear numerical date [18].  The temperature in this 

range of M  can be not above o~ 100 200  C , but in case of 

slender cavitators essential temperature increase is possible due 
to viscous flow.

For cones till semi-angles o2 90  , 0.8 M , tan    the 

asymptotic approximation Eq. (11a) can be used. For slender 
cavitators, the lateral force can be estimated by the known 
equation (11b), applicable to a wide range of M where  is 

cavitator attack angle.
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2
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


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  (11)

3.2 Simplest equations for the cavity form
Equations for steady slender axisymmetric cavity r R(x)  are

[24, 26]:

2 2

2

d R
0

dx
    ,

2
d

n

x 0

2(c k )dR
R

dx k


 
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
,  2 2

nx 0
R R


 .

(12)

For const   the solution is an ellipsoidal cavity with known 
dependencies for the cavity maximal radius kR , the cavity 

semi-length kL ,  cavity aspect ratio k kL / R  are:

2 2 2d
n n

2(c k )
R R R x x

k 2

  
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 
,

d
k n

c
R R

k



,  

2
 


, d

k n

2 c / k
L R






(13)

(14)

Better accuracy for higher values of   can be achieved by 
replacing  c d dc / (c k )      instead of  .

Figure 4:  Cavity form behind disk  incompressible fluid:
    -- -- --  ellipsoidal cavity, 0.04   Eq.(12), 
   - nonlinear numerical data, 0.04   [15].

The main idea of the resulting equation is as following: We use 
the first order outer solution for the most middle part of  cavity
surface, but in doing so we use two parameters in these 
equations on the base of more accurate approaches and in 
particular second order theory. Equations (12-14) include 2 
typical values   and k that have a clear physical meaning. 

The value   characterizes the mass of the expanding cavity 

sections; the value k   characterizes the axial transmission of 
energy along with the flow sections. Equations (12-14) are 
universal and applicable for estimation of the main part of the 
cavity in a wide range of M  including subsonic, transonic, 

supersonic flow.  But the values  , k  in these equations  for 
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different ranges of M  can be essentially different and given 

for further consideration.  The accuracy of equations (12-14) as 
compared to nonlinear numerical data is demonstrated in Fig. 4 
for prediction of steady, 0.04   cavity.  There are unsteady
variants of these equations too. 
These equations multiply verified by experiments and nonlinear 
numerical calculations and are one of the most hopeful 
approaches for practical estimation of axisymmetric cavities.

3.3 Incompressible fluid and subsonic flow for range 
of 0.7 - 0.8 M

The basis for practical dependencies for   is a second order 

asymptotic solution for the aspect ratio   and maximal radius 

kR  of slender axisymmetric cavity:

a )
2

2ln / e
 


m

,   b) 2 2 d
k n 2 2

c ln 2 / e
R R 1 2

ln /

 
    m

. (15)

Figure 5:  Dependence of inertial coefficient ( ),  ( )   
———  Eq. (16),  -- -- -- values of 5% deflections for  ,

  - numerical calculations [15]

Figure 6:  Dependence of k k( ) 
on cavitation number for 0M
———  Eq. (17),  - - - - - H.  Reichardt dependence, 
  -  numerical calculations [15]

For the range of 0.7 : 0.8 M : 2 2~ 1 m M . This solution

defines a weak dependencies on  and   for values of ,  k :

2

2 2

~8 15

ln 2 / 1.5
  ln ln ln ,

e e
 

 
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 


m

m m m

~0.03 0.01: ~2 2.3    ,

(16)

2 2

2ln 2 / e 2ln 2 / e
k k 1 1

ln ln 4 /
    

 m m
,

  ~0.03  0.01:  k ~ 0.94 1

(17)

Calculation results of equations (16, 17) are illustrated in Figs.  
5, 6.  With account of Eq. (16) , the  formula (15a) is
transformed  to  the dependence :

2
2

2

6 15

2 ln 2 / ln1.5 /
ln

e
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 
 
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

m

m
(18)

Figure 7:  Dependence for cavity aspect ratio ( )   
———  Eq.(18),       numerical calculations [15].

Eq. (12, 14) are applicable for most of the middle part of the
cavity. The forward cavity part near the disk is not described by 
this equation, as it can be seen from Fig. 4. The parabolic shape 
also not correctly describes   cavity form at infinite where 
known M. Gurevich – N.  Levinson asymptotic [12, 13] is:

2
do 0.5

x 1 ln ln x x
R 2 c 1 ~

4 ln xln x ln x

     
 . (19)

More precisely, the approximate equation for the forward 
cavity part only applicable also just near disk type cavitator  is:

2
d2

22

2 (c )  x x
R 1

ln (1+ ex)/ln(1+ ex)/

 
  

 
 mm

(20)

In Eq. (19,20) all values are supposed  to be dimensionless 
relay to disk type cavitator radius. For estimation of the 
forward part of the cavity only behind slender enough cones the 
first order asymptotic solution can be used, tan   ,  - cone 

semi-angle, all values are supposed to be dimensionless relay to 
cavitator length 1l :

2 2 2
2 2

2 2 2 2

ln1/ (x 1)
R 2x 1

ln x / ln x /

          
     

m

m m
, (21)
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An accurate enough asymptotic approximation for the cavity 
behind disk, const   as a whole can be calculated by Eq. 22:

2
2 2 k m

n 2
xx k kc

L x x
R R 2

L L

 
     

,

2 2
c   ,  d dc / (c k )    ,

2

2

k k
42

2 2 k
n 2

* k k kc

xx

x
(x e ) 2 e

L L
0.5ln

L x x
e R 2 1 e

L L L
m

                
      

              

 ,

k
xx *x L   ,  for : ~ 0.01 0.05  : * ~ 2 (22)

Figure 8: Nonlinear approximation of the cavity, 0.04 
      ellipsoidal cavity form,
———  nonlinear approximation Eq. (22), 

+ + + +  G.  Logvinovich (14) experimental data [14], 
           nonlinear numerical calculation [15].

Results based on equations (22) as compared to nonlinear 
numerical predictions for  0 M  are illustrated by Fig. 8.

Figure 9: Compressibility influence on ( , )    M

Incompressible fluid:
——— Eq. (16),           numerical calculation [15].

Compressible fluid:
- - - - - - - 1:  Eq.(16), 0.7 M , - - - - - - - 2, Eq. (16), 1.7 M

  
 3.4 Subsonic flow for  0.7 - 0.8 M
The equation for the aspect ratio in the range of supersonic 
speeds takes the same form as for subsonic flow (15b, 18). for 

2 |1 |  2m M  and the same equation for  value.  

Fig. 9 illustrates action of compressibility on inertial coefficient 
  and accordingly on cavity aspect ratio  . But in the 

transonic range ~ 0.7 :1.5M  the most important effect is the 

significant increase of the extension of the perturbation zone. 

Figure 10: Aspect ratio in transonic flow
———    Eq, (18, 23),          numerical calculation [21].

For this range the dependence of m   can be improved:

2 2 n 1 n 1 1
~ 1 1

2 2 1 (n 1) / 2

              
m M (23)

Fig. 10 demonstrates the estimation of the transonic cavity 
aspect ratio results based on equations (18, 23) as compared to 
the attempt by nonlinear calculations of [21]. Calculations were 
made for 0.0268  . Data of [21] are approximately 
recalculated for constant 0.0268   on the basis of weakly 

changed values of 2  . 

Figure 11:  Dependence for Bk k ( , )   , 1.4 M  , 
o o o7.5 ,  10 ,  12.5 

- - - - - - -  Eq. (25),      wave loss on the cone o~ 10

The situation with estimations of the supersonic cavity behind 
discs is not fully complete till now.  Three terms of supersonic 
asymptotic at infinity for 1M   with considerable differences 
as compared to subsonic asymptotic were found:

2
2 S SK lnK / 49 lnln x 3 x

R 1 ~
4 ln x 2 ln x(ln x) (lnx)

x
... 

 
  

 
3/ 2 3/ 2

m
(24)
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and discovered considerable narrower forward part of a 
supersonic cavity as compared to subsonic one.  Values of the 
asymptotic coefficient SK  where found for slender cavitators 

only [28]. Matching with outer for middle part of cavity 
solutions  gives the possibility to find values of k for prediction 
of supersonic cavities behind slender cavitators [29]. In case of 
slender cones for 1 M  the value of Bk k  was found and 

can be estimated by second order asymptotic dependence:

2 2

2 2

B

2 2 2 2

2e 2eln1.5 /
ln ln

k k
2 2

ln ln

    
           
   
       

m

m m

m m

, (25)

where tan   ,  -cone semi angle. The values of  Bk

dependent on the  and on the cone semi-angle are 
demonstrated by Fig. 11 for 1.4 M  for a series of cone 

semi-angles: o o o7.5 ,  10 ,  12.5  . Using Eq. (16-17) for  , k
the supersonic cavity shape behind a slender cavitator can be 
easily estimated on the basis of simplest equations (12-14).

Figure 13: Cavity form for 0   behind slender cone in 
sub- and supersonic flows 

Fig. 12 illustrates calculated result for a supersonic cavity 
behind a slender cone as compared to subsonic flow and a 
cavity in incompressible flow for different cavitation numbers.  
The results for incompressible flow were verified by hopeful 
enough nonlinear numerical calculations [16]. 
The forward cavity part only behind slender cavitator can be 
estimated on the basis of first order asymptotic solutions:

3/22 2 2
2 2

2 2 2 2

x

ln( 1 / ) (x 1) x
R = 2x 1

ln( x / ) ln( x / ) (lnx)


                   
3/2

m

m m
(26)

Figure 13 illustrates results of calculations for forward parts of 
sub- and supersonic cavities behind a slender cone for 0 
based of Eq. (21, 26). These solutions were verified for 0  by 
nonlinear numerical calculations [15, 16]. Figure 14 
demonstrates calculation results for the forward part of the 
cavity behind disk for incompressible fluid as compared to 
subsonic, transonic   and supersonic flow. For prediction of the 
cavity form second order asymptotic solution [29] is used 
where cavity semi-length is supposed as given. Figure 15 
illustrates the supersonic cavity form behind small disc type 
cavitator as compared to ellipsoidal cavity.

Figure 14: Forward part of cavity behind disk  in 
compressible water

         0 M numerical calculation [15], 

+ + +  0 M  experiment date [14]

       0.6 M  Eq. (20),

        1 M ,        2 M  numerical date [18-19]

3.5 Cavitating drag in compressible flows
The important difference of flows with 0M >  is the 

formation of wave drag on the cavitator and especially on the 
forward part of the cavities. The wave loss here can be very 
intense and is the higher the less  cavitation number is. The 
appearance of wave drag leads to considerably higher 

Figure 12:  Compressibility influence on cavity form for cone  o10 

         nonlinear numerical calculations  0 M , 0.04   [16].

— - — -    0 M , 0.04  , 0.02  : Eq. (12-14, 16,17)

      calculations:  1 M : 0.6 M , 0.04  - Eq.  (12-14, 16, 17)

- - - - - - - 1 M : calculations: 1.5 M , 0.04  , 0.02  -Eq.  (12-14, 16, 25)



8

coefficients Bk k ( , )  m which are quickly increased for the 

cavity aspect ratios increasing. 

Figure 15:  Comparison cavity form for 0M >

with ellipsoidal form

——— ellipsoidal cavity form
      cavity for ~ 1.4 0,  ~ 0.04  M

Significances of k  values as distinguished with 0M <

where they are k ~ 0.94 1 , for 0M >  can reach the values 

Bk ~ 2 , and more over what is illustrated by Fig. 11. As result 

supersonic cavities can have considerable smaller sizes as 
compared to subsonic ones, but with considerably higher 
cavitating drag coefficients.  Below the equations for k k , 

Bk k  and also DC  and D0C  for forward cavity part for 

0M <  and 0M >  in the case of cone are compared:

1 M :    
2D0

1 ln / e
C ~

8




m
,       k ~ 0.94 1 

2D
ln / e

C ~ k k 2 


 


m
. (27)

1 M :
 

2

2D0
1 ln 4 / ln 4 /

C ~
8 ln 2 /

  
   

m m

m
,

22 2

2 2B
ln 2e m

k
ln 2 e m

 
  

  
22 2

2 2 2D B
ln 2e / m 2

C k ~ ln
ln 2 e / m m e

  
      

(28)

The expression for cavitating drag coefficient DFC  per the 

forward cavity section coincided with the body back section is:

2 2 2/3 2
DF F VF FD C R U / 2 C V U / 2     

 22
f

DF 2
f

1 2 /k
C

8

  



, 

2 2
f

3VF 2 2 4/3
p f

k [1 2 / ]
C

8 ( )

     


 

(29)

Like this  the volume coefficient VFC  for motion of body of  

paraboloidal  form is defined. Here f - aspect ratio of the 

cavity part contained body per back sections of this part, FR -

radius of body back part which is touched the cavity,  FV -

body volume.  These expression are universal in general case 
for a wide range of M  with different coefficients ,  k  but

based on an ellipsoidal cavity form which can be essentially
different from real cavity for motion of small bodies in the 
forward part of very large cavities

3.6 Possibilities of compressibility account

The compressibility influence till ~ 0.6 : 0.7M  is not 

significant and here all calculations can be made on the basis of 
verified equations. Physically the zones of supersonic flow near 
surface of finite cavity are begun jet for subsonic speed of body 
motion.  The flow near slender cavitators even under essentially 
supersonic speeds contains large zones of subsonic flow.  For 
the range of ~ 0.6 1 M  and it would rather for not high 

supersonic speed of motion the values k  can be not essentially 
different of 1 and can be estimated by Eq. (17).  Values of 
with account of Eq. (23) can be calculated by equation (16).  
The estimation drag coefficient of disk type cavitators on the 
base of Eq. (9) is hopeful enough too.    This fact gives the 
possibility to estimate the cavity form behind disks and slender 
cavitators for this range on the basis of Eq. (12-14) and more 
accurate including the zone near the disc type cavitator – Eqs 
(22). For transition into the range 1 M  the cavity very 

quickly is located in the supersonic zone. The theory in case of 
slender cavitators shows that the main part of the high wave 
losses establishes on the forward part of the cavities.  As result 
even for slender cavitators the cavitating drag coefficients can 
be increased several times as compared to 1. With account of 
experimental verification of supersonic asymptotic of 
streamlines at infinity supersonic cavities behind slender 
cavitators can be estimated by equations (12-14) with account 
of dependence for Bk  (25) and also by equation (26). The case 

of calculation behind disk for 1 M  causes higher 

complications and is not solved until now. The shock adiabatic 
curve for water is practically coinciding with the ordinary one 
and energy losses in the shock in water are not essential. 
Nevertheless it is need to expect jet more strong wave loss on 
the forward cavity part  in case of the disk as compared to 
slender cavitators which can be appeared shortly enough for 
transition into range of 1 M . 

4.  EXPERIMENTAL RESEARCH
4.1 A typical launch process
The process of successful high-speed supercavitating projectile 
launch in water is realized in the following way.  A projectile is 
launched into water at a speed of ~ 1000 : 2000m / s or even 
more.  Usually a launch bubble of muzzle gas is created and a 
cavity considerably longer than the projectile develops.
The projectile travels along nearly straight line, and decelerates 
ballistically, so that the cavitation number increases and the 
cavity size decreases. At some point, the cavity boundary 
impinges on the projectile surface. Eventually most of the 
projectile surface becomes wetted, viscous drag causes very 
rapid deceleration and the trajectory is effectively terminated.  
Although a successful launch results in a nearly straight 
projectile trajectory, the projectile itself tends to oscillate 
within the cavity in pitch and yaw and is typically stabilized by 
a process referred to as “tail-slap,” wherein the after body
grazes the cavity boundary.
Typical experiments have employed fairly small, slender, metal 
projectiles of mass on the order of ~ 0.1 0.5kgM .  The range 

is maximized by fabricating the projectiles from a heavy 
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material such as tungsten or steel, with a density 
3~ 7.8 20g/cm  .  The projectile is designed to be closely 

conformal to the forward part of the cavity at the end of the 
trajectory, at which point the cavitation number is greatest, and 

the cavity dimensions are smallest.  The cavitator size is 
selected such that the cavity nearly grazes the projectile surface 
at this moment. A disk-type cavitator is usually used, since it is 
associated with suitably stable projectile motion, and it is easily 
fabricated.  However, it should be noted that, at very high 
speeds, such cavitators endure very high stresses that, even at 
steady speeds, can reach the yield limit of strongest steels. 
During water entry, under the conditions discussed in 
connection with Fig.3, the stresses are even greater.

4.2 Experimental data
Most experimental data have been obtained at conditions near 
atmospheric pressure for motion in channels with free 
boundaries.  In the following sections, the data involving the 
experiments described in references [5-7] are used.  The 
projectile form and cavitator size are chosen on the basis of a 
cavity, the forward portion of which is close to a parabolic 
shape.  Projectile stability is provided by sizing the cavitator 
such that the after body is wetted, or, alternatively by 
generating a slightly oversized cavity such that a tail-slap 
occurs. Typically, for very high-speed experiments at 
approximately atmospheric pressure with projectiles of small 
mass on the order of ~ 0.1 0.5 kg , the cavities are very large.  

Under these conditions, for motion at a depth of ~ 0.5 m , the 

cavitation number is on the order of 4~ 2.1 10  .  Ignoring 
the effects of facility boundaries and the free surface, the cavity 
length-to-cavitator radius ratio is on the order of 

3
c nL R ~ 29 10 .  Even for a cavitator as small as 1 mm, the 

associated cavity length is cL 29 m .  In comparison, a steel 

projectile of mass 0.2 kgM   with an aspect ratio f 10 :15 

has a body length of only bL 10 :12 cm .  Even if the 

considerable blockage effect of the test facility is taken into 
account, the large cavity will allow for considerable motion of 
the small projectile within it.  A rough schematic of the 
arrangement of the projectile within the cavity (not to scale) is 
presented in Fig 16.  A high-speed composite image derived 
from sequential frames of a high-speed film of an experiment at 

a launch speed on the order of ~ 1000 m/s  is presented in 

figure 17 [5-6].  Experiments to ranges on the order of several 
scores of meters have been performed.
The main results of very high-speed supercavitating projectile 

experiments are as follows:
The practicality of stable motion over useful distances of small 
bodies enveloped in a supercavity has been demonstrated.

Figure 18:  Supersonic cavity behind disk  [7].

Figure 19:  Demonstration of oscillating nature of the motion 
and projectile stabilization process, 1 M  [5-6]

Figure 20:  Ellipsoidal cavity form as compared to 
experimental cavities , points – experimental data for cavity 
form  [5-6]

Very high sub- and supersonic speeds in water have been 
reached. See Figs. 17,19 [5-6] and 18 [7].
For range of speeds until ~ 2M  it was found that cavities 

have stable clear fixed surfaces.  Theoretically and by 
experiments the oscillating nature of the projectiles motion and 

Figure 16:  Experimental launch scheme (not to scale).

Figgure 17:  Experimental cavity for U ~ 1000m / s  behind disk with nR ~ 0.75mm , [5-6].
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possibility of resonance regimes for motion was discovered, see 
Figure 19.
Main problems of launch processes realization are connected 
firstly by the uncertainty of the quantity of successful lunching. 
As the estimation shows Fig. 3 the stresses on disk even for 
motion can exceed the yield point of strongest steels and 
considerably increased in the processes of initial blow of 
cavitators against water. Plastic deformation estimation shows 

that a steel disk cavitator under action of blow is deformed and 
becomes alike as a mushroom form. Additional lunching 
experiments may provide considerable more strong properties 
of metal under such specific of very short term blow processes. 
This possibility can be verified by further experiments when we 
could catch projectiles which will not be destroyed for blow 
against obstacle. Other reason of unsuccessful launch can be 
too high initial perturbation of projectiles under launch which 
lead to high lateral forces and bended plastic deformations. 
Lack of experiments is also impossibility to reach maximal 
distances with nature cavity closure at the end under 1 atm 
pressure so these distances are considerable over as compared 
to experimental treks. There are also considerable difficulties 
for the forward part of the cavity near the disk due to too high 
speed and especially thanks to essential change of optical 
properties of water under high pressure as it can be evident on 
figure 18.  For 1 atm natural pressure and very high speeds the
modeling of projectile motion in the cavity with the same as for 
projectile sizes is not possible too.

4.3 Verification of theoretical models
Experimental cavities are extreme slender like as needle ones.  
These cases are maximally suitable for approaches on the basis 
of slender body theory. At the same time nonlinear numerical 
modeling of alike cases is a very complicated problem which is 
not solved till now. The sizes of experimental cavities are 
usually considerable larger as comparison to distances to walls 
and channel free boundary. For estimation of the interference 
with boundaries in the range of 0.6 0.7  M  we have 

dependencies [45].  However, for any case using experimental 
results for middle parts of cavities for verification of the theory 
is doubtful, due to considerable influence of boundaries.  
Especially essential boundaries influence for transonic flows 
and for this case and for 1 M  models to estimate boundaries 

interferences do not exist. This is the worse situation, due to the 

wide zone of perturbations.  Here for motion near a free surface 
this zone action practically is neglected and considerable 
distortion are made also by the wall influence. The hopeful 
enough for all cases can be verification of the theory for 
forward part of cavities for distances of several projectile 
lengths in spite of problems for photo fixation of the cavity just 
form near disk type cavitators for too high speeds. 
As a result of subsonic experiments they had proved closeness 

of very slender under very high speeds axisymmetric cavities to 
ellipsoidal form in spite of even considerable boundaries 
influence and also independence of expansion of the sections of 
this cavities what is demonstrated by Fig: 20, k kR ,  L - cavity 

maximal radius and length.  Comparison of forward parts of 
cavities with known asymptotic of streamlines expansion at 
infinity by Gurevich- Levinson  (19) [12,13] was made and 
confirmed this dependence. Data of supersonic experiments [7] 
give the possibility for verification of the asymptotic of stream 
line expansion at infinity in supersonic flow Eq. (24):
For verification the photo original of fragment figure 18 was 
used.  Cavity form for weakly enough depend on M  which 

was estimated on the basis of shock wave angle which is clear 
fixed on the photo.  The experimental curves of the supersonic 
cavity form [7] were compared with subsonic asymptotic (19) 
with account found 3 terms and  supersonic  asymptotic  (24) 
Fig. 21. For comparison booth theoretical curves are made as 
reciprocally intersected with experimental curve on the first 
figure at the section 3, on the second figure at the section 6. 
Experiments are corresponding to not very high supersonic 
Mach Numbers. The measurement of experimental radii was 
not as very accurate.  On the photo it can be seen  the range of 
the sections 4-6 the lateral blow of the projectile against cavity 
was occurred which what exited some increasing of the 
experimental cavity radiuses in for the next sections.  
Nevertheless, as it can be seen in Fig.21, the curve of the 
experimental cavity is situated considerable more close to 
supersonic asymptotic as distinguished to the subsonic one.  
These confirmations give essential assurance and can be 
regarded as a basis for validation of the equations developed on 
the basis of the Slender Body theory used under consideration.

5. AXIAL AND LATERAL MOTION IN CAVITY

Figure 21:  Verification of supersonic asymptotic 
of streamlines at infinity by experimental date [7]

———    experiment cavity form,   - - - - - - - -    supersonic asymptotic (24),  - - - -     subsonic asymptotic (19)
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The theory of motion in cavity is described by complicated 
equations. There are here number of publication in particular 
[30,43,44]  For small perturbed trajectories simple linearized 
and heuristic approaches can be used. The problems of axial 
and lateral motion can be considered separately

5.1 General equations of axial motion
For estimation of axial motion the cavitator drag only is taken 
into account. Due to extreme small values of cavitating drag 
coefficients a very low deceleration of the speed of motion 
under inertia is observed.  This fact gives the possibility to use 
quasi steady approach for supercavitation modeling. The 
simplest model of axial body motion by inertia under drag 
which is proportional of to the speed square is described by:

2dU
U 0

dt
 M K  ,  

dX
U

dt
 ,  

2
d nc R

2


K = ,   ot 0

U U  ,  
t 0

X 0  ,

(30)

where M , - body mass, x X(t) - trajectory length, 

u U(t) - body speed depend on time, K  accounts for the 

cavitator drag.  These equations can be easily transformed into 
the system with the simplest solution:

2
2dU

U 0
dx

 
M

K
2

, ox 0
U U  , 

2
o
2

U
x ln

2 u


M

K
(31)

Figure 22:  Optimal cavitation numbers
——— motion end in the forward cavity part paraboloid : 
Eq.(38) ,      motion end in the finite  cavity: Eq. (39)

In general case it is supposed that the motion starts in the large 
cavity and finishes in smaller cavity when the back part of the 
projectile is connected with the cavity as it is shown in Fig. 16.  
The projectile with aspect ratio f  of near parabolic form we 

consider as given and inscribed in such cavity as we want with 
help coinciding given cavitator radius nR . Trajectory length 

for motion in cavity until of reaching of the speed cu U  if  

motion speed until cU U  provides motion in cavity is defined 

on the basis of integral (31) by dependency:

2 2
o o

c 2 2 2
d n c c

U UM
X ln A ln

c R U U
 

 
, (32)

5.2. Axial motion of a paraboloidal body in cavity
Firstly we consider the most general case when body can move 
for the final moment both at the forward cavity part of very 
large cavity Fig. 16 or in cavity with sizes what can be near to 
projectile sizes.  In doing so the body has to be by form what 
would be close to the forward cavity part close to paraboloid.  
The cavitator size have to provide touch of back body with 
cavity for final moment. On the basis of equations for 
ellipsoidal cavity (14-16, 29) and equations (31, 32) the length 
of supercavitation part of trajectory is described by formula: 

4/32
f c

2/3 3
cp c3b c

4/3 23 2c oc f c

c

9
8 1

X V ln
9 k

1 2

 

  
 

    




 
 
 

 
 
 

 4/322/3
fp 3b c

23 2c c o
f c

c

98 1
V ln

9 k
1 2

 


    




 
 
 

(33)

This is an universal dependence, applicable both for 
incompressible and compressible flow in a wide range of M

for coinciding significances of key coefficients 

c ck k ,      corresponding their significances for cavity at 

the trajectory end. Here b , V - body mass density, volume, 

f - show what part of volume of final cavity until back body 

section is filled by body, o , c - cavitation numbers for 

initial and final moments at the trajectory end. Optimization of 
dependence (33) for maximum of trajectory length X  is made  
for f , and c .  In result we have received two equations:

a) 
2
f c

c

1
 




             b) 
2

c f c
2

o f c c

1 2 /
ln

4 /

   


   
(34)

Optimization on f  only equation (34a) indicates that maximal 

distances are achieved for maximally filling by parabolic body 
the volume of final (ellipsoidal) cavity.  The relation of the 
volumes of paraboloid form pV  close inscribed in ellipsoid 

cavity with volume eV  and relation of aspect ratios here for 

cavity and inscribed parabolic form are:

pe p eV / V 4 / 9 ~ 0.445     ,    

 2/32/3
pe 4 / 9 ~ 0.582   , p c / 2  

(35)

With account of Eq. (34a) the general dependence (33) is 
transformed into optimized dependence for maximal distances:

2/3 3
p c3b c

p 3 4/3
c oc

2 4
X V ln

9 k

  


  
(36)

By optimization for c only equation (34b) indicates that the 

maximum of the trajectory length can be achieved for motion in 
the forward part cavity likely as in Fig. 16. The maximal
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trajectory length is defined by the Eq.  (33) and for a given 
body aspect ratio f is defined by dependence:

 4/322/3 3 f c cp c3b c
f 4/3 23 2c oc f c c

9 /8 1
X V ln

9 k 1 2 /

    


        

, (37)

where c f _ opt f o( , )      is defined by Eq. (34b):

2
f _ copt f f _ opt c

2
o f f _ copt c

1 2 /
ln

4 /

    


   
(38)

Figure 23:  Body optimal aspect ratios depend on cavitation 
number o
    - close to paraboloidal form, Eq. (45)
——— - close to ellipsoidal form, Eq.(48)

5.3. Universal paraboloidal and ellipsoidal forms

If it would consider common optimization both on f  and c
the solution of the equations system (34a, 34b) give the 
condition which defines c c _ opt    for both this cases too:

c _ opt

o

3
ln

4





,  3/4

c _ opt o oe ~ 2.12    (39)

 Maximal distance on the base of Eq.(36), (39) is defined as: 
2/3 3
p c3b

pm 4/33
c o

2 1
X V

3 ke

 


 
(40)

Comparison of optimal cavitation numbers for motion end in 
the forward part of cavity and  in closely inserted body in finite 
cavity is illustrated in Fig. 22.
The distance maximization under condition of maximal filling 
by the body of the cavity volume in the final moment is 
universal.  This fact is valid both for bodies close to paraboloid 
and ellipsoidal form too! The dependence (35) for bodies of 
ellipsoid form the maximal distance is defined by the same as 
Eq.  (36) Dependence, but with another coefficient:

2/3 3
p c3b c3

e 4/33
c oc

2 4
X V ln

9 k

  


  
. (41)

Like this as Eq.(40) the dependence for maximal distance of 
ellipsoid body is:

3
c2/3 3b3

em p 4/33
o

3 1
X V

2 e


 

 
. (42)

For the range of 0.7 08  M , c ~ 10 20  , ck ~ 0.94  this 

main equations can be expressed accordingly. In the case of 
paraboloid form of the body:

3
2

c2/3 3b c
p 4/3

oc

1.5
0.5 ln

X 0.71 V ln
 

 
 

m
,

3
2

c2/3 3b
pm p 4/3

o

0.71
0.5 ln

X 0.167 V


 
 

m

(43)

(44)

Optimal body aspect ratio:

2
o

p _ opt
o

ln 0.71/
~ 0.49





m

 . (45)

In the case of near ellipsoid form of body:

3
2

c2/3 3b c
e 4/3

oc

1.5
0.5 ln

X ~ 1.1 V ln
 


 

m
,

3
2

c2/3 3b
em p 4/3

o

0.71
0.5ln

X 0.288 V


 
 

m
.

(46)

(47)

The optimal body aspect ratio is:

2
o

e _ opt
o

ln 0.71/
~ 0.69





m

(48)

Comparison of optimal cavitation numbers which realize 
maximal distances for end of motion in the case of closely 
inserted in finite cavity parabloidal and ellipsoidal bodies forms
is illustrated by Fig. 23.

5.4 Maximizing projectile range
Given and not changed are values of   and of the gravity field 

pressure P .  The range of change b /   is also limited by 

values ~ 8 15 .  From the point of view of effective launch 
most important is to reach a given distances and in doing so to 
miss till final moment small enough  part of initial projectile  
energy what is required for  impact on the obstacle. With 
account limitation of reasonable initial launch values of speed 
the most important possibility of the launch systems efficiency 
is the possibility of maximal increasing of the reaching 
distances under given initial speed. This problem can be 
reformulated as equaling the possibility of receiving a given 
distance by minimization of the initial speed, too.  
There are two possibilities to reach a maximal distance under 
the process optimization. For the paraboloidal body form this 
means optimization on the cavitation number at the final 
moment under given body aspect ratio Maximal range here is
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defined by equation (37, 38).  The cavitator size here is 
designed for inscribing paraboloidal body in the forward part of 
cavity with cavitation number defined by Eq. (38) depending 
on initial cavitation number. In the second way the one 
parameter optimization is possible both for parabolic and 
elliptic body forms the maximal distance is reached in the case 
when body maximally closely fills the final finite cavity. 

Figure 24:  Maximal ranges – paraboloidal form
▬▬▬▬  Eq. (44),  ——— Eq. (43) for 15 
      Equations (37-38) for 15 

The maximal distance here is defined by equations (36, 41) 
with account of sizes for cavitator which provide close 
inscribing of the body in final given finite cavity.  For both 
cases of optimization we have to chose the points with 
characteristic pressures and make optimization for this points 
so in reality we have hydrostatic pressure changing. Under 
these conditions our design for typical points of pressure under 
condition of constant initial speed of pressure will be optimal 
only for these values of pressure only. For another pressures 
changing along depth this design will not be optimal and can be 
near optimal only.  For both cases under fixation of P  and 

b /   we have the structure of dependence for length of 

cavitating part of trajectory (49a) which physically expresses 
the dependence (49b) :

a) c oX ~ X(V, , )         b)   c oX ~ X(M, U , U ) (49)

Under given mass M  and value defined body energy at the 
final moment cU  the trajectory length can be any long under 

infinite increasing of initial speed   oU .  With account of given 

characteristic maximal pressure mP  given distance length X , 

initial speed oU  and energy at the given trajectory end cU

definite defines value of body mass M : c oM(X, U , U )M
For further using with account of changing of pressure for 
given values c o,  U , UM  the length of distance will be coincide 

for given point mP P    however  it will be more long for 

less pressures and more short for more high pressures. 

The values cU  at the end of given trajectory length for 

mP P    will be the same under more small pressures. Under 

conditions when we have the possibility to change the initial 

speed two optimization parameters give the possibility to 
optimize also parameter of the body form (body aspect ratio  ) 
from point of view of reaching of maximal distance. Optimal 
aspect ratios   are realized depending on o : equations (39, 

45, 48) and under considerable increasing of initial speeds can 
not be over of definite values of   from point of view body 
strength.  Chosen maximal possible aspect ratio of projectile
from point of strength as kr ~ 15  critical values of initial 

cavitation numbers for parabolic kr _ p  and ellipsoid kr _ e

forms are estimated by equations  (50, 51). 

kr _ p
3/4 kr

2
kr ~15, ~1

ln( 2 / m e)
e ~ 0.0054




 


m

,

3/4 kr
kr _ e 2

kr ~15, ~1

2ln( / e)
e ~ 0.0093




 


m

m
.

(50)

(51)

Figure 25:  Maximal ranges comparison  paraboloid–ellipsoid 
forms, (for paraboloid curves are below  ellipsoid  ones) 

▬▬▬▬ Eq. (44, 47),   ——— Eq (43, 46)   for 15 

These cavitation numbers divide range of pressures (depths) on 
two parts. The part of more high pressures is when optimization 
is realized for body closely inserted in the cavity at the 
trajectory end. The part of the less pressure is where
optimization is realized for motion of the body at final moment 
in the forward part of cavity.  Body aspect ratio optimization 
equation ( 50, 51) is occurred as possible for the ranges of 

op 0.0054  , oe 0.0093  .  Under less initial cavitation 

numbers and given maximal body aspect ratios f ~ 15
considerable better to use optimization for motion in the 
forward part of cavity where maximal distance is defined by 
equation (37,38). In doing so the cavitator size is designed 
under condition of inscribing of body in the forward part of 
cavity under given characteristic maximal pressure mP P   .  

For less and more high pressures calculation is made on the
general equation (33) under value of c  defined for mP P   .

Critical values are different due to the parabolic projectile  form  
have less volume as compared too ellipsoidal form  for 
inscribing in the finite cavity at the final moment. Due to it 
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parabolic form projectiles have less critical depth and 
accordingly cavitation number.
Figs, 24 and 25 illustrate the comparison of calculated results 
for maximal ranges under k ~ 1 ~ 1m , 1  , b / 1   ,

V 1  and different ways of optimization under equal body 
aspect ratios and masses.  In Fig: 25 the over curves correspond 
to ellipsoidal form, below – paraboloidal body form. On Figs 
24, 25 touching points correspond to critical values of initial 
cavitation numbers (50, 51).  In this point for oU ~ 1500m / s

bodies by mass 0.3kg  have reached distance length ~ 100m  in 

the case of parabolic form under P ~ 60bar , ellipsoidal form 
under P ~ 100bar . Since smaller cavitation numbers 
trajectory length become practically as equal for paraboloidal 
and ellipsoidal forms with account that paraboloidal form is 
inscribed in cavity under smaller cavitation numbers for the 
same body aspect ratios.

Figure 26:  Critical depths krH (m) depend on initial speed 

oU  (m/s)

▬▬▬▬  paraboloid form  Eq. (50)
     ellipsoidal form Eq. (51)

Figure (26) illustrates critical lines of pressure depend on initial 
projectile speed in the case of paraboloidal and ellipsoidal 
forms It should be noted that the ellipsoidal body form under 
the same conditions give the possibility to reach longer 
distances under high pressures but have essential lack with 
respect to required additional stabilizer devises and is not good 
applicable for small pressures. The parabolic form is 
considerably more universal giving some less long distances for 
high pressures but it is applicable and for small pressures too, 
giving the possibility to reach maximal distances under given 
body aspect ratios. For case of paraboloid form there is 
possibility in particular of an automatic stabilization with the 
help of multiple touching by body back part of the cavity under 
angular oscillations of the projectiles.

5.5 Other constraints
Launch optimization process under given trajectory length and 
energy at the trajectory length give not the possibility to 
account additional conditions and limitations if we have no 
some reserves of values of initial speeds and distances. When 
we have these reserves they can be used to account for 

additional conditions. In particular if we have limitation on 

projectile energy for final moment 2
c b cE VU / 2   which can 

not be less as a required value we can optimize mass (volume 
V ) of projectile from point of view maximization of trajectory 
length under this condition on the basis of equation (36, 41).  
The optimal values of V  here are defined by dependence (52a) 
and corresponds to the dependence (52b) for cavitation number 

o and energies of projectiles for initial and final moments:

a)   c
o

b

E
V e

P


 

 
   ,  b) c o c oe ,   E  =E / e      (52)

These dependencies are not essentially different as compared to 
conditions of main optimization (39). For limitations of the 
projectile energy at the final moment maximal distance will be 
reached under some more high initial speeds. Under limitation 
of the energy of launch device optimal V  is defined by (52b) 
what corresponds to equations for the cavitation numbers and 
energies for the initial and final moments (53b):

a)   c
o

b

E
V e

P


 

 
,     b) 3 3

c o c oe ,   E  =E /e        (53)

Conditions for given initial energy were considered also in [43]
and after that in [46].  Conditions for minimal initial energy and 
momentum of the projectile under given range and body f
can be found too for both cases of cavitational trajectory end. 
This condition defines optimal value (54) of projectile volume 

optV , where  B( )  is defined by dependence (55):

3

c
opt 2 4/3

X
V

3( ) B( )

 
  

  

2 4/33 c
c

o

B( ) X / V ( ) ln


  


(54)

(55)

Figure 27 illustrates values of optimal volumes in 3(cm) -

Eq.(55) for paraboloid form depend on body aspect ratio    
under give trajectory range cX ~ 100m  in the case of close 

inserting body in finite cavity at the trajectory end - Eq. 36. 
Two cases of the body mass densities are used,  

c~ 1,  k ~ 0.93 .

It is important to note that for limitation of the initial energy of 
projectile maximal distances will be reached for considerable 
more high initial speeds and less projectile volumes  but under 
considerable decrease of  the energy at the trajectory end. It is 
possible to account of other limitations, important from the 
point of view increasing of efficiency of very high-speed 
launch systems in water too. It is interesting also possibility of 
estimation reached distances and their optimization with 
account motion under angle relay to gravity field.  Trajectory 
length can be expressed by dependence:

c oX A ln /   , (56)

where A  is defined by parameters of end cavity and is not 
changed along motion.  For motion in hydrostatic pressure field  
with account of gravity dependence for trajectory length under 
given c , ( c ) is defined by equation:
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2
c o

o c

U / 2
X ln

P X cos

 


   
A (57)

where g    weight density of fluid,   is calculated from 

gravity direction against clock rotation.  Aspect ratio 
optimization here is made analogously constant pressure but for 
this case for given trajectory length and after that minimization 
initial speed.  In doing so cavitation numbers are considered for 
pressure values at the trajectory end. 

Figure 27:  Dependence for optimal volumes depend on 
body aspect ratio under given range Eq. 55. Motion of 
paraboloidal body closely inserted in cavity at trajectory end.

Relations of optimal cavitation number (39) are occurred the 
same as for motion along trajectory under constant pressure. 
For motion along direction to free surfaces the bodies can flight 
out from water due to the cavity will not be closed.  Condition 
of body free flight out from water for cos 0    is:

c
o

o

[1 ( cos )/ P ]oe
cos

1 1
P

    
 

  
   

A

A cos 0   (58)

Here oP - defines given pressure for initial moment.

5.6  Accounting for compressibility
Key moments of compressibility account can be made clearly
on the basis of general equations (37,38) and (36, 41) passing 
coefficients values ,  k  which defines the compressibility 

influence on the trajectory length.  Here it is an important fact 
that the trajectory length is defined by cavity at the trajectory 
end defined projectile drag coefficient.  Under supersonic speed 
at the final moment this coefficient can occur as it clear on 
Fig.11 in several times more over as compared motion for 
subsonic speeds. With account optimal relation initial and end 
speeds o cU ~ 2.1U  increasing initial speed till values 

oU ~ 3000 3200m / s  for sonic speed in water a ~ 1500m / s
will lead to increase of maximal trajectory lengths. But here it 
can be possible to have the problems with motion in essentially 
smaller supersonic cavity.   Further initial speed increasing can 
be by negative action decreasing the trajectory length.
Nevertheless using of supersonic lunch is important thank to it 
can considerable decrease time of projectile run  along given 
range. But it is need account that in the case of supersonic 

lunch for decreasing of speed along trajectory until sonic speed 
created under body penetration into water wave chock can go 
after projectile and close the cavity. The trajectory end for 

1 M  in transonic range can increase the trajectory length due

to larger aspect ratio of the cavities in this range.

6.  LATERAL MOTION
6.1 Some peculiarities of the motion
Convenient approach is the application of equality conditions 
of all inner forces and moments projected to normal and 
tangential axes of the motion trajectory y y(x) . In the case of 

level motion, the system of equations for the trajectory is:

s n
d dy

U F g cos 0,  tan
dt dx


     M M , 

2

2

d ( )
0

dt


J M = .

(59)

Here M is the body mass, J  is the longitudinal moment of 
inertia, t  is the time, sU (t) is the velocity component along the 

trajectory defined by the addition to equation (59), ,    are the 
angle of attack and the angle tangential to the trajectory, 
respectively.  Equations (59) are written in with nF  as the 

normal component and M  as the  moment of the sums  of  all 
inner forces acting on the body, including hydrodynamics 
forces.  In general, the process of motion can be imagined as 
follows.  A moving cavitator creates a cavity surface and after 
that, the body moves on this surface.  The trajectory of the 
cavitator and the trajectory of all parts or the body interacting 
by hydrodynamic way with the cavity (planning, stabilization, 
etc.) do not coincide with the trajectory of the center of mass.  
The body rotates, oscillates, and bends, and, as a result, the 
local speeds and angles of attack of it different components that 
interact with the cavity are significantly different.  The 
cavitator in this system essentially marks the curved trajectory 
of the centers of expanding cavity sections.  In doing so, the 
cavitator imparts to the sections a definite lateral speed and 
inertial impulse and after that, the sections and body 
components interact with finite time lag. Besides, a cavity for 
motion can be deformed under different external factors, some 
of the most significant being lateral gravity influence and gas 
injection, and even for motion of a rigid body in an empty 
cavity connected with the possibility of appearance of power 
oscillation processes.  Thus, we have a complicated complex 
process including rigid and hydro-elastic body oscillations 
under the action of cavity deformations and waves on its 
surface which can appear for motion.  

6.2 Fluid-body interaction effects
The key problem is calculation of planeing on the cavity 
surface. Planeing theory started from known publications by E 
Paryshev [35] for planning cylinder on cylindrical free surface  
and after that was developed through many investigations [36-
38].  Essential to this problem is the application of the strip 
model for the hydrodynamic interaction with the cavity.  In 
considerable part cases the linear presentation of the lateral 
force depend on attack angle can be used as based on the added 
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mass m  at the body end part coincided with separation section.  
Given a sufficiently wetted back part of the body, known linear 
theory for slender body lift (11b) here can be applicable.  It is 
important for some cases can be account for compressibility for 
planning for at sub-, trans-, supersonic speeds too.  

6.3 Hydro-elastic effects
The model problem based on differential equations for an 
elastic beam is:

a)            
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(60)

Here, i(x) i i (x)  is the linear moment of inertia and 

M M M(x) (x)  is the mass of beam sections.  E  is the elastic 

modulus. The center of mass is located at the coordinate, 
x 0 . Distances a  and a1  are measured from the center of 

mass to the back and front of the beam, respectively.  In the 
model statement, the lift force, for simplicity, is situated at the 
body back section. m  is the separation added mass at the back 
body section.  A linearized solution of the problem (60) is 
determined using a quasi-rigid approximation for 

/ Ei ) 0 (M .  First order solution of Eq. (60) for M const=

is transformed to the system of more simple equations:
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2 s
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Figure 28:  Hydro-elastic effects influence depend on M

- - - - - - - k  Eq. (61b): bodies for  aspect ratios   b ~ 5, 10, 15
Here, J  is the longitudinal moment of inertia of the beam, 

mi is the value of i(x) at the center of mass, and the value of 

    (i.e., close to the angle of attack of the body at the center 

of mass).  The solution for constM =  have been defined 

significance of b ~ 4.8  for this case.  Physically hydro elastic 

effects are manifested here by more small attack angles in the 
back basis of body as compared to it's values for the rigid body.

Figure 28 illustrates the results of hydro-elastic effect action on 
attack angle at the back body section in case of model case of 

supercavitation flow of metallic body for 11 2E ~ 4 10 n / m   of 
near parabolic form with essentially wetted back part of body.  
The estimation data for k k ( )   M   on basis formulas (61b) 

depend on Mach Number are presented for three body aspect 
ratios   b ~ 5, 10, 15  and rough estimation of b ~ 11.5 .  With 

account of essential influence of real lift force position shift to 
forward this data can be preliminary oriented only.

6.4 Generalized system of the linearized equations 
with account of hydro-elasticity  
These equations are on the basic model for nearly straight, 
inertial motion at nearly constant speed., The linearized model 
applies to very high-speed launching, with subsequent near 
straight body motion by inertia.  The body has a wetted 
stabilizing part at the back, and the hydro-elastic effects are 
accounted for based on generalization of the model problem 
(60, 61).  Neglecting small lateral forces on the disk-type 
cavitator and accounting for sufficiently slow damping of 
velocity, the system equation for the trajectory 
y y(x),  y y / a,  x=x/a   is defined as:

a)  
2

2 h h
d y d y m

k m k y 0
dx Jdx

 
    ,    

b) o ox 0
y J( J )      , 

ox J

d y

dx  


, 

c)  o o o oy y J( J ) ( J )x          ,

(62)
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Here, o o o o,  ,  U ,  ,      are the initial angle of attack, the 

angle tangential to the trajectory of the center of mass, linear 
velocity, and angular velocity, respectively.  a  is the distance 
between centers of mass and pressure.  m  is the separation-
added mass of the back wetted part of the body, combined with 
any stabilizers interacting with cavity surfaces, ,  M J  are the 
mass of the body and the longitudinal moment of inertia.  

mE,  i  are the modulus of elasticity and lateral moment of 

inertia at the section of the center of mass, bK   is the body 

rigidity ( bK - without influence of lift shift), defined in a 

special way, sK  is the stabilizer rigidity. For neglecting of the 

lateral forces on the disk cavitator delay effect for flow action 
on the back part of body in this model is not accounted. The 
problem (62) defines lateral trajectory coordinates relative to 
the axis inclined with respect to the direction of initial motion.
The classical equation of harmonic oscillations (62a) with 
damping, can be expressed as equation depend any from 
values: ,  ,  ( ).      Physically, this fact corresponds to 

lateral and angular oscillations of an elastic body, where energy 
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is transformed from one type of oscillation into another, with 
energy then transformed into lateral energy in the wake behind 
the body.  It is important that this model is significantly 
unsteady, not quasi-steady. Even this simple linearized model 
for the case of a rigid body uncovers the most important 
properties of supercavitation motion connected with the 
manifestation of intensive oscillations, with definition of key 
parameters of this process.  The amplitude mpA  and the 

frequency of the dying oscillations k  are given by:

hk m 2x 2 o h o2
mp o

2
h h

( y 0.5k m y )
A e ( y )

m
k (0.5k m)

J

   
  


, 

2
h h

m
k k (0.5k m)

J   .

(63)

Oscillations frequency for  ,   M increasing have tendency to 

be more close to elastic body own frequencies of oscillations 
and indicate on possibility of resonance processes. This 
tendency can be enforced in transonic flow where possibility of 
essential increasing of lateral forces was discovered [37].  In 
doing so hydro-elastic effects action decreased lateral forces 
can provide considerable decreasing of these processes.  The 
approach under consideration is essentially model approach so 
supposes linear dependence lateral forces on attack angle and is 
not taking into account cavity deformation along motion 
process. Nevertheless the simplest model of lateral motion can 
be considered as qualitative model applicable for estimations 
for wide enough cases.  More precise approach is applied in [4].

CONCLUSIONS
A number of problems involving the launch of very high-speed 
supercavitating projectiles in water have been solved, but 
research overall remains incomplete at this time. 
 One of the remaining challenges is observed instability during 
repeated launch experiments, which appears to be associated 
with the very high stresses that occur during water entry.  
Special experiments are required to verify the underlying 
physics of this process.
Another important unfinished research topic is compressibility 
effects at high Mach number.  This issue is important for 
defining reasonable expectations for the maximum launch 
speed that can be achieved in the attempts to increase range and 
avoid resonant regimes of motion.  One promising approach 
would be the development and validation of nonlinear 
numerical models for compressible supercavitating flows past 
disk-type cavitators, which would allow for reliable predictions 
over a much greater range of Mach numbers.
Additional important results are desired in the area of 
experimental research into supercavitating flows and the 
motion of the projectile within the cavity at very high speeds 
and under very high pressure.

NOMENCLATURE
r, x, t Cylindrical coordinates, time
r R(x, t) Axisymmetric cavity form

k k kR , L , Maximum radius, semi-length, aspect ratio of 
ordinary cavity for const 

U , P ,  Speed, pressure, mass density at infinity 

2

P

U / 2 


 


Cavitation Number ( P -pressure difference 
hydrostatic and in cavity)

U / a  M =
Mach Number ( a -water sonic speed in 

undisturbed fluid)
D ; doc , dc Drag,  cavitator drag coefficients 

D0 DC ,C
Cavitating drag coefficients per maximal 
cavity section for 0,  0   
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