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ABSTRACT

A mutiscale numerical approach is developed for the inves-
tigation of bubbly flows in turbulent environments. This con-
sists of two different numerical approaches capable of captur-
ing the bubble dynamics at different scales depending upon the
relative size of the bubbles compared to the grid resolution: (i)
fully resolved simulations (FRS) wherein the bubble dynamics
and deformation are completely resolved, and (ii) subgrid, dis-
crete bubble model where the bubbles are not resolved by the
computational grid. For fully resolved simulations, a novel ap-
proach combining a particle-based, mesh-free technique with
a finite-volume flow solver, is developed. The approach uses
marker points around the interface and advects the signed dis-
tance to the interface in a Lagrangian frame. Interpolation
kernel based derivative calculations typical of particle methods
are used to extract the interface normal and curvature from un-
ordered marker points. Unlike front-tracking methods, connec-
tivity between the marker points is not necessary. For under-
resolved bubbles, a mixture-theory based Eulerian-Lagrangian
approach accounting for volumetric displacements due to bubble
motion and size variations is developed. The bubble dynamics is
modeled by Rayleigh-Plesset equations using an adaptive time-
stepping scheme. A detailed verification and validation study of
both approaches is performed to test the accuracy of the method
on a variety of single and multiple bubble problems to show good
predictive capability. Interaction of bubbles with a traveling vor-
tex tube is simulated and compared with experimental data of
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Sridhar and Katz [1] to show good agreement.

1 INTRODUCTION

Two-phase flows with phase change occur in many engineer-
ing systems. Of specific interest are two applications involving
wide range of length and time scales: (a) bubbly turbulent flows
in the ship boundary layers for drag reduction and (b) hydrody-
namics of cavitation. These problems share common physical
mechanisms of mass, momentum, and energy exchange across
the interface between the two phases. The dispersed bubbles may
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Figure 1: A schematic of the need for multiscale simulation strat-
egy showing fully resolved and under-resolved bubbles.

deform, vary in size, or coalesce and the local grid resolution
may be such that the bubble is fully resolved or under-resolved
in relation to the resolution of the background mesh (see Fig-
ure 1). In cavitating flows, the vapor cavity size can change dy-
namically and the the local grid resolution may be such that the
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cavity (or bubbles) are fully (or partially) resolved on the grid or
completely sub-grid. Different approaches are needed to model
these flow regimes accurately. It is essential to develop mathe-
matical formulation and supporting numerical schemes that can
accurately and simultaneously model the motion of sub-grid, par-
tially, or fully resolved bubbles. In addition, predictive simula-
tions of turbulent flows in realistic flow configurations makes it
imperative to resort to large-eddy simulations (LES). It is thus
necessary to develop numerical models for two-phase flows that
can be applied to LES of complex flows.

In this work, two approaches are described for bubbly
flow simulations: (i) a new Eulerian-Lagrangian particle-based
method for fully resolved simulations, and (ii) a subgrid-
scale discrete-bubble model for large-eddy simulation of under-
resolved bubbles. The hybrid Eulerian-Lagrangian approach
combines grid-based finite-volume solver [2,3] with a mesh-free,
marker particle-based approach for interface tracking without re-
quiring inter-particle connectivity information. For bubbles that
are under-resolved or are subgrid, a discrete bubble model with
Rayleigh-Plesset equation for bubble dynamics is used. The bub-
bles and the liquid phase are treated by mixture theory based
equations [4].

The paper is arranged as follows. Details of the fully-
resolved simulation methodology, numerical algorithm, and val-
idation test cases are provided in section 2. The sub-grid scale
discrete-bubble model, the adaptive time-stepping approach, and
validation of the model is described in section 3. Finally, inter-
action of the rising bubbles in a traveling vortex based on the
experimental study of Sridhar and Katz [1] is presented in sec-
tion 4.

2 FULLY RESOLVED SIMULATIONS

Numerical methods to accurately track/capture the interface
between two fluids have been an area of research for decades.
Tryggvason et al. [5] provide a detailed review on various meth-
ods used for direct simulation of multiphase flows. Broadly,
these schemes can be classified into two categories: (a) front
tracking and (b) front capturing methods. Front tracking meth-
ods are Lagrangian in nature and the interface is tracked by a set
of connected [5] or unconnected [6] marker points on the inter-
face and the Navier-Stokes equations are solved on a fixed grid
in an Eulerian frame.

In capturing methods the interface is not explicitly tracked,
but captured using a characteristic function, which evolves us-
ing the advection equation. Representative capturing methods
are: volume tracking [7], level set [8,9] and phase field models.
Both approaches (the VoF and level set) are straightforward to
implement, however, level-set approach does not preserve vol-
ume of the fluids on either side of the interface. The VOF for-
mulation on the other hand, conserves the fluid volume but lacks
in the sharpness of the interface. Several improvements to these
methods involving combination of the two [10, 11], particle-level

sets [12], refined level-set grid scheme [13], have been proposed
for improved accuracy.

Pure mesh-free approaches have also been used for fully
resolved simulations involving deforming interfaces. These
particle-based methods such as smoothed-particle hydrodynam-
ics (SPH) [14] and remeshed-SPH methods [15, 16] have been
popular for large-scale free-surface flows.

Figure 2: Marker points for interface location.

In the present work, a new hybrid approach is developed
wherein the Lagrangian nature of the interface motion is cap-
tured by particle-based method, and the fluid flow is computed
using a finite-volume solver using variable density, single-fluid
model. The basic idea is to merge the locally ‘adaptive’ mesh-
free particle-based methods with the relative ‘ease’ of Eulerian
finite-volume formulation in order to inherit the advantages of-
fered by individual approaches. The interface between two fluids
is represented and tracked using Lagrangian points (LPs) or fic-
titious particles [16] that are uniformly spaced in a narrow band
around the interface as shown in Figure 2. Each LP is associated
with position x,,, velocity u,, volume 9/}, and a scalar function
@, which represents the signed distance to the interface. Un-
like particle level set method [12] or the semi-Lagrangian meth-
ods [17], in the present approach the interface is advected in a
Lagrangian frame. The motion of the interface is determined by
a velocity field (interpolated to the particle locations) obtained
by solving the Navier-Stokes equations on a fixed background
mesh in an Eulerian frame. The interface location, once deter-
mined, identifies the region of the mesh to apply jump-conditions
in fluid properties. The potential advantage of the present hybrid
method is that the background mesh could be of any kind: struc-
tured, body-fitted, or arbitrary shaped unstructured (hex, pyra-
mids, tetrahedrons, prisms) and may be stationary or changing
in time (adaptive refinement). As the first step, flows where ther-
mal effects are negligible are considered. A single fluid formula-
tion based on a co-located grid, unstructured grid finite-volume
solver is developed for simulation of the unsteady viscous flow
inside and outside the bubbles.
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The average spacing (/) between the uniformly spaced LPs
is related to the volume ‘Vp. In this work, LPs with cubic el-

ements (h = ’Vp1 / 3) are used. As the LPs move, they carry the
signed distance function (SDF) value along the characteristic
paths and implicitly represent the motion of the interface. The
evolution of the interface is calculated by solving level set equa-
tions in the Lagrangian form:

D®, DY, Dx,

il —(V.u) V, ==
Dt Dt (Vew, Vp Dt

= Uy, ey
where p denotes the Lagrangian point or particle. As is done in
Smoothed Particle Hydrodynamics (SPH) and mesh-free meth-
ods, smoothed approximation of the level set function and its
derivatives can be obtained by using a mollification operator with
LPs as quadrature points. The localized mollification kernel (&¢)
generates a smooth continuous approximation of & around the
LP at location x, using SDF at other LP locations x,: ®, =

g=1 V,®pEe(x, — X)) where ®, = d(x,) and 22;1 EeV), = 1.
In this work a quartic spline is used for mollification:
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where s = |x|/e. Here, € is the radius of influence around the LP
and depends on the spacing between the LPs and the width of
the mollification kernel. For all calculations in this work € is set
equal to the uniform spacing between the LPs. The surface nor-
mal and curvature calculations require derivatives of the scalar
function @ on the particles. These are approximated by using
derivatives of the quartic spline kernels in a form that conserves
higher-order moments [18].

(V) = Z Vp (Pp — Py) VEe(xg —Xp), 2

(V2®@)y =Y V, (@) — Dg) V2Ec(xg — Xp). 3)
p

These mollification operations require information about the
neighboring LPs inside the region of influence, and a Verlet list
and linked lists are used to optimize storage and location of the
neighbors.

Once the location of the LPs and the associated ®,, values
are obtained, a color function ®@(x) can be constructed. Fol-
lowing the definition of color function, finding ® on the LPs
is straightforward: ® =0 when ® > 0 and ® = 1 for & < 0.
Then the color function field can also be obtained on the back-
ground computational mesh by interpolating ® from the LPs. In

order to obtain a smooth function, the MQ kernel interpolation in
three-dimensions is used [16]. Once the color function (or void
fraction) © is obtained at a control volume (cv), the density and
viscosity are given as:

Pev =Pg+ (P[ - pg)®cv; ey = g+ (.UZ 7,Ug)®cv (€]

where subscripts ¢ and g stand for liquid and gas, respectively.
The flow field is computed on a background mesh (which could
be structured or unstructured) by solving the Navier-Stokes equa-
tions:

Vu=0; a—u+u-Vu: —%V[H—%V~(y(Vu+(Vu)T))+g+%FG

ot

&)
where u is velocity vector of fluid, p is pressure, p and u are
fluid density and viscosity (uniform inside each fluid), g body
force, and Fgs is the surface tension force which is non-zero
only at the interface location (@ = 0). Following Brackbill et
al. [19], the surface tension force is modeled as a continuum sur-
face force (CSF). A common issue with numerical simulations
involving surface tension force, is the development of spurious
currents (unphysical velocity field) [5] due to inaccuracies in
the discrete approximations to the surface-tension forces (equa-
tion 5). In order to obtain a consistent coupling of the surface
tension force with the pressure gradient forces in a finite-volume
approach, Francois et al. [20] indicated that the surface tension
force must be evaluated at the faces of the control volumes as:
ngf = oKy (V®), where the subscript f stands for the face of
the control volume, G is the surface tension coefficient (assumed
constant in the present work), ¥ is the curvature, fi the interface
normal. The surface tension force at the cv-centers can be ob-
tained through reconstruction from the faces of each cv.

To compute the surface tension force, accurate estimation of
the curvature of the interface is necessary. Herrmann [13] de-
veloped a procedure to compute the curvature accurately in the
level-set framework. A similar procedure for curvature evalua-

tions if used. First, the curvature and normals (K =V - ( %);n =

%) are evaluated at the LPs close to the interface (|®| < 2A;p,
where App is the spacing between the LPs. The gradients in the
curvature and surface normal computations are evaluated from
derivatives of the mollification kernels. For each of these LPs
(with |®| < 2A;p), a base point on the interface is obtained by
projecting normals onto the interface. Curvature on the base
point is evaluated by using curvature values on LPs in its neigh-
borhood using the M}-kernel based interpolation. Once cur-
vatures on all interface points are evaluated, these values are
assigned to the corresponding LPs from which these interface
points were obtained. Curvature at the background control vol-
ume cv is then computed by using surface averaging of the cur-
vatures of LPs that lie inside the control volume. Curvature at
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the faces of the control volume are evaluated by arithmetic aver-
age of the two control volumes associated with the face. Here,
the average is taken only if the both cvs contain the interface, i.e.
color function 0 < @, < 1, else Ky is assigned the value of K,
containing the interface.

2.1 Numerical Algorithm for Resolved Simulation

The governing equations are solved using a co-located grid
finite-volume algorithm [21]. Accordingly, all variables are
stored at the control volume (cv) centers with the exception of a
face-normal velocity, located at the face centers, and used to en-
force the divergence-free constraint. The variables are staggered
in time so that they are located most conveniently for the time ad-
vancement scheme. Knowing the velocity field at the cv centers,
it is interpolated to the particle locations using the quartic spline
kernel. The LPs are then advanced by solving the equations 1
using a third-order Runge-Kutta scheme. The LPs are re-located
and duly transferred to different processors.

Because of this advection, the original uniform map of
LPs may get distorted, and they are reconfigured (if a thresh-
old distortion is exceeded) to a uniform Cartesian lattice. This
process of remeshing or reconfiguration was introduced in
Remeshed-Smoothed Particle Hydrodynamics [15]. Remeshing
removes any unphysical kinks in the interface and gives ‘entropy-
satisfying viscous solution’ [16]. It also eliminates unneces-
sary points away from the interface. The M) kernel is used
to obtain the interpolated SDF values during remeshing. Al-
though the reconfiguration procedure provides the entropy so-
lution, it does not guarantee that ¢ remains a signed-distance
to the interface. We apply redistancing in a two-layer narrow
band around the interface [22] in which the solved on uniformly
spaced LPs [23]: aaif = sign(Pp) (1 — |VP|) where ®(x,0) = P
and sign(®y) = 2(He(P) — 1/2) and He(P) is the Heaviside
function.

Once the new LP locations are obtained, interface prop-
erties such as curvature, surface normal are obtained by using
conservative formulation based on the derivatives of the kernel
functions. The curvatures at the cv-centers and a color func-
tion are obtained as described in the previous section. The two-
phase flow properties are then evaluated at the cv centers, and the
Navier-Stokes equations are solved using the balanced force al-
gorithm [13,20] that enforces discrete balance of surface tension
force and pressure gradient in the absence of any flow and other
external forces. The basic steps are summarized below:

1. Advance the LPs (from "~ '/2 to "*1/2) according to
equations (1) and using a velocity field interpolated to the LP
location from the background mesh. Third-order Runge-Kutta
scheme is used to solve the ordinary differential equations for
each LP.

2. Remesh and reinitialize the particle-map if necessary.
Remeshing of LPs is necessary only if the particles cease to over-
lap as they adapt to the flow map. Reinitialization is only neces-

sary after a few remeshing steps.

3. Once the LPs are advanced, curvature K;p is evaluated
using the procedure outlined in the previous section. M}-kernel
based interpolations are performed from the LPs to the back-

ground mesh to obtain curvature (K 1/2 ). Similarly, "H/ 2is

obtained through interpolations and pLH/ 2 nd ,/;ﬁ /2 are cal-
culated from equations (4). The face-based surface tension force

is then obtained as:

@12 _ gt
F(;l;1/2:(51(;+1/2 icv2 |S | icvl (6)
n

where s, is the vector joining the control volumes icv1 to icv2.

4. The remaining steps are based on a variant of the
co-located fractional step method [21]. We present the semi-
descretization here for completeness. First, a projected velocity
field i; at the cv-centers is calculated:

apnfl/Z

ﬁ,‘ —u? 1 (
/2 Oxi

- L gt +Fn+l/2+Fn+l/2) A

where F,; represents the viscous, Fg; the surface tension, and g;
the gravitational forces at the cv centroids. The viscous terms are
treated implicitly using second order symmetric discretizations
and the surface tension force is treated explicitly. The cv-based
surface tension force is obtained from Fs ; using area weighted
least-squares interpolation consistent with the pressure recon-
struction scheme developed by Mahesh et al. [21]. This is the
essence of the balanced force algorithm [13,20].
5. Subtract the old pressure gradient:

1 Sp n—1/2
*n+]
i+ A= nt1/2 §x: ®)
Pev
6. Obtain an approximation for the face-based velocity:

n+1/2 n+1/2
U*nJrl *n+] —Ar F FGaf (9)

f n+1/2 n+1/2

Pev Py

where an/ 2 (p:’ctl/ 24 p?:;zl / 2) /2 and the interpolation oper-

ator, M = n; fMicv1 + MNicv2/2, yields a face-normal component
from the adjacent cvs and the face normal n; ;.

7. Solve the variable coefficient Poisson equation to obtain
pressure:

1 8pn+1/2

1
n+1/2Af5

— U*»n+1A -
Ar fac Z / I Z

es of cv faces of cv p

(10)
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where Ay is the face area.
8. Reconstruct the pressure gradients at the cv centers from
the face-centers using the density-weighted face-normal gradi-
ents together with the same area-weighted least-squares mini-
mization approach [21] used for the surface tension force above.
The cv center velocities are then corrected to satisfy the continu-
ity equation.
. n+1/2
9. Interpolate the velocity field u;

i,cv
and advance the LPs to the next time level.

to the LP locations

2.2 Validation Studies for Resolved Simulations

In this section, some numerical examples of standard test
cases using the above scheme are presented. First, the accuracy
of the pure Lagrangian advection approach is evaluated by per-
forming standard test cases such as the Zalesak disc rotation and
the evolution of a circular interface in a deformation field [24].
These showed comparable results with published data [16] (not
shown here). The following test cases are presented: (i) accu-
racy of the surface normal and curvature evaluation procedure for
a circular interface, (ii) zero-gravity stationary bubble in a qui-
escent environment to investigate the level of spurious currents
obtained due to errors in surface tension force representation,
(iii) damped surface waves and oscillating liquid column, (iv)
Rayleigh-Taylor instability, and (v) rising bubbles under gravity.
Case 1: Estimation of Surface Normal and Curvature: The accu-
racy of the surface normal and curvature calculation by using the
procedure described before is tested on a circular interface. The
Lagrangian points (LPs) are uniformly distributed in a narrow
band around the interface and initialized by exact signed distance
function. The surface normals and curvatures are first calculated
on the LPs. Only those LPs are considered where |®| < 2A;p,
where Arp is the LP-spacing. The average relative error in sur-
face normal calculation is shown in Figure 3a indicating second
order convergence. For all these LPs, corresponding points on
the interface are calculated using the normals and signed dis-
tance function (®). The interface-projected curvature values at
the interface points are evaluated using the M)-kernel interpo-
lation from the neighboring LP values. These curvatures are
then compared with the exact curvature (Ko, = 1/R) for a two-
dimensional interface. The corresponding Li-errors are plotted
at different LP-resolutions in Figure 3b, showing second order
convergence.
Case 2: Static Bubble in Equilibrium: To validate the curvature
and surface tension force calculation, a test of static bubble in
a quiescent medium with zero gravity is considered. The pres-
sure gradient across the interface balances the surface tension
force resulting a zero velocity and static bubble at all times. Er-
rors in representation of the surface tension and curvature at the
interface, however, lead to non-zero velocity, or the so called
‘spurious currents’. The exact solution for the pressure jump
across the interface for a circular two-dimensional bubble is:

1st order

=)
T

2nd orde

Average Relative Error
3
T

0°

Curvature Error
s
T

I —T
R/e
(b) Curvature
Figure 3: Error versus grid spacing for circular interface: (a)
average relative error in surface normal, (b) absolute error in
curvature—circles indicate error at LP location, squares indicate
error at interface location.

APeyacr = OKexaer Where Kexaer = 1/R and R is the radius of the
bubble. We consider a square domain having sides of eight units.
A bubble of radius R = 2 is placed at the center of the domain.
The surface tension coefficient G is taken to be 73, the bubble
density is 0.1 and the surrounding fluid density is 1. Accordingly,
the pressure jump across the interface should be AP = 36.5 units.
All parameters are in SI units [20]. The background grid con-
sists of uniform Cartesian elements with resolution of R/A = 10.
The resolution of the Lagrangian points is refined successively
to have R/A;p = 45,60,75. The time step is fixed at Ar = 103,
The interface remains a perfect circle after t = 0.5 with low mag-
nitudes of spurious currents. Pressure drop across the bubble is
also accurately predicted (not shown here). Table 1a shows the
convergence of Li-error in total kinetic energy at t = 0.5, indi-
cating second order convergence. Remeshing and reinitialization
are suppressed in the above calculations.

Case 3: Bubble/Droplet Oscillation: Simulation of oscillating
droplet or liquid column due to perturbations on the surface un-
der zero-gravity conditions are performed to analyze the accu-
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Table 1: L; error in the total kinetic energy for a static bubble.

A 0.044 0.033
Error | 4.5x1078

0.0266
1.27x1078 | 4.09x10~°

racy of the solver for capillary waves. A cylindrical liquid col-

umn with the radius perturbed according to, r = ry + oicos(n6),

. . . o (n3 —n)c
and has a frequency of oscillation given by w; = TTREL
d e )T

ps and p, are the density, interior and exterior to the liquid
column, respectively [6]. The cases considered include ¢ = 1,
o = 0.01 and 0.1 (this is 10% larger than the perturbation con-
sidered in [6]), ps = 1, p. = 0.01, rp =2 in a [—10,10]? dou-
bly connected computational domain. The grid resolution is
32% and the Lagrangian particle resolution is fixed at AA =45.
The second, third, and fourth modes are simulated. The rela-
tive error in period of oscillation Eperioq = |Tnumerical®n /27— 1|
is given in Table 2. The errors are comparable to those reported
in [6] for o = 0.01. Stable solutions were also obtained even for
ten-times larger perturbations. Similar level of accuracy in pre-
dictions were obtained for three-dimensional bubble oscillations
(not shown for space).

where

Table 2: Error in predicted period of an oscillating liquid column.

Mode | Predicted ® | Theoretical ®, | Eperioa

2 0.844 0.866 0.02
3 1.671 1.726 0.0328
4 2.58 2.719 0.0519

Case 4: Damped Surface Waves: Small amplitude damped sur-
face wave between two immiscible fluids is investigated by com-
paring the numerical solution to the theoretical solution of the
initial value problem obtained by Prosperetti [25]. Initially the
interface between the two fluids inside a box [0 27| x [0 27] is
perturbed by a sinusoidal wave disturbance of wavelength A = 2%
and amplitude Ag = 0.01A [13]. Periodic boundary conditions
are used in the x direction, and slip conditions are used in the y-
direction. The case analyzed consists of two fluids of equal den-
sity p1 = p2 = 1, and equal kinematic viscosities v = 0.006472.
For 6 = 2 and Ar = 0.02, the time-evolution of the amplitude of
the surface is plotted in figure 4. Two different grid resolutions
167 and 32* are used for this test case with the 52~ = 4. With
grid refinement, converging results are obtained compared to the
analytical solution.

Case 5: Rayleigh Taylor Instability: A common test case of
heavier fluid over a lighter fluid giving rise to Rayleigh-Taylor in-

0.01

0.005

A/

ViR
-V

-0.01

10 15 20
time

Figure 4: Time evolution of a damped surface wave for two grid
resolutions A = 16 (red dashed) and 322 (green dash dot) com-
pared with theoretical result (black solid).

stability is performed to evaluate the accuracy of the scheme [26].
The simulation parameters are: p; = 1.225, y; = 0.00313 (heavy
fluid), pa/p1 = 0.1383, wo/u; =1, g =9.81, 6 =0 in a com-
putational domain of size [1,4]. Initially the interface between
the two fluids (at the center of the domain) is perturbed by a
cosine wave of amplitude 0.05. The heavier fluid falls due to
gravity, giving rise to a Rayleigh-Taylor instability of the inter-
face perturbation. The surface tension forces are neglected. The
boundaries in the x direction are assumed periodic whereas slip
conditions are employed in the y direction. The time step is fixed
at 5 x 10~* and the flow evolutions for different grid resolutions
are compared at certain time instances. The grid resolutions used
are A=1/64, 1/128, and 1/192. The LP resolution relative to
the grid is fixed at Aﬁp = 4. Figure (5a) shows the temporal evo-
lution of the interface. Also shown is the evolution of the bubble
top and spike front positions compared with the front tracking
scheme [27]. The interface positions are nearly identical for all
resolutions; however, the coarse grid simulation (A = 1/64) was
not able to resolve the thin filaments observed at = 0.9 s.

Case 6: Rising Bubbles: Lastly, we consider the rise of an air
bubble column in water under gravity [28]. The computational
domain is [—0.01 0.01] x [0 0.03] in the x — y direction with no-
slip wall conditions on the edges. A bubble of diameter 2/300 is
initially released from a distance of 0.01 from the bottom wall.
The fluid properties of air and water are: p, = 1.226, py = 1000,
ta =1.78 x 1073, uy = 1.137 x 1073, 6 = 0.0728 and g = 9.81
in ST units.

Time evolution of the small bubble column is shown in Fig-
ure 6. The simulation was performed on a 80 x 120 grid with
A%p = 4. This corresponds to the finest grid used by Kang
etal. [28] and the results are in good agreement with their pre-
dictions [28] as well as the volume-of-fluid approach [20]. The
total volume loss at # = 0.05 was less than 0.8% for the bubble.
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Figure 5: Rayleigh-Taylor instability: temporal evolution of
(a) the interface on fine grid (1/192); (b) the bubble top and
spike front positions from bottom wall compared with the front-
tracking scheme [27].

-0.01 0 0.01-0.01 0 0.01-0.01 0 0.01

Figure 6: Time evolution of a small bubble rising under gravity:
(a) 1=0.02, (b) t=0.035, (c) t=0.049 s

3 DISCRETE BUBBLE MODELING

Two approaches are widely used to compute the hydrody-
namics of under-resolved bubbly flows: the Euler-Euler and
Euler-Lagrange. The Euler-Euler model employs the volume
or ensemble averaged mass and momentum conservation equa-
tions to describe the time dependent motion of both phases [29].
In the Eulerian-Lagrangian approach, a continuum description
is used for the liquid phase with discrete Lagrangian tracking
of the bubbles. The bubbles are usually modeled as spherical
point-particles with models for fluid-bubble interaction forces
and bubble-bubble interactions [4, 30]. Such an approach has
been used for turbulent bubbly-channel flows for computation of
drag reduction [31], cavitation inception studies with bubble dy-
namics modeled using the Rayleigh- Plesset equation [32,33].

In this work, a Euler-Lagrange approach based on the
mixture-theory is used wherein the bubble-fluid interactions are
captured through inter-phase momentum exchange as well as
variations in local fluid void fractions. The governing equations,
the numerical algorithm and relevant validation test cases are de-
scribed briefly.

3.1 Bubble Dynamics

The motion of each individual bubble is computed by solv-
ing the equations of motion in a Lagrangian frame. The bub-
ble size variations are modeled by the incompressible Rayleigh-
Plesset equations. The position, momentum equations and bub-
ble radius equations are given as:

d
a(xb):ub (11)
d
my () = Y Fy (12)
d®R, 3 [(dR,\* 26 4 dR,
Ri—2+=(=2) | =pp—peo——— 22013
pélbdﬂ +2<dt) PE—P R, Ry dt( )

where x; and u, are the bubble position and velocity, m,, is the
mass, Y F is the total force acting on the bubble, R;, is the bub-
ble radius, pp and p. are the pressures inside and outside of the
bubble, G is the surface tension coefficient, and yy and p, are the
liquid viscosity and densities, respectively. To estimate pp, it is
typically assumed that the bubble contains some contaminant gas
which expands or contracts according to adiabatic or isothermal
processes [34,35]. The bubble inside pressure consists of contri-
bution from the gas pressure p, and the vapor pressure p,. The
net force acting on each individual bubble is given as [36]:

ZFb:FG+FP+FD+FL+FAM+FcoH+FRh (14)

where Fg = (pp — pr)Vpg is the gravitational force, Fp =
—V,Vp is the pressure force due to far-field pressure gradi-
ents, Fp = f%CngnRﬂub —wy|(up —uy) is the drag force,
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F, = —CLngh(llb - llg) x V x uy is the lift force, Fay =

—1pVs (%“lb - DT“[‘) is the added mass force, and F,; is the

inter-bubble or bubble-wall collision forces. The force Fp =

—47p [R% (up—uy) ddﬁ represents momentum transfer due to vari-

ations in bubble sizé. Here, V), is the bubble volume, the sub-
scripts ‘b’ and ‘g’ correspond to the bubble and the fluid, re-
spectively. Several different models for the drag (Cp) and lift
(Cp) coefficients have been used that account for bubble de-
formation and variations in bubble Reynolds numbers (Re, =
pelup —ug|2Ry /py) [4]. Inter-bubble and bubble-wall interaction
forces can be computed using the standard collision models typ-
ically used in the discrete element method [37].

The equations for the fluid phase are obtained by making use
of the mixture theory. In this formulation, the volume occupied
by the bubble in a fluid control volume is accounted for by com-
puting the local bubble (®) and fluid void fractions @, (such that
®, + 0y = 1). The continuity and momentum equations account
for local changes in void fractions. The continuity equation is
given as:

d

5; (Pe©) + - (p®uy) =0 (15)
The local spatio-temporal variations of bubble concentration,
generate a non-divergence free velocity field.

1 DpOy

Vou ———
e pe®; Dt

(16)

where % is the material derivative. Lagrangian quantities, such
as bubble concentration, are interpolated to the Eulerian control

volumes effectively, using the following interpolation function,

Np
®b (Xcv) = Z Vb gA (chxb) (17)
b=1

where G, is the interpolation function, N, is the total number of
bubbles, and the summation is over all bubbles. The momentum
conservation equation is given as:

% (Pe®Oy) + V- (pOpuy) = =V (p)+ V- (uD)+f (18)
where p is the pressure, D = Vuy + Vu’[r is the deformation
tensor, and f is the reaction force from the bubbles on to the
fluid phase per unit mass of fluid. This is obtained by using a
Lagrangian-Eulerian interpolation (consistent with the void frac-
tion computation, equation 17) of the total force }_F;, on the bub-
ble (equation 14).

For large-eddy simulation, the above equations are spa-
tially filtered using density-weighted Favre averaging [3] and

the unclosed subgrid-scale stresses are modeled by a dynamic
Smagorinsky model. The liquid viscosity uy must be changed
to uerr = u¢ + ur accounting for the eddy viscosity. Notice
that the bubble momentum equation consists of a pressure force
Fp, which when transferred to the Eulerian field contributes to
a pressure-gradient based force given by +®,Vp. This force
is generally combined with the pressure gradient term in the
fluid momentum equation, to get —(1 — ®,)Vp = —@,Vp. In
the absence of any fluid velocity, but in the presence of bubbles,
the pressure gradient force is then appropriately balanced by the
gravity force. Numerical implementation of the reaction term
due to the pressure force Fp can then be coupled implicitly by
using -®,;Vp in the fluid momentum equation; or can be kept as
explicit wherein the fluid momentum equation is solved in the
above form (equation 18) with the inter-phase force f consisting
of contributions given in equation 14 [37]. In the test cases pre-
sented below, both approaches provided similar solutions.

3.2 Algorithm for Subgrid Bubble Dynamics

The coupled ordinary-differential equations for the subgrid-
bubbles are solved first. The fluid-phase equations are solved
using a pressure-based scheme for variable-density (due to void
fraction variations), low-Mach number formulation as described
below. The bubble-fluid interaction forces are treated explicitly.
Bubble-Phase Solution: The equation for bubble radius varia-
tions (equation 13) can be cast into two first order ODEs [31]:

dR d 3y? —Ppew—26/R 4
ARy _ Ay 3 pEp /R uzyz. (19)
dt dt 2Ry, peRy pgRb

This can be written in a matrix notation [X]' = [F] where [X]" and
[F] are 2 x 1 matrices. Following the above notation, a blended
scheme can be derived:

[X]n+l — [X]” _i_h(G[F]"—‘,—(l—e)[F]nJrl) 20)

where £ is the step size, n and n+ 1 denote the current and
next time steps, respectively. The blending parameter (8) can
be changed between 0 and 1 to change the scheme from fully
implicit to fully explicit. Using the Taylor expansion series and
linearizing the right hand side matrix,

X" = {1 —h(1—0) [J]"}{A[F]" + (1~ h(1—-8) [J]") [X]"}
21
where [J] is the Jacobian matrix calculated at time step n. In p(res2
ence of large variations in the outside pressure (P.), the bubble
radius (Rp) and % can change rapidly. Use of a simple explicit
scheme with very small time-step can be prohibitively expensive
even for a single bubble computation. An adaptive time-stepping
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strategy is necessary such that the bubble collapse and rapid ex-
pansion regions utilize small time-steps, but a much larger time-
step can be used for relatively slow variations in bubble radius.
Here an adaptive time step algorithm using the stability criteria
of the solution is developed. The stability criterion is based on
the eigenvalues of the linearized ODE:

XI'=UX): X" = [A) ], (22)

where [A]" = {1 —h(1—-0)[J]"} ' (1 +h6[J]). This equation
can be diagonalized to give

(2"t =) [z)" (23)

where A is the matrix of eigenvalues A; = and A, associated with
Ry, and dR;,/dt respectively. The solution of equation 23 is of the
form: Z} = 67‘12? and Zj = e}‘ng . The adaptive time-stepping
strategy here is therefore, to keep the magnitude of A; and A,
close to 1. This A calculation is used to correct the time step if
its deviation from 1 is more than 5%. This strategy is found to
be very effective even in the case of rapid pressure variations as
shown in the validation cases. The time-step (dfy,;) obtained
based on the above strategy is compared with the flow-solver
time-step (&t;opver). For the bubble position and the velocity field
the same time-steps are used. A sub-cycling procedure is used,
wherein the bubble time-step is maintained five-times smaller
than the flow-solver time-step, and the bubble dynamics equa-
tions are solved repeatedly until we reach one &s,,.,. The bub-
ble position and velocity fields are updated using a third-order
Runge-Kutta scheme; the bubbles are duly transferred across
processors as their positions are updated.

Fluid Phase Solution: The numerical scheme for unstructured,
arbitrary shaped elements [3] is modified to take into account the
fluid void fraction. The changes in local fluid volume fractions
requires solution of a variable density flowfield as opposed to
the constant density, incompressible flows studied in [2,21]. The
steps in solving the coupled fluid-particle equations are given be-
low. A semi-implicit scheme is used for the fluid solver, however,
the interphase momentum exchange terms are treated explicitly.

Step 1: Advance the bubble positions, velocities, and radii
using the adaptive time-stepping algorithm described above.
Compute the void fraction field at the new bubble locations
and set the density p = p,0Qy.

Step 2: Advance the fluid momentum equations using
the fractional step algorithm, with the interphase force, F,
treated explicitly (the subscript £ for fluid phase is dropped
for simplicity).

puj —pul! 1
At 2V,

€V faces of cv

+1/2
[+ ui ] g Ay =

1 . au;ff oul! /
N 2 A Fﬂ
2V, Z Mf(&xj + axj' f+ !

€V faces of cv

where f represents the face values, N the face-normal com-
ponent, gy = puy, and Ay is the face area.

Step 3: Interpolate the velocity fields to the faces of the
control volumes and consider the corrector step:

(pu ! —pu;) %

At Y @49
ous' g B g
At SxN ’

where iy = 1; yn; y is the approximation for face-normal
velocity and n; y are the components of the face-normal.
The face-based density py is obtained by arithmetic average
of the adjacent control volume-based densities. The face-
normal pressure gradient 5% and the gradient in pressure
at the cv-centroids are related by the area-weighted least-
squares interpolation [3,21].

Step 4: The Poisson equation for pressure is obtained by
taking the divergence of the face-normal velocity component
in the above step to obtain

1 ~
Vz (p8tsolver) = 7 Z pfui,fAf + (26)

¢V faces of cv d solver
Step 5: Reconstruct the pressure gradient, compute new
face-based velocities, and update the cv-velocities using the
least-squares interpolation [3,21]:

3.3 Validation Studies for Subgrid Bubble Dynamics
The above numerical scheme is applied to different test cases
in order to evaluate its accuracy. These test cases are described
below.
Case 1: Oscillating bubbles: The importance of volumetric dis-
placement effect on the flow field, caused by change in local con-
centration of bubbles was investigated in this test case. The vari-
able density formulation used in these simulations accounts for
changes in the local mixture density caused by bubble accumula-
tion/scattering in the flow field due to inter-phase momentum ex-
changes, or size variation in a cavitating bubble due to hydrody-
namic pressure of the flow. A simple case of imposed oscillation
on the radius of a bubble causing a potential flow field around
itself is first simulated. This phenomenon can not be simulated
by only using the inter-phase momentum coupling (neglecting
variations in the void fractions). Here it is shown that the local
variations in mixture density in momentum and continuity equa-
tion provide the correct solution.
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Figure 7: Flow developed by an oscillating bubble: (a) Pressure
distribution caused by volume displacement around the bubble
compared with analytical solution (dashed line shows the pres-
sure field if the void fraction variations are neglected), (b) in-
stantaneous velocity vector field due to bubble oscillations.

A single air bubble is placed in water inside a cubical do-
main. A sinusoidal perturbation is imposed on the bubble. Bub-
ble radius changes in time as R, = Ry, ¢ +€sin(wr), where R;, and
Ry, o are the instantaneous and the initial radius, respectively, € is
the perturbation magnitude, ® is frequency and ¢ is time. In this
simulation, Ry = 0.01 x D, where D is the cube size, and gives
overall concentration of 4 x 1076, € = 0.1 x R, ® = 50 [Hz].
Figure 7a shows the radial distribution of hydrodynamic pressure
around the bubble created by the size variation at t* = 0.3 where
t*=1/T and T = 2n/®. Also shown are the instantaneous ve-
locity vectors due to bubble oscillation (Figure 7b). The pressure
field is well predicted by the present numerical scheme.

In another example two bubbles oscillating in tandem are
considered. Two similar bubbles are put in a box and their radius
changes sinusoidally as above with a phase difference of 7 [rad].
All properties are similar to the case of single bubble case, except
they are both located D/6 away from the box center. The result
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is a doublet-like flow which is shown in figure 8.

Figure 8: Doublet generated by bubbles oscillating in tandem.
Streamlines and pressure contours (dashed line) are shown.

Case 2: Bubble Dynamics Under Imposed Pressure Variations:
To test the adaptive time-stepping approach, a numerical test
case is considered wherein the external pressure is specified
as a function of time and the bubble radius is computed using
the Rayleigh-Plesset equation. This test case was also used by
Qin et al. [31] in their work on simulating cavitating bubbles
in a convergent divergent nozzle. Figure 9a shows an imposed
pressure variation to a stationary bubble. The fluid properties are
those for water (p, = 1000 kg/m?, uy = 0.798 x 1073 kg/ms,
6 =0.072 N/m, p, = 0.00424 MPa). A bubble of initial radius
(Rp0 = 100 um, dR;/dt = 0) is subjected to the outside pres-
sure variation shown in figure 9a. The bubble undergoes growth
and collapse as the outside pressure decreases and increases with
time. Rapid accelerations and variations in bubble radius are
observed. This test case is challenging for a numerical scheme
based on constant time-steps. For an explicit Euler scheme, for
example, a constant time-step on the order of 10717 s would be
required to capture the bubble growth and collapse and maintain
a stable solution. Multiple periods of bubble oscillation would
be very time-consuming for such an approach and adaptive
time-stepping is essential. Figure 9b shows the solution obtained
from the adaptive time-stepping. Also shown are the temporal
variations in the eigenvalues A; and A; of the the coupled system
of equations 22. Deviation of these eigenvalues from a value
of unity correspond to rapid growth or decay period of the
bubble and are good indicators for adaptive time-stepping. The
time-step is thus changed if the eigenvalues depart from the
unity value by 5% or more. With this approach stable solutions
are obtained for much higher time-steps and multiple periods of
bubble oscillation can be easily computed. Figure 9c shows that
only around 2000 iterations are required to compute five periods
of bubble oscillation. A time-step refinement study provided
little variations in the predicted variations for bubble radius.
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Figure 9: Time variation of bubble radius and A values for a cav-
itating bubble with imposed pressure variations.

4 BUBBLE-VORTEX INTERACTIONS

Bubble-vortex interactions are studied by simulating two
flow configurations: (i) interaction of micro-bubbles with a trav-
eling vortex tube, (ii) interaction of a single bubble with a sta-
tionary Gaussian vortex. The second case is used to compare the
predictions of bubble trajectories from the fully resolved and the
discrete bubble model.

Bubble Interactions with a traveling vortex tube:

Interactions of small micro-bubbles with a traveling vortex
corresponding to the experiments by Sridhar and Katz [1, 38]
are investigated by using the discrete bubble model as well as
the fully resolved simulation. Specifically, Sridhar & Katz ob-
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served that certain large bubbles once entrained into the vortex
ring, deform the ring significantly. The simulations are setup to
investigate if the presented numerical schemes can capture these
effects.

1.5
1

.5 k&

X/ hjet o

-1.5

Figure 10: Vortex tube evolution and rollup visualized by out-of-
plane vorticity contours. Location of bubble injection is X /71 j¢; =
5.

The computational domain and the evolution of the vortex
tube are shown in Figure 10. There is an inflow boundary at the
left wall, an outflow condition at the right boundary, and walls
on the top and bottom. The total domain size is X /hj,; = 10 by
Y /hj, =3 and is centered at Y /A j,; = 0. The inlet is modeled as
an orifice rather than the piston/nozzle assembly used in the ex-
periment. At the inlet boundary, a jet is pulsed for 0.27 seconds
into the initially quiescent domain, which causes the roll up of
two symmetric vortex tubes. The inflow velocity is a function

Table 3: Parameters for the bubble-vortex interaction.

Parameter Value

PI, VI 1,000 kg/m3; 1 x 1076 m/s?
Domain Size Im x 0.15m x 0.005m;

Grid Size 800 x 121 x 4

Jet height (hj;) 0.1 m

Inflow Time 0.27 s

Ut) = 22:0 ant"
62278; -47082; 13686; -2062
159.5; -1.289; 0.006

Inflow Velocity
ae,ds,d4,d3

a,dai,ag

of time, and is described by a sixth-order polynomial to match
the experimental conditions. To keep the size of the computa-
tion small, a two-dimensional domain is simulated with periodic
conditions in the spanwise direction giving rise to a vortex-tube.
A uniform cartesian grid is used throughout the area below the
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line of symmetry with a total of 800 x 121 elements in the X and
Y directions. The two-dimensional domain is periodic and uses
4 grid points in the Z direction. Table 3 lists the computational
parameters used in this study. After initial roll up and stabiliza-
tion of the shear layer, the vortex core travels downstream with a
convective velocity of 7 cm/s, which is approximately 14% of the
maximum inlet velocity. The contours show the diffusion of the
high vorticity in the core as the vortex tube travels downstream.

At a value of X /hj,; = 5.0, eight bubbles are injected be-
low and in front of the vortex core. One bubble at a time is in-
jected, with a time of A;,; = 10 ms between each bubble. Due to
buoyancy, the bubbles rise and are entrained into the vortex core.
The injection point is varied so that the vortex tube encounters
a rising line of bubbles as in the experiments [1]. A parametric
study is performed to determine the effect of bubble buoyancy
force on bubble settling location and vortex tube distortion. For
comparisons with experimental data, two sets of computations
are performed: (i) the bubble diameter (2R}) and gravitational
acceleration g are varied over a broad range, whereas the vortex
strength is kept fixed, and (ii) the bubble diameter and initial vor-
tex strengths are varied for a fixed gravitational acceleration. The
later case is consistent with experimental results.

Set 1: In the first set of calculations, the bubble size is var-
ied from 300 to 1300 um. The strength of the initial vortex tube
(o = 156 cm/s) and the bubble injection locations remain con-
stant for all cases. The non-dimensional parameter gRi /T3 (ra-
tio of buoyancy force to hydrodynamic pressure gradient) ranges
from 1.3 x 1077 to 5.4 x 107°. The bubble Stokes number, de-
fined as St, = wd? /(36v), where @ = Iy /27r has values between
0.014 and 0.264.

Set 2: In this set of calculations, the gravitational accelera-
tion is fixed at 9.81 m/s?. The bubble size is varied from 500
to 1300 microns, and the initial vortex strength (at the time of
bubble injection) is varied from 0.025 to 0.045 m? /s. This set of
calculation represents the same parameters as used by Sridhar &
Katz [1].

In all cases, each of the eight bubbles are entrained by the
passing vortex tube. They rise from their release point around
the rear of the vortex and are swept into the downward velocity
region on the forward side of the core. Depending on the Stokes
number and buoyancy force, the bubbles may circle the core mul-
tiple times before ultimately reaching their final settling loca-
tion, where their average motion in the inertial reference frame
is zero. The bubbles do not remain perfectly stationary in their
settling location because of local variations in pressure and bub-
ble collision forces cause slight oscillations in position. Once
they have reached this state, the non dimensional settling loca-
tion is averaged over all particles and in space over a distance of
5.2X /hje < Xyx < 5.8X /hje;. This corresponds to an averaging
time of almost 1 second. This time span is similar to that used in
experiments.

The non-dimensional settling location is plotted against the
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Figure 11: Comparison of the non-dimensional settling location
with the experimental results of Sridhar & Katz [1]. The param-
eter g(Ry) /T2 is the ratio of the buoyancy force and the hydro-
dynamic pressure gradient experienced by the bubble. (o) Ex-
perimental data, (filled squares) present results: (a) Set 1 runs
involve fixed vortex strength but varying gravitational accelera-
tion, (b) Set 2 runs involve fixed gravitational acceleration for
different vortex strengths similar to the experiments.

non-dimensional parameter g(R,)?/I’; in figures 11a,b for the
discrete bubble model alongside the experimental data for the
two sets of computations. For both sets of computations, the
overall trends of the predicted model are consistent with the ex-
perimental data. Bubbles with small Stokes numbers and small
values of gR; /T’? tend to move very close to the vortex core,
whereas large-bubbles settle at a location further from the cen-
ter of the core. More importantly, significant vortex distortion
is predicted by the numerical model for certain bubbles with pa-
rameters similar to those observed in the experiments. The vortex
distortion effect was found to be predominantly an effect of vari-
ations in the void fraction as the bubbles travel to their settling
location. This was confirmed by computing the bubble trajec-
tories without considering the void fraction variations. With ®,
set constant (equal to 1), vortex distortion was not obtained for
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any of the cases studied. The first set of calculations (wherein
the vortex strength is fixed, but gravitational acceleration is var-
ied) show some scatter (figure 11a) when compared with exper-
imental data; whereas the second set (wherein the gravitational
acceleration is fixed, but the vortex strength is varied as in ex-
periments) shows very good comparisons (figure 11b). This may
be because of two reasons. First, the simulations involve two-
dimensional vortex-tubes, whereas the experiments are three-
dimensional vortex rings. Second, varying the gravitational pa-
rameter for the fixed vortex strength only affects the buoyancy
force on the bubbles, the pressure gradient, drag and lift forces
are relatively less impacted because the vortex strength is held
fixed. When the vortex strength is varied (as in experiments), the
relative magnitudes of the pressure, drag, and the lift forces are
varied in a manner consistent with the experiments and the nu-
merical results agree closely with the experiments. The instanta-
neous shape of the vortex core is determined by creating a map
of the vorticity distribution around the vortex center. At each
timestep the vorticity distribution in the vortex core is mapped
onto an inertial, cylindrical coordinate system which moves with
the vortex center (X,,Y,). This is done by discrete averaging over
each grid point within the core radius. Figure 12 shows the effect
of the bubble on the vortex using this mapped vorticity distribu-
tion. In the absence of the bubbles, the the vortex core is stable
and the core is quite close to an oval in shape. The radial distribu-
tion (figure 12b) shows that the core has a Gaussian distribution
of vorticity in the absence of bubbles. In the presence of some
entrained bubbles, the vortex core deforms altering the vorticity
distribution as shown by the radial and angular distributions in
figure 12. This effect is attributed to the local variations in the
void fractions as the bubbles are trapped inside the vortex core.

Bubble Interactions with a Gaussian vortex: Finally, to
compare the fully resolved approach and the discrete bubble
model, bubble trajectories inside a stationary Gaussian vortex
were simulated [39]. For this two-dimensional vortex with
initial circulation I'y and core radius r., the tangential velocity is

given as, ug(r) = 2% (l - e‘”l(’/’f)z) , where 1 is a constant.
This case is designed in such a way that the strength and other
parameters of the Gaussian vortex matches with the traveling
vortex tube case. Accordingly, r. =0.01145 m and n; = 1.27.
This vortex is simulated in a domain of size 7r. X 7r. x 0.4r,.
Two different grid sizes are used to facilitate simulations using
the fully resolved and under-resolved (DBM) techniques. For
the fully resolved simulation a grid of 312 x 212 x 60 is used
with refined grid elements within the vortex core. For the
discrete bubble model, a coarser uniform grid of 64 x 64 x 4
grid elements are used. The entrainment of the bubble in this
vortex is simulated using both approaches. The flow parameters
are: p; = 1000 kg/m?, p, = 1 kg/m?, gy = 0.001 Pa—s. The
gravitational acceleration g is varied for a 1200 ym bubble
released at 6 = 0 and r/r, = 1.8. Figure 13 shows comparison
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(a) Vorticity contours
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Figure 12: Vortex distortion by the entrained bubbles (2R, =
1,300um bubbles; g = 5m/s?) : (a) vorticity contours and bubble
locations (black dots), (b) radial mapping of vorticity, and (c)
angular mapping of vorticity. (—) with void fraction variations,
(—--—) without accounting void fraction variations.
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Figure 13: Comparison of the bubble trajectories predicted by
fully resolved (black triangles) and discrete bubble (red squares)
approaches for a bubble of diameter 1200 ym captured by a
Gaussian vortex: (a) g = 3 m/s?, and (b) g = 5 m/s>.

of the trajectory of the bubble obtained from the fully resolved
and the discrete bubble model for two different gravitational
accelerations. It is observed that the bubbles spiral around the
vortex and eventually settle at a point further from the center of
the vortex core. The trajectories of the bubbles predicted by the
two approaches are similar; though the fully resolved bubble
takes a more direct route to the vortex center in both cases. The
fully resolved approach captures the wake effects accurately,
whereas these effects are modeled in the DBM approach. These
results are consistent with those of Oweis er al. [39].

5 CONCLUSIONS

In this work two different numerical approaches capable
of capturing the bubble dynamics at different scales depending
upon the relative size of the bubbles compared to the grid reso-
lution were developed and extensively validated against standard
test cases to show good predictive capability. For fully resolved
simulations, a novel approach combining a particle-based, mesh-

free technique with a finite-volume flow solver, was developed.
The approach uses marker points around the interface and ad-
vects the signed distance to the interface in a Lagrangian frame.
The kernel-based derivative calculations typical of particle meth-
ods are used to extract the interface normal and curvature from
unordered marker points. Unlike front-tracking methods, con-
nectivity between the marker points is not necessary. For under-
resolved bubbles, a mixture-theory based Eulerian-Lagrangian
approach accounting for volumetric displacements due to bub-
ble motion and size variations was developed. The bubble dy-
namics is modeled by Rayleigh-Plesset equations using an adap-
tive time-stepping scheme. A generalized criterion based on the
eigenvalues of the coupled ordinary differential equations for
bubble radius was developed and tested to give robust solutions
for large variations in the surrounding pressure field. A detailed
validation study of both approaches is performed to test the ac-
curacy of the method on a variety of single and multiple bubble
problems to show good predictive capability. The approaches
were applied to study bubble-vortex interaction in a traveling
vortex tube (a two-dimensional representation of a vortex ring
experiment by Sridhar and Katz [1]) and a stationary Gaussian
vortex [39]. It was found that the Eulerian-Lagrangian model
captures the vortex deformation due to bubble motion correctly.

The above numerical approaches are developed in a parallel
numerical framework [2] for large-scale simulations of bubbly
flows. The fully resolved formulation was based on the assump-
tion of incompressible fluids. For cavitating bubbly flows with
dense regions of bubble clouds, further modifications addressing
the pressure-velocity-and density coupling [40] can be incorpo-
rated into the present approach to account for bubble compress-
ibility. In addition, the subgrid bubble dynamics model is ap-
plicable to cavitating flows where discrete bubbles are present
without dense cloud formations. The discrete bubble model has
been applied to evaluate cavitation inception in a LES study of
flow over an open cavity [41].
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