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ABSTRACT 

A numerical treatment for the prediction of cavitating 
flows is presented and assessed. The algorithm uses the 
preconditioned, homogenous, multiphase Euler equations with 
appropriate mass transfer terms. A cell-centered finite-volume 
scheme employing the suitable dissipation terms to account for 
density jumps across the cavity interface is shown to yield an 
effective method for solving the multiphase Euler equations. 
The Euler equations are utilized herein for the cavitation 
modeling, because some certain characteristics of cavitating 
flows can be obtained using the solution of this system with 
relative low computational effort. In addition, the Euler 
equations are appropriate for the assessment of the numerical 
method used, because of the sensitivity of the solution to the 
numerical instabilities. For this reason, a sensitivity study is 
conducted to evaluate the effects of various parameters such as 
numerical dissipation coefficients and grid size on the accuracy 
and performance of the solution. The computations are 
presented for cavitating flows around the NACA0012 and 
NACA66(MOD) hydrofoils and also an axisymmetric 
hemispherical fore-body for different conditions and the results 
are compared with the available numerical and experimental 
data. The solution procedure presented is shown to be accurate 
and efficient for predicting different types of cavitating flows 
over 2D/axisymmetric geometries. 

INTRODUCTION 
The inception of cavitation occurs due to the drop in 

pressure of the flow below the vapor pressure of the liquid. The 
phenomenon is often encountered in a wide variety of liquid 
handling turbomachineries and devices. Ship propellers, 
hydraulic turbine and pumps, nozzles and hydrofoils are some 
examples subject to cavitation. The cavitation phenomenon has 
been the subject of intensive research because of the effects that 
it has on performance; undesirable features of cavitation are 
structural damage, noise and power loss. On the other hand, 
cavitation is sometimes found useful as its applications in 
ultrasonic cleaning, enhancement of chemical reactions, 
biomedical treatments and viscous drag reduction on high 
speed underwater bodies surrounded fully or partially with a 
natural or gas-ventilated cavity [1, 2]. Numerical simulation of 

cavitating flow is a complicated task, since one has to deal with 
localized large variations of density which are present within a 
predominantly incompressible liquid medium, interactions 
between phases, turbulence, irregularly shaped interfaces and 
the stiffness in the numerical model. Because of these 
complexities there is not a single sophisticated mathematical 
model that can take care of all these factors. 

Numerical attempts in the simulation of cavitating flows 
could be classified broadly under two categories: namely, 
interface tracking and interface capturing procedures. Interface 
tracking methods benefit from the assumption of taking the 
cavitating region at constant pressure equal to the local vapor 
pressure. Thus, the liquid/vapor interface is treated as part of 
the boundary and the computations are done for liquid phase 
only. The interface is updated iteratively until a convergent 
shape is achieved with a constant pressure along it. 
Numerically, however, the interface tracking approach has to 
employ a wake closure model to approximate the two-phase 
behavior in the wake region at the end of the cavitation region, 
since it is impossible to impose a constant pressure condition 
on the entire cavity surface while the recovery of pressure 
occurs at the aft end of the cavitation [3, 4]. This category is 
represented by the potential flow based models [5-11] and the 
Euler and Navier-Stokes equations based models [4,12,13]. 
Adaptations of potential flow methods remain in widespread 
use today, due to their inherent computational efficiency, and 
their proven effectiveness in predicting numerous first-order 
dynamics of supercavitating configurations. However, the use 
of Euler/Navier-Stokes methods appears to have the advantages 
over potential flow methods in that the application in complex 
geometries is not difficult, a priori knowledge of cavity 
detachment point and bubble length are not required and they 
do not have the potential flow problems in the presence of 
rotational effects such as those that arise from non-uniform 
inflows [13]. Although interface tracking models are able to 
predict certain characteristics of cavitating flows such as cavity 
detachment point and pressure distribution, they are only 
limited to model the stable sheet cavitation, no cavitation is 
involved, wake model is not physical and it is limited to 2D 
computation because of the difficulty to track 3D phase 
interface [14]. 
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In the second category, interface capturing methods, an 
Eulerian approach is used in which each phase is described by 
separate equations. The most attractive feature of this procedure 
is that no wake closure model is required and the whole cavity 
region shape is obtained as a part of the solution. Formulations 
in this category can be divided in two main groups, namely 
multi-fluid modeling and mixture modeling, based on the 
governing equations being used. In the former group, a set of 
conservation equations is employed for each phase and the 
interaction terms at the interfaces are added to the equations as 
source terms [15]. In the second group, mixture modeling, a 
single fluid is employed for both liquid and vapor in which 
density varies widely between liquid and vapor extremes. The 
key differences here mostly come from the relation that defines 
the variable density field. In one class of methods, a single 
continuity equation is considered with the density varying 
between liquid and vapor densities through an equation of state 
[16-19]. However, most generalized cavitation models have 
used solving a separate continuity equation for each constituent 
to account for the separate behavior of each phase. These 
models are managed either by introducing the mass transfer 
between vapor and liquid as the source terms [20,21], or by the 
evolution of a cluster of bubbles according to a simplified 
Eulerian form of the Reyleigh-Plesset equation [22-24]. Such 
multi-species methods are also termed homogeneous because 
there is assumed to be no-slip between constituents in each cell. 
Models with this strategy can, in principle, cover all types of 
cavitation. 

Since cavitating flows are highly dynamic and typically 
turbulent, most cavitation simulations deal with the 
computation of turbulent cavitating flows and therefore Navier-
Stokes equations based models for simulating the cavitation 
include a turbulent model (for example see Refs. [16,18,20,25-
27] and others). The most turbulence-dominated region is the 
wake region at the rear portion of the cavitation that 
recirculation and wall jet-like flow structure are seen there. 
Note that the mechanisms of this kind of two-phase flows in the 
wake region are extremely complex and no available turbulence 
model is capable of treating this kind of flow properly [22]. 
Taking into consideration all the issues with turbulence 
modeling and the benefits from the fact that the Euler equations 
can provide valuable information about many fundamental 
phenomena with lower computational effort than the Navier-
Stokes equations, the inviscid calculation of cavitating flows 
using the preconditioned  multiphase Euler equations is pursued 
in this paper. Although the modeling difficulty of the highly 
turbulence-dominated two-phase flow region is avoided here 
and the inviscid computation of cavitation seems to be a 
simplified case, lack of the damping effect of viscosity makes 
the computation of cavitating flows using the Euler equations 
to be a very difficult task; because of high sensitivity of the 
numerical solution for capturing the cavity interface. 

The main objective of the present study is to assess a 
numerical treatment for computing cavitating flows using the 
preconditioned multiphase Euler equations. Herein, a cell-
centered finite-volume scheme in conjunction with the 
modified Jameson’s type dissipation terms to account for 
density jumps across the cavity interface is employed to solve 
the multiphase Euler equations. The Euler equations are used 

for the cavitation simulation, because some certain 
characteristics of cavitating flows can be obtained using the 
solution of this system with relative low computational effort. 
In addition, the Euler equations are suitable for the assessment 
of the numerical method implemented, because of the 
sensitivity of the solution to the numerical instabilities. The 
cavitation simulations for the NACA0012 and NACA66(MOD) 
hydrofoils and also an axisymmetric hemispherical fore-body 
for different conditions are presented. The effects of the 
numerical dissipation terms and grid size on the results are also 
investigated and the overall capability and performance of the 
present modeling are assessed. 

GOVERNING EQUATIONS 
For numerical simulation of cavitating flows, an interface 

capturing method using a mixture model is adopted. The flow is 
assumed to be in thermal and dynamic equilibrium at the 
interface where the flow velocity is assumed to be continuous. 
The equations are described for a fluid mixture of liquid and 
vapor. The momentum equations are used to describe the fluid 
mixture motion while a single continuity equation can be used 
for each fluid component. Herein, the vapor continuity equation 
is replaced by the mixture continuity equation. In the 
development of the above system of equations, a mixture 
volume continuity equation is employed rather than a mixture 
mass equation. Because of this choice, neither a physical time 
derivative nor the mixture density appears in the continuity 
equation, although the mixture density can vary in space and 
time. To regulate the mass-transfer rate from liquid to vapor 

(m- ) and from vapor to liquid (m+ ), appropriate source terms 
are added to the mixture and liquid continuity equations. 
Hence, the preconditioned multiphase Euler equations can be 
written in the Cartesian form as: 
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where b  is the pseudo-compressibility coefficient or the 
preconditioning parameter and 0k =  and 1 denotes 2D and 
axisymmetric body, respectively. To render the system 
hyperbolic and to facilitate the use of time-marching 
procedures, a pseudo-time derivative term (represented by t ) 
is introduced in the mixture continuity equation; a strategy that 
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derives from the work of Chorin [28]. The corresponding 
artificial time-derivative term is also added to the phasic 
continuity equation to ensure that the proper differential 
equation in the non-conservative form is satisfied [20]. 

The preceding equations (1) are nondimensionalized by the 
reference parameters. The density is normalized with the liquid 

density, lr , the pressure by the dynamic pressure ( 2
lUr ¥ )., the 

velocities by  the freestream velocity, U¥ , and lengths by the 

characteristic length of the body, L . The system of equations 
(1) can be written in dimensionless and vector form as follows: 
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where the vector of dependent variables Q , the inviscid flux 
vectors E , F , G , and the source terms vector S  are given by 
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and the preconditioning matrix, G , is given by 
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where lrD  is the difference between liquid and vapor 

densities. The normalized mixture density, mr , and lrD  are 

defined by 
 

(5)
m l v vr a a r= +
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where la  and va  are the volume fractions for the liquid and 
vapor phases, respectively. 

Introducing the total inviscid flux vector as 
ˆ ˆ( ) ( ) ( )H Q F Q i G Q j= +
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, the integral form of preconditioned 

multiphase Euler equations (2) using the Gauss divergence 
theorem for an arbitrary control volume W  is written as  
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where ˆ ˆ ˆ( , )x yn nn  is the local outward unit vector normal to the 

boundary surface, ˆ. x yV n vn un


= + is the normal velocity 

component of fluid and ˆ( ).nH H Q n
 

=  is the total inviscid flux 

normal to the surface of the control volume as 
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Equation (7) describes a relationship in which the time rate of 
change of the state vector Q  within the domain W  is balanced 
by the net inviscid fluxes across the boundary surface ¶W . 

CAVITATION MODEL 

To model cavitation, the calculation of evaporation m+  

and condensation m-  is required. The cavitation models used 
in this study are similar to those used by Kunz et al. [20] and 
Merkle et. al. [21].  
 

Model of Merkle et al. The transformation of liquid to 

vapor,m- , is modeled as being proportional to the liquid 
volume fraction and the amount by which the pressure is below 

the vapor pressure. Conversely, m+  is the rate for reconversion 
of vapor back to liquid in regions where the pressure exceeds 
the vapor pressure. The normalized conversion rates are 
specified as follows: 
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Model of Kunz et al. The transformation of liquid to vapor, 

m- , is similar to that used by Merkle et al. [21]. For 

transformation of vapor to liquid, m+ , a simplified form of 
Ginzburg-Landau potential is used which is a function of 
volume fraction. The normalized mass transfer rates are given 
by following expressions as 
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In the both models, vp  is the normalized vapor pressure, which 

is defined in terms of the cavitation number s  as follows 
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(13)2( )vp ps ¥= -

 

Both evapC

t¥
 and destC

t¥
 are empirical constants, which express 

the time rate of the evaporation and condensation processes 
with respect to the mean flow time scale ( /L U¥ ) [27]. 

NUMERICAL PROCEDURE 
The numerical solution of the preconditioned multiphase 

Euler equations (7) is given herein. A cell-centered finite 
volume method is used to solve these equations. The domain is 
divided into a finite number of structured quadrilateral cells and 
Eq. (7) is applied to each cell. 
 
Spatial Discritization. In a cell-centered scheme, the flow 
quantities are associated with the center of each control 
volume. By discretizing the spatial terms, a system of first-
order ODE is obtained. Using the mean value theorem, Eq. (7) 
can be written in the following semi-discrete form for each cell 
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Here, i  and j  locate a particular cell, lD  is the length of each 
face and summation is performed over all ncf  faces of the cell 

and 1-G  denotes the inverse of the preconditioning matrix. The 

values of the total flux ( )nH Q


on each face of a cell can be 

evaluated by averaging from its values at the two control points 
located on the opposite sides of the cell interface, i.e., 
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In this way, the scheme reduces to a second-order central 
difference on a uniform Cartesian grid.  
 
Artificial Dissipation Terms. Owing to the central 
difference nature of the scheme, stabilization is required to 
eliminate spurious oscillations. Scalar-valued dissipation, as 
initially proposed by Jameson et al. [29] is implemented to 
eliminate odd-even decoupling of the solution and damp 
oscillations near sudden changes in flow properties. The 

artificial dissipation term D


 is added to Eq. (14) as follows 
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where the net dissipation flux, ( ),i jD Q
 

 for the cell ( , )i j  is a 

blend of second and fourth differences with the coefficients 
which depend on the local gradients. The dissipation flux is 
calculated as 
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The terms on the right-hand side have a similar form and are a 
blend of first and third-order differences. For example, 

(19)
( ) ( )

( ) ( )

1
2

1 1
2 2

1
2

, 2

1, ,, ,

4

2, 1, , 1,,

{

3 3 }

i j

i j i ji j i j

i j i j i j i ji j

d Q Q
t

Q Q Q Q

e

e

+

++ +

+ + -+

W
= - -

D
- + -

Here, ( )2e  and ( )4e  are the coefficients of second- and fourth-
order dissipation terms, respectively. The expression for these 
coefficients is given by 
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where ,i ju  and ,i jd  are the sensors to activate the second-

difference numerical dissipation in the regions of strong 
gradients and to deactivate it elsewhere. The first term on the 
right-hand side of Eq. (20) is similar to that proposed initially 

by Jameson et al. [29]. ,i ju  is the pressure sensor and is applied 

in the regions with great pressure gradients, such as the shock 
and stagnation regions. The second term in Eq. (20) is a 
supplementary sensor added for cavitating flows [30]. Here, 

,i jd  is the density sensor and is applied in the regions with 

noticeable density gradients, such as the cavity interface. These 
two sensors are defined as follows: 
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The study indicates that the results of cavitating flows 
based on the solution of the multiphase Euler equations are 
sensitive to the numerical dissipation terms and these effects 
are investigated in the paper. 
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Pseudo-temporal Discritization. An explicit multistage 
time-stepping method is used to discretize the pseudo-temporal 
term in Eq. (14). The solution is advanced in the pseudo-time 
t  using a four-stage Runge-Kutta scheme as 

(24)
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where the parameters kz  are taken as 
1 1 1
, ,
4 3 2

 and 1 . To 

accelerate the convergence rate of the solution to a steady state, 

the local time-stepping is employed. The local time step, ,i jtD  

is calculated as follows 
 

(25),

,

max ,( )
i j

i j

i j

CFL c
t

l

D
D =

 

where CFL  is the Courant-Friedrichs-Lewy number and cD  

is the smallest face length of each cell. The parameter maxl  

designates the maximum eigenvalue of the Jacobian matrix and 
is given by 
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Boundary Conditions. The numerical solution of the system 
of differenced equations needs suitable boundary conditions to 
be implemented. The far field boundary conditions are applied 
at a finite distance from the body surface. The velocity 
components and volume fractions are specified at the inflow 
boundary and they are extrapolated at the outflow boundary, 
while the pressure is specified at the outflow boundary and it is 
extrapolated at the inflow boundary. Since the flow is assumed 
to be inviscid, the non-penetrating condition for the velocity 
components is enforced on the body surface. The boundary 
conditions on the body surface are imposed by using dummy 
cells with appropriate values at each pseudo-time step. The 

velocity components within a dummy cell, ( , )du v , are 

evaluated from the values in the cell ( , )i j  adjacent to the 

surface, ,( , )i ju v , as follows 

(27)
2

2

,

ˆ ˆ ˆ1 2 2

ˆ ˆ ˆ2 1 2
x x y

x y yd i j

u n n n u

v vn n n

é ùì ü ì ü- -ï ï ï ïï ï ï ïê ú=í ý í ýê úï ï ï ï- -ê úï ï ï ïî þ î þë û
 

where ˆ ˆ ˆ( , )x yn nn  is the unit vector normal to the boundary 

face. The density, pressure and volume fraction within the 
dummy cell are set equal to the values in the cell adjacent to the 
surface. 

RESULTS AND DISCUSSION 
The multi-phase Euler system described in the present 

study is applied to compute the sheet- and super-cavitating 
flows over a variety of geometries. Since sheet and super- 
cavitation have a quasi-steady behavior, with most of the 
unsteadiness localized in the rear closure region, steady state 
calculations can be regarded as a valid assumption in the 
simulations presented herein. The results are organized in three 
parts: The first simulation presented is the cavitating flow over 
the NACA 0012 hydrofoil for different conditions and the 
sensitivity of the solution to the numerical parameters such as 
the grid size and the dissipation coefficients are studied. The 
effects of the density ratio and the cavitation models on the 
results are also discussed. A comparison of the present solutions 
with the existing numerical results based on the interface 
tracking method [13] at different cavitation numbers and angle-
of-attacks is carried out in this section. Next, the computations 
are performed for the cavitating flow over the NACA 66 
hydrofoil and the accuracy of the results is verified through 
comparing with the experimental measurements [31] and the 
numerical results [13]. In addition, the capability of the current 
algorithm to capture the mid-chord cavitation, kind of sheet 
cavitation where the cavitation inception occurs somewhere 
else other than the leading edge of the geometry, is 
demonstrated. Finally, a series of computation results is 
presented for the cavitating flow past an axisymmetric 
cylindrical headform. A sensitivity study is performed to 
examine the effects of the grid size and the dissipation 
parameters on the solution for this test case. The results for 
cavitating flow over this geometry are compared with existing 
experimental data of Rouse and McNown [32] and 
computations of Kunz et al. [20]. The liquid to gas density ratio 
is specified to be 100 and the Kunz et al. cavitation model is 
used in all the simulations unless otherwise indicated. 
 
The NACA 0012 hydrofoil.   The results of Deshpande et al. 
[13] are used as a baseline for comparing the results of 
cavitating flows since the inviscid cavitating flow has been 
computed there too. They used the Euler equations in 
conjunction with the interface tracking method. Herein, the 
computation of multiphase Euler equations using the interface 
capturing method is considered. A grid refinement study is 
performed to assess the grid resolution requirements around the 
NACA 0012 hydrofoil at 5 degree angle-of-attack and the 
cavitation number is set to be 1s = . A view of the hydrofoil 
and the computational domain near the body is shown in Figure 
1. Three grid systems, the coarse grid (101 51)´ , the medium 

grid (151 75)´  and the fine grid (201 101)´ ; are used for this 

study. 
As illustrated in Figure 2, the difference between the 

predicted surface pressures for the medium and fine meshes are 
small and the solution seems independent from the grid size 
when the grid points become larger than the medium one. Thus, 
the medium mesh system is utilized for the all subsequent 
calculations presented here because it costs less computation 
effort without affecting the accuracy of the solution. 
To examine  the  sensitivity  of   the  solution  to the dissipation  
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Fig. 1 Details of the NACA 0012 hydrofoil and the computational 

O-grid used in computation of cavitating flows.  
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Fig. 2 Effect of grid refinement on surface pressure coefficient 

distribution for cavitating flow over the NACA 0012 hydrofoil at 
05a =  and 1s = .  

 
coefficients, the cavitating flow over the NACA 0012 at 5 
degree angle-of-attack and 1s =  is considered again. Figure 3 
illustrates the effects of the pressure sensor coefficient in the 

second-order term of the numerical dissipation, (2)
pk , on the 

surface pressure coefficient distribution. The results indicate 
that the pressure sensor has no a stabilizing effect and even if 
this sensor in the second-order dissipation term is included then 
the solution is deteriorated near the cavity interface. Hence, this 
sensor is deactivated (2)( 0)pk =  to obtain a more accurate 

solution.  
Figures 4 and 5 demonstrate the surface pressure 

coefficient distribution and the convergence rate of the solution 
for the different values of the density sensor coefficients in the 
second- and fourth-order terms of the numerical dissipation. In 
contrast to the pressure sensor, the density sensor in the second-
order dissipation term  has a  significant effect  on the solution  

 

X

C
P

0 0.2 0.4 0.6 0.8 1

-1

-0.5

0

0.5

1

kp = 1/5 , k = 1/10 , k(4) = 1/32
kp = 1/20 , k = 1/10 , k(4) = 1/32
kp = 1/80 , k = 1/10 , k(4) = 1/32
kp = 0 , k = 1/10 , k(4) = 1/32

Interface Trackin , Deshpande et al. =1g

 
Fig. 3 Effect of 2nd-order dissipation coefficient based on pressure 
(2)
pk  on surface pressure coefficient distribution for cavitating flow 

over the NACA0012 hydrofoil at 05a =  and 1s = . 
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Fig. 4 Effect of 2nd- and 4th-order dissipation coefficients on 

predicted surface pressure distribution for cavitating flow over the 
NACA 0012 hydrofoil at 05a =  and 1s = . 

 
because of the strong density gradients at the cavity interface 
due to the phase change. Thus, the small values of this 
coefficient may lead to instabilities such that with a choice of 
(2) 1 / 40kr =  the solution turned out to be quite unstable and 

led to divergence. On the other hand, larger values of density 
sensor coefficient cause an overdamping effect on the solution. 

Thus, a value of (2) 1 / 10kr =  seems a suitable value for this 

coefficient. Since the 4th-order term has to suppress the 
tendency for odd and even point decoupling, setting the value 
of this coefficient to zero can cause severe oscillations which 
lead to instability and divergence of the solution. On the 
contrary, a higher value for this coefficient (i.e., (4) 1 / 16k = ) 

results in  the computation  divergence.  Choosing  (4) 1 / 32k =   
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Fig. 5 Effect of 2nd- and 4th-order dissipation coefficients on 
convergence rate of the solution for cavitating flow over the 

NACA 0012 hydrofoil at 5a =  and 1s = . 
 
gives a stable and accurate solution enough. Note that the effect 
of dissipation terms is more pronounced at the aft end of the 
cavity region. It is clear that the 2nd-order and 4th-order 
dissipation terms have a reverse behavior there. While 
increasing the coefficient associated with the 2nd-order 
dissipation mostly shortens the cavity length, increasing the 4th-
order dissipation lengthens it. The present study indicates that 
the 2nd-order and 4th-order dissipation values in the range of 
(2) 1 / 20 1 / 10kr -=  and (4) 1 / 64 1 / 32k -= , are appropriate 

ones for an accurate modeling of cavitation. In Figures 6 and 7, 
the surface pressure coefficient distribution and the 
convergence history are provided for the different density ratios 
for the simulation of cavitating flow over the NACA 0012 
hydrofoil at 5 degree angle-of-attack and the cavitation number 
of 1s = . As the density ratio is increased, the surface pressure 
coefficient and the convergence history is changed somewhat, 

but beyond / 10l vr r = , the performance of the solver is 

almost independent of the density ratio. This behavior retains 
the physically observed characteristic that the cavity size, and 
thereby the dynamics of the two-fluid motion, are nearly 
independent of liquid-vapor density ratio [20].  

The sensitivity of the solution to two cavitation models is 
studied in Figure 8. It can be seen that using either Merkle et. 
al. or Kunz et. al. cavitation model has little effect on the 
surface pressure coefficient distribution predicted. The 
differences in the predictions are more pronounced at the 
closure region which is due to the different compressibility 
characteristics imposed by the cavitation models [2]. The study 
has shown using these two cavitation models, the convergence 
rates of the solution are nearly the same. 

In Figure 9, the predicted surface pressure distribution for 
the cavitating flow over the NACA 0012 for the various 
cavitation numbers ( 0.9,1.0s =  and 1.2 ) at 5 degree angle-

of-attack are presented and compared with the results of 
interface tracking method of Deshpande et al. [13]. The 
computed cavity profiles are also plotted in this figure.  
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Fig. 6 Effect of density ratio /l vr r  on surface pressure 

coefficient distribution for cavitating flow over the NACA 0012 
hydrofoil at 5a =  and 1s = . 
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Fig. 7 Effect of density ratio /l vr r  on convergence rate of 

solution for cavitating flow over the NACA 0012 hydrofoil at 
5a =  and 1s = . 

 

A value of 0.95mr =  is adopted to show the cavity interface 

on all the subsequent plots. The present results based on the 
interface capturing method and those of Deshpande et al. based 
on the interface tracking method are very similar to each other 
despite in the aft end of the cavity region where a wake model 
has to be applied in an interface tracking approach. The good 
comparison between the two numerical results is an important 
validation of the present results which does not require a user 
specified wake closure model. 

Figure 10 shows the surface density distribution on the 
airfoil surface relating to the same conditions. As seen from 
density plots, the liquid phase first expands and vapor phase 
appears uniformly inside the cavity, then the vapor phase 
compresses, in a shock like fashion, back  to the liquid phase.  
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Fig. 8 Effect of cavitation models on surface pressure coefficient 

distribution for two cavitation models for cavitating flow over the 
NACA 0012 hydrofoil at 05a =  and 1s = . 
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Fig. 9 Comparison of predicted surface pressure coefficient 

distribution with the results of interface tracking method for the 

NACA 0012 hydrofoil at 05a =  and 0.9, 1.0, 1.2s = . 

 

The differences among the three cavitation numbers imply that 
as the cavitation number is lowered the density distribution can 
better capture the actual density ratio that is provided.  

In Figure 11, the surface pressure coefficient distribution 
is given for a fixed cavitation number ( 1.0s = ) at three 

angles-of-attacks ( 4 ,5a  =  and 6 ). The calculated cavity 

profiles are also depicted in this figure. The results indicate a 
growth in the cavity size with decreasing the cavitation number 
and increasing the angle-of-attack. Again the present 
computations based on the multiphase Euler equations using 
the interface capturing method are comparable with those of 
Deshpande et al. based on the Euler equations using the 
interface tracking method except in the aft end of the cavity 
region where a wake model has to be implemented in the 
interface tracking method to properly close the cavity region.  
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Fig. 10 Comparison of surface density distribution for the NACA 

0012 hydrofoil at 05a =  and 0.9, 1.0, 1.2s = . 
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Fig. 11 Comparison of predicted surface pressure coefficient 
distribution with the results of interface tracking method for 

the NACA 0012 hydrofoil at 1.0s =  and 0 0 04 ,5 ,6a = ). 

 

Note that the most attractive feature of the present procedure is 
that no wake closure model is required and the whole cavity 
region shape is obtained as a part of the solution. 

Figure 12 shows the density contours over the hydrofoil at 

a fixed angle-of-attack ( 5a = ) and  for  the  different  
cavitation numbers. It is obvious that the cavitation bubble 
volume increases as the cavitation number is decreased. Finally, 
the detailed predictions of supercavitation over this hydrofoil 
are illustrated in Figure 13. It can be seen that the cavitation 
bubble develops downstream in a way it envelopes the entire 
suction side of the hydrofoil. The results demonstrate that the 
present numerical treatment employing the multiphase Euler 
equations is capable of modeling of sheet and super-cavitating 
flows. 
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Fig. 12 Computed flow field shown by density contours for 
cavitating flow over the NACA 0012 hydrofoil  

at 05a =  and 0.9, 1.0, 1.2s = . 
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Fig. 13 Surface pressure distribution and computed density 

contours for supercavitating flow over the NACA 0012 hydrofoil 

at 05a =  and  0.5s = . 
 
The NACA 66 hydrofoil.   In this section, the results of the 
present computation of cavitating flow over the NACA 66 
hydrofoil are presented. The computational mesh with 
(181 81)´  grid points is used for all the simulations. The 

hydrofoil geometry and the mesh used for the computations are 
shown in Figure 14.  

The present predictions of the surface pressure distribution 
for this hydrofoil are compared with the experimental 
measurements by Shen and Dimotakis [31] and the numerical 
results by Deshpande et al. [13]. Figure 15 illustrates the 
pressure distribution for the cavitation inception at an angle-of-
attack of 4 degree and the cavitation number of 1.76s = . In 
this case, a small cavitation bubble forms on the leading edge 
of the hydrofoil and with favoring  the  cavitation condition, the  
 

 
Fig. 14 Details of the NACA 66 hydrofoil and the computational O-

grid used in computation of cavitating flows.  
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Fig. 15 Comparison of predicted pressure coefficient distribution 
with experimental data for leading-edge cavitation over the NACA 

66 hydrofoil at 04a =  and 1.76s = . 
 

cavity region is evolved. The surface pressure distribution 
compares very well with experimental data. Both the hydrofoil 
surface pressure distribution and the computed cavity profiles 
are shown in Figure 16. The results of cavitating flows for 
different cavitation numbers ( 0.84, 0.9s =  and 1.0 ) are 

carried out at a fixed angle-of-attack of 4 degree. The computed 
cavity profiles are also given in this figure. The study indicates 
the computed surface pressure distributions are in good 
agreement with the existing data. Again a slight discrepancy 
between the computed surface pressure distribution based on 
the interface capturing and that of the interface tracking [13], at 
the end of the cavity region, is because of using an ad-hoc wake 
closure model in the interface tracking approach at the end of 
the cavity region. However, a better agreement is observed 
between the current results and the experimental measurements. 
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Fig. 16 Comparison of predicted pressure coefficient distribution 
with the results of interface tracking method and experimental 

data for cavitaing flow ove the NACA 66 hydrofoil  

at 04a =  and 0.84, 0.91,1.0s = . 
 

 
The weakness in capturing the aft end of the cavity region may 
be due to turbulence effects that can highly affect the structure 
of the wake region. Figure 17 depicts the density contours for 
the different cavitation numbers. The results show as the 
cavitation number is decreased, the cavity region grows.  

The cavitating flow over the NACA 66 is computed at a 
small angle of attach ( 1 )a =   and the surface pressure 

distribution together with the cavity profile are presented in 
Figure 18. This condition is known as the mid-chord cavitation. 
The study shows that the computed surface pressure 
distribution exhibits good agreement with the experimental 
data. Since in the mid-chord cavitation, the location of the 
cavity inception is somewhere different than the leading edge 
of the hydrofoil, the results demonstrate the predictive 
capability of the present computations. 
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Fig. 17 Computed flow field shown by density contours for 
cavitating flow over the NACA 66 hydrofoil  

at 04a = , 0.84, 0.91,1.0s = . 
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Fig. 18 Comparison of predicted pressure coefficient distribution 

with experimental data for mid-chord cavitation over 

 the NACA 66 hydrofoil at 01a =  and 0.43s = . 
 

 
 

The Cylindrical Headform.   The last test case corresponds to 
the cavitating flow over a hemispherical headform as one of the 
most axisymmetric geometries that has been widely used for 
the assessment of numerical methods for modeling the 
cavitation. Rouse and McNown [32] have conducted 
experiments involving liquid water flow over this geometry. 
The present simulations are compared with the experimental 
data of Rouse and McNown, in which the surface pressure 
distribution for different cavitation numbers are reported. As in 
the NACA 0012, the grid independence study and sensitivity to 
the dissipation parameters are also discussed for this test case 

A mesh dependency test is employed in order to pursue a 
solution independent of the grid size. An overview of the 
hemisphere headform and the near-field details of the 
computational grid used are shown in Figure 19. The results for 
the surface pressure distribution obtained with the three sets of 
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Fig. 19 Details of cylindrical headform geometry and the 
computational grid used in computation of cavitating flows. 
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Fig. 20 Effect of grid refinement on surface pressure coefficient 

distribution for cavitating flow over the hemispherical headform 
at 0.3s = . 

 
meshes, (130 33)´ , (260 65)´  and (390 97)´  are illustrated 

in Figure 20. The grid study is performed at a cavitation 
number of 0.3s = . It is obvious that the results obtained with 
the mesh sizes (260 65)´  and (390 97)´  are nearly the same 

and the results based on the mesh size (130 33)´  obviously 

deviate away from them. Thus, the medium mesh system 
(260 65)´  is employed for all subsequent calculations.  

A sensitivity study of the solution to the dissipation 
coefficients at the same cavitation number ( 0.3s = ) is 
performed. As discussed before for the NACA 0012 hydrofoil, 
the pressure sensor in the second-order dissipation term has no 
effect in stabilizing the solution and even the larger the value of 
its coefficient the more inaccurate the computed results. Thus, a 

value of (2) 0pk =  is adopted for all the simulations that follow. 

The sensitivity of the computed surface pressure distribution to  
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Fig. 21 Effect of  2nd-order dissipation coefficient based on density 
(2)kr  on surface pressure coefficient distribution for cavitating flow 

over the hemispherical headform at 0.3s = . 
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Fig. 22 Effect of 4th-order dissipation coefficient (4)k  on surface 

pressure coefficient distribution for cavitating flow over the 
hemispherical headform at 0.3s = . 

 

 

the density sensor coefficient, (2)kr  in the second-order  

dissipation term and to the coefficient of the fourth-order 
dissipation term (4)k  and the results are given in Figures 21 and 
22. It is obvious that the sensitivity study for this geometry 
indicates little effects to the dissipation coefficients compared 
to the hydrofoil case. This may be due to the combined effects 
of the geometry and the cavitation bubble. Figure 23 indicates 
the surface pressure distributions for the hemispherical 
headform at four cavitation numbers ( 0.2, 0.3, 0.4s =  and 

0.5 ) along with the noncavitating case. The present results for 
these conditions are compared with the experimental data [32] 
and the numerical results by Kunz et al. [20]. 
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Fig. 23 Comparison of surface pressure coefficient distribution for 

cavitating flow over the hemispherical headform at 
0.2, 0.3, 0.4, 0.5s = . 

 

 
The study shows the present numerical modeling performs 

well for both the noncavitating and cavitating conditions. The 
extent of the bubble is captured properly but the pressure 
recovery at the wake region of the cavity is too rapid which 
leads to a pressure overshoot compared to the experiments. 
This effect is most probably a consequence of the inviscid 
assumption, because the wake region is strongly influenced by 
the thermodynamic and turbulence effects. Figure 24 shows the 
density contours over this geometry for the cavitation numbers 
mentioned above. It is clear that the cavitation bubble volume 
increases as the cavitation number is decreased.  
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Fig. 24 Computed flow field shown by density contours for 

cavitating flow over the hemispherical headform at 
0.2, 0.3, 0.4, 0.5s = . 

CONCLUSIONS 
A numerical treatment for the modeling of cavitating flows 

is presented and assessed. The algorithm uses the 
preconditioned, homogenous, multiphase Euler equations with 
appropriate mass transfer terms. A cell-centered finite-volume 
scheme employing suitable dissipation terms to account for 
density jumps across the cavity interface is used to solve the 
multiphase Euler equations. The computations are presented for 
cavitating flows around the NACA0012 and NACA66(MOD) 
hydrofoils and also an axisymmetric hemispherical fore-body 
for different conditions. The study shows that some certain 
characteristics of cavitating flows can be obtained using the 
solution of the multiphase Euler equations that require low 
computational efforts compared to the multiphase Navier-
Stokes equations. Owing the sensitivity of the system of Euler 
equations to the numerical instabilities, a sensitivity study is 
conducted to evaluate the effects of various parameters such as 
numerical dissipation coefficients and grid size on the accuracy 
and performance of the solution. The computations indicate that 
the results of cavitating flows based on the Euler equations are 
sensitive to the grid size and especially the numerical 
dissipation terms used for stabilizing the numerical algorithm. 
The present results are compared with the available numerical 
and experimental data which show good agreement. The 
present solution procedure based on the preconditioned 
multiphase Euler equations provides a good engineering 
prediction for different types of cavitating flows over 
2D/axisymmetric geometries. 
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NOMENCLATURE 

,u v  =   Cartesian velocity components 

p  =   pressure 

E , F , G  =   inviscid flux vectors 

S  =   source vector 

m  =   mass transfer rate 

D  =   numerical dissipation vector 

x , y  =   Cartesian coordinates 

,dest prodC C  =   cavitation model constants 

Q  =   flow-field vector, ( , , , )TlQ p u v a=  

pC  =   pressure coefficient   

t , t¥  =   time coordinate, mean flow time scale 
L

U¥

) 

a  =   volume fraction or angle of attack 

b  =   preconditioning parameter 

G  =   preconditioning matrix 

l  =   eigenvalue 

r  =   density 

s  =   cavitation number 

n  =   pressure dissipation sensor 

d  =   density dissipation sensor 

t  =   pseudo-time coordinate 

Subscript / 
Superscript 

  

i , j  =   coordinate indices 

l  =   liquid 

m  =   mixture 

v  =   vapor 

¥  =   free stream  

+ /-  =   production/destruction 
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