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ABSTRACT 

This work is devoted to a numerical investigation of three-
dimensional cavitation bubble. Bubble oscillations in ambient 
unbounded fluid are investigated numerically. The fluid is 
assumed inviscid, incompressible and unbounded and the flow 
is irrotational. The boundary integral method is used as an 
instrument of numerical investigation. Much attention is paid to 
the description of a numerical algorithm. 

 

INTRODUCTION 
This work is devoted to a numerical investigation of three-

dimensional cavitation bubble oscillations. The fluid is 
assumed inviscid, incompressible and unbounded and the flow 
is irrotational. The problem is solved in full nonlinear three-
dimensional statement. Produced results of numerical 
simulation compare with known analytical estimation. 

The problem of bubble dynamics has long been an 
important research field. Both theoretical and experimental 
approaches have been applied to investigate this problem; and 
finally the preferred approach has become a numerical 
experiment. Due to the complexity of this problem, methods 
applied for its solution also vary considerably. Application of 
the finite-element method to problems of bubble evolution is 
described in [1, 2], of the volume-of-fluid method in [3], of the 
Langrange-Thomson method in [4], the generalized vortex 
method in [5], boundary integral method in [6]. 

The boundary integral method is used as an instrument of 
numerical investigation in this work. The particularity of this 
work is using of uncoordinated isoparametric linear 
approximation of velocity potential and its normal derivative on 
triangular mesh elements. This approximation was used in 
finite element method [7]. The advantages of the approximation 
in finite element method are well-known and described [7]. 
Authors do not know any other works dedicated to using of this 

approximation in boundary element method. Since the present 
work was started rather long ago [8, 9], the numerical algorithm 
has been thoroughly investigated. The conservative nature of 
the numerical algorithm can be tracked by controlling the 
conservation of energy. 

 

THEORY 
Let us consider transient fluid area ( )tΩ  bounded by 

bubble surface ( )tΓ . The fluid is assumed inviscid and 
incompressible and flow is irrotational. In the case under 
consideration we study a model of a cavitation bubble and 
assume that the bubble is so small that the influence of gravity 
can be disregarded. The pressure inside the bubble is the sum of 
the saturated vapor pressure vp  and the pressure of the gas 
which, as we will assume, follows the adiabatic law 

( )0 0 / ( )gp p V V t λ= , where ( )V t  is the bubble volume, 

0p , 0V  are the initial gas pressure and bubble volume and λ  is 
the ratio of specific heats. We neglect gas diffusion through the 
bubble boundary, i.e., the pressure on the bubble boundary 
( )tΓ  is defined as v gp p pΓ = + . 

In the initial moment of time the bubble is a sphere 0S  of 
the radius 0R . It is known from the experimental data that the 
bubble maintains its shape close to spherical for the most of its 
lifetime. There is a mathematical problem description for the 
velocity potential ϕ  in nondimensional variables. The velocity 
potential satisfies Laplace's equation 

0ϕΔ = ,  ( )x t∈ Ω              (1) 
and the kinematical and dynamical conditions : 

, ( ),
dx

x t
dt

ϕ= ∇ ∈ Γ                (2) 
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The parameters are scales with respect to mR  for lengths, 
where mR  is the maximum radius that the vapour bubble 
would attain in an infinite fluid domain at a uniform pressure of 
p∞ , mR pρ Δ  for time, where vp p p∞Δ = −  and ρ  is 

a liquid density, p ρΔ  for velocity and mR p ρΔ  for 

potential, and 0p pβ = Δ . 

The problem (1-3) is supplemented by the condition that 
fluid is quiescent at infinity (4). 

0, .xϕ∇ → → ∞             (4) 

Futher, it is necessary to specify the free-boundary location 
at the initial moment of time 0t =  and the potential 
distribution on it 
Г 00 0, (0, ).t t xϕ ϕ= == Γ =             (5) 

Therefore, the boundary-value problem of the gas-vapor 
bubble evolution is described by equation (1) with boundary 
conditions (2-4) and initial conditions (5). The problem is 
nonlinear because of nonlinearity of the dynamical condition 
and the unknown location of the free boundary for 0t > . We 
seek to calculate the fluid motion and the location of the bubble 
surface Г( )t  on 0t > . 
 
NUMERICAL SIMULATION 

The nonlinear boundary-value problem (1-5) may be 
reduced to a sequence of linear problems at each time step. To 
achieve that, one must execute a transition to a finite-difference 
approximation of time derivatives with the variable step jtΔ  
in the boundary conditions (2, 3), where j  denotes the number 
of the time step. The time step is selected automatically and 
based on the condition that the mesh points can not be moved 
further than the prescribed distance: 

min

max ( , )

j

j
i i

l
t

x t
ς

ϕ
Δ ≤

Δ
, 

where i  is the mesh-node number, min
jl  the minimum lengths 

of the mesh edge and ς  the empirical coefficient which should 
be selected so that the estimated time of bubble collapse 
coincides with the well-known analytical solution of the 
Rayleigh problem [10]. The time step depends directly on the 
kind of mesh approximating the bubble surface, and on the 
velocity of its motion. For example, for a mesh consisting of 
602 nodes and 1200 elements, we have ς =0.0102. The method 
of mesh generation is described below. Naturally, there are 
values mintΔ  and maxtΔ  which limit the maximum and 
minimum time step: in our case mintΔ =0.0001 and 

maxtΔ =0.01. 
To solve the problem (1) with the boundary conditions (4) 

and (5) we apply a boundary-element method, the third Green 
formula being invoked as its basic relation 

*

*

( ) ( ) ( , ) ( , ) ( )

( , ) ( , ) ( ),

C x x x q x d

q x x d

ϕ ϕ ξ ξ ξ

ξ ϕ ξ ξ

Γ

Γ

+ Γ =

= Γ

∫
∫

 

where q nϕ= ∂ ∂ , *ϕ  is the fundamental solution of the 

Laplace equation, which is written in the spatial case as 
* 1 (4 )xϕ π ξ= − ; here x  is the collocation point and ξ  - 

current point on the boundary Γ ; * *q nϕ= ∂ ∂ .  

The bubble surface Γ  is approximated by a set of plane 
triangular elements. Let us consider two different approaches to 
building a surface boundary-element mesh. In the first approach 
the initial surface is divided into separate triangular supporting 
zones. Each of the supporting zones imaged into the canonical 
domain is divided into a prescribed number of elements. 
Backward transformation allows forming the required surface 
mesh [11]. The number of mesh nodes N  and elements M  are 
determined by the number of zones and by partition of each 
separate zone. While the first approach is universal, the second 
is suited specifically for building a mesh on the surface of a 
sphere. The initial approximation of the sphere for the second 
algorithm is an icosahedron, each edge of which is bisected by 
a new mesh node. The obtained nodes are moved onto the 
surface of the sphere and combined into a new element. At each 
new discretization level, each element of the preceding level is 
transformed into four new elements. In this case, the number of 
mesh nodes and elements increases very rapidly, 

2 1. 5 2 2nviz N −= × + , 25 2 nM = × , where n  denotes 

the level of discretization; hence, we obtain only one acceptable 
computational mesh consisting of 642 nodes and 1280 
elements. The advantage of the second approach is that the 
mesh, built by means of it, is more uniform; thus, in the first 
case, the ratio of the largest square of an element to its smallest 
square tends to 1.85, in the second case to 1.3. However, using 
the more regular mesh does not provide any noticeable 
advantage, even for calculations with sufficient deformation of 
the bubble boundary. 

Let us suppose the functions ϕ  and q  are linear functions 
on the elements. A local system of coordinates is introduced on 
the elements (Figure 1); then 3 3 3r x i y j z k= + + +  

1 1 1 2 2 2l e l eξ ξ+ + , where 1l , 2l  are the lengths of the element 
sides, and 1e , 2e  denote unit base vectors of the introduced 
coordinates system with  1ξ , 2ξ  varying along the element side 
from 0 to 1 and 3 1 21ξ ξ ξ= − − .  

We use uncoordinated isoparametric linear approximation 
in this work. Classical linear approximation uses three nodes 
that disposed in the vertexes of triangular element (Figure 2a). 
Basis functions iη  1, 3i =  in this case are given by [12] 

i iη ξ= . 
In case of uncoordinated linear approximation nodes are in 

the middles of sides of triangular element (Figure 2b) and base 
function have another form [6] : 
1 1 2 3 1 22 2 1,η ξ ξ ξ ξ ξ= + − = + −  
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2 2 3 1 11 2 ,η ξ ξ ξ ξ= + − = −  

3 3 1 2 21 2η ξ ξ ξ ξ= + − = − . 
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Figure 1. Local coordinate system on the triangular element. 

 
Coordinates and approximated function will be written in the 
next form: 

3

1 2 1 2
1

( , ) ( , )i i
i

x xξ ξ η ξ ξ
=

= ∑ , 

3

1 2 1 2
1

( , ) ( , )i i
i

ϕ ξ ξ η ξ ξ ϕ
=

= ∑ , 

3

1 2 1 2
1

( , ) ( , )i i
i

q qξ ξ η ξ ξ
=

= ∑ . 

Here ix , iϕ  и iq  are the values of x , ϕ  and q  in the i -th 
node. 
 

 
a) 

 
b) 

Figure 2. Flat triangular element; 
a) classic linear approximation; b) uncoordinated linear 

approximation. 
 

Boundary integral method uses uncoordinated linear 
approximation for counting normal derivatives in the nodes in 
the middles of element's sides. Then we have calculated normal 
derivatives in the nodes in the middles of element's sides we 
use these values for calculating velocity vector components in 
the vertexes of elements and new dislocation of the elements on 
the next time step. 

The integral coefficients of the boundary-integral method 
are written as follows 

21 1
*

1 23
0 0

( , )
( , ) ( ) ,

2j

j ik
ij i k k

i

S r n
h q x d d d
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−

Γ
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Here i  is the number of collocation points with 1,i M= , 

j  denotes the element number with 1,j N= ,  jS  s the j -th 

element square, 1, 3k =  the local node number on the 
element, ( , , )i i i ir x x y y z z= − − −  and 

(cos ,cos ,cos )n α β γ=  denotes the normal vector for the 

j -th element. 
When ix  does not belong to the element jΓ , the integrals 

k
ijh  and k

ijg  are regular; in this case the inner integrals are 
calculated analytically, whereupon the obtained integrals are 
calculated by Gaussian quadrature at seven points.  
When the node ix  is one of the vertices of the element jΓ , the 

integrals kijh  and kijg  have a singularity. The integrals kijh , have 

a strong singularity 31 ix x− , but make zero contribution to 

the resulting system of equations, since the kernel numerator is 
a scalar product of the vector lying in the element plane ir  and 

its orthogonal vector n . The integrals kijg  have a singularity of 
the 1 ix x−  kind; in this case the inner integrals are 

calculated analytically, whereupon inner integral can be 
calculated as a sum 1 2

k
ijg I I= + , where 1I  - regular 

integral calculated by seven-point Gaussian quadrature and 2I  
is a singular integral calculated according to the L'Hospital rule. 
For example, in case 2k =   2I  is given by 

2
1 2
ln
8 2

AB C
I

AB C

⎛ ⎞+ ⎟⎜= ⎟⎜ ⎟⎟⎜⎝ ⎠−
, 

where  
2 2 2

1 3 1 3 1 3( ) ( ) ( )A x x y y z z= − + − + − , 
2 2 2

2 3 2 3 2 3( ) ( ) ( )B x x y y z z= − + − + − , 

1 3 2 3 1 3 2 32(( )( ) ( )( )C x x x x y y y y= − − + − − +  
        1 3 2 3( )( ))z z z z+ − − . 

We obtain the coefficients ijH  and ijG  by adding kijh  and 
k
ijg  to the corresponding values of the potential and normal 

derivative for all collocation points. The coefficients iC , can 
be determined from the following considerations. If the 
constant potential constϕ =  is defined on the boundary, the 
flow through the boundary equals zero and 

*( , ) ( ) 1iC q x dξ ξ
Γ

= − Γ +∫  for domains with an infinite 

boundary.  
The matrix of the resultant system of linear equations 

AQ B=  is completely filled, asymmetrical and non-sign-
determined. During the calculation of test problems, exact 
methods of solution of the system of linear algebraic equations 
(the Gaussian method with basic element selection) have been 
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used. Iterative methods (the Gauss-Seidel method, the 
nonlinear regularity method [13], iteration schemes of 
incomplete approximation [14]) have also been used. The most 
acceptable of them turns out to be the Gaussian method with 
major element selection and with the following iterative 
refinement from the IMSL Microsoft Fortran Power Station 
library. 

Having calculated the velocity values 
( , , )i i ix y zϕ ϕ ϕ∂ ∂ ∂ ∂ ∂ ∂ , 1,i N=  in the mesh nodes 

being the vertices of plane triangular elements, we can find the 
new location of the bubble surface and the potential distribution 
on it. Let us consider the algorithm for the velocity calculation 
the i -th node. We calculate the velocity components in the local 
coordinate system for each element, one of the vertices being 
the i -th node. As tangential directions js  and jτ  for the j -the 
element we use the element sides included up to the i -th node. 
The derivatives for these directions are calculated as the finite 
differences 

( ) ,
jj m i js sϕ ϕ ϕ∂ ∂ = −  ( ),

jj m is x x= −  

( ) ,
jj k i jsϕ τ ϕ ϕ∂ ∂ = −  ( ),

jj k ix xτ = −  

where jm  and jk  are the numbers of two nodes of the j -th 
element, the third vertex of which is the i -th node. For the 
normal direction we use the normal vector n  averaged over all 
surrounding elements. The normal velocity is known from the 
boundary-integral method, that is, i in qϕ∂ ∂ = . The 

calculated vector ( , , )i i in sϕ ϕ ϕ τ∂ ∂ ∂ ∂ ∂ ∂  is rearranged 

for the Cartesian-coordinates vector ( ,ixϕ∂ ∂ ,iyϕ∂ ∂  

)izϕ∂ ∂ . We take as a result the average of the velocity 

vector for the elements surrounding the i -th node. Introduction 
of the weight coefficients as the inverse values of the distances 
between the surrounding element centers [14] does not result in 
a more accurate calculation of the velocity. 

In the present work we do not use any smoothing 
algorithms, neither for the bubble surface, nor for the potential 
values on it, although in some cases numerical instability of the 
bubble surface and early failure of the calculation occur; 
smoothing would probably allow such calculations to proceed. 
Rejection of the use of smoothing algorithms is motivated, first 
of all, by the fact that using them would result in distortion of 
the energy characteristics [15] and lead to violation of energy 
conservation, which in this case is given by [10] 

03 1
1 ( )

V
E d V

n V t

λϕ β
ϕ

λΓ

⎛ ⎞⎛ ⎞∂ ⎟⎜ ⎟⎜ ⎟= Γ + −⎜ ⎟⎜ ⎟⎟⎜ ⎜ ⎟∂ ⎜ − ⎝ ⎠⎝ ⎠∫ , 

where E  is the full energy. 
In order to demonstrate the performance of the boundary-

element method during one time step, we have used the 
problem of the motion of an absolutely solid sphere in an 
unbounded fluid domain [16]. To demonstrate the numerical 
algorithm as a whole, and the method of selecting the time step 
in particular, we have used the Rayleigh problem concerning 
the collapse of a spherically symmetric bubble. We have also 

made a comparison with calculations of the axisymmetric 
problem [17]. 
 
RESULTS 

Let us consider the process of oscillations of a gas bubble 
in an unbounded fluid domain. At the initial moment of time 
the bubble is a sphere of radius 1 mR  that maintains its 
spherical shape and is compressed down to the minimum radius 
under the influence of the hydrostatic pressure. The initial gas 
pressure, although small, increases with decreasing bubble 
volume, thereby resisting the moving boundary; bubble 
collapse is followed by its expansion and vice versa; the bubble 
evolution becomes oscillatory. In this case the motion of the 
bubble boundary is described by the Rayleigh equation 

2 33
1 0

2
λξξ ξ βξ+ − + = , 

where mR Rξ =  is the non-dimensional radius of the 

bubble, ξ , ξ  are the non-dimensional velocity and 
acceleration of the bubble boundary, respectively. Khoroshev 
[10] has derived an approximate dependence of minimum 
radius on the content parameter β  (for >0.3β ) 

min 3 2
3

1 3

β
ξ

β β
≈

+ −
, 

where minξ  is the minimum non-dimension radius of the 
bubble, using a numerical integration, taking 4/3λ =  for 
simplification.  

Since this model does not take account of energy losses, 
the bubble oscillations can last indefinitely. We can traverse 
only the finite number of oscillations during the numerical 
simulation, whereupon the numerics fail because of the 
development of numerical instability on the boundary. The 
number of pulsation we have received using uncoordinated 
isoparametric linear approximation for all β  is more than 
when we use traditional linear approximation. Figure 3 
provides dependencies of the bubble radius on time as obtained 
from a numerical simulation of the bubble-oscillation process 
for β =0.4 and 0.5, and Figure 4 for β  from 0.6 to 0.9. 

As we can see on Figures 3 and 4 then β  increases 
pulsation frequency and amplitude decrease. It is interesting 
that calculations fail as a rule at the end of bubble growth 
phase. Figure 5 provides bubble forms for β =04, 05 and 06 at 
two different moments: the moment of last minimal value and 
for the moment before calculation fails. The surface mesh used 
for this calculation consists of 642 nodes and 1280 elements. 
On this figures we can see that numerical instability of the 
bubble surface develops from the mesh node that surrounded 
by five elements. Other nodes are surrounded by six elements. 
We can conclude than mesh regularity tremendously influence 
for stability of numerical scheme realized in this work. 

There is a good accordance of numerically calculated 
average radius of the bubble with it's analytical estimation for 
the some first oscillations. For other oscillations we can 
observe an increase of pulsation amplitude that we account for 
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development of boundary instability. Nevertheless full energy 
variation of have not exceeded 1.5%. 
 
CONCLUSION 

This work is devoted to a numerical investigation of three-
dimensional cavitation bubble oscillations. Produced results of 
numerical simulation show a good agreement with known 
analytical estimation. Therefore we can say that the method 
described in this work allows to model oscillations for long 
periods of bubble existence. 

The boundary integral method used as an instrument of 
numerical investigation use uncoordinated isoparametric linear 
approximation of velocity potential and its normal derivative on 
triangular mesh elements. The advantages of the approximation 
in finite element method are well-known and described [7]. 
This approximation has shown better result than classic linear 
approximation and made calculating more stable. 
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Figure 3. Graphs showing the dependence of the bubble radius on 

time for different values of β : 1 - β =0.4, 2 - β =0.5. 

 
Figure 4. Graphs showing the dependence of the bubble radius on 
time for different values of β : 3 -β =0.6,  4 -β =0.7,  5 -β =0.8, 

6 - β =0.9. 
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β =0.4 

 
   τ =16.54 

 

 
   τ =17.23 

β =0.5 

 
   τ =52.08 

 

 
   τ =53.05 

β =0.6 

 
   τ =81.94 

 

 
   τ =83.20 

Figure 5. Shape of the bubble around minimal volume and at the 
last moment of lifetime for β =0.4, 0.5 and 0.6.  

 


