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ABSTRACT 
 
     Numerical and experimental results show that during the 
collapse phase of a vapor bubble near a rigid boundary, in the 
absence of strong buoyancy forces, a liquid micro jet is 
developed on the side of the bubble far from the rigid surface 
and directed towards it. Numerical and experimental results 
also show that, in the case of a bubble near a free surface, 
during the collapse phase of the bubble and in the absence of 
strong buoyancy forces, the vapor bubble is repelled by the 
free surface. In this case a liquid micro jet is developed on the 
closest side of the bubble to the free surface and is directed 
away from it. The dynamic behavior of a vapor bubble near a 
free surface leads to the idea that a vapor bubble during its 
growth and collapse phases near a deformable diaphragm may 
have a behavior similar to its behavior near a free surface. 
In this paper dynamics of a vapor bubble during its growth and 
collapse phases near a thin elastic plate is investigated.  It has 
been shown that the growth and collapse of a vapor bubble 
generated due to a high local energy input causes considerable 
deformation on the nearby thin elastic plate. 
Different thin elastic plates with different thicknesses and 
different flexural rigidities are assumed and the dynamic 
behavior of a vapor bubble near each of these plates is 
investigated. Results show that during the growth and collapse 
of a vapor bubble near a thin elastic plate with a proper 
thickness and flexural rigidity, in the absence of strong 
buoyancy forces, a liquid micro jet may develop on the closest 
side of the bubble to the thin elastic plate and directed away 
from it. 
 
 
INTRODUCTION 
 
     Experimental and numerical investigations on the dynamic 
behavior of a vapor bubble near deformable surfaces have 
been carried out by some researchers. These investigations 

show that during the collapse phase of a vapor bubble near a 
deformable surface, in the absence of strong buoyancy forces, 
the minute displacement of the deformable surface may cause 
the liquid micro jet to be directed away from it [1-7]. In an 
important study, Duncan and Zhang [8] investigated the 
dynamics of a collapsing cavity near a compliant wall 
numerically. They noted that when the wall is rigid, the 
generated liquid jet during collapse phase is directed towards 
the boundary but near an elastic membrane the liquid jet may 
be directed away from the membrane. In their research, they 
assumed that the vapour bubble, initially, is in its maximum 
size. This is because of the fact that, in the case of a vapour 
bubble initially in its minimum size, the pressure distribution 
on the nearby boundary changes very fast. Consequently, the 
iteration scheme which is employed by Duncan and Zhang [8] 
for evaluating of initial pressure distribution on the compliant 
wall does not work any more. In the present paper, theory of 
explosion bubble which is developed by Best [9], is employed 
and in this case it is possible to simulate an explosion bubble 
growing from its initial minimum volume. 
 

THEORY OF THE PROBLEM 
 
    In this paper dynamics of a vapor bubble generated by a 
high local energy input near a thin elastic plate is investigated. 
The used samples are Steel, Aluminum and Magnesium. The 
physical characteristics of the plates have been shown in the 
Table.1. The generated vapor bubble is located in the midpoint 
and below of the thin plate. In the all cases the standoff 
parameter,γ , is equal to 1. The initial pressure inside the 
vapor bubble is very high and is related to the initial size of 
the bubble. Figure 1 shows the initial position of the bubble 
and the metal plate.  



 
   It is assumed that the generated vapor bubble contains a 
mixture of non-condensable and non-chemically reacting gas 
and saturated vapor. The non-condensable gas inside the vapor 
bubble is assumed to be an ideal gas. Therefore the pressure 
inside the bubble is obtained by summation of the partial 
pressures of the saturated vapor and the ideal gas. It is obvious 
that the partial pressure of the ideal gas inside the bubble is the 
dominant pressure and is obtained by the isentropic relation 
between the pressure inside the bubble and the bubble volume. 
   According to Best [9] in the case of an explosion vapor 
bubble with an initial small radius, , the bubble generated 
by a high local energy input contains a mixture of saturated 
vapor pressure and an ideal gas with a very high partial 
pressure. The vapor bubble is assumed to be spherical in its 
initial minimum volume. The equation of purely radial motion 
of a bubble generated by a high local energy input is given as: 

0R

 

0
2
3 2 =

−
++ ∞

ρ
bPP

RRR &&&            (1) 

Where is the variable pressure inside the bubble.  is the 
pressure in the far field and R is the radius of the bubble, with 
dots denoting time derivatives 
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   For obtaining governing equation of the hydrodynamic 
behavior of the liquid domain around the vapor bubble, it is 
assumed that the liquid is incompressible, inviscid, and 
irrotational and surface tension is neglected. In this case the 
flow of the liquid around the vapor bubble is a potential flow. 
Therefore the Green’s integral formula is the governing 
equation of the flow around the vapor bubble and is given as: 
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Where S is the boundary of the liquid domain, φ  is the 

velocity potential and 
n∂
∂φ

is the normal velocity of the 

boundary. P is any point in the liquid domain, , or on the 
boundary, S, and q is any point on the boundary, S. 

Ω
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     The unsteady Bernoulli equation in its Lagrangian form is 
used for calculating velocity potential at the successive time 
steps and is given as: 
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     The dynamic behavior of the elastic plate has been 
modeled by the axial symmetric equation of the motion of a 
thin circular plate with uniform thickness (Love [11]): 
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In equations (4) and (5), w is the vertical displacement of the 
plate, ρ  is the mass per unit area, H is the thickness of the 
plate, P is the pressure on the surface of the plate and D is the 
flexural rigidity of the plate. 
Also E is the elastic module of the plate andν  is the Poissons’ 
ratio.  
 

 
Figure 1: Schematic Representation of the elastic plate and 
the coordinate system and initial position of the bubble. 
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     During the growth and collapse phases of the bubble, the 
vertical velocity on the surface of the elastic plate is equal to 
the vertical velocity of the nearby fluid. Thus on the interface 
of the flow and elastic plate it can be written that (Duncan et al 
[8]): 
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NUMERICAL IMPLEMENTATION 
 
     In the numerical model the interface of the liquid domain 
and the surface of the plate are discretized by linear segments, 
the bubble boundary is discretized by cubic spline elements, 



 

city on the bubble 
oundary and g is the gravity acceleration. 

 

interface 
f the liquid domain with surface of the Elastic plate 

z for each element are expressed as: 
 

         (7) 

f th j and j , the second-
rder Rung-Kutta method is used. 

 

    

and the problem is axisymmetric. Collocation points are 
located at the mid point of each element. Velocity potential 
and its normal derivatives are assumed to be constant along 
each element. In fig. 2, z is the vertical axis and the radial axis 
is indicated by r. Also n is the normal velo
b

Figure 2: discretize of the bubble boundary and the 
o
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Where ju and jv are the radial and vertical velocity of each 
element on the surface of the bubble, respectively. The 
superscript refers to the time steps and subscript refers to the 
nodes. To obtain accurate values o e u v
o
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otential to be time 
arched over a time increment of tΔ . 

 
Equation (9) represents the discretized form of unsteady 
Bernoulli equation and allows the ocity pvel
m
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o first-order differential equations with respect to time: 
 

    

 
The equation of the motion of the plate (4) is decomposed into 
tw

 ψ=
∂t ,                               

The predictor-corrector scheme is used to discretize these 
equations: 
 
Predictor step: 
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Corrector step: 
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     In the above equations,  rΔ  is the radial distance between 

nodes on the surface of the boundary and 0=
∂
∂

=
r
wθ  at 

0=r and ESRr = . 
  The discretizad form of equations (6) are: 
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 Equation (15) is a system of linear equations which represents 
the discretized form of equation (2). 
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A variable time step is defined as: 
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Where φΔ is some constant and represents the maximum 
increment of the velocity potential between two successive 
time steps. Also is saturated vapour pressure, cp ψ is normal 
velocity on the boundary of the liquid domain and η  is 
tangential velocity. 
 
 
NON_DIMENSIONALISING OF THE PROBLEM 
 
     The problem is non-dimensionalised by employing the 
maximum radius of the bubble, Rm, the liquid density, lρ , the 
vapor density, Vρ , the pressure in the far field, , and the 

saturated vapor pressure, . 
∞P

cp
The main non-dimensional parameters are written on the 
nomenclature. 
 

Table 1: Physical characteristics of the used samples 
 

Sample E (GPa) 3/ mkgρ  ν  

Steel 200 7860 0.29 

Aluminum 70 2700 0.36 
Magnesium 45 1800 0.35 

 
 
RESULTS AND DISCUSSION 
In all cases, stand-off parameter,γ , is equal 1 and the 
maximum radius of the bubble, the pressure in the far field 
and the saturated vapor pressure are assumed as: 

PaPandPaPmR cm 2000300000,02.0 === ∞ . 

     Figures 3-5 illustrate the variation of the relative volume of 
the bubble (The ratio of volume of the bubble with respect to 
its minimum volume) against non-dimensional time when the 
growth and collapse phases of the bubble occurs near a thin 
elastic plate. In figure 3 the elastic plate is steel, while in 
figures 4 and 5 the elastic plate is aluminum and magnesium 
respectively. These figures show that by increasing the 
thickness of the elastic plate the maximum radius of the 
bubble to which the vapor bubble expands becomes smaller. 
These figures also show that by decreasing the thickness of the 
elastic plate the life time of the bubble increases. This is in 
contrast with the dynamics of a vapor bubble near a compliant 
coating. In the latter case the life time of the vapor bubble by 
increasing the compliancy of the coating decreases [8 and 12].  
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Figure 3: Variation of the bubble volume with respect to non-
dimensional time for Steel sample in the cases of: (1) 
H*=0.005 (2) H*=0.0025 (3) H*=0.001 (4) H*=0.0004 (5) 
H*=0.00035 
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Figure 4: Variation of the bubble volume with respect to non-
dimensional time for Aluminum sample in the cases of: (1) 
H*=0.05 (2) H*=0.005 (3) H*=0.0025 (4) H*=0.0015 (5) 
H*=0.001 
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Figure 5: Variation of the bubble volume with respect to non-
dimensional time for Magnesium sample in the cases of: (1) 
H*=0.05 (2) H*=0.005 (3) H*=0.004 (4) H*=0.0025 (5) 
H*=0.0015 
 
Figures 6-8 show the movement of the bubble centroid in the 
cases of figures 3-5. These figures show that by decreasing the 
thickness of the thin metal plate the movement of the bubble 
centroid away from the thin metal plate increases. 
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Figure 6: Variation of the centroid of the bubble with respect 
to non-dimensional time for Steel sample in the cases of: (1) 
H*=0.005 (2) H*=0.0025 (3) H*=0.001 (4) H*=0.0004 (5) 
H*=0.00035 
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Figure 7: Variation of the centroid of the bubble with respect 
to non-dimensional time for Aluminum sample in the cases of: 
(1) H*=0.05 (2) H*=0.005 (3) H*=0.0025 (4) H*=0.0015 (5) 
H*=0.001 
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Figure 8: Variation of the bubble volume with respect to non-
dimensional time for Magnesium sample in the cases of: (1) 
H*=0.05 (2) H*=0.005 (3) H*=0.004 (4) H*=0.0025 (5) 
H*=0.0015 
 
 
 
Figures 9-11 illustrate the variation of the non-dimensional 
velocity of the far point of the bubble boundary from the 
elastic thin metal plate against non-dimensional time. This is 
the velocity of the liquid micro jet which is directed to the thin 
elastic plate. These figures show that by decreasing the 
thickness of the elastic metal plate the velocity of the liquid 
micro jet decreases. 
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Figure 9: Velocity variation of the liquid jet on the bubble 
boundary far from the elastic plate with respect to non-
dimensional time for Steel sample in the cases of: (1) H*=0.005 
(2) H*=0.0025 (3) H*=0.001 (4) H*=0.0004 (5) H*=0.00035 
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Figure 10: Velocity variation of the liquid jet on the bubble 
boundary far from the elastic plate with respect to non-
dimensional time for Aluminum sample in the cases of: (1) 
H*=0.05 (2) H*=0.005 (3) H*=0.0025 (4) H*=0.0015 (5) 
H*=0.001 
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Figure 11: Velocity variation of the liquid jet on the bubble 
boundary far from the elastic plate with respect to non-
dimensional time for Magnesium sample in the cases of: (1) 
H*=0.05 (2) H*=0.005 (3) H*=0.004 (4) H*=0.0025 (5) 
H*=0.0015 
 
Figures 12-14 show the non-dimensional velocity of the elastic 
thin metal plate at its intersection with the vertical axis against 
non-dimensional time during the growth and collapse phases of 
the vapor bubble. These figures show that by decreasing the 
thickness of the thin elastic plate, the movement of the centre 
point of the plate increases. 
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Figure 12: Vertical velocity of the Steel plate at r=0 versus non-
dimensional time in the cases of: (1) H*=0.005 (2) H*=0.0025 (3) 
H*=0.001 (4) H*=0.0004 (5) H*=0.00035 

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0 0.5 1 1.5 2 2.5 3 3.5

Non-dimensional Time

No
n-

di
m

en
si

on
al

 V
el

oc
ity

1 2

3
4

5

 
Figure 13: Vertical velocity of the Aluminum plate at r=0 versus 
non-dimensional time in the cases of: (1) H*=0.05 (2) H*=0.005 
(3) H*=0.0025 (4) H*=0.0015 (5) H*=0.001 
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Figure 14: Vertical velocity of the Magnesium plate at r=0 versus 
non-dimensional time in the cases of: (1) H*=0.05 (2) H*=0.005 
(3) H*=0.004 (4) H*=0.0025 (5) H*=0.0015 
 
 
Figures 15, 16 and 17 illustrate the variation of the pressure on 
the intersection of vertical axis with different elastic thin metal 
plates against non-dimensional time. These figures show that by 
decreasing the thickness of the thin elastic plates, the pressure on 
the intersection of the vertical axis with different thin metal plates 



 
at the end of the collapse phase and when the liquid micro jet 
pierces the opposite side of the bubble becomes lower.  
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Figure 15: Pressure on the Steel plate surface at r=0 versus 
Non-dimensional time in the cases of: (1) H*=0.005 (2) 
H*=0.0025 (3) H*=0.001 (4) H*=0.0004 (5) H*=0.00035 
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Figure 16: Pressure on the Aluminum plate surface at r=0 versus 
Non-dimensional time in the cases of: (1) H*=0.05 (2) H*=0.005 (3) 
H*=0.0025 (4) H*=0.0015 (5) H*=0.001 
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Figure 17: Pressure on the Magnesium plate surface at r=0 versus 
Non-dimensional time in the cases of: (1) H*=0.05 (2) H*=0.005 (3) 
H*=0.004 (4) H*=0.0025 (5) H*=0.0015  
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Figure 18: Time dependent profiles of a high energy input 
generated vapor bubble near a thin Steel plate with non-
dimensional thickness of H*=0.005. The corresponding non-
dimensional times are: (a) 0.00273 (b) 1.30557 (c) 2.38048 (d) 
2.52296 
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Figure 19: Time dependent profiles of a high energy input 
generated vapor bubble near a thin Steel plate with non-
dimensional thickness of H*=0.00035. The corresponding 
non-dimensional times are: (a) 0.00273 (b) 1.77304 (c) 
2.78231 (d) 2.98147 
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Figure 20: Time dependent profiles of a high energy input 
generated vapor bubble near a thin aluminum plate with non-
dimensional thickness of H*=0.005. The corresponding non-
dimensional times are: (a) 0.00273 (b) 1.32934 (c) 2.415561 
(d) 2.5677 
 



 
Figure 18 shows the successive profiles of the vapor bubble 
near a thin steel plate with non-dimensional thickness of 
H*=0.005. In this figure it is shown that the liquid micro jet is 
directed towards the elastic plate. 
Figure 19 shows the successive profiles of the vapor bubble 
near a thin steel plate with non-dimensional thickness of 
H*=0.00035. In this figure it is shown that the minute 
displacement of the thin steel plate affects the dynamic 
behavior of the bubble and the liquid micro jet is directed 
away from the elastic plate. 
 
Figure 20 shows the successive profiles of the vapor bubble 
near a thin aluminum plate with non-dimensional thickness of 
H*=0.005. In this figure it is shown that the liquid micro jet is 
directed towards the elastic plate. 
Figure 21 shows the successive profiles of the vapor bubble 
near a thin aluminum plate with non-dimensional thickness of 
H*=0.001. In this figure it is shown that the minute 
displacement of the thin aluminum plate affects the dynamic 
behavior of the bubble and the liquid micro jet is directed 
away from the elastic plate. 
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Figure 21: Time dependent profiles of a high energy input 
generated vapor bubble near a thin aluminum plate with non-
dimensional thickness of H*=0.001. The corresponding non-
dimensional times are: (a) 0.00273 (b) 1.82179 (c) 2.80103 (d) 
2.9975 
 
 
Figure 22 shows the successive profiles of the vapor bubble 
near a thin magnesium plate with non-dimensional thickness 
of H*=0.005. In this figure it is shown that the liquid micro jet 
is directed towards the elastic plate. 
Figure 23 shows the successive profiles of the vapor bubble 
near a thin magnesium plate with non-dimensional thickness 
of H*=0.0015. In this figure it is shown that the minute 
displacement of the thin magnesium plate affects the dynamic 
behavior of the bubble and the liquid micro jet is directed 
away from the elastic plate. 
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Figure 22: Time dependent profiles of a high energy input 
generated vapor bubble near a thin magnesium plate with non-
dimensional thickness of H*=0.005. The corresponding non-
dimensional times are: (a) 0.00273 (b) 1.35525 (c) 2.44623 (d) 
2.6063 
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Figure 23: Time dependent profiles of a high energy input 
generated vapor bubble near a thin magnesium plate with non-
dimensional thickness of H*=0.0015. The corresponding non-
dimensional times are: (a) 0.00273 (b) 1.84396 (c) 2.81071 (d) 
3.01625 
 



 

-0.01

-0.005

0

0.005

0.01

0.015

0.02

-3 -2 -1 0 1 2 3

R*es

No
n-

di
m

en
si

on
al

 D
ef

le
ct

io
n

1

2

3 4

 
Figure 24: Non-dimensional deflection of the Steel plate with 
H*=0.005 in non-dimensional times of: (1) t*=0.00273 (2) 
t*=1.30557 (3) t*= 2.38048 (4) t*=2.52296 
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Figure 25: Non-dimensional deflection of the Steel plate with 
H*=0.00035 in non-dimensional times of:: (1) 0.00273 (2) 
1.77304 (3) 2.78231 (4) 2.98147 
 
Figures 24 and 25 illustrare the non-dimensional deflection of 
the thin steel plate during the pulsation of  a vapor bubble in 
its vicinity in different non-dimensional times. These figures 
show that by decreasing the thicknss of the thin metal plate, 
the deflection of its centre point increases. 
 
 
CONCLUSION 
Results show that during the growth and collapse of a vapor 
bubble near a thin elastic plate with a proper thickness and 
flexural rigidity, in the absence of strong buoyancy forces, a 
liquid micro jet may develop on the closest side of the bubble 
to the thin elastic plate and directed away from it. The results 
also show that the minute displacement of the elastic surface 
has significant effect on the behavior of the nearby collapsing 
bubble. 
 
NOMENCLATURE 
 

∞P  Pressure in the far field 

cP  Saturated  vapour  pressure 

bP  Variable pressure inside the 
bubble 

R  Radius of the bubble 

ESR  Radius of the elastic plate 

0R  Initial small radius 

mR  Maximum radius of the bubble 

rΔ  Radial distance between nodes 
on the surface 

φ  Velocity potential 

n∂
∂

=
φψ  Normal velocity of the boundary 

ju  Radial velocity of each element 
on the surface of the bubble 

jv  Vertical velocity of each element 
on the surface of the bubble 

η  Tangential velocity 
g  Gravity acceleration 
w  Vertical displacement of the 

plate 
ρ  Mass per unit area of the plate 

lρ  Mass per unit area of the liquid 
H  Thickness of the plate 
D  Flexural rigidity of the plate 
E  Elastic module of the plate 
ν  Poissons’ ratio 

h 
Initial distance of the bubble 
centroid from the thin elastic 
plate 

2
1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

=Φ
∞ Cm PPR
ρφ

 
Non-dimensional velocity 
potential 

2
1

*
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −Δ
=Δ ∞

ρ
C

m

PP
R

tt  Non-dimensional Time 

C

C

PP
PP

P
−
−

=
∞

*  Non-dimensional Pressure on the 
surface of the plate 

CPP
EE
−

=
∞

*  Non dimensional Elastic Module 

mR
HH =*  Non-dimensional Thickness of 

the plate 

mR
rR =*  Non-dimensional radius of the 

bubble 

mR
ZZ =*  Non-dimensional vertical 

coordinate 

mR
rr =*  Non-dimensional radial 

coordinate 

m

ES
es

R
R

R =*  Non-dimensional radius of the  
plate 



 

mR
h

=γ  Stand-off parameter 
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