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The first implementation of real-time acquisition and analysis
of arterial spin labeling-based functional magnetic resonance
imaging time series is presented in this article. The implemen-
tation uses a pseudo-continuous labeling scheme followed by
a spiral k-space acquisition trajectory. Real-time reconstruc-
tion of the images, preprocessing, and regression analysis of
the functional magnetic resonance imaging data were imple-
mented on a laptop computer interfaced with the MRI scan-
ner. The method allows the user to track the current raw
data, subtraction images, and the cumulative t-statistic map
overlaid on a cumulative subtraction image. The user is also
able to track the time course of individual time courses and
interactively selects a region of interest as a nuisance covari-
ate. The pulse sequence allows the user to adjust acquisition
and labeling parameters while observing their effect on the
image within two successive pulse repetition times. This
method is demonstrated by two functional imaging experi-
ments: a simultaneous finger-tapping and visual stimulation
paradigm, and a bimanual finger-tapping task. Magn Reson
Med 65:1570–1577, 2011. VC 2011 Wiley-Liss, Inc.
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Conventional functional magnetic resonance imaging
(fMRI) collects blood oxygen level-dependent (BOLD)-
contrast MR images of a subject’s brain while perform-
ing a cognitive task, whereas subsequent image recon-
struction and analysis are performed offline (i.e., on a
separate computer after the experiment is completed).
Real-time fMRI is an exciting extension to conventional
fMRI techniques that enables the user to analyze fMRI
data as it is being collected. Thus, in real-time fMRI, the
results are immediately available as the subject is being
scanned, and the results can be used to reveal and guide
the subject’s cognitive processes. It can also facilitate
the experimenter’s parameter selections or a clinician’s
interventions (1).

Several real-time analysis methods have been imple-
mented for online processing of BOLD data, including

cumulative correlation (2), sliding-window correlations

with reference vector optimization (3), online general

linear model analysis (4), and combined methods to

collect behavioral, physiological, and MRI data while

performing near real-time statistical analysis (5). All

the above methods can facilitate real-time analysis,

e.g., the incremental algorithms are useful in monitor-

ing ongoing activation, and the sliding window

approaches can improve localization of dynamic activity

in time (4). Given current computer-processing speed,

any of these approaches can be used to display real-

time activation maps. This allows for several real-time

applications: online data quality control, real-time func-

tional activation monitoring, interactive paradigms based

on the subject’s dynamic functional activity (fMRI bio-

feedback or brain-computer interface; Ref. 6), and auton-

omous control of neural activation using real-time fMRI.

These techniques have been used to study subjects’

modulation of motor-area cortical activation and emo-

tional processing (7–11).

However, despite the efficiency of BOLD-contrast MR
images to detect and localize active site in fMRI, the
BOLD signal is difficult to quantify in a physically
meaningful way because it results from intricate rela-
tionships between cerebral oxygenation, blood flow
and volume, as well as the scanner’s unique character-
istics. Because of very limited processing time avail-
able in real-time fMRI applications, quantifying the
BOLD signal in real time poses substantial challenges.
Furthermore, the baseline of the BOLD signal drifts
over time within a session, and this could be quite
problematic in experiments where the periodicity of
the paradigm is quite long. The lack of meaningful
physical units in BOLD data, in addition to these
drifts, challenges the use of BOLD imaging for studies
of baseline activity and confound long-term activation
studies considerably (12).

Given the quantitative nature of its signal and its insen-
sitivity to signal drifts of the scanner, perfusion-based
fMRI using arterial spin labeling (ASL) techniques have
emerged as an alternative to BOLD fMRI. ASL techniques
(13–15) use magnetically labeled arterial water as an en-
dogenous tracer to quantify the perfusion rate. This type
of measurement is particularly desirable for longitudinal
studies and studies with low stimulation frequency,
where the BOLD signal drifts are confounded with the
signal of interest (16–18). Because of inherently low sig-
nal-to-noise ratio (SNR) and contrast-to-noise ratio (CNR)
in ASL techniques, the use of ASL-based fMRI is more
challenging than BOLD-based fMRI. SNR maps for BOLD
data reported in Ref. 19 have values about 50 times
higher than those of ASL. Yang et al. (20) also reported t-
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scores of �5 for ASL data versus t-scores greater than 10
for BOLD data. Therefore, the SNR of ASL experiments
can be boosted by increasing the length of the stimulation
blocks if the cognitive paradigm permits it, as explored at
length by Aguirre et al. (21). At the same time, real-time
imaging with ASL is facilitated by the fact that there is a
long period of labeling between image acquisitions.

We note that, in the realm of clinical perfusion imag-
ing with ASL, Xie et al. (22) have developed an adaptive
sampling scheme that can determine an optimal set of
inversion times for baseline perfusion quantification
with pulsed ASL images. This method examines the
images collected and determines the choice of inversion
time for the next image within the acquisition period,
i.e., in real time; however, it must be noted that this
technique is not related to time series fMRI.

In this article, we introduce the first implementation,
to our knowledge, of real-time ASL-based fMRI. The
aims of this communication are to report on the techni-
cal feasibility of acquiring perfusion-based functional
images using ASL in real time and on the necessary
software interfaces and analysis methods for image
acquisition and process. Our implementation uses a
pseudo-continuous labeling scheme (23) followed by a
spiral k-space acquisition trajectory. It allows interactive
adjustment of parameters, data smoothing, differencing,
statistical analysis, and display during acquisition of
individual ASL images. It also enables the user to track
the time course of individual voxels and to select a
region of interest (ROI) as a nuisance covariate inter-
actively. The interface is implemented on a laptop com-
puter interfaced with the MRI scanner.

We demonstrate our implementation of real-time ASL
on a simple visual-motor activation experiment and on a
bimanual finger opposition task, although the long-term
application motivating this work is fMRI-guided biofeed-
back to train nicotine-dependent subjects to control their
cigarette craving.

MATERIALS AND METHODS

This work was performed on a 3.0-T GE Signa scanner
(Waukesha, WI) interfaced with an Apple MacBook Pro
(Cupertino, CA) with a 2.4-GHz dual-core processor and
4 GB of RAM. The acquisition pulse sequence was a
pCASL sequence (23) with (a) phase corrections (26,27)
for optimization of labeling efficiency, (b) real-time
communication support, and (c) spiral trajectory image
acquisition (field of view ¼ 24 cm, slice thickness ¼
6 mm, data matrix ¼ 64 � 64 � 8 slices). Each slice gen-
erated 4712 complex data points of raw k-space data.
The pCASL pulse train had the following parameters:
pulse repetition time (TR) ¼ 4000 ms, tagging time ¼
2100 ms, postinversion delay ¼ 1500 ms, pCASL flip
angle ¼ 35�, fractional moment ¼ 0.9, pCASL TR ¼
1.5 ms, pCASL phase correction ¼ 2.2 radians.

A diagram of the data flow is shown in Fig. 1. Data
transfer between the scanner and the MacBook was done
through Ethernet using custom C functions modified
from the RDS Client software (General Electric Medical
Systems, Waukesha, WI). Data were transferred directly

from the scanner’s data acquisition board to the laptop’s
memory via TCP/IP connection, without disk storage.
Reconstruction, processing, and display were performed
off-line by the MacBook using custom Matlab Software
(South Nattick, MA). Transfer and reconstruction
were performed after each slice acquisition. To reduce
memory requirements, the reconstructed images were
analyzed as single-precision floating-point numbers
instead of Matlab’s default double precision. Data were
smoothed with a gaussian kernel, and running subtrac-
tion was performed on the images to yield perfusion-
weighted images. A reference function reflecting the
effects of interest (i.e., the perfusion response to
the stimulation paradigm) was constructed prior to the
experiment. The reference function consisted of a box-
car function convolved with a gamma-variate hemody-
namic impulse response function. This function was
used to create a design matrix for general linear model
analysis that also included a nuisance regressor, which
was updated during the data acquisition, and a baseline
regressor. As the nth image was acquired, a temporary
design matrix was updated from the first n rows of the
whole design matrix. The parameters of this temporary
general linear model were estimated by ordinary least
squares, and a t-statistic map was computed for the con-
trast of interest. T-maps were overlaid on the mean per-
fusion-weighted image and thresholded at a liberal |t| >
3.0. The aforementioned nuisance regressor consisted of
the time course at an ROI selected by the user in real
time. This ROI was chosen from a white matter region to
remove physiological fluctuations or other spatial corre-
lations in ASL data. All calculations, including image
reconstruction, were executed within a single TR (4 s).

The global mean time course, the reference function,
and the time courses of the user-defined ‘‘nuisance
region’’ and a second ROI were displayed in real time.
This allowed the user to monitor activation in any spe-
cific brain area and to inspect the nuisance regressor for
correlations with the reference function visually. The
user was thus able to choose both ROIs in real time.

For testing and demonstration purposes, two subjects
were scanned in accordance with the University of
Michigan’s Internal Review Board’s policies. A real-
time pCASL time series was collected while the first sub-
ject performed a finger-tapping task consisting of 20-s
tapping with the left hand while a checkerboard pattern
flashed in front of the subject’s eyes at 8 Hz. The activa-
tion period was followed by 30 s rest. This 50-s cycle
was repeated over a 320-s period. The second subject
was instructed to perform a finger-tapping task with the
right hand for 20 s, followed by 20-s finger tapping with
the left hand. This procedure was repeated for 320 s. In
both cases, the data were transferred, reconstructed, and
processed, as described above, while the user updated
the nuisance ROI and monitored the image acquisition
quality and statistical map in real time.

RESULTS

After every acquisition, the following displays were
updated: (1) current reconstructed image, (2) the most

Real-Time Acquisition and Analysis of ASL 1571



recent perfusion-weighted image, (3) the thresholded t-
statistic map overlaid on the mean perfusion-weighted
image, and (4) a time course of the spatial mean ASL
signal over the field of view, a user-selected ROI, and a
second ROI that serves as a nuisance regressor. The
model waveform was also displayed for reference. The
Matlab reconstruction, processing, and display program
was able to keep in real time (processing lag < 2 TR)
with the acquisition. Each slice reconstruction from the
spiral k-space data took 0.02 s on average. The computa-
tion time of the ordinary least squares over the whole
volume increased linearly with the number of time
points available, from 0.38 s at the third acquisition up
to 0.57 s at the 80th acquisition.

For each subject, a sample screenshot of the user inter-
face taken after 80 acquisitions is displayed in Figs. 2
and 3. Positive t-scores are displayed in a red color scale,
whereas negative t-scores are displayed on a blue color
scale. As expected, the visual-motor task (subject 1)
produced increases in perfusion that correlated with the
reference function in the right motor cortex and the
visual cortex. The bimanual motor task (subject 2)
resulted in perfusion increases that were correlated with
the reference function on the left motor cortex and
anticorrelated on the right motor cortex. Figure 4 shows
the evolution of the t-statistic map throughout the acqui-
sition for the first subject.

We note that, as a result of spiral acquisition without
fat saturation pulses, a circular rim appears around
the brain in the raw images shown in Figs. 2 and 3. This
is the off-resonance signal arising from fat saturation
pulses and it disappears on subtraction of the control
and tagged images, as indicated in the second and third
panels.

The effectiveness of removing unwanted variance
changes depending on the user’s choice of ROI. Thus,
we explored four ROIs (post hoc) as sources of a
nuisance regressor and compared the results in terms of
their effect on the t-statistic maps. The four ROIs
consisted of the posterior cerebral artery (PCA), the ante-
rior cerebral artery (ACA), a white matter (WM) region,
and a heavily vascularized area in the left insula (Ins).
These ROIs are indicated in Fig. 2. Figure 5 shows maps
of the decrease in residual variance maps due to inclu-
sion of each nuisance regressor in the design matrix.
This figure indicates that by selecting ROIs in the PCA,
the residual variance was reduced most dramatically in
the vascular tree. Interestingly, selecting the ACA also
reduced the residual variance on a wide region along the
frontal edge of the brain. Indeed, high variance along the
rim of the brain in fMRI studies is usually indicative of
bulk head movement (personal observation). Because the
ACA ROI was next to the brain’s edge, it is likely
that this time course contained a large amount of partial

FIG. 1. Real-time processing
stream for ASL fMRI experiment.

Data were transferred directly
from the scanner’s data acquisi-

tion board to laptop memory
without disk storage. Recon-
struction, processing, and dis-

play were performed online by
the MacBook using custom Mat-
lab software. Transfer and recon-

struction were performed after
each slice acquisition. The user

interacts with the system by
selecting the ROI for the nui-
sance regressor and a second

ROI for time series display.
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volume changes arising from the subject’s movement.
The WM ROI caused a modest and fairly uniform reduc-
tion in residual variance (note the difference in color
scales). The left insular region’s effect was also modest,
relative to PCA and ACA, but was most noticeable in
vascular regions, like the PCA and ACA.

The effect of nuisance covariates on the t-score distribu-
tion can be seen in Fig. 6. Not surprisingly, the largest
effect was obtained when vascular regions were used as
the source of the nuisance covariate. Selecting either the
ACA or the PCA as nuisance sources reduced the width of
the t-score distribution and shifted its peak toward zero.
However, the distribution in larger t-score range remained
largely unchanged, suggesting a boost in specificity
(reduced the number of false positives), while sensitivity
remained largely unchanged (the number of true positives
detected remained). The number of activated voxels (T >
3) obtained using ACA, WM, Ins, and PCA for nuisance
covariates are 1091, 1174, 1174, and 924, whereas they
were 1173 without use of the nuisance covariate.

The spatial distribution of these differences in the t-
score maps due to the nuisance regressors can be seen in
Fig. 7. We noted that the effects of the WM and insula
regressors were subtler than the arterial ROIs. The WM
ROI, however, boosted t-scores largely in the visual and
right-motor cortices and not in other regions. Inclusion
of the PCA regressor reduced the t-scores in arterial

regions and boosted the t scores in the visual cortex, but
appeared to have little effect in the motor cortex.

DISCUSSION

In this communication, we have demonstrated that real-
time ASL fMRI reconstruction, display, and analysis can
be performed on a personal computer. Our target appli-
cation is to provide neuroimaging feedback to experi-
mental subjects undergoing stimulation paradigms with
very long periodicity (>45 s). Therefore, real-time ASL
scanning can be quite useful in the fMRI setting for
many applications, in addition to our own application.
Primarily, it allows the operator to evaluate data quality
immediately. This point is important because ASL data
have an inherently low signal-to-noise ratio, exacerbated
by low inversion efficiency, which can be a problem in
certain ASL implementations such as amplitude modu-
lated control (24). In addition, field inhomogeneities
can compromise the inversion efficiency of some ASL
techniques such as pCASL (25–27). Hence, we find it
extremely useful to be able to evaluate data quality and
make decisions about tuning the labeling parameters
immediately. The technique also affords the user the
opportunity to quickly evaluate the subject’s perform-
ance during the scanning session itself. Furthermore,
it allows the investigator to determine the subject’s

FIG. 2. User interface of real-time system: visual-motor task. Screenshot of the user interface during real-time acquisition. Clockwise,
the panels display the most current unsubtracted image, the most current subtracted image, a plot of relevant time courses, and the

most current update of the statistical map overlaid on the mean of the perfusion weighted images. The time courses plotted on the
lower right are the reference model function in black; the nuisance time course in green; the spatial mean of the ASL image time course
in blue; and the time course of a pixel of interest after nuisance removal in red. Four ROIs used as nuisance covariates are indicated in

the top-right panel. These ROIs consisted of a 3 � 3 voxel region sampled at a single slice. The regions were placed on the posterior
cerebral artery (PCA), the anterior cerebral artery (ACA), a white mater region (WM), and a heavily vascularized left insula region (Ins).

Real-Time Acquisition and Analysis of ASL 1573



FIG. 3. User interface of real-time system: alternating finger-tapping task. As in Fig. 2, the raw image, subtracted images, statistical
maps, and time courses are displayed in real time. In this case, the activation maps indicated correlation with the reference function in

the left motor cortex and anticorrelation on the right motor cortex, corresponding to the alternating finger-tapping task.

FIG. 4. Evolution of the statistical

map during visual-motor stimula-
tion task. As more data were

available, the statistical maps
became more detailed with a
lower number of false positives

and more significant scores in the
active regions. The placement of
the inversion plane and the imag-

ing slices relative to each other is
shown on a sagittal view.
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FIG. 5. Effects of nuisance regressor on residual variance map. The maps display the change in the residual variance caused by includ-

ing the nuisance regressor in the design matrix. The greatest variance reduction was observed when choosing nuisance ROIs in the
vasculature.

FIG. 6. Effects of nuisance regressor on the statistical map’s distribution. The distributions of the changes in t-scores over the image
produced by the inclusion of nuisance regressors (see Fig. 5) are displayed as histograms. The broken line corresponds to the t-distri-
bution obtained without the nuisance regressor, whereas the solid line corresponds to the distribution after including the nuisance

regressor. Nuisance regressors obtained from the anterior and posterior cerebral arteries produced a shift of the peak toward zero and
a reduction of the distribution’s width. We also note that the t-score distribution in the larger regions was largely unchanged.
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compliance with the task and/or to make decisions about
subsequent stimuli or interactions with the subject.

Real-time imaging with ASL is facilitated by the fact
that there is a long period of labeling between image
acquisitions. This labeling period affords the user with
ample time for reconstruction, image corrections, and
analysis ‘‘on the fly.’’ We are presently developing more
sophisticated methods to analyze the data, including
pattern recognition methods based on support vector
machine classification (28). In our current implementa-
tion, the 4-s TR offered ample time to process the data
using linear regression, even as the size of the data and
design matrices increased. For longer time series or
reduced TR times, such as those using Turbo-CASL tech-
niques (29,30), sliding window or incremental regression
techniques (4,31) may be necessary.

As with other ASL fMRI acquisitions, the number of
slices that can be acquired is restricted by system acqui-
sition speed. The kinetics of the inversion label are such
that the entire volume should be collected within an
approximately 500 ms window to ensure that the label
has sufficient time to arrive at the tissue but not enough
to have washed out completely. Although our acquisi-
tion scheme used a sequential slice acquisition, 3D imag-
ing schemes for data acquisition may also prove to
be beneficial, as demonstrated in Ref. 33. Parallel imag-
ing will also increase acquisition speed, although at a
penalty of computation time (19), and therefore, it may
require a faster computing framework. Parallel comput-
ing technology and graphics processing units can be
used to achieve the necessary computational speed for
reconstruction and processing (32).

The use of the ROI’s time course as a nuisance covari-
ate improved the analyses. An in-depth study of noise

removal by nuisance ROI covariates is outside the scope
of this article; however, we note that Wang et al. (34)
demonstrated that using the global mean signal as a
covariate modestly improved sensitivity by removing
spatially coherent noise from the time series, provided
that the global signal was not correlated with the refer-
ence function. Behzadi et al. (35) also noted that using
time courses from pixels with high variance to construct
nuisance covariates had a significant effect for noise re-
moval and that these high-variance ROIs corresponded
largely with the arterial vasculature. Arterial fluctuations
are quite visible to the naked eye in ASL time series
data, especially when displayed as a movie. As ASL data
are collected and displayed in real time, the signal inten-
sity in arteries fluctuates with the cardiac cycle, and the
subtraction process enhances this fluctuation making the
arteries quite evident to the user. These fluctuations are
also pervasive on the rest of the image, although to a less
dramatic extent, and therefore, it is not surprising that
including their time course as a nuisance regressor was
beneficial for the analysis. Thus, real-time acquisition
and processing greatly facilitated the choice of a nui-
sance regressor. The user can thus pick one such region
as a nuisance covariate and immediately observe its
effect on the time course of the ROI as well as on the t-
map obtained from the general linear model estimation.
However, this approach must be used with care and
with some prior knowledge of the expected activation
pattern and brain vasculature. In general, standard angio-
graphic techniques are not necessary to identify major
arteries, as the oscillations in the ASL signal make them
quite apparent to the user. It is important, however, that
the user does not select a nuisance region whose activity
is task related, as that can result in a loss of sensitivity

FIG. 7. Effects of Nuisance regressor on statistical map. The change in the t-maps produced by the inclusion of nuisance regressors
can be seen on this figure. The effect of the white matter and insula regressors was subtler (note the color scales) than the arterial

ROIs. The white matter ROI, however, boosted t-scores largely in the visual and right-motor cortices. Inclusion of the PCA regressor
reduced t-scores in arterial regions and boosted t-scores in the visual cortex, but appeared to have little effect in the motor cortex.
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and detection power. Hence, it is useful to display the
reference time course along with the nuisance regressor
to identify potential correlations. We also note that
including additional nuisance regressors always results
in loss of degrees of freedom and, while reducing the
residual variance and boosting the t-statistics, they can
potentially reduce the statistical significance of the
result.

CONCLUSION

In conclusion, we have demonstrated the first implemen-
tation of real-time acquisition and analysis of ASL-based
fMRI time series. All calculations, including image
reconstruction, were executed within a single TR (4 s).
Our pulse sequence allows the user to adjust acquisition
and labeling parameters while observing their effect on
the image within two successive TRs. We were able to
achieve the reconstruction and analysis on a laptop com-
puter interfaced with the MRI scanner. By tracking indi-
vidual time courses and by interactively selecting an ROI
as a nuisance covariate, we were able to improve signal
detection in real time.
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