
MULTI-SCALE HOMOGENIZATION OF

MOVING INTERFACE PROBLEMS WITH

FLUX AND FIELD JUMPS

by

Sangmin Lee

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Mechanical Engineering)

in The University of Michigan
2011

Doctoral Committee:

Assistant Professor Veera Sundararaghavan, Co-Chair
Professor Anthony M. Waas, Co-Chair
Associate Professor Krishna Garikipati
Assistant Professor Anton Van der Ven



c© Sangmin Lee 2011

All Rights Reserved



To my grandmother

ii



ACKNOWLEDGEMENTS

This dissertation is a milestone in my life, and I would like to express my sin-

cere appreciation to the people who made it possible, especially my advisor Veera

Sundararaghavan and my parents. During a Ph.D program, course work, the qual-

ifying exam, and research might not be happy activities for graduate students, but

at the end there is pleasure and satisfaction at having completed the program. Now

I recognize these accomplishments were possible because of the many people who

continuously supported me.

Being a Ph.D student requires not only knowledge about the research field but

also good relationships with colleagues and advisors. Professor Sundararaghavan was

a great research advisor. He always treated me with respect, like a coworker, and let

me make the important research decisions. In our regular meetings, he helped me

see the large perspective as well as the important details. His continuous support

encouraged and guided my research. I also have had a special privilege of being

advised by Professor Anthony M. Waas. It has been an honor to receive academic

guidance, instruction, encouragement, and insight from him throughout my doctoral

study.

The first course that I took in the University of Michigan was with Professor

Krishna Garikipati. Without any notes, he taught Continuum Mechanics and Finite

Element Method seamlessly. I have tremendous gratitude for his serving on my thesis

committee and I appreciate learning from an excellent Professor.

iii



Deep appreciation goes to rest of my thesis committee, Professor Anton Van der

Ven for his time, dedication and valuable advice.

I gratefully acknowledge the support of my research sponsor, NASA Constella-

tion University Institutes Project under grant NCC3-989 with Claudia Meyer as the

project manager.

Now, being a father, I understand how much love has been given to me by my

parents. Boksun Kim, my mother, and Changhyun Lee, my father, love and support

me and my brothers endlessly. My father was a farmer also started without his own

land, but now our family has one Ph.D, two restaurant owners, and one university

student. I grew up helping my parents with their fall harvest, and experienced how

difficult farming is. I dedicate this thesis to my parents in appreciation for all their

love and sacrifice. They are the heros in my life.

The most precious present from God in my Ann Arbor life is Grace Hyorim Lee,

my daughter. Your smile and even your cries always please me.

Finally, words do not come easy to describe the dedication of my wife, Hyejin

Kim. Her sacrifice staying with me in a totally different culture and foreign country

will never be forgotten. Your being with me generates a great power inside me. I

love you.

iv



TABLE OF CONTENTS

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

CHAPTER

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Literature review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

II. Multi-scale homogenization with flux jumps - Application to solidification 8

2.1 Multi-scale formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Evaluation of homogenized transport properties . . . . . . . . . . . . . . . . 15
2.3 Numerical examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.1 Micro-scale simulation approach . . . . . . . . . . . . . . . . . . . . 20
2.3.2 Case 1. Single-scale simulation results . . . . . . . . . . . . . . . . 22
2.3.3 Case 2. Multi-scale simulation . . . . . . . . . . . . . . . . . . . . . 22

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

III. Oxidative degradation of ceramic matrix composites . . . . . . . . . . . . . 30

3.1 Computational Homogenization Approach: Micro-scale Boundary Conditions 32
3.2 Micro–Macro linking: Transferring Fluxes and Diffusivities . . . . . . . . . . 36
3.3 Micro–scale model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.1 Description of flow in the porous matrix at micro–scale . . . . . . . 38
3.4 Macro-scale model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.5 Tracking of the interface using level set method and adaptive meshing . . . . 46
3.6 Computational approach and Numerical Results . . . . . . . . . . . . . . . . 47

3.6.1 Convergence study . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.6.2 Numerical results of the Taylor and Homogenization multi-scale

model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

IV. Multi-scale model validation with direct numerical simulations(DNS) . . . 60

v



4.1 Direct numerical simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
4.2 Computational approach and numerical results . . . . . . . . . . . . . . . . . 62
4.3 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

V. A 3D multiscale model for property degradation of CMCs: Temperature
and stress effects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.1 Matrix and vector transformation . . . . . . . . . . . . . . . . . . . . . . . . 72
5.2 Computational Homogenization Approach: Micro-scale Boundary Conditions 73
5.3 Micro–scale model for elasticity . . . . . . . . . . . . . . . . . . . . . . . . . 78
5.4 Deformation under mechanical loading . . . . . . . . . . . . . . . . . . . . . 81
5.5 Micro–scale Taylor model for O2 and CO2 diffusion in porous matrix . . . . 82

5.5.1 Diffusion properties for pore matrix . . . . . . . . . . . . . . . . . . 84
5.6 Macro-scale model for O2 and CO2 diffusion in C/SiC . . . . . . . . . . . . . 88
5.7 Computational approach and numerical Examples . . . . . . . . . . . . . . . 91
5.8 Numerical simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.8.1 Comparison of oxidation behavior in the presence of applied stresses102
5.9 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

VI. Suggestions for future research . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.1 Modeling UHTCs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.2 Anisotropic diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
6.3 Modeling micro- damage with molecular dynamics . . . . . . . . . . . . . . . 110
6.4 SiC oxidation - effect of moisture . . . . . . . . . . . . . . . . . . . . . . . . 113

APPENDICES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

BIBLIOGRAPHY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

vi



LIST OF FIGURES

Figure

2.1 Multi-scaling procedure: Macro-scale is associated with a homogenized continuum.
The macro-scale temperature (and gradient in temperature) is passed to the micro-
scale as boundary conditions. Macro-scale quantities such as the thermal flux and
conductivity (at the material point) are computed from the mi crostructural sub-
problem through consistent averaging schemes. . . . . . . . . . . . . . . . . . . . . 10

2.2 Solidifying interface is tracked using an adaptive meshing strategy. This allows flux
discontinuities to be accurately modeled at the micro-scale. . . . . . . . . . . . . . . 13

2.3 Schematic of the enthalpy-temperature relationship for a pure substance; (a) H is a
discontinuous function of the temperature (b) Numerical treatment of discontinuity.
[64] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4 Case 1 study: Finite element model for single-scale simulation uses adaptive grids
with refinement in the region of the moving interface . . . . . . . . . . . . . . . . . 23

2.5 (a) Position of the phase change interface vs. time in single-scale simulation (b)
Comparison of numerical and analytic solution of temperature history at x = 1, 2,
3 and 4 cms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.6 Finite element mesh used in the micro level . . . . . . . . . . . . . . . . . . . . . . 24

2.7 FE models at the macro-level that are designed using different mesh sizes in order
to test convergence of the multi-scale simulation result. . . . . . . . . . . . . . . . 25

2.8 Mean square enthalpy errors with respect to time step size (in seconds) for the
two cases. The errors are computed during the simulation from t = 4995sec to
t = 4995sec + 4t (a) Case I - total number of element : 80 (a) Case II - total
number of element : 1280. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.9 The enthalpy errors (in %) on each of the three integration points for all macro-
scale elements at a simulation time of t = 2500 sec. (a) Case-I: elements along the
x-axis in the macroscopic FE model are ordered from left to right. (b) Case-II: the
enthalpy error for all elements are shown, there are four rows of elements along
y-axis (see Fig. 2.7(b)), leading to four peaks for elements located at the interface. 26

2.10 Comparison of predicted and analytical solution for interface positions computed
using FE mesh from (a) case I (b) case II. During homogenization, the true location
of the interface is not explicitly tracked in the macro-scale. The elements where the
interface is located are depicted in the figure. . . . . . . . . . . . . . . . . . . . . . . 27

vii



2.11 Comparison of predicted and analytical solution of temperature history at four dif-
ferent locations in the macro-scale mesh for (a) case I (b) case II . . . . . . . . . . 27

3.1 Macro-scale is associated with a homogenized continuum. The macro-scale fields
and field gradients are passed to the micro-scale as boundary conditions. Macro-
scale fluxes and properties (at all integration points) are computed from the under-
lying microstructural sub–problems using averaging schemes. . . . . . . . . . . . . 32

3.2 The micrographs represent experimental results of C/SiC composite oxidation in a
controlled environment reported in [42] and [43]. Figure (d) shows the simulation
cell: all the boundaries in the model are insulated except one side that is exposed to
the external oxidizing environment. Size of the simulation cell at the macro–scale
is indicated using dotted lines in (b). The simulation cell contains about 600 carbon
fibers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3 (a) 2D Macro-scale finite element grid (b) Micro–scale finite element grid . . . . . 51

3.4 (a) A typical sequence of mesh refinement is shown along with the associated data
structure. (b) Oxidizing interface is accurately tracked using this adaptive meshing
strategy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.5 (a) Micro–scale convergence study: Carbon fiber volume at the micro–scale is tracked
as a function of time using different levels of adaptive meshing. The minimum
element edge length in the mesh is reported here. The volume is calculated with as-
suming the length in z-direction is 1mm.(b) Macro–scale convergence study: Carbon
fiber volume fraction vs. time is plotted for different mesh sizes. A mesh size of
a× b indicates a elements along x–axis and b elements along the y–axis . . . . . . . 53

3.6 Comparison of Taylor and Homogenization approaches (a) Recessed carbon fiber
volume fraction vs. time at the macro-scale. (b) Oxygen pressure distributions at
various times in the macro–scale. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.7 Carbon fiber configurations in micro at 25.1 seconds at 950◦C; tan, white and blue
colored area indicate matrix, void and carbon fiber respectively. . . . . . . . . . . . 55

3.8 Comparison of carbon fiber configuration and micro–scale oxygen densities for Tay-
lor and homogenization approaches at a simulation time of 25.1 seconds. . . . . . 58

3.9 Spatial distributions of carbon fiber volume fraction at each integration points in
macro at 0, 11.1 and 25.1 sec for (a) Taylor and (b) Homogenization model . . . . 59

4.1 (a) 2D Macro-scale finite element grid (b) 2D Macro-scale finite element grid for
validation corresponding to DNS model scale(c) Micro–scale finite element grid (d)
Direct numerical simulation finite element grid (e) Larger view of the DNS model
over a region indicated by the red box . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2 DNS convergence study: DNS models with different levels of adaptive meshing were
generated and the convergence of C-fiber volume fraction were tested. . . . . . . . . 68

4.3 Multi-scale convergence study: Simulations with difference mesh sizes are performed
in order to identify the converged macro-scale mesh size. A mesh size of a × b
indicates a elements along x–axis and b elements along the y–axis. . . . . . . . . . 68

viii



4.4 Comparison between DNS and multi-scale simulation results: (a) Oxidized carbon
fiber fraction vs. time (b) Oxygen pressure contours at simulation times of 0.1, 2.1,
6.1, 10.1 and 14.1 sec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.5 Four selected micro–scale models on the integration points in the macro–grid are
compared with the DNS model: (a) and (b) show the micro–scale configuration
and oxygen partial pressure, respectively, from DNS approach. Figs (c) and (d)
correspond to those from the multi-scale model. Colors blue, white, and tan denote
carbon fiber, void, and matrix respectively. . . . . . . . . . . . . . . . . . . . . . . . 69

5.1 (a) Ceramic matrix and carbon fiber tow are indicated with values 1 and 0 at the
finite element nodes and integration points where white box is 1 and black box is 0,
(b) Representative unit cell is called to identify the material at any given point in
the macroscale mesh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.2 Tow undulation and cross-section dimensions . . . . . . . . . . . . . . . . . . . . . 71

5.3 The carbon fiber weave can be described with representative unit cell in which biaxial
carbon fiber tows are modeled and the angle ψ denotes directions of carbon fiber tow
with respect to x−y−z coordinate system. From the carbon fiber tow, the undulation
angle, θ, shows fiber directions with respect to axes x′ − y′ − z′. . . . . . . . . . . . 74

5.4 The microstructure homogenization technique: Each integration point in the macro-
continuum is associated with an underlying microstructure. The microstructure
reference configuration (Bref ) and the mapping to the present microstructure con-
figuration (B) are shown in contrast with the homogenized macro-continuum. In
total Lagrangian kinematics, X = xo and Y = yo are taken from the configurations
at time t = to. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.5 Kinematics coupled with damage evolution in the matrix. . . . . . . . . . . . . . . . 80

5.6 Predicted (a) porosity vs. temperature curve at zero applied stress (b) porosity
curves depended on stress at temperature = 873.15, 1073.15, 1173.15, and 1223.15 K 86

5.7 Predicted (a) Aerial porosity, (b) Permeability, (c) Surface area fraction vs. poros-
ity, and air viscosity vs. temperature . . . . . . . . . . . . . . . . . . . . . . . . . . 89

5.8 Numerical simulation model: Geometry, initial and boundary conditions . . . . . . 92

5.9 Macro model grid convergence; Simulation shows the carbon fiber volume change at
2.5 hours and at 800◦C as a function of number of elements used in the macro–scale
mesh. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.10 Percent weight fraction remaining: Simulation results are directly compared with
thermogravimetric analysis at different temperatures. . . . . . . . . . . . . . . . . . 96

5.11 Young’s modulus in z direction is predicted at different temperatures and times using
Finite element homogenization (solid line) and Taylor(broken line) approaches. . . 97

5.12 Oxygen pressure distributions at 600◦C-1400◦C . . . . . . . . . . . . . . . . . . . . 98

5.13 Spatial distribution of carbon fiber volume fraction at 600◦C - 900◦C . . . . . . . . 100

5.14 Spatial distribution of carbon fiber volume fraction at 950◦C - 1400◦C . . . . . . . . 101

ix



5.15 (a) Strain vs. time; solid line shows TGA experiment results (solid lines with circle
and star denote simulation results for 1 atm air and inert gas environment cases
respectively). (b) Total volume losses in the composite (solid lines with circle and
star denote no stress applied and stress applied respectively) . . . . . . . . . . . . . 103

6.1 The transport parameters such as diffusivity and traction–separation laws for the
micro-scale model can be calculated from molecular simulations. We performed a
preliminary study to this end in Ref. [37] . . . . . . . . . . . . . . . . . . . . . . . 111

6.2 Normal stress displacement response of the interface model: During tensile separa-
tion, the normal stress displacement response shows a dominant peak with associated
peak stress. Peak stress is around 14 GPa. . . . . . . . . . . . . . . . . . . . . . . . 112

6.3 The plastic strain locations during initiation of plasticity. The plastic strains are
concentrated on grain boundary triple points or sharp corners(SiC is polycrystalline.)112

x



LIST OF TABLES

Table

2.1 Solution scheme for multiscale homogenization of solidification problems . . . . . . 19

2.2 List of material constants (for both solid and liquid phase) and boundary and initial
conditions used for the 1D solidification problem . . . . . . . . . . . . . . . . . . . 21

3.1 Lennard Jones potential parameters for the diffusivity between O2 and CO2 (k:
Boltzmann constant) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 List of material constant for the carbon fiber oxidation example. . . . . . . . . . . 47

3.3 Solution scheme for multiscale modeling of carbon fiber oxidation . . . . . . . . . . 48

3.4 Square root and linear rate constants obtained by curve fitting the simulation results 53

4.1 Solution scheme for direct numerical simulation of carbon fiber oxidation . . . . . . 63

5.1 Solution scheme for multi–scale modeling of C/SiC . . . . . . . . . . . . . . . . . . 106

5.2 Material properties employed in the multiscale model of 3D CMC oxidation . . . . 106

5.3 Porosity and surface area fraction for CMC oxidation simulations . . . . . . . . . . 107

xi



LIST OF APPENDICES

Appendix

A. Volume average of heat flux at the micro-scale . . . . . . . . . . . . . . . . . . . . . . 115

B. Homogenized Flux Derivation Based on Hill’s Macro-homogeneity Condition . . . . . 117

xii



ABSTRACT

MULTI-SCALE HOMOGENIZATION OF MOVING INTERFACE PROBLEMS WITH FLUX
AND FIELD JUMPS

by
Sangmin Lee

The current choice of materials for extreme high temperature, oxidizing conditions

in advanced flight vehicles is ceramic matrix composites (CMCs). Such composites

are used in rocket nozzles, leading edges of the space shuttles, and thermal protection

systems. CMCs used in these applications experience large thermal stresses and are

subject to high temperature oxidation. These two effects progressively degrade the

carbon fibers within the matrix and eventually lead to component failure. The overar-

ching aim of this thesis is to develop a validated numerical model of carbon reinforced

ceramic matrix composite oxidation. Such a model will lead to accurate prediction

of CMC performance during operating conditions, development of improved safety

factors for CMCs and design of CMCs with improved high temperature properties.

CMC oxidation involves interplay of mechanisms at different length scales. At the

macroscopic scale, the composite is subject to external thermo-chemo–mechanical

boundary conditions in the form of ambient oxygen concentrations, heat flux and

applied stresses. The intact matrix is porous, leading to entry of oxygen into the

matrix due to concentration and pressure gradients. The tows in the CMC contain

thousands of micro-scale carbon fibers that oxidize under these conditions. Fiber

oxidation leads to deterioration in the mechanical stiffness, which in turn leads to

xiii



increase in matrix damage in the presence of applied stresses. Increase in matrix

damage leads to further ingress of oxygen and thus, increased oxidation. For model-

ing this strong stress–oxidation coupling, we need to model the interactions between

two different length scales.

At the micro–scale, we model the oxidation of individual carbon fibers using a

level set technique. At the macro scale, oxidation of the interwoven tow structure

is captured using homogenized mass transport and stress equilibrium equations. A

computational homogenization approach has been developed to link these two simu-

lations. Computational homogenization provides an attractive avenue for computing

the macroscopic response in problems with discontinuities and non-linearities. In

this thesis, we present series of developments that lead to a coupled micro–macro

model of CMC oxidation. Novel developments in this thesis include a new homog-

enization technique for problems involving moving interfaces and flux jumps that

has been validated with numerical models and direct numerical simulations (DNS),

calibrated models for oxygen and carbon dioxide transport through the porous ma-

trix and heterogeneous surface chemical reactions, a constitutive damage model for

relating damage measures (porosity, exposed surface area fraction, tortuosity etc.)

to temperature and stress state in the matrix and a coupled micro–macro simulation

that captures experimentally observed stressed–oxidation behavior of a CMC.

xiv



CHAPTER I

Introduction

1.1 Overview

Study of high temperature composites involves understanding a number of com-

plex physical mechanisms: (i) Heat, mass transport and chemical reactions, (ii)

Dynamics of moving or ablating interfaces, (iii) Coupling of oxidation and stress

effects and (iv) Time varying thermo-chemo-mechanical properties. Most critically,

non-linear coupling among these significantly increases the difficulty of analyzing the

performance of high temperature composites. Computer modeling can help provide

physical insight into various physical mechanisms at play in high temperature com-

posites and allows design of optimized materials. In these models, the underlying

length–scales may vary from the level of nano– to micro– upto centi–meters, spanning

the length scale of a single carbon fiber to the level of a interwoven tow–based com-

posite structure. Modeling of systems of this size and complexity at atomistic scale

is not yet feasible. Modeling continuum systems with micro-scale resolution grids is

computationally expensive, and in many cases, not feasible. In this thesis, we look

into numerically inexpensive techniques for modeling continuum–scale systems while

still keeping track of the physics at the micro–scale.

In the multi-scale approach, macro-scale analysis represents overall material be-
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havior at the level of interest to engineers, and micro- or other smaller scale studies

focus on details such as damage evolution, fiber oxidation, and interfacial chemical

reactions. Macroscopic measurements become possible when the underlying physics

at finer scales can be effectively communicated to macro–scale simulations through

averaging schemes. Micro–scale response, on the other hand, relies on the knowledge

of macroscopic boundary conditions. This kind of coupled macro–micro analysis is

highly desirable as they not only resolve different length–scales, but are also capable

of generating fast and accurate numerical results. Another interesting multiscale ex-

ample is solidification where the nucleation, growth and interaction of crystals in the

melt need to be modeled to compute the properties of the final product. Investigat-

ing the micro-scale crystal growth physics is computationally challenging; if one uses

purely macro-scale models, the simulations lack accuracy due to large simplifications.

Multi-scale modeling by coupling macroscopic and microscopic models allows us to

take advantage of both the efficiency of the macroscopic models and the accuracy of

the microscopic models.

1.2 Literature review

The multi-scale homogenization method is developed to extract effective param-

eters for heterogeneous media based on volume averaging [1, 66, 79]. The homoge-

nization method initially was studied for partial differential equations (PDEs) with

non-smooth coefficients [3, 4, 5, 32, 17, 62]. Independent initial efforts also were made

in the 1970s’ to develop homogenization theory; these studies are well summarized

in [7].

In homogenization theory, effective material properties are predicted from the

micro–scale model through volume averaging schemes. The term ”homogeneous”
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or ”macroscopic” denotes the up-scaling process from micro–scale to macro–scale,

within the constraint of satisfying basic conservation laws (eg. mass and energy

balance). Use of representative elementary volume (REV) in [26] has made analysis

of large structures on a microstructural level possible. Extensive studies of the REV

have been presented in [24] and the accuracy of these approaches have been explored

in [29]. At the micro-scale, bounds on homogenized quantities have also been derived

analytically ([25, 24, 27, 12]).

Multi-scale analysis of general diffusion problems have been previously addressed

using micro-scale effective properties obtained through either bounding relations [24,

60] or analytical closed-form expressions (reviewed in [48]) in a macro-scale model.

These approaches were restricted to simple geometries with a simple material re-

sponse, not yielding accurate results when discontinuous interfaces are present. More

recently, numerical schemes using asymptotic homogenization approaches, based on

an expansion of the unknown temperature or displacement with respect to a micro-

scale length parameter, have been developed to address micro-macro heat conduction

problems [2, 11, 21, 30, 50, 65]. However, the problems considered are restricted to

constant conductivity and focused on steady-state heat conduction problems. Prob-

lems such as solidification and oxidation involve transient effects, and in addition,

field discontinuities (flux jumps) that have not been previously addressed in a multi-

scale methodology. Previous works in literature for addressing multi-scale solidifica-

tion problems have involved analytical studies [77] or simple numerical computation

[15] at the micro-scale followed by transfer of data to the macro-scale model. Other

approaches include multi-scale algorithms driven by microscopic numerical solution

data, e.g. database look-up or regression fit [35, 75] and sub-grid modeling [56] ap-

proaches. A recent article in this journal summarizes various techniques proposed

3



in the solid and fluid mechanics community for addressing multi-scale problems in

general [20].

In [77], the macroscopic transport equations are derived using volume averaging

technique and closed by supplementary relations, which are obtained from the micro-

scale. In [77], there is no numerical computation performed at the micro-scale.

In [35, 75], micro-scale computations are used to obtain data for regression fit of

a predictive equation, which is further used for macro-scale computations. Since

micro- and macro- scale equations are decoupled in database approaches, they do

not model loading history dependence and non-linearity in micro-scale data. In

[15, 56], a sub-grid based model was suggested wherein a micro-scale model passes

volume fraction information to a macro-scale model. However, in these studies, no

attempt is made to prove micro-macro thermodynamic balance laws when using the

proposed scale transition. The emphasis in this paper, is to provide a generalized

macro-micro homogenized model of diffusion problems with flux discontinuities where

scale transitions are derived from balance laws.

Computational homogenization provides an attractive avenue for computing the

macroscopic response in problems with discontinuities and non-linearities in the mi-

crostructural behavior. Application of such approaches for mechanical deformation

has been well studied previously [67, 45, 34, 70] and recently extended to thermo-

mechanical problems [52]. In this approach, a representative volume element (RVE)

is defined at the micro-scale and boundary conditions are defined on the RVE in

terms of macroscopic quantities. The data from micro-scale simulations are used to

extract quantities for the macroscopic simulation via consistent averaging schemes.

Homogenization approaches remain valid as long as the length scale over which the

macroscopic field variables vary remains much larger than the microscopic length-
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scale. Recently, such a scheme was developed for thermal conduction problems [51]

using a well-behaved micro-scale model without flux discontinuities or moving inter-

faces.

Problems involving transient effects and interface phenomena have not been pre-

viously addressed in a multi-scale methodology. Computational homogenization pro-

vides an attractive avenue for computing the macroscopic response in problems with

discontinuities and non-linearities. Computational homogenization is a multi-scale

analysis approach in which computations are concurrently performed at two differ-

ent length-scales. The macro-scale is associated with the component being modeled

(10−3 to 10+1 m) and the meso-scale is characterized by the underlying composite

microstructure (10−6 to 10−3 m). The principle of scale separation states that the

characteristic length scale over which the macroscopic field variables vary, should

be much larger than the size of the microscopic volume considered. In other words,

macroscopic quantities are nearly constant at the level of a RVE. A representative

volume element (RVE) is defined at the micro-scale and boundary conditions are de-

fined on the RVE in terms of macroscopic quantities. Applications of such approaches

for thermo-mechanical deformation have been well studied previously [67, 45, 70].

Recently, Belytschko and co–workers[9] have modeled material discontinuities

(cracks) across length–scales in solids using this technique. Complementing this

development, we focus on problems involving field and flux discontinuities. Flux

discontinuities arise in several problems, the most well–studied of which is fluid so-

lidification. In solidification problems, a flux jump (manifested as latent heat) occurs

at the evolving solidification front while the overall temperature field itself is continu-

ous in the domain. Recently, the homogenization scheme was extended for addressing

such problems in our recent work [36]. Oxidation problem addressed in this work not
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only involves a flux discontinuity but also additionally involves a field discontinuity

in the form of a jump in oxygen density field across the oxidizing interface. In this

thesis, we develop a fully coupled multi–scale homogenization approach for problems

involving both field and flux discontinuities.

We apply this technique for modeling oxidative degradation of a C/SiC com-

posite. Oxygen transport phenomena in C/SiC composites is primarily through an

interconnected void network in the matrix formed due to thermal expansion mis-

match between carbon fibers and the matrix during processing. At the micro-scale,

fine carbon fibers in within tows interact with oxygen and degrade at moderate

to high temperatures. Initial models for studying oxidation of C/SiC composites

at micro-scales have assumed a steady state diffusion through the matrix [16, 22].

While these techniques model the micro-scale, techniques for homogenizing the re-

sults for use in global analysis was not developed. In [69], a continuum level theory

for modeling composite oxidation was developed. The approach models the compos-

ite as a homogeneous mixture of matrix, carbon fiber and voids. While continuum

models are practical approaches for predicting the behavior of C/SiC composites,

they do not model the inherent heterogeneities involved in fiber oxidation. In this

thesis, a non-linear coupled macro-micro finite element model is presented for ad-

dressing carbon fiber oxidation problems. The micro-scale model incorporates the

physics associated with oxidation including moving interfaces and flux discontinu-

ities, while the macro-scale model needs to only model diffusion using continuous

(homogenized) fields. Two multiscaling procedures were outlined in this work: one

based on assumed solution in the micro–scale (Taylor model) and another based finite

element solution of the micro–scale problem (Homogenization approach). A nested

finite element solution scheme is implemented into a FE framework and the macro-
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scopic diffusivity is derived in a consistent manner for these two approaches. The

results from these two multi–scaling approaches were compared to direct numerical

simulations for model validation. In both models, the influence of microstructural

evolution (e.g. carbon fiber oxidation) on the competition between macroscopic oxy-

gen and carbon dioxide transport in the macro–scale can be introduced and treated

effectively. Taylor model is computationally efficient but provides an upper bound

response and predicts faster oxygen transport within the tow compared to the FE

homogenization approach. In the final chapter, the multiscale approach has been

combined with mechanical field effects for modeling high temperature oxidation of

composites. The multiscale stressed oxidation model has allowed understanding of

interesting mechanisms such as interaction of porosity evolution with carbon fiber ox-

idation (‘stress–oxidation coupling’) that cannot be explained without incorporating

microstructural details.
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CHAPTER II

Multi-scale homogenization with flux jumps - Application to
solidification

1

In order to lay the groundwork for our multiscaling scheme, we present the ho-

mogenization method as applied to a fluid solidification problem. Fluid solidification

has been well studied in the past and analytical models are available that allow us

to validate the multiscaling procedure. Fluid solidification, like composite oxidation,

includes discontinuities in flux (due to latent heat of solidification) and has mov-

ing interfaces. In this chapter, a two-scale computational homogenization procedure

for addressing this problem is discussed. We provide consistent macro-micro transi-

tion and averaging rules based on Hill’s macro-homogeneity condition. The overall

macro-scale behavior is analyzed with solidification at the micro-scale modeled using

an enthalpy formulation. The method is versatile in the sense that two different

models can be employed at the macro- and micro- scales. The micro-scale model can

incorporate all the physics associated with solidification including moving interfaces

and flux discontinuities, while the macro-scale model needs to only model thermal

conduction using continuous (homogenized) fields. The convergence behavior of the

tightly coupled macro-micro finite element scheme with respect to decreasing element
1Reproduced from [36], S Lee and V Sundararaghavan, Multiscale modeling of moving interface problems with

flux jumps: Application to solidification, Computational Mechanics, vol. 44(3), pp. 297-307, 2009.
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size is analyzed by comparing with a known analytical solution of the Stefan prob-

lem. The chapter is arranged as follows. In section 2.1, the multi-scale formulation

is introduced, followed by description of the micro- and macro- scale problems and

the computational scheme in section 2.2. In section 2.3, we demonstrate the poten-

tial of the approach by comparing the results from this approach with a well-known

analytical solution.

2.1 Multi-scale formulation

We consider a problem of heat conduction in an incompressible fluid, where parts

of the fluid are frozen, while other parts are in a liquid state. The interface between

the frozen and molten region is an unknown moving internal boundary. At the micro-

scale, material 1 (in liquid state) occupies the domain V + and material 2 (in solid

state) occupies the domain (V −), where V + and V − are open subsets of V . At the

interface SI , material 2 solidifies further and advances into V +. The interface SI

moves in the direction −nI with speed Vn, where nI is the outward normal of V +)

at the interface.

Macro-micro linking is achieved by decomposing the micro-scale temperature field

(T )into a sum of macroscopic field and a fluctuation field (T̃ ) as:

T = Tref +∇T · x + T̃ (2.1)

Here, x is the coordinate of a point on the micro-scale relative to a reference point

on the bottom left corner of the microstructure where temperature is Tref (as shown

in Fig. 2.1). In general, we denote a macroscopic counterpart of a microscopic field

quantity (say, χ) as χ. In the above equation, gradient in temperature at macroscopic

material point is denoted as∇T (= ∇macroT̄ ). Our basic homogenization assumption

is that ∇T can be computed from the temperature at the external boundary (S) of
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Macro-scale

Ω

Γ

Micro-scale

nI

S V+
V-

Liquid

Solid

SITref

Figure 2.1: Multi-scaling procedure: Macro-scale is associated with a homogenized continuum. The
macro-scale temperature (and gradient in temperature) is passed to the micro-scale as
boundary conditions. Macro-scale quantities such as the thermal flux and conductivity
(at the material point) are computed from the mi crostructural sub-problem through
consistent averaging schemes.

the microstructure with outward normal n as:

∇T =
1

V

∫

S

TndS (2.2)

Using the decomposition of the micro-scale temperature field, it can be shown

that:

1

V

∫

V

∇TdV = ∇T +
1

V

∫

V

∇T̃ dV (2.3)

We employ the generalized divergence theorem of the form
∫

V
∇χdV =

∫
S

χndS+

∫
SI [|χ|]nIdSI in the above equation (where, [|χ|] denotes the jump in the field quan-

tity across the evolving interface (SI) with normal nI) to obtain the following rela-

tionship:

1

V

∫

S

TndS = ∇T +
1

V

∫

S

T̃ndS +
1

V

∫

SI

([|T̃ |]− [|T |])nIdSI (2.4)

The jump in a field quantity, say T , across such an interface is computed as

[|T |] = T+ − T−. Here, T+ and T− refer to the quantity in domain V + and V −,
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respectively, close to a point on the interface (as shown in Fig. 2.2). We aim to

build boundary conditions at the micro-scale that satisfies Eq. 2.4. Assumption

of T̃ = 0 at all points in the microstructure leads to rule of mixtures (or Taylor

model in deformation problems). This is not a valid assumption for solidification

problems as the solid-melt interface is at the melting point, whereas in a Taylor

model, temperature at all points are constrained as T = Tref +∇T · x. In addition,

Taylor model solution does not satisfy micro-scale thermal equilibrium. Due to the

strong constraint imposed on micro-scale temperatures, it can be shown that the

Taylor model produces an upper-bound result for conductivities calculated. Two

other boundary conditions are applicable to the solidification problem that can allow

satisfaction of equilibrium constraint as well as interface temperature constraint. The

first is an essential boundary condition on the surface of the microstructure and the

other is a periodic boundary condition (refer [51]) on temperatures. In this chapter,

we restrict ourselves to the essential boundary conditions given below:

T̃ = 0 on S (2.5)

([|T̃ |]− [|T |]) = 0 on SI (2.6)

In this case, temperature at the boundaries of the microstructure is derived from

the macro-scale temperature field and temperature gradient as T = Tref +∇T · x.

The interface temperature jump constraint (Eq. 2.6) is trivially satisfied (by comput-

ing jump from Eq. 2.1 and noting that macroscopic fields are assumed continuous).

In solidification problems, temperature fields are continuous ([|T |] = 0) and an addi-

tional boundary condition is applied that enforces the interface to be at the melting

point (or calculated using Gibbs-Thomson relation for dendritic growth simulations

(eg. [75]).
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Solidification is modeled at the micro-scale using the convection-diffusion equa-

tion:

∂(ρcT )

∂t
+∇ · q = −∇ · (ρcTv) (2.7)

Where, q represents the heat flux (q = −k∇T , where k is the thermal conductivity),

ρ denotes the density, c is the heat capacity and v represents the velocity field. For

simplicity, convective effects within the fluid are ignored and the velocity field is

assumed to be non-zero only on the evolving solidification front. Since the micro-

scopic length scale is considered to be much smaller than the scale of variation of

the macroscopic temperature field, the micro-scale can be assumed to be at steady

state at any instant of the macroscopic (transient) evaluation [51]. The microscopic

diffusion equation is then given as:

∇ · q = −∇ · (ρcTv) (2.8)

Consider the space of weighting functions, V , given by

V = {φ : φ ∈ H1 over V, φ = 0 on S} (2.9)

and the space of trial functions, L, given by

L = {T : T ∈ H1 over V + ∪ V −, T given on S ∪ SI} (2.10)

Weak form of the above equation can be simplified as follows (where φ is the

weighting function that is assumed to be continuous across the microstructure):

(∇φ, q)V = (vn[|ρcT |], φ)SI + ([|qn|], φ)SI (2.11)

In the above equation, the symbol (., .) represents the Euclidean inner product

over the domain given by the subscript. To obtain the above mentioned weak form,
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we have assumed that the velocity at all points (aside from the points on the interface)

are small (ie. v = 0 on V + ∪ V −). As described previously, the micro-scale model

includes both heat capacity jump ([|ρc|]) and flux jump ([|q|]) in the normal direction

across the solidifying interface. The velocity of the solid-liquid interface is governed

by the heat flux jump through the classical Stefan equation:

([|qn|] + vn[|ρc|]T ) = 0 (2.12)

where, T [|ρc|] = L or [|qn|] = −vnL (2.13)

where, L is the latent heat of phase transformation per unit volume.

Figure 2.2: Solidifying interface is tracked using an adaptive meshing strategy. This allows flux
discontinuities to be accurately modeled at the micro-scale.

Based on Stefan equation, it can be proved that the integral of normal heat flux

over the microstructure surface goes to zero as follows:

∫

S

qndS =

∫

S

q · ndS =

∫

V

∇ · qdV −
∫

SI

[|qn|]dSI

= −
∫

V

∇ · (ρcTv)dV −
∫

SI

[|qn|]dSI

= −
∫

SI

(vn[|ρc|]T + [|qn|])dSI = 0 (2.14)
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The above relation is subsequently used for homogenization of the micro-scale flux.

In particular, we are interested in obtaining a macroscopic flux that satisfies Hill’s

macro-homogeneity condition (which relates the macroscopic flux (q̄) with its mi-

crostructural counterpart (q [49]) as follows:

∇T · q = ∇T · q (2.15)

Application of the governing equation (Eq. 2.8) changes the macro-homogeneity

condition to the following form:

∇T · q = ∇T · q =
1

V

∫

V

(∇ · (Tq)− T∇ · q)dV

=
1

V

∫

S

TqndS +
1

V

∫

SI

[|Tqn|]dSI +
1

V

∫

V

T∇ · (ρcTv)dV (2.16)

We can reduce the first term in the above equation using the definition of micro-

scale temperature (Eq. 2.1) and the homogeneous boundary conditions as:

1

V

∫

S

TqndS =
1

V

∫

S

[Tref +∇T · x]qndS

= ∇T · 1

V

∫

S

xqndS ( using

∫

S

qndS = 0) (2.17)

The second and third terms in Eq. (2.16) are again reduced using the generalized

divergence theorem as:

1

V

∫

SI

[|Tqn|]dSI +
1

V

∫

V

T∇ · (ρcTv)dV

=
1

V

∫

SI

[|Tqn|]dSI +
1

V

∫

V

∇ · (ρcT 2v)dV − 1

V

∫

V

∇T · (ρcTv)dV

=
1

V

∫

SI

T [|qn|]dSI +
1

V

∫

SI

T 2[|ρc|]vndSI = 0 (2.18)
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In the above derivation, we use Stefan equation and the fact that the particle

velocity is zero at all points in the material except the interface. Combining equations

(2.16,2.17,2.18), the macroscopic flux is obtained as:

q =
1

V

∫

S

xqndS (2.19)

The above equation allows macroscopic heat flux to be computed from the normal

flux at the boundaries of the microstructure similar to Eq. 2.2. Using Stefan equa-

tion, we can also show that the macroscopic heat flux thus computed corresponds to

the volume averaged heat flux at the micro-scale (see appendix A).

2.2 Evaluation of homogenized transport properties

The macroscopic diffusion equation is defined on a uniformly meshed domain (Ω)

on which solidification occurs. Boundaries of the macro-scale domain is denoted as

Γ. Solidification is explicitly modeled at the micro-scale, while only heat conduction

is modeled at the macro-scale using homogenized quantities as follows:

∂H̄

∂t
= −∇ · q̄, T (Γ, t > 0) = T̂ , T (Ω, t = 0) = T0 (2.20)

where, the macroscopic (homogenized) enthalpy (H̄) is defined using microscopic

volume averaged heat capacity (ρc) as follows:

H̄ = ρcT + Lρf = ρcT̄ + Lρf (2.21)

Here, f is the volume fraction of liquid in the micro-scale, L is the latent heat of

solidification defined per unit mass. In the above equation, the enthalpy is defined

using microscopic volume averaged heat capacity (ρc). This definition is consistent

with the condition that stored energy at macro-scale is same as the average micro-

scale stored energy [51]. The temperature boundary conditions at the micro-scale
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is completely defined once Tref for the next time step is computed using Eq. 2.21

and Eq. 2.1 at the end of each time step of the simulation. Due to the use of an

explicit scheme to calculate Tref , smaller time steps at the macro-scale allow better

satisfaction of balance of stored energy. In the numerical examples, we report the

error between the macro- and micro- stored enthalpy at various material points to

show that the balance of stored energy condition (Eq. 2.21) is indeed satisfied during

homogenization.

To solve the non-linear macroscopic equation (Eq. 2.20), Galerkin finite element

method is adopted and the weak form is solved in an incremental-iterative manner

using the Newton-Raphson method. The (λ + 1)th Newton-Raphson step at time

(t+1) involves solution of the system K{δH̄λ+1,t+1} = f , where the unknown vector

in the above system is the increment in the enthalpy (δH̄λ+1,t+1). To understand the

micro-scale quantities that are needed to create the system of equations, the Jacobian

matrix and force vector for a finite element e with shape functions Ni occupying a

volume Ωe is expanded below:

Ke
ij =

1

∆t

∫

Ωe

NiNjdΩ−
∫

Ωe

κ̄λ,t+1∇Ni · ∇NjdΩ

f e
j =

∫

Ωe

q̄λ,t+1 · ∇NjdΩ− 1

∆t

∫

Ωe

(H̄λ,t+1 − H̄ t)NjdΩ (2.22)

From the above equations, it is seen that to solve the macro-scale equations, one

requires the homogenized conductivity κ̄ to be defined at each integration point in

the macro-scale as follows:

δq̄λ,t+1 = κ̄λ,t+1δ(∇H) (2.23)

The homogenized conductivity can either be obtained using perturbation analysis

[44] or by directly manipulating the converged Jacobian and residual matrices of the

micro-scale problem[51]. In the former approach, each component of the macroscopic
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temperature gradient is independently perturbed by a small amount ε which affects

the boundary conditions at the micro-scale through Eq. 2.1. The micro-scale problem

is solved again using the perturbed boundary conditions and the resulting pertur-

bation in homogenized flux is used to compute the homogenized conductivity. This

involves solution of N different micro-scale problems during each Newton-Raphson

iteration at the macro-scale, where N is the dimensionality of the macro-scale prob-

lem. Note that numerical approximation of the homogenized conductivity does not

change the physical result in any way, only the speed of iteration process changes.

In this work, we follow the approach of [51] to obtain homogenized conductiv-

ity by direct manipulation of the converged Jacobian and residual matrices of the

micro-scale problem. The steps to compute the homogenized conductivity using the

approach is as follows. Macroscopic flux is first written using the vector of normal

fluxes on the external nodes of the microstructure ({qext
n }) using finite element matrix

representation as follows:

q =
1

V

∫

S

xqndS = L{qext
n } (2.24)

To compute the homogenized conductivity, one needs to compute sensitivity of

{qext
n } to perturbations in the macroscopic enthalpy gradient δ(∇H) as:

δq = L{δqext
n } = κ̄δ(∇H) (2.25)

To obtain the homogenized conductivity, the converged finite element solution from

the Newton-Raphson iterations at the micro-scale is employed as follows:




Kee Kei

Kie Kii







δHe

δH i




=




0

0



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In the above equation, the assembled matrix (K) on the left hand side is the

Jacobian matrix of the Newton-Raphson iteration. The residual on the right hand

side goes to zero since the micro-scale solution has converged. The assembled matrix

(K) is arranged such that the vectors δHe and δH i contain the enthalpies on the

external and internal nodes of the microstructure, respectively. Sensitivity of en-

thalpy on external nodes of the micro-scale mesh to the perturbation in the imposed

macroscopic enthalpy gradient can be written using matrix G (computed from the

boundary condition on the temperatures on the external nodes (Eq. 2.1)) as follows:

{δHe} = G{δ∇H} (2.26)

Substituting the above relation into the converged matrix equation at the micro-

scale and taking the known quantities to the right hand side, we obtain the equation:




Kee Kei

Kie Kii







0

δH i




=




−KeeGδ∇H

−KieGδ∇H




The vector on the right hand side provides the sensitivity of microscopic flux to

the macroscopic enthalpy gradient, which leads to the homogenized conductivity, κ̄

as follows:

δqext
n = −KeeGδ∇H

κ̄ = −LKeeG (2.27)

The overall solution scheme is shown in Table. 1. To aid in speeding up the

solution process for the multi-scale problem, the algorithm was parallelized using

MPI. The macro-scale domain was decomposed and elements in each domain dis-

tributed to different processors. The underlying micro-scale problems were solved in
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serial within each processor. The simulator was developed using object oriented pro-

gramming and was dynamically linked to the parallel toolbox PetSc [8] for parallel

assembly and solution of linear systems. For solution of linear systems, a GMRES

solver along with block Jacobi and ILU preconditioning was employed.

Table 2.1: Solution scheme for multiscale homogenization of solidification problems

(1) Initialize macro-scale model and assign a microstructure to every integration point.
Initially, all the underlying microstructures are in liquid state with known conductivity.

(2) Apply time increment ∆t to the macro-scale problem.

(3) Iteration step:

(3.1) Assemble the macroscopic stiffness matrix.

(3.2) Solve the macroscopic system and compute temperature and the
temperature gradient at each integration point.

(3.3) Loop over all integration points

(a) Transfer boundary conditions to micro-scale problem using Eqs. 2.1,2.5.

(b) Assemble and solve the micro-scale problem.

(c) Calculate the macro-flux (Eq. 2.19) and the macro-conductivity
(Eq. 2.27) using the micro-scale solution and store the data.

(3.4) Assemble the macroscopic residual vector.

(4) Check convergence, if not converged go to step 3, otherwise go to step 2.

2.3 Numerical examples

In order to validate the multi-scale simulation procedure, a well-studied one-

dimensional solidification problem is employed. In this simulation, one end of the

simulation domain is fixed to a temperature less than melting point. The other end

is assumed to at infinity and fixed to a temperature larger than the melting point

so that the solid-liquid interface moves between these two ends. The analytic solu-

tion for the position of the interface (X(t)) at various times can be expressed as the

following [61]:
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X(t) = 2λ
√

αst (2.28)

In the above expression, α = ( k
ρc

) where k is the thermal conductivity and the

subscripts s and l are used when using properties of solid and liquid phase respec-

tively. Constant λ is equal to 0.2037 for this particular problem [13]. The analytical

solution for the temperature history can be expressed as [61] (where erf is the error

function and Tm = 0◦C is the melting point for the fluid):

T =





T (0, t) + Tm−T (0,t)
erf(λ)

erf
(

x
2
√

αst

)
x < X (t)

Tm x = X (t)

T (∞, t) + Tm−T (∞,t)

1−erf

(
λ
√

αs
αl

)(1− erf
(

x
2
√

αlt

)
) x > X (t)

(2.29)

In the numerical simulations, the problem is modeled in a two-dimensional domain

discretized using three-noded triangular elements at the macro- and micro- scales.

A sufficiently large FE model size is chosen to approximate the infinite boundary.

The material properties, boundary conditions, and initial conditions for the material

used in this simulation are provided in the Table 2.

2.3.1 Micro-scale simulation approach

The problem is addressed using a single scale model as well as a multi-scale model

to validate the results. Solution of micro-scale problem presents computational diffi-

culties due to the presence of interface conditions in the form of an essential boundary

condition and specified heat flux jump. To overcome these issues, we have employed
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Table 2.2: List of material constants (for both solid and liquid phase) and boundary and initial
conditions used for the 1D solidification problem

Material constant Value

L (kJ/kg) 100000

ρ
(
kg/m3

)
1

c (kJ/kgK) 2500

k (W/mK) 2

BC’s IC’s



T (x = 0, y, t) = −4◦C

T (x = ∞, y, t) = 2◦C





T (x = 0, y, 0) = −4◦C

T (x > 0, y, 0) = 2◦C

the now well-established enthalpy formulation [64] to solve the micro-scale problem.

Using the enthalpy formulation, it is possible to formulate a solution procedure where

the flux jump condition is automatically satisfied without explicitly tracking the in-

ternal boundary. The governing equation is posed using enthalpy as the unknown

variable and the equations are solved using a standard Galerkin FE formulation.

Enthalpy is a discontinuous function at the interface as latent heat is added during

phase change from solid to liquid state. In the enthalpy approach, the discontinuity

of enthalpy at the interface is treated by allowing it to be continuous in a small region

with Ts = Tm− ε and Tl = Tm + ε around the interface as shown in Fig. 2.3. Because

of this numerical treatment, the desired interface behavior can be achieved without

divergence and singularity issues. In particular, the following enthalpy function with

respect to temperature has been used in this work (with ε = 0.1K):

H =





ρcT T < Ts

ρcTs + ρ
(

2cε+L
2ε

)
(T − Ts) Ts ≤ T < Tl

ρcT + ρL T > Tl

(2.30)
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(a) (b)

Figure 2.3: Schematic of the enthalpy-temperature relationship for a pure substance; (a) H is a
discontinuous function of the temperature (b) Numerical treatment of discontinuity. [64]

2.3.2 Case 1. Single-scale simulation results

We first compare simulation results (based on the enthalpy formulation) to the an-

alytical solution. Please note that the simulation reported in this case is a transient

simulation based on Eq. 2.7. Adaptive meshing is employed with grids continuously

refined in the region of the interface during the simulation in order to accurately track

the solidification front as shown in Fig. 2.4. The interface velocities (solidification

front) and the temperature distribution is well predicted by the model and compares

favorably with the analytic solution. Comparison of numerical results with the an-

alytical solution of the solidification front position and temperature time history at

various locations is shown in Fig. 2.5(a) and Fig. 2.5(b) respectively.

2.3.3 Case 2. Multi-scale simulation

In the multi-scale simulation reported here, the micro-scale is considered to be in

steady state as given in Eq. 2.8 while the time-dependence is incorporated at the

macro-scale using Eq. 2.20. The finite element model at the microscopic scale for

the multi-scale simulation is shown in Fig. 2.6.
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Figure 2.4: Case 1 study: Finite element model for single-scale simulation uses adaptive grids with
refinement in the region of the moving interface
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Figure 2.5: (a) Position of the phase change interface vs. time in single-scale simulation (b) Com-
parison of numerical and analytic solution of temperature history at x = 1, 2, 3 and 4
cms.

The ability of the multi-scale model to capture the solidification front accurately

is dictated by the mesh density at the macro-scale. Two meshes with increasing

mesh density were used to test the convergence behavior of the multi-scale model.

These meshes are depicted in Fig. 2.7.

Due to the tightly coupled nature of the macro- and micro- scale problems, nu-

merical convergence needs to be established through careful control of mesh size and

time steps. In all cases, the time steps were carefully controlled so that difference in

enthalpy at the macro- and micro- scales at various integration points are minimized.
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Figure 2.6: Finite element mesh used in the micro level

As discussed in Sec. 2.2, energy balance dictates the choice of time steps used in

the multi-scale problem. In order to ascertain the time step size needed to solve

the multi-scale problem, the enthalpy difference between macro- and micro- at the

integration points is computed as below:

Mean square error =

√√√√
∑ (

Hi
M−H̄i

Hi
M

)2

N
(2.31)

In the above equation, HM denotes the macro-scale enthalpy, H̄ = 1
V

∫
V

HdV is

the volume average of enthalpy (H) at the micro-scale and N denotes number of

integration points in macro-scale FE model. As shown in the Fig. 2.8(a), the error

increases rapidly as time step, 4t increases beyond 8 seconds for Case I. If a time

step larger than 8 seconds is employed, the simulation rapidly diverges during the

non-linear iterations. It is seen that the choice of time step is closely related to the

mesh density used at the macro-scale. The overall error in enthalpy remains the

same as the time step is reduced below eight seconds. The percentage error at each

integration point calculated as 100(
Hi

M−H̄i

Hi
M

) is plotted in Fig. 2.9(a,b) for the coarse

and fine macro-scale mesh, respectively. The enthalpy difference between micro- and

macro-scales are primarily observed at elements that involve the evolving interface
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Figure 2.7: FE models at the macro-level that are designed using different mesh sizes in order to
test convergence of the multi-scale simulation result.

due to a large jump in enthalpy at these locations.

During homogenization, the front is not as accurately tracked as in a single scale

simulation (where adaptive meshing was used to capture the interface details). It is

to be noted that the aim of homogenization is to obtain a homogenized description

of the interface and capture fine scale information at various points in the macro-

mesh with lower computational effort. The accuracy obtained during tracking of the

solid-liquid interface is dictated by the element size in the macro-scale mesh. As the

element size reduces, it is expected that the interface is better represented in the

macro-scale model. As expected, it is seen from Fig. 2.9(b) that the enthalpy errors

between macro- and micro- scales decreases as FE model with a finer macro-scale

grid (Case II). A time step of one second was used in this case based on the mean

square enthalpy error tests plotted in Fig. 2.8(b).

The results of solidification front position and the temperature-time history at

various locations in the mesh are compared with analytical solution for two cases in
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Figure 2.8: Mean square enthalpy errors with respect to time step size (in seconds) for the two cases.
The errors are computed during the simulation from t = 4995sec to t = 4995sec +4t
(a) Case I - total number of element : 80 (a) Case II - total number of element : 1280.
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Figure 2.9: The enthalpy errors (in %) on each of the three integration points for all macro-scale
elements at a simulation time of t = 2500 sec. (a) Case-I: elements along the x-axis
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Figure 2.10: Comparison of predicted and analytical solution for interface positions computed using
FE mesh from (a) case I (b) case II. During homogenization, the true location of the
interface is not explicitly tracked in the macro-scale. The elements where the interface
is located are depicted in the figure.
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Figure 2.11: Comparison of predicted and analytical solution of temperature history at four different
locations in the macro-scale mesh for (a) case I (b) case II
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Fig. 2.10 and Fig. 2.11 respectively. It is clear that as finer grids are employed at

the macro-scale, the solid-liquid interface and temperature distribution are captured

in an increasingly better manner. Multi-scale approach proposed here is computa-

tionally well suited in problems where there is a clear scale separation (eg. dendritic

microstructure formation) and it is computationally impossible to resolve the fine

scale details at macroscopic scales. Although the problem chosen here mimics scale

separation, the real purpose however, is to validate the multi-scale homogenization

with a known analytical solution. Future work in this area would involve development

of adaptive mesh refinement and time-stepping methods to accelerate computation

and address problems with large scale separation.

2.4 Conclusion

In this chapter, a non-linear coupled macro-micro finite element model is presented

for addressing fluid solidification problems. Solidification problems involve evolution

of surfaces coupled with flux jump boundary conditions across interfaces that have

not been addressed using homogenization approaches. Homogenization of complex

micro-scale behavior including moving interfaces and flux jumps has been performed.

Based on the Hill’s macro-homogeneity condition, macroscopic quantities are eval-

uated via consistent averaging of the microscopic values. The micro-scale model

incorporates the physics associated with solidification including moving interfaces

and flux discontinuities, while the macro-scale model needs to only model thermal

conduction using continuous (homogenized) fields. The convergence behavior of the

coupled macro-micro finite element scheme with respect to decreasing element size is

analyzed by comparing with a known analytical solution of the Stefan problem. In

this coupled non-linear multi-scale problem, although good convergence is achieved
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at higher mesh densities, the time steps need to be carefully controlled to achieve

macro-micro enthalpy balance and numerical stability. The approach is expected

to be computationally superior in problems where there is a large scale separation

between micro and macro scales , e.g. in case of dendritic growth.
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CHAPTER III

Oxidative degradation of ceramic matrix composites

1Problems involving reaction and species diffusion involve field and flux jumps at

a moving reaction front. In multi–scale problems such as carbon fiber composite oxi-

dation, these effects need to be tracked at the microscopic scale of individual carbon

fibers. A multi–scale model is derived in this paper for predicting species distribution

in such problems using a fully–coupled multi-scale homogenization approach. The

homogenized fluxes from the micro–scale are derived using Hill’s macro–homogeneity

condition accounting for both flux jumps and species density field jumps at the re-

acting interface in the micro–scale unit cell. At the macro–scale, the competition

between the transport of reacting species (oxygen) and the reaction product (carbon

dioxide) is modeled using homogenized mass conservation equations. The moving

reaction front in carbon fibers at the micro–scale is tracked using level set method

and an adaptive meshing strategy. The macroscopic weight loss of the composite

when exposed to oxygen is simulated as a function of time using a coupled finite

element methodology at various locations in a validated macroscopic model.

Advanced launch vehicles employ ceramic matrix composites (CMCs) as struc-

tural elements in heat shields, propulsion components and other applications that

1Reproduced from [38], S Lee and V Sundararaghavan, Multi-scale modeling of oxidative degradation of C/SiC
composite, International Journal for Numerical Methods in Engineering, Published online, 2010
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encounter high temperature oxidizing environments. These conditions progressively

degrade the material which eventually leads to failure of the component well short

of its expected life [19]. A variety of degradation mechanisms exist , with the pre-

dominant one being the oxidation of C fibers. For moderate to high temperatures,

this oxidation process is controlled by the transport of oxygen into the porous SiC

matrix. The oxygen transport phenomena in C/SiC composites is primarily through

an interconnected void network in the matrix formed due to thermal expansion mis-

match between carbon fibers and the matrix during processing. At the micro-scale,

fine carbon fibers in within tows interact with oxygen and degrade at moderate to

high temperatures. Initial models for studying oxidation of C/SiC composites at

micro-scales assumed a steady state diffusion through the matrix [16, 22]. While

these techniques model the micro-scale, techniques for homogenizing the results for

use in global analysis was not developed. In [69], a continuum level theory for mod-

eling composite oxidation was developed. The approach models the composite as a

homogeneous mixture of matrix, carbon fiber and voids. While continuum models

are practical approaches for predicting the behavior of C/SiC composites, they do

not model the inherent heterogeneities involved in fiber oxidation. Multi-scale mod-

eling by coupling macroscopic and microscopic models allow us to take advantage of

both the efficiency of continuum models and the accuracy of the microscopic models.

The paper is organized as follows: In sections 3.1 and 3.2, a generalized scale

transition for the multiscale problem is derived. The micro–scale and the macro–scale

models are explained in sections 3.3 and 3.4, respectively. In section 3.5, the level

set method used to model the moving interface is explained. Finally, in section 3.6,

we discuss the methodology through an example of oxidation of a carbon composite.
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3.1 Computational Homogenization Approach: Micro-scale Boundary
Conditions

We consider a problem of oxidation, where carbon fibers residing in an inert matrix

reacts with oxygen. The microstructure of a 2-D C/SiC composite is shown in Fig.

3.1. The unit cell consists of a single carbon fiber in a porous matrix occupying a

volume V with external boundary S and outward normal n. The oxidizing interface

is a moving internal boundary which is initially an intact fiber–matrix interface.

Material outside of the exposed carbon fiber surface occupies a volume V + and the

exposed carbon fiber occupies a volume V −. Here, V + and V − are open subsets of

the total unit cell volume V . At the interface SI between V + and V −, the carbon

fiber oxidizes further and recedes into V − along nI with speed vn, where nI is the

inward normal of SI as indicated in Fig. 3.1). One such unit cell is attached to every

integration point in the macro–scale finite element mesh.

Figure 3.1: Macro-scale is associated with a homogenized continuum. The macro-scale fields and
field gradients are passed to the micro-scale as boundary conditions. Macro-scale fluxes
and properties (at all integration points) are computed from the underlying microstruc-
tural sub–problems using averaging schemes.

To identify boundary conditions that needs to be employed at the unit-cell level,
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we employ the computational homogenization approach developed in [67, 45, 70, 51].

Macro-micro linking is achieved by decomposing the micro-scale field (ρ) into a sum

of macroscopic field and a fluctuation field (ρ̃) as:

ρ = ρref +∇ρ · x + ρ̃ (3.1)

Here, the coordinate x represents a point on the micro-scale relative to a reference

point at the center of the unit cell. The micro-scale partial density field of species

i is denoted as ρ and the macroscopic reference partial density field of species i is

denoted as ρref . No subscripts (for eg. ρi for species i) are used in this section to

maintain generality.

In general, we denote a macroscopic counterpart of a microscopic quantity (say, χ)

as χ. In the above equation, gradient in partial density of specie i at the macroscopic

material point is denoted as ∇ρ (= ∇macroρ̄). The most general assumption behind

homogenization theory is that the gradient as seen at the macro-scale (∇ρ) can be

represented purely in terms of the field variables at the exterior boundary of the

microstructure (Ref. [36, 28]):

∇ρ =
1

V

∫

S

ρndS (3.2)

Using the micro–scale field decomposition (Eq. 3.1), it can be shown that:

1

V

∫

V

∇ρdV = ∇ρ +
1

V

∫

V

∇ρ̃dV (3.3)

We employ the generalized divergence theorem of the form
∫

V
∇χdV =

∫
S

χndS+

∫
SI [|χ|]nIdSI in the above equation (where, [|χ|] denotes the jump in the field quan-

tity across the evolving interface) to obtain the following relationship:

1

V

∫

S

ρndS = ∇ρ +
1

V

∫

S

ρ̃ndS +
1

V

∫

SI

([|ρ̃|]− [|ρ|])nIdSI (3.4)
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In the above equation, [|ρ|] denotes the jump in partial density of specie i across

the interface (SI) with normal nI . The jump in field across an interface is computed

as [|ρ|] = ρ+ − ρ−. Here, ρ+ and ρ− refer to the field values in domain V + and V −,

respectively, close to a point on the interface.

Boundary conditions at the micro–scale are identified by comparing Eq. 3.2 with

Eq. 3.4. Thus, any such boundary conditions derived must satisfy the ‘linking

condition’:

1

V

∫

S

ρ̃ndS +
1

V

∫

SI

([|ρ̃|]− [|ρ|])nIdSI = 0 (3.5)

A variety of boundary conditions may be derived that satisfy this constraint,

however, following our previous work in [36], we focus on two possible boundary

conditions (also called ‘macro–micro linking assumption’) as given below:

1. Taylor boundary condition involves specification of density field at all points

in the microstructure. The approach is called ‘Taylor model’ based on similar

terminology used in multi–scale deformation problems where displacements are

fully specified at micro–scale. The Taylor model involves the following boundary

conditions:

ρ̃ = 0 on V + (3.6)

ρ = 0 on V − (3.7)

The first term in Eq. 3.5 vanishes based on the first condition (Eq. 3.6).

The second equation implies that the density of oxygen (and carbon dioxide)

is negligible inside the carbon fiber. The mechanism of transport of oxygen in

the carbon fiber is through lattice diffusion and this rate of diffusion is indeed

negligible compared to gas phase transport (within pores) as noted in diffusion

studies [78]. Comparing Eq. 3.7 with Eq. 3.1 leads to expression for ρ̃ inside

34



the carbon fiber: ρ̃ = −ρref − ∇ρ · x on V −. This leads to the expression for

jump in the fluctuation density field at the interface:

[|ρ̃|] = ρref +∇ρ · x on SI (3.8)

Similarly, comparing Eq. 3.6 with Eq. 3.1 leads to ρ = ρref + ∇ρ · x on V +.

Since ρ = 0 on V − (Eq. 3.7), we can obtain the expression for jump in field at

the interface

[|ρ|] = ρref +∇ρ · x on SI (3.9)

From Eqs. 3.8 and Eq. 3.9, it can be verified that the expression [|ρ̃|]− [|ρ|] in

Eq. 3.5 also vanishes at points on the interface SI . Thus, the Taylor assumption

fully satisfies the linking condition (Eq. 3.5). Note that when using the Taylor

linking assumption, the density fields at the micro–scale are fully specified from

macro–scale quantities using the following equation:

ρ = ρref +∇ρ · x on V +

ρ = 0 on V − (3.10)

2. Homogenization boundary condition: The essential boundary condition of the

following form is specified:

ρ̃ = 0 on S (3.11)

([|ρ̃|]− [|ρ|]) = 0 on SI (3.12)

Using Eq. 3.11, essential boundary conditions (in the form of densities of oxygen

and oxide species) are enforced at the boundaries of the unit cell as:
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ρ = ρref +∇ρ · x on S. (3.13)

The second constraint in Eq. 3.12 is trivially satisfied based on Eq. 3.1 since

macroscopic fields are assumed to be continuous. In homogenization approach,

the density fields are known at the external boundary and micro–scale equilib-

rium equations are solved using finite element analysis to completely describe

the oxygen density distribution at the micro–scale.

3.2 Micro–Macro linking: Transferring Fluxes and Diffusivities

In a coupled multi-scale model, the micro-scale results are used to compute trans-

port properties and mass flux of species at the macro-scale. This forms the basis for

micro- to macro- linking. In particular, we are interested in obtaining a macroscopic

flux that satisfies Hills macro-homogeneity condition (which relates the macroscopic

flux (q̄) with its microstructural counterpart (q [36, 49]) as follows:

∇ρ · q = ∇ρ · q (3.14)

The fluxes need to be derived such that the above macro–homogeneity condition is

satisfied when using either Taylor or homogenization boundary conditions as follows:

• The Taylor model Using boundary conditions (Eq. 3.6 and Eq. 3.7) in the

macro–homogeneity condition (Eq. 3.14) leads to the following:

∇ρ · q =
1

V

∫

V

∇ρ · qdV =
1

V

∫

V

∇(ρref +∇ρ · x) · qdV

= ∇ρ · 1

V

∫

V

∇x · qdV = ∇ρ · 1

V

∫

V

qdV (3.15)

Comparing Eq. 3.15 with Eq. 3.14:

q =
1

V

∫

V

qdV (3.16)
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• The Homogenization model

We can show that a similar expression holds for the homogenization approach,

ie. the macroscopic flux is same as the volume averaged heat flux at the micro-

scale as shown below:

q =
1

V

∫

S

xqndS =
1

V

∫
qdV (3.17)

Derivation of the macroscopic flux for homogenization approach is more detailed

than the derivation shown for the Taylor model. The derivation, which is based

on the model explained in section 3.3, is separately provided in appendix B for

the interested reader.

3.3 Micro–scale model

Since the microscopic length scale is considered to be much smaller than the scale

of variation of the macroscopic temperature field, the micro-scale can be assumed to

be at steady state at any instant of the macroscopic (transient) evaluation. This is

a general assumption in homogenization theory due to the scale separation principle

(eg. [51]).

The microscopic mass conservation equation is given as:

∇ · qi = −∇ · (ρiv) (3.18)

where, qi denotes the mass flux of species i and ρi denotes the partial density of

species i, and v represents the velocity of recession of the exposed carbon (v is non-

zero only on the evolving interface). The micro–scale model includes both density

jump ([|ρi|]) and flux jump ([|qi|]) for each specie i in the normal direction across

the oxidizing interface. The condition for local mass balance across the oxidizing

interface (with the flux and velocity component along the normal to the interface
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given as qn and vn, respectively) is given by the Rankine–Hugoniot condition [57, 39]:

([|qni
|] + vn[|ρi|]) = 0 (3.19)

As described before, the primary mechanism of oxygen transport is concentration

and pressure gradient driven diffusion through the pores (or cracks) in the matrix.

In comparison, the species density and mass flux inside the carbon fiber is negligible

(ie. q−i = 0). Thus, the following interface flux condition can be derived to simulate

mass loss of carbon fiber during oxidation:

q+
O2

= −MO2

MC

ρcv, q+
CO2

=
MCO2

MC

ρcv on SI (3.20)

where, ρc is the density of the carbon fiber and Mi denotes the molecular mass

of species i. The sign in the above equation indicates that oxygen is consumed and

carbon dioxide is released at the interface during oxidation. The presence of interface

flux at the micro–scale leads to a homogenized source term (for oxygen and carbon

dioxide densities) in the macroscopic model.

3.3.1 Description of flow in the porous matrix at micro–scale

The mass flux of species within the matrix with volumetric porosity (φ) is a result

of both pressure gradient driven flow and concentration gradient driven flow. The

net flux is represented as:

q = qα
i + qβ

i (3.21)

where qα
i and qβ

i are the mass flux of species i due to pressure gradient-driven flow

and concentration gradient-driven flow, respectively.

The flux contribution within the porous matrix due to pressure gradient driven

flow is given by the Darcy’s equation as:

qα
i = −ρp

i

1

µg

k∇P (3.22)
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Here, ρp
i = ρi

φ
denotes the partial density of the species i in the pore. In addition,

µg denotes the viscosity of the gas mixture, k = kI (I is the identity matrix)

denotes the second-order material permeability tensor and P (=
∑

i Pi = PO2 +PCO2)

represents the total pressure of the gas mixture within the pore. The partial pressures

(Pi) for each specie i are obtained using the ideal gas law (ρP
i = MiPi

RT
, where R is

the universal gas constant and T is the temperature). Similarly, the density of the

mixture within the pore can be computed as ρp = MP
RT

, where M is the averaged

molecular weight of the gas mixture.

The concentration gradient driven mass flux in the porous matrix (based on Ref.

[69]) is given using Fick’s law of diffusion that involves the second-order areal porosity

tensor (ϕA) which is used as a measure of resistance to concentration gradient-driven

flow through the pore network:

qβ
i = −ρpDϕA∇

(
ρp

i

ρp

)
(3.23)

where D is the diffusivity of oxygen w.r.t carbon dioxide. The areal porosity tensor

can be thought of as a ratio of porosity to the tortuosity [6]. We employ the calibrated

isotropic areal porosity from Ref. [69] for the matrix in the micro-scale calculations.

The diffusivity D of gas specie A w.r.t gas specie B as given by the Chapman–Enskog

equation [10]:

D = 0.0018583

√
T 3

(
1

MA
+ 1

MB

)

Pσ2
ABΩD,AB

[
cm2/sec

]
(3.24)

where, Mi is the molecular weight of species i and ΩD,AB and σAB are computed from

the Lennard-Jones potentials of the respective species (the parameters employed are

tabulated in Table 3.1).
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Table 3.1: Lennard Jones potential parameters for the diffusivity between O2 and CO2 (k: Boltz-
mann constant)

σ(Å) ε
k (K) σAB(Å) εAB

k (K)

O2 3.433 113 = 1
2 (σA + σB) =

√
εAεB

k

CO2 3.996 190 = 3.7145 = 146

Temp.(◦C) kT
εAB

ΩD,AB = f( kT
εAB

)

900 8.01 0.7710

950 8.35 0.7657

Based on Eq. 3.21, Eq. 3.22 and Eq. 3.23, the constitutive relationships between

homogenized fluxes and pressure gradients of oxygen and carbon dioxide can be

derived as shown below:

qO2
= κO2/O2∇ρO2 + κO2/CO2∇ρCO2

qCO2
= κCO2/O2∇ρO2 + κCO2/CO2∇ρCO2 (3.25)

where, κA/B denotes the micro–scale diffusivity relating the mass flux of species A

with respect to the pressure gradient of species B and is computed as follows:

κO2/O2 = −PO2

1

φµg

k− D

φ
ϕA PCO2

P

κO2/CO2 =
MO2

MCO2

(−PO2

1

φµg

k +
D

φ
ϕA PO2

P
)

κCO2/O2 =
MCO2

MO2

(−PCO2

1

φµg

k +
D

φ
ϕA PCO2

P
)

κCO2/CO2 = −PCO2

1

φµg

k− D

φ
ϕA PO2

P
(3.26)

The computational approach used for solve for the micro–scale field and flux

distribution using the Taylor and homogenization approaches are listed below:

1. Micro–scale model – Taylor approach: The oxygen and carbon dioxide density

field distributions in the micro–scale are directly obtained from the macro–scale

solution using the Taylor boundary conditions (Eq. 3.10). The fluxes at all
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points within the microstructure are subsequently calculated using Eq. 4.3.

Note that the Taylor solution may not satisfy the micro–scale equilibrium (Eq.

3.18).

2. Micro–scale model – Homogenization approach: Boundary conditions (Eq. 3.13)

are specified in each unit cell. The two coupled non-linear partial differential

equations (Eq. 3.18), one equation each for O2 and CO2) are solved using finite

element analysis. To solve these non-linear equations, Galerkin finite element

method is adopted and the weak form is solved in an incremental iterative

manner using the Newton-Raphson method.

3.4 Macro-scale model

The macroscopic simulation is performed using a diffusion equation that is defined

on a uniformly meshed domain (Ω) with boundaries defined as Γ. Degrading inter-

faces are explicitly modeled at the micro-scale, while only homogenized transport

equations are modeled at the macro-scale as given below:

∂ρ̄O2

∂t
+∇ · q̄O2

= Q̄O2

∂ρ̄CO2

∂t
+∇ · q̄CO2

= −Q̄CO2

ρ̄(Γ, t > 0) = ρ̂, ρ̄(Ω, t = 0) = ρ̄0 (3.27)

where, ρ̄ is the macroscopic (homogenized) partial density and Q̄i is the homogenized

mass consumption rate of species i per unit bulk volume defined as (where f is the

volume fraction of the burnt carbon fiber at the micro–scale):

Q̄i = ρc
Mi

Mc

∂f

∂t
(3.28)

To solve the non-linear transient macroscopic equations (Eq. 3.27), Galerkin

finite element method and backward Euler time integration are adopted and the
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weak form is solved in an incremental iterative manner using the Newton-Raphson

method. The (λ + 1)th Newton-Raphson step at time (t + 1) involves solution of

the system K{δρ̄λ+1,t+1} = f , where the unknown vector in the above system is

the increment in the partial density (δρ̄λ+1,t+1) of oxygen and carbon dioxide. In

our numerical approach, the reference density ρref and consumption rate Q̄ (of each

species i) for the next time step are evaluated at the end of each time step of the

simulation. The reference density ρref is obtained using the macro–micro balance

of mass condition (ρ̄ = 1
V

∫
V

ρdV ) and Eq. 3.1. This definition is consistent with

the condition that stored mass at macro-scale is same as the average micro-scale

stored mass [36]. To further understand the micro-scale quantities that are needed

to create the overall system of equations, the Jacobian matrix and force vector for a

finite element e with shape functions Ni occupying a volume Ωe are expanded below:

From the above equations, it is seen that homogenized diffusivities κ̄A/B relating

the mass flux of species A with respect to the pressure gradient of species B needs

to be defined at each integration point in the macro-scale. The evaluation of the

homogenized diffusivity for Taylor and Homogenization approaches are listed below:

In the Taylor model, the diffusivity is directly obtained by comparing Eq. 3.10, Eq.

4.3 and Eq. 3.16 as:

κ̄A/B =
1

V

∫

Ω

κA/BdV (3.29)
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In the homogenization approach, the homogenized diffusivity can be obtained

using a perturbation analysis [44] or direct matrix manipulation [36]. In the pertur-

bation approach, components of the macroscopic density gradient is independently

perturbed by a small amount ε which affects the boundary conditions at the micro-

scale through Eq. 3.1. The micro-scale problem is solved again using the perturbed

boundary conditions and the resulting perturbation in homogenized flux is used to

compute the homogenized diffusivity. This involves solution of several additional

micro-scale problems during each Newton-Raphson iteration at the macro-scale to

compute the values involved in κ̄A/B. In this work, we follow the FE matrix approach

to obtain homogenized diffusivity by direct manipulation of the converged Jacobian

and residual matrices of the micro-scale problem. The highlight of this approach is

that the diffusivity can be obtained as a closed form expression directly from the

micro–scale solution. The steps to compute the homogenized diffusivity are as fol-

lows. In the finite element formulation (mesh with N nodes), the unknown vector ρ

and the normal flux vector qn are given as:

{ρ} =




ρ1
o2

ρ1
co2

. . .

ρN
o2

ρN
co2




and, {qn} =




q1
no2

q1
nco2

...

qN
no2

qN
nco2




(3.30)

Macroscopic flux is first written using the vector of normal fluxes on the external
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nodes of the microstructure ({qn}ext) using finite element matrix representation as

follows:

q =




qo2

qco2




=
1

V




∫
S

xqno2
dS

∫
S

xqnco2
dS




= L{qn}ext (3.31)

where L is a matrix of size 4 × 2N ext where N ext is the number of nodes on the

external boundary of the microstructure.

To compute the homogenized diffusivity (κ̄ – a 4 × 4 matrix) , one needs to

compute sensitivity of {qext
n } to perturbations in the macroscopic density gradient

δ(∇ρ) as:

δq = L{δqn}ext = κ̄




δ∇ρo2

δ∇ρco2




= κ̄{δ(∇ρ)} (3.32)

To obtain the homogenized diffusivity, the converged finite element solution from the

Newton-Raphson iterations at the micro-scale is employed as follows:




Kee Kei

Kie Kii







δρe

δρi




=




0

0




In the above equation, the assembled matrix (K) on the left hand side is the

Jacobian matrix of the Newton-Raphson iteration. The residual on the right hand

side goes to zero since the micro-scale solution has converged. Vectors δρe and δρi

contain the densities on the external and internal nodes of the microstructure, respec-

tively. The submatrix Kee contains entries in the Jacobian matrix corresponding to

only the external nodes of the microstructure and is of size 2N ext×2N ext. Using our
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boundary condition on the temperatures on the external nodes (Eq. 3.1), sensitivity

of densities on external nodes of the micro-scale mesh to perturbation in the imposed

macroscopic enthalpy gradient can be written as:

{δρe} = G




δ∇ρo2

δ∇ρco2




= G{δ(∇ρ)} (3.33)

where G is a matrix of size 2N ext × 4.

Substituting the above relation into the converged matrix equation at the micro-

scale and taking the known quantities to the right hand side, we obtain the equation:


Kee Kei

Kie Kii







0

δρi




=




−KeeG{δ(∇ρ)}

−KieG{δ(∇ρ)}




The vector on the right hand side provides the sensitivity of microscopic flux to

the macroscopic density gradient, which leads to the homogenized conductivity, κ̄ as

follows:

δqn
ext = −KeeG{δ(∇ρ)}

κ̄ = −LKeeG (3.34)

To aid in speeding up the solution process for the multi-scale problem, the al-

gorithm was parallelized using MPI. The macro-scale domain was decomposed and

elements in each domain distributed to different processors. The underlying micro-

scale problems were solved in serial in each processor. The simulator was developed

using object oriented programming and was dynamically linked to the parallel tool-

box PetSc [8] for parallel assembly and solution of linear systems. For solution of

linear systems, a GMRES solver along with block Jacobi and ILU preconditioning

from the PetSc toolbox was employed.
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3.5 Tracking of the interface using level set method and adaptive mesh-
ing

Level set approach provides a natural way of tracking the degrading interface at

the micro-scale during FE computations. To describe the interface, we construct a

field φ such that at any time t, the interface is equal to the zero level set of φ, i.e.,

SI(t) = {x ∈ V + ∪ V −, such that φ(x, t) = 0}. (3.35)

Initially, φ is set equal to the signed distance function from the interface SI

φ(x, 0) =





+d(x, 0), x ∈ V +;

0, x ∈ SI ;

−d(x, 0), x ∈ V −.

(3.36)

where d(x, 0) is the normal distance of a point x from the interface. The idea

behind the level set method is to move φ with the correct speed v at the interface. The

interface position is thus implicitly stored in φ. The equation of motion governing φ

is given as follows ([74]):

∂φ

∂t
+ v · ∇φ = 0. (3.37)

This equation moves φ with correct speed at the interface so that SI will always

be equal to the zero level set of φ. We employ the stabilized Galerkin formulation

on unstructured adaptive grids for solving the level set equation. The numerical

implementation of the level set method is same as that detailed in Ref. [74].

The mass loss rate of oxygen has been calibrated as an Arrhenius equation using

experimental results in [23]. To convert the measured mass loss rate to the velocity

of oxidation at nodal points in the micro–scale oxidizing interface, we assume that

46



the intact carbon fiber of initial radius r0 oxidizes to a smaller radius r after a short

duration ∆t. The velocity of recession at any point can then be found by scaling the

mass loss rate with the initial as well as current radius ro and r as below:

v =
dr

dt
n =

r0
2

2r
k0e

(−Ea
RT )

(
PO2

P ∗
O2

)k1

n (3.38)

The experimentally calibrated parameters, Ea, k0, k1 from Ref. [69] are listed in

Table 3.2. We approximate the current radius r using the area of current carbon fiber

A as r =
√

A
π
. Note that an inert coating (pyrolitic carbon) is generally applied on the

carbon fiber to provide oxidation resistance. For simplicity, the ensuing simulations

assume that the coating is not present and the carbon fiber is fully exposed to oxygen.

Nevertheless, the effect of coatings can be easily included in this model by using a

different recession velocity (Eq. 3.38) for the coating material.

Table 3.2: List of material constant for the carbon fiber oxidation example.

Material constant Matrix Void C-fiber

Volumetric porosity 0.1 1 0
Permeability

Viscosity

(
m2

kPa sec

)
10−7 0 0

Areal porosity 0.00018 1 0

MO2(g/mol) 32

MCO2(g/mol) 44

MC(g/mol) 12

k0(s−1) 6452.35

Ea(J/mol) 118300

ρc(kg/m3) 1740

r0(µm) 3.5

3.6 Computational approach and Numerical Results

The overall solution scheme is shown in Table. 3. Homogenization and Taylor

model differ in the way the micro–scale problem is solved, with the homogenization
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approach accounting for micro–scale equilibrium.

Table 3.3: Solution scheme for multiscale modeling of carbon fiber oxidation

(1) Initialize macro-scale model and assign a microstructure (and FE meshes) to every
integration point.

(2) Apply time increment ∆t to the macro-scale problem.

(3) Iteration step:

(3.1) Assemble the macroscopic stiffness matrix.

(3.2) Solve the macroscopic system and compute density and the
density gradient at each integration point.

(3.3) Loop over all integration points

(a) (Only done for the first NR iteration) Update the carbon fiber using level
set method.

(b) Taylor model : Transfer densities to every point in the micro-scale mesh
using Eq. 3.10.

Homogenization model : Transfer boundary conditions to micro-scale prob-
lem. Assemble and solve the micro-scale problem.

(c) Calculate the volume averaged macro-flux (Eq. 3.16), the source term
(Eq. 3.28), the macro-diffusivity (Eq. 3.29 for Taylor and Eq. 3.34 for Homogenization
models).

(3.4) Assemble the macroscopic residual vector.

(4) Check convergence, if not converged go to step 3, otherwise go to step 2.

In this section, we focus on the problem of oxidation of an assembly of carbon

fibers within a single carbon tow. Scanning electron micrographs of cross section of

carbon tows reported in Refs. [42, 43] (Fig. 3.2(b)) reveal arrangement of carbon

fibers in a hexagonal lattice within a tow. Micrographs obtained at high magnifi-

cations show the oxidation of individual carbon fibers (Fig. 3.2(c)) as well as the

preferential oxidation of carbon fibers adjoining the porous matrix due to high oxy-

gen availability. As the outer fibers oxidize, oxygen diffuses inward along the voids

formed and react with the interior fibers. The oxidized carbon fiber front (Fig.

3.2(b)) evolves inward into the carbon fiber tow, until all the fibers are oxidized. In

our numerical model, a section of carbon fiber tow (with about 600 carbon fibers)
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is taken to be our macroscopic model. The size of our macroscopic simulation cell

(shown in Fig. 3.3(a)) is indicated using dotted lines on the micrographs. In the

macroscopic model, the evolution of homogenized carbon density is tracked as oxy-

gen diffuses from the left end to the right end. All the boundaries in the model are

insulated (as shown in Fig. 3.2(a)) except one side that is exposed to the external en-

vironment of pure oxygen with imposed pressures of PO2 = 0.1atm and PCO2 = 0atm

for t > 0. The system is modelled at a constant temperature of 950◦C. An initial

condition (at t = 0) of PO2 = 0.1atm and PCO2 = 0atm is imposed at all points in

the specimen. The micro–scale physics of carbon fiber oxidation is introduced by

modeling a single carbon fiber within a hexagonal unit cell as shown in Fig. 3.3(b).

Since the carbon fibers do not mediate the diffusion of the gas species, the carbon

fiber is not modeled in the microscale. The unit cell is assigned to each integration

point in the macro–grid.

3.6.1 Convergence study

Micro–scale mesh convergence study was performed by considering the volume

loss of carbon fibers as the convergence metric. Adaptive meshing is used to track

the evolving micro–scale carbon fiber interface. A refinement procedure based on

unstructured grids is employed in this work. During mesh refinement, each triangular

element is subdivided into four triangles (as shown in Fig. 3.4(a)) by adding middle

nodes at its three edges. Information about the level of refinement is stored in a tree

data structure following the approach in Ref. [74], which is capable of tracking refined

elements and ensures overall grid conformity. Due to the use of such unstructured

grids, we report the level of adaptivity using the smallest element edge length in

the mesh. The adaptive meshing strategy used in the micro–scale is shown in Fig.

3.4(b). The resulting mesh is coarser in the porous matrix and progressively becomes
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c

b

a

Figure 3.2: The micrographs represent experimental results of C/SiC composite oxidation in a con-
trolled environment reported in [42] and [43]. Figure (d) shows the simulation cell: all
the boundaries in the model are insulated except one side that is exposed to the external
oxidizing environment. Size of the simulation cell at the macro–scale is indicated using
dotted lines in (b). The simulation cell contains about 600 carbon fibers.

finer as we reach closer to the evolving interface.

For this micro–scale convergence study, a constant oxygen pressure of 0.05atm is

imposed at all points in the micro–scale unit cell. As shown in the Fig. 3.5(a), it

is seen that the temporal evolution of carbon fiber volume converges as the level of

mesh adaptivity increases. Based on this study, we selected the adaptive mesh setting

that ensures a minimum element size of 0.029 microns for the micro–scale problem.

Subsequently, macro–scale grid convergence was tested using the configuration given

in Fig. 3.2(a)). An ambient pressure of PO2 = 0.1atm and PCO2 = 0atm for t > 0

is employed. The temporal evolution of macro–scale carbon fiber volume fraction is

reported for various different macro–scale FE meshes in Fig. 3.5(b). Taylor model

was employed and time–steps were chosen adaptively during the simulation to ensure
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10.0 µm

(a) (b)

Figure 3.3: (a) 2D Macro-scale finite element grid (b) Micro–scale finite element grid

convergence of the overall multi–scale system. A grid with 12 elements along the x-

axis and 3 elements along the y- axis was selected (a 12× 3 grid, Fig. 3.3(a)) based

on this study and employed in the subsequent simulations.

3.6.2 Numerical results of the Taylor and Homogenization multi-scale model

Simulation of carbon tow oxidation in the configuration depicted in Fig. 3.2(a)

was carried out using both Taylor and Homogenization approaches. In general,

simulations reveal diffusion controlled kinetics at the beginning of oxidation. As the

carbon fibers oxidize, a void is created in place of the oxidized carbon fiber. This

greatly increases subsequent diffusion of oxygen towards the interior of the carbon

tow. Due to increased oxygen availability, a transition from diffusion controlled

kinetics to reaction controlled kinetics is seen. This is exemplified by a linear rate

law, ie. oxidized carbon volume fraction increasing linearly with respect to time. A

mixed rate law of the following form describes the overall oxidation process:

√
x

kr

+
x

kl

= t (3.39)

where, kr and kl are the rate constants. Fig. 3.6(a) compares the oxidized carbon

fiber volume fraction predicted at various times by the Taylor and homogenization

approaches. Both Taylor and Homogenization approaches show similar behavior,
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(a)

(b)

Figure 3.4: (a) A typical sequence of mesh refinement is shown along with the associated data
structure. (b) Oxidizing interface is accurately tracked using this adaptive meshing
strategy.

and in both cases, the transition to a reaction dominated regime occurs at a time

of about 13 seconds. However, the reaction rate constants predicted by the Taylor

and Homogenization approaches are quite different as seen in Table. 3.4. The Taylor

model provides a overconstrained response compared to FE homogenization approach

due to strict imposition of oxygen and carbon dioxide densities within the unit cell.

In fact, the Taylor model provides an upper bound response for system, an effect

well studied in literature (eg. [70]). This is further exemplified in Fig. 3.6(b) which

shows the oxygen partial pressure distribution within the macro–scale mesh at various

times. The Taylor model, as expected, predicts faster oxygen transport within the

tow compared to the FE homogenization approach. FE homogenization approach

solves the micro–scale equilibrium equations and the micro–scale solution is more
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Figure 3.5: (a) Micro–scale convergence study: Carbon fiber volume at the micro–scale is tracked
as a function of time using different levels of adaptive meshing. The minimum element
edge length in the mesh is reported here. The volume is calculated with assuming the
length in z-direction is 1mm.(b) Macro–scale convergence study: Carbon fiber volume
fraction vs. time is plotted for different mesh sizes. A mesh size of a × b indicates a
elements along x–axis and b elements along the y–axis

physically reasonable. However, the choice of selection of one model versus another

is based on the relative importance of accuracy versus computational speed. In the

Taylor model, there is no need for finite element computations at the micro–scale

and the convergence of the overall non–linear multiscale scheme is faster. In the case

considered here, Taylor model was solved four times faster than the homogenization

model.

Table 3.4: Square root and linear rate constants obtained by curve fitting the simulation results

kr × 104(1/s2) kl × 102(1/s) Transient time(sec)

Taylor 13.7 3.8 13.1

Homogenization 8.4 2.5 13.1

In order to illustrate changes in the carbon fiber configuration in the micro–scale,

the Taylor model solution at selected 6 integration points are shown in Fig. 3.7 at

a time of 25.1 seconds. Although the macro–problem studied corresponds to a one

dimensional diffusion, the micro–scale oxidation results shown in Fig. 3.7 do not

follow this trend. Indeed, the one dimensional nature of the macroscopic density
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Figure 3.6: Comparison of Taylor and Homogenization approaches (a) Recessed carbon fiber volume
fraction vs. time at the macro-scale. (b) Oxygen pressure distributions at various times
in the macro–scale.

gradient is considered in the micro–scale simulation through the scale linking equa-

tion (Eq. 3.1). However, the characteristic length scale over which the macroscopic

field variables vary is much larger than the size of the microscopic volume considered.

Consequently, the contribution of the macroscopic gradient term to the micro–scale

oxygen and carbon dioxide density (ie. term ∇ρ · x in Eq. 2.1) is not significant

compared to the macroscopic oxygen density term (term ρref in Eq. 3.1). In other

words, the macroscopic oxygen density field translates to a nearly constant oxygen

density at the level of the RVE. This kind of uniform oxidation of carbon fibers is

indeed seen from experimental micrographs as shown in Fig. 3.2(d).

A comparison of the simulation results from the Taylor and homogenization ap-

proaches at various locations in the macroscopic mesh at a simulation time of 25.1

seconds is shown in Fig. 3.8. In this figure, the tan, white and blue colored areas

indicate matrix, void and carbon fiber respectively. Both Taylor and homogenization

models indicate complete oxidation of the carbon fibers located closest to the exposed

macro–scale surface (left edge) at 25.1 seconds. The oxygen partial pressure solution

at the micro–scale shows the contrast between the two approaches. The boundary

conditions in the Taylor model lead to enforcement of high oxygen densities within
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(a)

Figure 3.7: Carbon fiber configurations in micro at 25.1 seconds at 950◦C; tan, white and blue
colored area indicate matrix, void and carbon fiber respectively.

the matrix compared to the physically accurate solution from homogenization that

satisfies micro–scale equilibrium. In the steady state micro–scale solution, the oxy-

gen density in the void (that is left behind after oxidation of the carbon fiber) is

expected to be uniform due to much faster diffusion in the void compared to the

porous matrix. This is clearly seen from the homogenization approach, while in the

Taylor model, a variation of oxygen density in the void is enforced. Further, in all

cases, the Taylor model provides an upper bound for the oxygen density solution

(and faster oxidation) at both macro– and micro–scales. The Taylor model predicts

partial oxidation while homogenization approach predicts an almost intact carbon

fiber at an integration point located on the right end. This effect is clearly seen by

plotting the spatial distribution of carbon volume fraction in the composite at 0, 11.1

and 25 seconds (as shown in Fig. 3.9).

The pore structure of C/SiC composite is affected by thermally induced stresses in
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the component. Thermal stresses result in matrix cracks and de-bonds between the

carbon fibers, the pyro-carbon coating and the SiC matrix. One would expect that

the porosity in the matrix will be a complex function of temperature, heating rate and

externally applied loads. Deformation and thermal shocks lead to increased damage

in the matrix, thus increasing oxygen availability at degrading interfaces. Increased

oxidation, in turn, leads to overall weakening of the material making it susceptible to

further damage. This phenomena of strong ‘stress-oxidation’ coupling is explained

in [76]. The micro-scale model presented here is a first step towards a multi-scale

approach for studying stress-oxidation coupling and associated mechanical property

degradation in C/SiC composites. In the future, we plan to model the structural

loading and thermal cycling effects that lead to porosity evolution and increased

oxygen diffusion in the matrix.

3.7 Conclusion

In this paper, a non-linear coupled macro-micro finite element model is presented

for addressing carbon fiber oxidation problems. Oxidation involves evolution of car-

bon fiber surfaces coupled with flux jump boundary conditions across interfaces that

have not been addressed using homogenization approaches. Homogenization of com-

plex micro-scale behavior including moving interfaces and flux jumps has been per-

formed in this work. Based on the Hill’s macro-homogeneity condition, macroscopic

quantities are evaluated via consistent averaging of the microscopic values. The

micro-scale model incorporates the physics associated with oxidation including mov-

ing interfaces and flux discontinuities, while the macro-scale model needs to only

model diffusion using continuous (homogenized) fields. Two multiscaling procedures

were outlined in this work: one based on assumed solution in the micro–scale (Taylor
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model) and another based finite element solution of the micro–scale problem (Ho-

mogenization approach). A nested finite element solution scheme is implemented into

a FE framework and the macroscopic diffusivity is derived in a consistent manner

for these two approaches.

The results from these two multi–scaling approaches were compared for a simple

one dimensional oxidation of a carbon fiber tow. In both models, the influence of

microstructural evolution (e.g. carbon fiber oxidation) on the competition between

macroscopic oxygen and carbon dioxide transport in the macro–scale can be intro-

duced and treated effectively. Taylor model is computationally efficient but provides

an upper bound response and predicts faster oxygen transport within the tow com-

pared to the FE homogenization approach. The proposed method, when combined

with thermo–mechanical field effects, constitutes a powerful tool, for modeling high

temperature oxidation of composites. The homogenization approach enhances the

understanding and modeling of micro–scale interfacial phenomena and in the fu-

ture, would allow modeling of interesting mechanisms such as interaction of porosity

evolution with carbon fiber oxidation (‘stress–oxidation coupling’) that cannot be

explained without incorporating microstructural details.
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Figure 3.8: Comparison of carbon fiber configuration and micro–scale oxygen densities for Taylor
and homogenization approaches at a simulation time of 25.1 seconds.
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Figure 3.9: Spatial distributions of carbon fiber volume fraction at each integration points in macro
at 0, 11.1 and 25.1 sec for (a) Taylor and (b) Homogenization model
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CHAPTER IV

Multi-scale model validation with direct numerical
simulations(DNS)

1In the previous chapter, two different multiscaling approaches (viz. Taylor and

Homogenization) methods were directly compared. Lack of analytical models for

the complex problem of fiber oxidation prevent us from validating these multiscale

approaches directly as was done for the solidification example in chapter 2. Instead,

in this chapter, we validate the multiscale model by comparing the homogenization

approach with a fully implicit direct numerical simulation.

4.1 Direct numerical simulation

In the direct numerical simulation, micro-scale resolution grids are used to solve

the macro–scale problem. This ensures that microstructure dependence is captured

directly at the macro-scale albeit with great computational expense. It is expected

that multiscaling approaches can give solutions close to what is predicted by a direct

numerical simulation. We focus on the problem of oxidation of an assembly of carbon

fibers within a single carbon tow. The direct numerical simulation(DNS) model is

shown in Fig. 4.1 (d). The DNS model has to capture the micro–scale carbon fibers

within the tow and thus, involves millions of elements and is clearly more expensive
1Reproduced from S Lee and V Sundararaghavan, Validation of Multi-scale model of oxidative degradation of

C/SiC composite using direct numerical simulations (DNS), International Journal for Numerical Methods in Engi-
neering, submitted, 2010
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than our multi-scale model. The length of the DNS model along the x– axis is 120µm

which implies that 16 fibers were modeled. The corresponding macro–scale models

are shown in Fig. 4.1 (b). The micro–scale representative volume element for the

multiscale model is shown in Fig. 4.1 (c) with a 7 µm carbon fiber within a hexagonal

unit cell. The homogenization approach (rather than the approximate Taylor model)

was employed in this study.

The microscopic mass conservation equation is directly solved in the DNS model

and is given as:

∂ρ̄i

∂t
+∇ · q̄i = −∇ · (ρiv)

ρ̄i(Γ, t > 0) = ρ̂i, ρ̄i(Ω, t = 0) = ρ̄0i (4.1)

where, qi denotes the mass flux of species i and ρi denotes the partial density

of species i, and v represents the velocity of recession of the exposed carbon (v

is non-zero only on the evolving interface). The direct numerical model includes

both density jump ([|ρi|]) and flux jump ([|qi|]) for each specie i in the normal

direction across the oxidizing interface. The following interface flux condition is used

to simulate mass loss of carbon fiber during oxidation:

q+
O2

= −MO2

MC

ρcv, q+
CO2

=
MCO2

MC

ρcv on SI (4.2)

where, ρc is the density of the carbon fiber and Mi denotes the molecular mass of

species i. The sign in the above equation indicates that oxygen is consumed and

carbon dioxide is released at the interface during oxidation.

The constitutive relationships between fluxes and pressure gradients of oxygen

and carbon dioxide are derived as shown below (details in section 3.3.1):

qO2
= κO2/O2∇ρO2 + κO2/CO2∇ρCO2

qCO2
= κCO2/O2∇ρO2 + κCO2/CO2∇ρCO2 (4.3)
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where, κA/B denotes the micro–scale diffusivity relating the mass flux of species A

with respect to the pressure gradient of species B and is computed as follows:

κO2/O2 = −PO2

1

φµg

k− D

φ
ϕA PCO2

P

κO2/CO2 =
MO2

MCO2

(−PO2

1

φµg

k +
D

φ
ϕA PO2

P
)

κCO2/O2 =
MCO2

MO2

(−PCO2

1

φµg

k +
D

φ
ϕA PCO2

P
)

κCO2/CO2 = −PCO2

1

φµg

k− D

φ
ϕA PO2

P
(4.4)

Two coupled non-linear partial differential equations (Eq. 4.1, one equation each

for O2 and CO2) are solved using finite element analysis. To solve these non-linear

equations, Galerkin finite element method is adopted and the weak form is solved

in an incremental iterative manner using the Newton-Raphson method. Level set

approach is used to track the degrading interface during FE computations. The mass

loss rate of oxygen has been calibrated as an Arrhenius equation using experimental

results in [23] and Eq. 3.38 is used to model the interface velocity. We employ the

stabilized Galerkin formulation on unstructured adaptive grids for solving the level

set equation. In the direct numerical simulation, multiple carbon fiber interfaces are

tracked simultaneously using multiple level set functions for each carbon fiber. The

numerical implementation of the multi–level set method is same as that detailed in

Ref. [74]. The overall solution scheme for the direct numerical model is shown in

Table 4.1.

4.2 Computational approach and numerical results

DNS mesh convergence study was performed by considering the volume loss of

carbon fibers as the convergence metric. Adaptive meshing (based on unstructured

grids) and level set technique is used to track the evolving carbon fiber interface. To

62



Table 4.1: Solution scheme for direct numerical simulation of carbon fiber oxidation
(1) Initialize FE model for level set method.

(2) Set initial and boundary conditions.

(3) Apply time increment ∆t.

(4) Update the carbon fibers using level set method based on the previous time step data.

(5) Obtain new FE model for diffusion from the product of the level set method, and
transfer all data.

(6) Set initial guesses for new FE model.

(7) Iteration step:

(7.1) Assemble the stiffness matrix(Jaccobian) and force vectors.

(7.2) Solve linearized system and compute residuals.

(7.3) Compute new guesses.

(8) Check convergence, if not converged go to step 7.

(9) Transfer data from diffusion FEM to level set method. Go to step 3.

test the convergence of this approach, a constant oxygen pressure, 0.1atm, is applied

at every node, and the carbon fiber surfaces were tracked using the level set method.

The test results are plotted in Fig. 4.2(b) as a function of number of elements used in

the DNS grid. In the figure, it is seen that carbon fiber volume change converges as

finer meshes are utilized. The level of mesh adaptivity (or the number of elements)

needed for convergence was selected from this preliminary study.

In the 16 fiber tow simulation, an ambient pressure of PO2 = 0.1atm and PCO2 =

0atm for t > 0 was imposed on the left end and all other surfaces were insulated

(similar to the examples in the previous chapter). The temporal evolution of macro–

scale carbon fiber volume fraction is reported for various different macro–scale FE

meshes in Fig. 4.3. At the length scales simulated here, the micro–scale meshes

become comparable in size to the macro–scale grid. Note that in homogenization

approaches, the micro–scale is considered to be much smaller compared to the macro–

scale which makes it possible to draw the boundary conditions for the micro–scale
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from a single point on the macro–scale. Thus, the use of coarser meshes satisfies the

homogenization assumption better. The oxidized carbon volume fraction predicted

by both DNS and multiscale model with an 8 element mesh are compared in Fig

4.4(a). The multiscale results show an excellent comparison with DNS approach,

although faster oxidation is seen in homogenization approaches with coarser meshes

(compare with Fig 4.3(a)). The DNS simulation predicts almost uniform distribu-

tion of oxygen volume fraction with a sharp interface separating the oxidized and

non-oxidized volumes (Fig 4.4(b)). However, oxygen concentration is smeared in the

multiscale model leading to higher oxygen densities in regions to the right of the

expected sharp interface. These regions begin to oxidize sooner than expected.

Several selected micro–scale volumes in the homogenized model were also com-

pared with the DNS model directly. Details of the microscopic simulation results

from the DNS and multi-scale model are provided in Fig. 4.5. The oxidized car-

bon volume fractions are shown in Fig. 4.5(b) and Fig 4.5(c), and oxygen pressure

contours are shown in Fig 4.5(a) and Fig 4.5(d) at t = 14.1(sec). In (b) and (c),

the blue, white, and tan colored areas denote carbon fiber, void(oxidized area), and

ceramic matrix respectively. Each carbon fiber in the micro–scale is drawn from a

specific point in the macroscopic mesh. Carbon fibers in DNS model are zoomed

from regions around these points (shown as blue boxes) in Fig. 4.5. The carbon

fiber configurations shown compare reasonably well compared to the DNS simula-

tion. Finally, comparison of computational cost is reported here, and it is concluded

at the multi–scale approach provides relatively inexpensive numerical simulations.

For the DNS simulation with 16 carbon fibers, the required number of elements is

about 400,000 and the computational time is about 3 hours and 43 minutes with 8
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processors and parallel computing. However, computational time for the multi-scale

homogenization approach is about 1 hour 36 minutes without parallel computation,

where 8 and 15,000 elements of macro- and microscopic mesh, respectively, were

used.

4.3 Conclusions

Lack of analytical models for the complex problem of fiber oxidation prevent us

from validating multiscale approaches directly. Instead, in this chapter, we validated

the multiscale model by comparing the homogenization approach with a fully implicit

direct numerical simulation. In the direct numerical simulation, micro-scale resolu-

tion grids are used to solve the macro–scale problem. This ensures that microstruc-

ture dependence is captured, albeit with great computational overhead. We focused

on the problem of oxidation of a single carbon tow with 16 fibers. The carbon fiber

volume fractions predicted by the multiscale model compared well with the direct

numerical simulation. In general, based on the homogenization assumption, mul-

tiscale simulations with macro–scale meshes that are much larger than micro–scale

grids are generally used. As the macro–scale grids becomes coarser, homogenization

approaches predict faster oxidation. DNS predicts almost uniform distribution of

oxygen pressures with a sharp interface separating the oxidized and non-oxidized

volumes. However, oxygen concentration is smeared in the multiscale model leading

to higher oxygen densities in regions to the right of the expected sharp interface.

These regions begin to oxidize sooner in the multiscale model. In spite of these is-

sues, it is observed that the multiscale model provides reasonable prediction of carbon

fiber volume fraction loss with considerably less computational expense. Multiscale

modeling is a viable method for simulating oxidation of CMCs with thousands of
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carbon fibers, at length scales inaccessible to direct numerical simulations.
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Figure 4.1: (a) 2D Macro-scale finite element grid (b) 2D Macro-scale finite element grid for vali-
dation corresponding to DNS model scale(c) Micro–scale finite element grid (d) Direct
numerical simulation finite element grid (e) Larger view of the DNS model over a region
indicated by the red box
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Figure 4.5: Four selected micro–scale models on the integration points in the macro–grid are com-
pared with the DNS model: (a) and (b) show the micro–scale configuration and oxygen
partial pressure, respectively, from DNS approach. Figs (c) and (d) correspond to those
from the multi-scale model. Colors blue, white, and tan denote carbon fiber, void, and
matrix respectively.
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CHAPTER V

A 3D multiscale model for property degradation of CMCs:
Temperature and stress effects

Developments in the previous chapters focused on validation of the multiscale

model using a simple tow geometries with few fibers. In real-life applications of

CMC components, larger length scales need to be modeled. In particular, woven

composites are made up of an intricate weave of carbon fiber tows impregnated with

SiC matrix. Each carbon fiber tow may contain thousands of fibers and each compo-

nent may contain several interwoven tows. In this chapter, we extend our multiscale

methodology to address oxidation of complex tow geometries. For model validation,

we consider the ceramic matrix composite configuration used in the oxidation ex-

periments at NASA [22]. This composite had a biaxial carbon fiber weave whose

geometry was ascertained from SEM images provided in [22]. Steps were taken to

reduce the computational expense associated with a full 3D multiscale simulation: (i)

Instead of using unstructured meshes adaptive to the carbon fiber tows, we employed

a structured FE mesh in the macro-scale. (ii) In addition, a mesh of a representative

unit cell (RUC) was created. In the RUC, material indicators were assigned to all the

nodes and integration points to signify if the point is within a tow or the matrix as

shown in the Fig. 5.1 (a). The basic representative unit cell(RUC) geometry is shown

in Fig. 5.1(b). The RUC can be periodically translated to generate the composite
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(a) (b)

Figure 5.1: (a) Ceramic matrix and carbon fiber tow are indicated with values 1 and 0 at the finite
element nodes and integration points where white box is 1 and black box is 0, (b) Repre-
sentative unit cell is called to identify the material at any given point in the macroscale
mesh.

Figure 5.2: Tow undulation and cross-section dimensions

structure. The undulation of carbon fiber tow and its cross sectional dimensions for

the RUC were computed from SEM images in Ref. [22] and are presented in Fig. 5.2.

During simulation of a composite structure, the material indicator corresponding to

a location (x) in the macro-scale was found by first mapping it to the corresponding

point on the RUC, and then, by finding the material indicator assigned to that point.

In the FE mesh, additional variables are used to store bias and undulation angles of

the carbon fiber.
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5.1 Matrix and vector transformation

Although the matrix itself has isotropic properties, the carbon fiber is a trans-

versely isotropic material. It has different properties along the longitudinal and cross

sectional plane and the overall mechanical response of the composite depends on fiber

configuration. In order to compute degradation in properties (like Young’s moduli)

during oxidation, it is important to consider the tow undulations and rotate the fiber

properties in a local coordinate frame to the global coordinate frame. Let Ri (θ) de-

note a rotation with respect to fixed axis, i, through an angle θ. At the level of a

carbon fiber, transversely isotropic stiffness is described in the local axes 1− 2−3 as

Df =




D11 D12 D12 0 0 0

D12 D22 D12 0 0 0

D12 D12 D22 0 0 0

0 0 0 D44 0 0

0 0 0 0 D55 0

0 0 0 0 0 D55




(5.1)

As shown in Fig. 5.3, biaxial carbon fiber fabric has angles, ψ = 0 or 90◦, with

respect to global coordinate, x− y − z, and undulation angles, θ, known from local

axes, x′ − y′ − z′. The rotated matrix in the global reference frame is given as:

D̄ = RT
y (ψ) RT

z′ (θ) DfRz′ (θ) Ry (ψ) (5.2)
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The rotation matrix for stiffness matrix in cartesian coordinate is given in [55] as:

Ry (θ) =




m2 0 n2 0 −2nm 0

0 1 0 0 0 0

n2 0 m2 0 2nm 0

0 0 0 m 0 n

nm 0 −nm 0 −n2 + m2 0

0 0 0 −n 0 m




(5.3)

Rz′ (θ) =




m2 n2 0 0 0 2nm

n2 m2 0 0 0 −2nm

0 0 1 0 0 0

0 0 0 m −n 0

0 0 0 n m 0

−nm nm 0 0 0 −n2 + m2




(5.4)

where m = cos (θ) and n = sin (θ).

5.2 Computational Homogenization Approach: Micro-scale Boundary
Conditions

The multiscale approach for diffusion has already been described in chapter 2

and 3. We purely focus on multiscaling of deformation in this section. To identify
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Figure 5.3: The carbon fiber weave can be described with representative unit cell in which biaxial
carbon fiber tows are modeled and the angle ψ denotes directions of carbon fiber tow
with respect to x− y − z coordinate system. From the carbon fiber tow, the undulation
angle, θ, shows fiber directions with respect to axes x′ − y′ − z′.

boundary conditions that needs to be employed at the unit-cell level, we employ the

computational homogenization approach developed in [70].

Let y : Bref → B represent the non-linear deformation map of the micro–scale

mesh at time t, and F = ∇refy the associated tangent map (see Fig. 5.4). F

maps points Y ∈ Bref onto points y(Y , t) of the current configuration B. The

reference microscale configuration is considered of volume V (Bref ) and boundary

∂Bref with outward normal N attached to point X in the macro-continuum (Ωref ).

The microstructure at time t of volume V (B) and boundary ∂B with outward normal

n is attached to the material point x in the macro-continuum Ω (see Fig. 5.4). We

use superposed bars (e.g. F̄ ) to denote macro-scale quantities as before. Voids and

cracks are modeled using a damage variable in our model and hence, it is assumed

that the geometry is continuous (without cracks).

The most general assumption behind homogenization theory is that the deforma-
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Figure 5.4: The microstructure homogenization technique: Each integration point in the macro-
continuum is associated with an underlying microstructure. The microstructure refer-
ence configuration (Bref ) and the mapping to the present microstructure configuration
(B) are shown in contrast with the homogenized macro-continuum. In total Lagrangian
kinematics, X = xo and Y = yo are taken from the configurations at time t = to.

tion gradient as seen at the macro-scale can be represented purely in terms of the

motion of the exterior boundary of the microstructure (see Hill (1972)),

F̄ =
1

V (Bref )

∫

∂Bref

y ⊗NdA (5.5)

The deformation of the microstructure is then related to the homogenized deforma-

tion gradient in the macro-continuum based on the assumption,

y = F̄Y + w̃ (5.6)

where the deformation consists of a homogeneous part F̄ Y and an inhomoge-

neous part w̃ referred to as the fluctuation field. As a consequence, we have the

relationship, F = F̄ + F̃ (with F̃ = ∇w̃) between the microscopic (F ) and the

macroscopic (F̄ ) deformation gradients. From the homogenization law (Eq. (5.5))

and the decomposition described above, it can be shown that the superposed field w̃
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follows the equation,

1

V (Bref )

∫

∂Bref

w̃⊗NdA = 0 (5.7)

The condition is satisfied by the use of any one of the three linking assumptions: (1)

w̃ = 0 in Bref (Taylor), (2) w̃ = 0 in ∂Bref (homogenization), and (3) w̃+ = w̃−

(periodic boundary condition).

Macroscopic stress is defined according to a simple virtual work consideration.

Here, the variation of the internal work δWint performed by the homogenized PK-

I stress tensor P̄ at the macroscopic point on arbitrarily virtual displacements of

the microstructure δy is required to be equal to the work δWext performed by the

external loads on the microstructure. Internal work done by the macroscopic stress

can be written as

δWint =

∫

Bref

P̄ •∇refδydV (5.8)

= P̄ •

∫

∂Bref

δy ⊗NdA (5.9)

External work is given as δWext =
∫

∂Bref
p · δydA, where p is the traction vector

at the boundary of the reference microstructure. For the homogenization bound-

ary condition, the virtual displacements at the boundary of the microstructure are

obtained from the variation of the macroscopic deformation gradient as,

δy = δF̄ Y (5.10)

Thus, the external work can be written as δWext = δF̄ •
∫

∂Bref
Y ⊗pdA. For satisfying

the balance of virtual work,

δF̄ •

∫

∂Bref

Y ⊗ pdA = P̄ •

∫

∂Bref

δy ⊗NdA

= P̄ δF̄ •

∫

∂Bref

Y ⊗NdA

= δF̄ • P̄V (Bref )
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Taking into account the fact that the equality should be satisfied for any arbitrary

variation of the deformation gradient tensor δF̄ , we obtain the macroscopic stresses

to be of the form

P̄ =
1

V (Bref )

∫

∂Bref

Y ⊗ pdA (5.11)

An equilibrium state of the micro-structure at a certain stage of the deformation

process is then assumed with the equations,

∇ref • P = 0 in Bref (5.12)

P T N = p on ∂Bref (5.13)

Using the divergence theorem, macroscopic stresses as defined by Eq. (5.11) can be

shown to be the volume-average of the microscopic stresses (P )

P̄ =
1

V (Bref )

∫

Bref

P dV (5.14)

Similar result can also be obtained using Hill’s macro homogeneity condition (that

relates fluxes P and field gradients ∇u):

∇u · P̄ = ∇u · P (5.15)

According to the Hill’s condition, following macroscopic stress can be derived

(when using the Taylor model) as:

∇u · P =
1

V (Bref )

∫

Bref

∇u · P dV =
1

V (Bref )

∫

Bref

∇{(
F − 1

)
Y

} · P dV

=
(
F − 1

) · 1

V (Bref )

∫

Bref

P dV = ∇u · 1

V (Bref )

∫

Bref

P dV (5.16)

The macro stress can be obtained by comparing Eq. 5.16 with Eq. 5.15:

P̄ =
1

V (Bref )

∫

Bref

P dV (5.17)
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Apart from these definitions, in macro-problems with temperature effects, the

temperature linking is achieved through equating the macro- (θ̄) and micro- (θ) tem-

peratures (and the macro- and micro- mechanical dissipation, if any). Microstructure

(material point) simulations are deemed isothermal in this work since the macro-scale

temperature evolution problem is not solved.

5.3 Micro–scale model for elasticity

The kinematic problem for microstructure deformation employs the total La-

grangian framework. Here, the total micro-scale deformation gradient F at time

t = tn of configuration Bn with respect to the initial undeformed configuration (B0)

at time t = 0 is assumed to be decomposed as

F = ∇0ỹ(Y 0, tn)

(5.18)

Going back to Fig.5.4, using the total Lagrangian description of kinematics, Bref

would now refer to Bo. Quantities used in the derivation of homogenized stresses

would now be defined with respect to Bo.

The equilibrium equations for the microstructure deformation problem can be

expressed in the reference configuration Bo as,

∇o · P = 0 (5.19)

where the PK-I stress P (Y o, t) is expressed per unit area of Bo. The solution

of a generic loading increment involves the solution to the principle of virtual work

(PVW) given as follows: Calculate y(Y o, t) such that

∫

Bo

P · ∇oũdV = 0 (5.20)
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for every admissible test function ũ expressed over the reference configuration Bo.

When using the Taylor model, the displacement increments are specified as u =

(F − I)Y at every point on the microstructure. The weak form is then solved in an

incremental-iterative manner as a result of material non-linearities.

The governing equation can be used for a deformation model presented in Fig.

5.5 in which pore evolution is described during coupled stress-diffusion conditions.

Preexisting cracks either close or extend upon mechanical and thermal loading. In

the current model, it is included void nucleation and growth as well as void healing

due to thermal expansion as studied in [68]. Total deformation resulted in thermal

expansion, void, and elastic deformation can be expressed as

F = F eF vF θ (5.21)

where, F θ, F v, and F e are the deformation gradients representing thermal expansion,

void growth, and elastic deformation respectively. F v is the inelastic deformation

gradient attributed to void formation and det (F v) can be considered as a measure

of internal damage. Damage in the form of void growth comes into play by taking

into account the balance of mass for a porous material as

det (F v) =
1− φ0

1− φ
(5.22)

where φ0 and φ represent the void volume fractions in the initial and deformed

configurations. The functional form for φ as a function of stress and temperature is

calibrated in the later sections.

Velocity gradient for unstressed isotropic thermal expansion represents thermal

part of the deformation as

∇vθ = Ḟ θF
−1
θ = αṪI (5.23)

79



Figure 5.5: Kinematics coupled with damage evolution in the matrix.

where, α is coefficient thermal expansion (CTE) and I is the isotropic tensor.

In the case of elastic deformation, the following constitutive relation is considered

S = C : E (5.24)

where S and C are second Piola-Kirchhoff(PK-II) stress and fourth order elastic-

ity tensor respectively. The first Piola-Kirchhoff (PK-I) stress is related to S as

P = FS. The Lagrangian strain tensor, E, is defined in the relaxed unstressed

configuration as:

E =
1

2

(
F T

e F e − 1
)

(5.25)

The stresses and strains are rewritten in a 6 × 1 vector format and the 6 × 6

stiffness matrix is used in subsequent calculations.

S = DE (5.26)
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Different D matrices are used for the matrix, carbon fiber and void: Dm for matrix,

Dc for carbon fiber, and Dv for void. Regarding compliance of void, it should be

noted that much smaller values are used for void compared to matrix and carbon

fiber in order to avoid unexpected numerical stability issues.

5.4 Deformation under mechanical loading

In the finite element solution, ΓT and Γu denote the regions in the initial con-

figuration where traction (T ) and displacement boundary conditions, respectively,

are applied. We assume that the tractions are explicitly defined on the initial con-

figuration. The finite element weak form for the deformation problem is written

as:

G =

∫

V (B0)

P · ∇wdV −
∫

∂ΓT

w · TdS = 0 (5.27)

where, u is the unknown displacement and w denotes the weighting function. The

non-linear weak form is solved by adopting Newton-Raphson iteration. Displacement

(un+1) at n + 1th iteration is computed as:

un+1 = un − J−1 (un) G (un) (5.28)

where J is the Jacobian matrix of functional G with respect to u, and is written as:

J = δG =

∫

Ω

∇w · δP dV (5.29)

δP = C : δF (5.30)

where C is the fourth order elasticity tensor computed from the microscale model.

At the micro-scale, using 5.17, the homogenized 6×6 elasticity matrix for the Taylor
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model can be obtained as:

Df =
1

V

∫

V

(DmVm + DfVf + DvVv) dV (5.31)

Eq. 5.2 is subsequently used to rotate Df and obtain the homogenized stiffness

matrix, D, corresponding to the particular tow orientation at the macro–scale point.

5.5 Micro–scale Taylor model for O2 and CO2 diffusion in porous matrix

In the micro-scale model the following interface flux condition is used to simulate

mass loss of carbon fiber during oxidation:

qv
O2

= −ϕS MO2

MC

ρcv, qv
CO2

= ϕS MCO2

MC

ρcv on SI2 (5.32)

where, ρc is the density of the carbon fiber and Mi denotes the molecular mass of

species i. In the equation, surface area fraction, ϕS, is introduced to represent pore

morphology dependence to the reaction rate as presented in[69]. The sign in the

above equation indicates that oxygen is consumed and carbon dioxide is released

at the interface during oxidation. The presence of interface flux at the micro–scale

leads to a homogenized source term (for oxygen and carbon dioxide densities) in

the macroscopic model. The recession speed of the carbon fiber, v, depends on

temperature and material composition. Because the carbon fiber is initially coated

by pyrocarbon, different oxidation rates were used to account for the coating. The

reaction rate has a Arrhenius form, assuming that pyrocarbon coating has a larger

activation energy compared to the carbon fiber. The rate constant of 6452.32(s−1) is

used for both carbon fiber and the coating. An activation energy of 118.3(kJ/mole)

is used for carbon fiber [69] and a value of 127.76(kJ/mole) is used for modeling the

coating.

The mass flux of species within the matrix with volumetric porosity (φ) is a result

of both pressure gradient driven flow and concentration gradient driven flow. The
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net flux is represented as:

q = qα
i + qβ

i (5.33)

where qα
i and qβ

i are the mass flux of species i due to pressure gradient-driven flow

and concentration gradient-driven flow, respectively.

The flux contribution within the porous matrix due to pressure gradient driven

flow is given by the Darcy’s equation as:

qα
i = −ρp

i

1

µg

k∇P (5.34)

Here, ρp
i = ρi

φ
denotes the partial density of the species i in the pore. In addition,

µg denotes the viscosity of the gas mixture, k = kI (I is the identity matrix)

denotes the second-order material permeability tensor and P (=
∑

i Pi = PO2 +PCO2)

represents the total pressure of the gas mixture within the pore. The partial pressures

(Pi) for each specie i are obtained using the ideal gas law (ρP
i = MiPi

RT
, where R is

the universal gas constant and T is the temperature). Similarly, the density of the

mixture within the pore can be computed as ρp = MP
RT

, where M is the averaged

molecular weight of the gas mixture.

The concentration gradient driven mass flux in the porous matrix (based on Ref.

[69]) is given using Fick’s law of diffusion that involves the second-order areal porosity

tensor (ϕA) which is used as a measure of resistance to concentration gradient-driven

flow through the pore network:

qβ
i = −ρpDϕA∇

(
ρp

i

ρp

)
(5.35)

where D is the diffusivity of oxygen with respect to carbon dioxide. The areal

porosity tensor can be thought of as a ratio of porosity to the tortuosity [6]. We

employ the calibrated isotropic areal porosity from Ref. [69] for the matrix in the
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micro-scale calculations. The oxygen and carbon dioxide density field distributions in

the micro–scale are directly obtained from the macro–scale solution using the Taylor

boundary conditions (Eq. 3.10). The fluxes at all points within the microstructure

are subsequently calculated using Eq. 5.33.

5.5.1 Diffusion properties for pore matrix

As temperature increases, volumetric porosity decreases due to thermal expansion.

From the reference temperature, T0, the expected porosity changing with respect to

current temperature, T , is modeled as:

φth = λ1αm (T0 − T ) (5.36)

where λ1 is a constant estimated via comparing thermogravimetric analysis (TGA)

and numerical simulation, and αm is the matrix coefficient of thermal expansion.

However, this equation may give negative porosity when T0 is greater than T . More-

over, the minimum porosity has an lower bound due to saturation effects. Therefore,

the following numerical treatment of porosity is considered.

φth =





A1T
2 + B1T + C1 873.15 ≤ T < 1073.15K

λ1αm (T0 − T ) 1073.15 ≤ T ≤ 1223.15K

A2T
2 + B2T + C2 1223.15 < T ≤ 1373K

φth(1373.15K) 1373.15K < T

(5.37)

where, equations A1T
2 + B1T + C1 and A2T

2 + B2T + C2 are used to smooth

transitions. In the above equation, the temperature criterions, 873.15K 1373.15K,

are used based on experimental observation [22]. The constants were obtained by
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comparing experimental data and numerical simulation results; λ1 = 526.1, T0 =

1238.5K, A1 = −7.45 × 10−7, B1 = 1.3 × 10−3, C1 = −0.1376, A2 = 1.47 × 10−6,

B2 = −4.04 × 10−3, and C2 = 2.78. Porosity plots as a function of temperature

without the influence of stresses is shown in Fig. 5.6 (a).

Another consideration for the porosity evolution is the effect of externally applied

stress. A parametric form of void evolution as a function of hydrostatic stress,

σ = 1
3
tr (S), is assumed in this work. If we assume that the rate of deformation

tensor is symmetric and its diagonal quantities are given by hydrostatic stress as

d11 = d22 = d33 = f (σ), then, the porosity and stress relation is derived from Eq.

5.22

φm = 1 + (φth − 1) exp

(
−3

∫ t

0

f (σ) dξ

)
(5.38)

Considering the fact that porosity cannot be smaller than zero or greater than 1,

the following conditions should be satisfied.




φm > 0 S < 0

φm <= φs S >= 0

(5.39)

where φs is the saturation porosity and Fig. 5.6 shows stress dependent porosity for

different temperature cases: 873.15, 1073.15, 1173.15, and 1223.15 K. The functional

form was obtained by comparing numerical simulation with TGA results in [22].

At the microscale, homogenized macro porosity, φ, is then written based on the

total volume of microscale cell, V , the matrix, Vm, and the void Vv

φ =
1

V
(φmVm + Vv) (5.40)

In modeling of mass diffusion in a porous matrix at micro–scale as described in

[6], an areal porosity parameter representing resistance of consentration gradient
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Figure 5.6: Predicted (a) porosity vs. temperature curve at zero applied stress (b) porosity curves
depended on stress at temperature = 873.15, 1073.15, 1173.15, and 1223.15 K

driven flow is defined. The quantity is defined as the ratio of volumetric porosity to

tortuosity factor κ, as:

ϕA =
φm

κ
(5.41)

Assuming that the matrix is material of packed with spherical particles, the tortuosity

factor can be obtained as a function of porosity. As described in [18], the tortuosity

factor is τ 2, where τ is the tortuosity which can be computed as [14]

τ =
1

φn
m

(5.42)

Therefore, areal porosity can be estimated as a function of volumetric porosity as

ϕA = φ2n+1
m (5.43)

where n is determined by the geometric configuration of pores; with n = 0.4 used

for the spherical particle packing case.

The variation of permeability according to volumetric porosity is further as-

sumed based on the spherical packing of matrix. Based on semi-empirical and semi-

theoretical derivation, the relationship between permeability and volumetric porosity
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is presented in [41], known as the Kozeny–Carman equation, as

κ =
d2

m

180

φ3
m

(1− φm)2 (5.44)

where dm is the mean diameter of particles.

The surface area fraction of carbon fiber open to matrix pores is introduced in

[69]. The temperature dependent surface area fraction in that work was very close

to an exponential form, as c1 exp (c2T ). Based on this observation, the surface area

fraction is modeled as a function of volumetric porosity instead of temperature as

the porosity is a linear function of temperature when 1073.15 ≤ T ≤ 1223.15K(see

Eq. 5.37).

ϕS = d1 exp(d2φm) (5.45)

However, out of the linear region, since φth = AT 2 + BT + C, the temperature can

be written as:

T =
−B ±

√
B2 − 4A (C − φm)

2A
(5.46)

Linearization of the temperature using Taylor expansion and substituting into c1 exp (c2T )

gives exponential functions with different constants.

ϕS = e1 exp (e2φm) (5.47)

The overall surface area fraction (in the absence of applied stresses) can be written

as:

ϕS =





e1 exp (e2φm) 873.15 ≤ T < 1073.15K

d1 exp(d2φm) 1073.15 ≤ T ≤ 1223.15K

f1 exp (f2φm) 1223.15 < T ≤ 1373K

(5.48)

87



where, constants e1, e2, d1, d2, f1, and f2 are determined by use of curve fitting

approach with results in [69].

Temperature dependence to air viscosity can be found in [81]. Two approxima-

tions, power law and Sutherland law, provide gas viscosity as a function of temper-

ature:

µ

µ0

=





(
T
T0

)n

Power law

(
T
T0

) 3
2 (T0+S)

T+S
Sutherland law

(5.49)

where µ0 is reference viscosity at a reference temperature T0, and constant n and S

are computed from experimental data.

In order to calibrate the volumetric porosity, 4 tow level multiscale simulation

results are obtained for 700, 800, 900, and 950◦C and are compared in successive

iterations until they match with the TGA data. Based on the achieved volumetric

porosity as a main variable, areal porosity, permeability, and surface area fraction

are shown in Fig. 5.7 (a), (b), and (c). The constants in this work are listed here:

dm = 10.0µm, c1 = 5.85×10−4, and c2 = 124.8. Air viscosity verse temperature plot

in Fig. 5.7 is obtained based on Sutherland law where the constants for air are used

as µ0 = 1.71× 10−5 (Ns/m2) at T0 = 273.15 (K), n = 0.7, and S = 110K.

5.6 Macro-scale model for O2 and CO2 diffusion in C/SiC

The macroscopic simulation is performed using a diffusion equation defined on a

uniformly meshed domain (Ω) with boundaries defined as Γ. Degrading interfaces are

explicitly modeled at the micro-scale, while only homogenized equations are modeled

at the macro-scale.
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Figure 5.7: Predicted (a) Aerial porosity, (b) Permeability, (c) Surface area fraction vs. porosity,
and air viscosity vs. temperature
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Governing equations for gas species both O2 and CO2 are given as:

∂ρ̄O2

∂t
+∇ · q̄O2

= Q̄O2

∂ρ̄CO2

∂t
+∇ · q̄CO2

= −Q̄CO2

ρ̄(Γ, t > 0) = ρ̂, ρ̄(Ω, t = 0) = ρ̄0 (5.50)

where, ρ̄ is the macroscopic (homogenized) partial density and Q̄i is the homogenized

mass consumption rate of species i per unit bulk volume defined as (where f is the

volume fraction of the burnt carbon fiber at the micro–scale):

Q̄i = ρc
Mi

Mc

∂f

∂t
(5.51)

To solve the non-linear transient macroscopic equations (Eq. 5.50), Galerkin

finite element method and backward Euler time integration are adopted and the

weak form is solved in an incremental iterative manner using the Newton-Raphson

method. The (λ + 1)th Newton-Raphson step at time (t + 1) involves solution of

the system K{δρ̄λ+1,t+1} = f , where the unknown vector in the above system is

the increment in the partial density (δρ̄λ+1,t+1) of oxygen and carbon dioxide. In

our numerical approach, the reference density ρref and consumption rate Q̄ (of each

species i) for the next time step are evaluated at the end of each time step of the

simulation. The reference density ρref is obtained using the macro–micro balance

of mass condition (ρ̄ = 1
V

∫
V

ρdV ) and Eq. 2.1. This definition is consistent with

the condition that stored mass at macro-scale is same as the average micro-scale

stored mass [36]. To further understand the micro-scale quantities that are needed

to create the overall system of equations, the Jacobian matrix and force vector for a

finite element e with shape functions Ni occupying a volume Ωe are expanded below:
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From the above equations, it is seen that homogenized diffusivities κ̄A/B relating

the mass flux of species A with respect to the pressure gradient of species B needs

to be defined at each integration point in the macro-scale. The evaluation of the

homogenized diffusivity for Taylor and Homogenization approaches are listed below:

In the Taylor model, the diffusivity is directly obtained as:

κ̄A/B =
1

V

∫

Ω

κA/BdV (5.52)

5.7 Computational approach and numerical Examples

3D oxidative carbon fiber reinforced ceramic matrix is simulated with the multi–

scale finite element model. In the first few examples, stress–diffusion coupling was

not enforced. Instead the mechanical properties of the oxidized fibers were computed

directly from the oxidized tow system by imposing a stress boundary condition along

the z– axis and measuring the strains along different direction. The results have also

been compared to the elastic moduli degradation computed using a volume averaged

stiffness matrix at the tow level. The domain for the simulation and boundary

conditions are explained in Fig. 5.8. Initially, the C/SiC coupon is saturated with 1
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Figure 5.8: Numerical simulation model: Geometry, initial and boundary conditions

atm carbon dioxide. Subsequently, the system is exposed to 1 atm oxygen along the

x- and z- axis. Insulation conditions take placed at top and bottom of the coupon, and

the composite is subjected to a uniaxial tension on the face at z = 1.27cm; applied

stress reaches up to 172MPa within 2.5 minutes. The displacement constraints

allows that body can slide on the faces at x = 0, y = 0, and z = 0.

The solution schemes based on the multi–scale Taylor model is described in Table

5.1 and the material constants used are listed in Table 5.2: Young’s moduli E,

Poisson’s ratio, and coefficient of thermal expansion α. The properties are based on

local coordinate system, 1-2-3 axes as shown in Fig. 5.3, and moduli are given in

GPa and coefficient of thermal expansion is in 1/K units.

To aid in speeding up the solution process for the multi–scale problem, the al-
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gorithm was parallelized using MPI. The macro-scale domain was decomposed and

elements in each domain distributed to different processors. The underlying micro-

scale problems were solved in serial in each processor. The simulator was developed

using object oriented programming and was dynamically linked to the parallel tool-

box PetSc [8] for parallel assembly and solution of linear systems. For solution of

linear systems, a GMRES solver along with block Jacobi and ILU preconditioning

from the PetSc toolbox was employed.

5.8 Numerical simulation results

Grid size sensitivity is critical to validate the simulation model. Based on our

structured mesh at the macroscale, convergence study was performed with FE grids

whose element sizes are decreased until simulation results converged. The macro–

scale FE mesh density was determined by this grid convergence strategy. For the

convergence study, O2 and CO2 diffusion was simulated under a temperature of 800◦C

without any externally applied stress. The simulation is performed up to 2.5 hours

and carbon fiber loss at this time is recorded as a function of number of element in

the FE mesh. A 5760 element macro-mesh was selected based on the convergence

study. The graph in the Fig. 5.9 (a) indicates the carbon fiber volume loss versus

the number of elements, and the result shows the convergence of simulation results

as finer meshes are used. A hexagonal unit cell 3D microscale model is employed in

this study. Note that the micro–scale volume has a fixed coordinate system and is

not rotated based on the tow orientation. Instead, the fields and fluxes at the tow

level are rotated to the micro–scale coordinate system and imposed on the microscale

unit cell.

In the next simulation, oxidative diffusion results were compared directly with
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Figure 5.9: Macro model grid convergence; Simulation shows the carbon fiber volume change at 2.5
hours and at 800◦C as a function of number of elements used in the macro–scale mesh.

TGA experiments. Note that we use a material indicator to denote if a point is in

the fiber region of tow region and then a micro–scale cell is drawn from that point.

The use of structured grids is not optimal for capturing the curvature of the tows.

However, using material indicators the curvature can be accounted for reasonably

well during the entire composite simulation. Numerical simulation of O2 and CO2

diffusion simulation was performed on the structured macro–scale grid and results

are compared with TGA experiments at several different temperatures. The initial

composite had 50 % carbon by weight. Predictions of carbon fiber loss at various

temperature and times are shown in the Fig. 5.10, and the comparison reveals that

the 3D FE model can indeed demonstrate the experimental observations of carbon

fiber oxidation trends successfully.

Several interesting oxidation behaviors were observed from these simulations. Ox-
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idation is most severe at 700◦C. At this temperature, presence of high porosity (due

to lower temperature) and moderately high reaction rates (note that reaction rates

depend on temperature through Arrhenius equation), lead to a high oxidation rate.

As temperature decreases, the oxidation begins to follow a sigmoidal curve (note the

curve at 600◦C in Fig. 5.10). At lower temperatures, the porosity is higher, leading

to faster diffusion. However, the reaction rates are lower leading to a weight loss be-

havior that is controlled by the speed of chemical reaction rather than the diffusion

rate. The porosity at 600◦C and 700◦C were not much different, hence the reason

for the sigmoidal curve observed at 600◦C was inferred to be due to the combined

influence of reaction controlled kinetics and the presence of the pyrocarbon coating

on the carbon fiber. Once the coating is consumed, the reaction rates become faster

and follows similar trends observed at 700◦C. As temperature increases, the weight

loss drastically drops. At 700◦C complete oxidation is seen at 8 hours. However,

at 950◦C, only a fraction of the carbon fiber is consumed even after 25 hours. The

reason for this behavior is the decreased porosity at higher temperatures. As tem-

perature increases, the matrix expands and the pores close, leading to a weight loss

behavior that is controlled by the availability of oxygen rather than the reaction

rate. Another interesting behavior is seen at very high temperatures. The weight

loss rates begin to increase at 1100◦C. Simulations reveal that the behavior is due

to porosity saturation at 1100◦C. Beyond 1100◦C, the volumetric porosity reaches

saturation and is not affected by an increase in temperature. However, the reaction

rates increase leading to faster oxidation. It is seen that at 1250◦C and 1400◦C the

oxidation rates show a different kind of parabolic behavior with increased oxidation

rate as time progresses (instead of decreased rate of oxidation as a function of time

at lower temperatures). This behavior is well captured by our simulations.
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As a measure of mechanical degradation of the composite, we computed the vari-

ation of Young’s modulus of the composite (along the z– direction) as a function of

temperature. During mechanical testing, small loads were applied to compute the

elastic response (ie. Young’s modulus) and thus, stress–diffusion coupling and poros-

ity changes due to these stresses were not modeled. The mechanical properties of the

oxidized fibers were computed directly from the oxidized tow system by imposing a

stress boundary condition along the z– axis and measuring the strains along different

direction. The results have also been compared to the elastic moduli degradation

computed using a volume averaged stiffness matrix at the tow level. When using the

volume averaged stiffness matrix, the following equation is used to find the elastic

moduli (where the averaged D matrix D̄) computed at the micro–scale; matrix is

rotated based on the tow orientation and the quantity is volume averaged over the
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macro–scale (< . > indicates a volume average):

E =
1

< D̄−1 >11

(5.53)

The above equation is used in Taylor type multiscale models and is known to

give a upper bound response. As shown in Fig. 5.11, the Taylor model predict a

stiffer response. The homogenization approach (finite element study) shows that the

mechanical degradation follows trends similar to that of overall oxidation. Note that

in the plot, the overall modulus is given in the form of a ratio with respect to the

matrix moduli.

Next, we studied the overall evolution of oxygen partial pressure at the tow level

and the results are shown in Fig. 5.12. All these plots use the same oxygen pressure

contour levels for easier comparison. At lower temperatures oxidation is much faster

97



Figure 5.12: Oxygen pressure distributions at 600◦C-1400◦C
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and hence, the table is split into a lower temperature regime with results shown at

1, 5 and 8 hours, and a higher temperature regime with results shown at 5, 15, 18

and 25 hours. At lower temperatures, the porosity is high and the oxygen pressures

are more uniformly distributed. At higher temperatures, the porosity is extremely

low and the diffusion (and oxidation) occurs at the outer edge of the model with

negligible oxidation in the interior. Over time, the boundary between the oxidized

and non-oxidized regions move inward leading to the so-called ‘shrinking core’ oxi-

dation behavior reported in experiments[76]. In the lab experiment reported in [76],

a constant-load rupture test was performed at 800◦C and 1200◦C. The temperature

at which the oxidation behavior transitions from uniform pattern to a shrinking core

pattern was seen to be between 700◦C and 950◦C in the TGA experiment, whereas

the transition temperature was between 800◦C and 1200◦C in stressed–oxidation

tests. The reason that the transition temperature is higher in stressed oxidation test

is because tensile stresses tend to increase the porosity and thus, increase diffusion

rates at higher temperatures. The carbon fiber volume fraction lost in the lower

temperature regimes are plotted in Fig. 5.13. These are shown as 2D plots with

carbon fiber volume fractions averaged along the depth of the tow (along y– axis).

The inhomogeneity in carbon fiber distribution due to complex nature of tow weave

results in a seemingly noisy distribution of carbon fibers in the composite. At 600◦C,

after 5 hours, the oxidation is seen to be uniformly spread over the entire tow area.

However, the shrinking core behavior is clearly seen at higher temperature regimes

(shown in Fig. 5.14). It is seen that oxidation at 950◦C is faster than oxidation at

1400◦C due to higher porosity at lower temperatures. Further, it is also seen that

oxidation at 1400◦C is in fact faster than 1250◦C due to porosity saturation.
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Figure 5.13: Spatial distribution of carbon fiber volume fraction at 600◦C - 900◦C
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Figure 5.14: Spatial distribution of carbon fiber volume fraction at 950◦C - 1400◦C
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5.8.1 Comparison of oxidation behavior in the presence of applied stresses

As a preliminary study, a multi–scale simulation is performed in which stress-

diffusion coupled degradation of the carbon fiber is studied for three cases at 1000◦C:

(i) stresses applied in an inert atmosphere (ii) oxidation in the absence of applied

stresses, and (iii) stresses applied during oxidation. These three simulations were

compared to identify the coupled effects of oxidation and stress. The comparisons

are shown in Fig. 5.15 where (a) shows time vs. strain curves, and (b) denotes

the loss of the volume fraction of the carbon fiber. In the tensile test, the following

functional form of rate of deformation in terms of hydrostatic stress (σ = 1
3
tr (S))

was employed based on experimental observations in [59].

d11 = d22 = d33 = λσn (5.54)

Curves in Fig. 5.15 (a) compares simulation results for two boundary conditions,

1 atm inert gas and 1 atm air, respectively as boundary conditions. In this simula-

tion, uniaxial tension is applied until its value reaches 172MPa and the specimen is

then held at 172MPa. The solid line denotes TGA result reported in [22], and solid

lines with circle and star show simulation results for 1 atm air and inert gas bound-

ary conditions, respectively. The simulation result in the oxidizing environment is

compared with the experiment result (TGA) and shows a good match with exper-

imental trends. It is seen that mechanical stiffness is decreased (or strain increases

for the applied constant stress: creep behavior) when the composite is exposed to air

at high temperature. Comparing with the results from the case with no oxidation,

it is concluded that the loss of carbon fibers is the main cause for the degradation in

mechanical properties.
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Figure 5.15: (a) Strain vs. time; solid line shows TGA experiment results (solid lines with circle
and star denote simulation results for 1 atm air and inert gas environment cases
respectively). (b) Total volume losses in the composite (solid lines with circle and star
denote no stress applied and stress applied respectively)

In Fig. 5.15 (b), the simulation results for the unstressed case and the case with

applied stresses are compared. Comparison of the two plots show that presence of

stresses can significantly increase carbon fiber oxidation. In the presence of tensile

stresses, the pores expand and increased volume of oxygen becomes available in the

interior. The increased porosity accelerates burn up of the carbon fibers, and loss

of the fibers decreases the stiffness of the composite. This causes the loads to be

concentrated on the matrix and results in even more damage. A combination of

these events is termed ‘stress oxidation’ coupling which leads to rapid degradation

of CMCs.

5.9 Conclusion

A multi–scale framework based on computational homogenization is developed

for modeling thermo-chemo-mechanical oxidation at the length–scale of a interwo-

ven tow based composite structure. At the micro-scale, oxidation at the scale of

individual carbon fibers is modeled using a hexagonal unit cell, and homogenized

material properties are transferred to the macro-scale model. In order to couple the
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macro–scale and micro–scale simulation, the fields and flux quantities for the ori-

ented tows are appropriately rotated and assigned to the micro-scale mesh. At the

micro–scale, physical mechanism of carbon fiber mass loss was computed based on

diffusion of oxygen in the porous SiC matrix, reaction and surface recession on the

carbon fibers. The overall degradation of the composite is computed by employing

a 3D structured FE mesh containing a material indicator for the carbon fiber tow

and the matrix. In the FE mesh, additional variables are used to store bias and

undulation angles of the carbon fiber. In order to couple stress and diffusion, a

damage model was developed that provides the volumetric porosity in the material

as a function of stress and temperature. The diffusion properties implicitly depend

on the volumetric porosity through various functional forms developed in this work.

The validation of the 3D oxidation model of the composite is performed by com-

paring with TGA experiment results from [22]. A variety of transition behaviors

were successfully reproduced. Oxidation was found to be most severe at 700◦C. As

temperature decreases, the oxidation begins to follow a sigmoidal behavior with slow

initial oxidation followed by faster oxidation. The reason for the sigmoidal curve

observed at 600◦C was inferred to be due to the combined influence of reaction

controlled kinetics and the presence of the pyrocarbon coating on the carbon fiber.

At higher temperatures the oxidation rate is slower due to decreased porosity. As

temperature increases, the matrix expands and the pores close, leading to a weight

loss behavior that is controlled by the availability of oxygen rather than the reaction

rate. Another interesting behavior is seen at very high temperatures. The weight loss

rates begin to increase at 1100◦C due to porosity saturation. Further, the shrinking

core oxidation behavior at these high temperature, as observed in experiments, are

well captured by our simulations. A preliminary study of the effect of stresses on

104



oxidation behavior revealed that oxidation is much higher in the presence of stresses.

By comparing oxidation behavior in a oxygen rich and an inert environment, we

found that high temperature creep behavior mainly depends on oxidation of carbon

fiber. The property degradation at the carbon fiber level was homogenized and used

to successfully compute the macroscopic degradation of mechanical properties. The

decrease in elastic modulus during high temperature oxidation was found to follow

the same trends at the decrease in carbon volume fraction.
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Table 5.1: Solution scheme for multi–scale modeling of C/SiC

(1) Initialize macro-scale model and assign a microstructure to every integration
point.

(2) Apply time increment ∆t to the macro-scale problem.

(3) Iteration step: O2 and CO2 diffusion

(3.1) Assemble the macroscopic stiffness matrix.

(3.2) Solve the macroscopic system and compute density and the density gradient
at each integration point.

(3.3) Rotate density gradient vectors.

(3.4) Loop over all integration points

(a) (Only done for the first NR iteration) Update the carbon fiber radius using
chemical reaction velosity.

(b) Transfer densities to every point in the micro-scale using Eq. 3.10.

(c) Calculate the volume averaged macro-flux (Eq. 3.16), the source term (Eq.
3.28), the macro-diffusivity (Eq. 5.52)

(d) Rotate macro-flux vector and macro-diffusivity tensor according to carbon
fiber direction

(3.5) Assemble the macroscopic residual vector.

(4) Check convergence, if not converged go to step 3, otherwise go to step 5.

(5) Iteration step: Stress-strain

(5.1) Assemble the macroscopic stiffness matrix.

(5.2) Solve the macroscopic system and compute deformation gradient.

(5.3) Rotate deformation gradient matrix.

(5.4) Loop over all integration points

(a) Transfer deformations to every point in the micro-scale using u = (F −I)Y

(b) Calculate the volume averaged the macro-elasticity (Eq. 5.31).

(c) Rotate macro-elasticity tensor.

(d) Obtain 4th order elasticity tensor from 2nd order tensor.

(5.5) Assemble the macroscopic residual vector.

(6) Check convergence, if not converged go to step 5, otherwise go to step 2.

Table 5.2: Material properties employed in the multiscale model of 3D CMC oxidation

Material E1 E2 ν1 ν2 G12 α1 α2

Carbon fiber 115 31.7 16.1 0.19 0.14 −0.1× 10−6 7.0× 10−6

Matrix 250 0.14 4.6× 10−6
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Table 5.3: Porosity and surface area fraction for CMC oxidation simulations

Temp.(◦C) Porosity Surfaceareafraction

600 0.430 0.14000

700 0.423 0.01481

800 0.400 0.01333

900 0.158 0.00427

950 0.037 0.00242

1100 0.004 0.00001
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CHAPTER VI

Suggestions for future research

Experimental studies on high temperature materials are difficult due to the inabil-

ity to reproduce the harsh environments in which these materials are used. Validated

computer models are extremely important for these materials. In this thesis, a multi-

scale homogenization method is presented that is used to model the material physics

at macro- and micro-scales. The model includes discontinuities in field variables,

fluxes, and moving interfaces. In chapter II, the model was validated with an an-

alytical solution for phase change, and in subsequent chapters III, IV, and V, the

approach was applied to the oxidation problem. We separated the computational

domain into macro- and micro- scales to reduce computational expense and improve

accuracy. The numerical treatments and establishment successfully demonstrated

the potentials of the methodology. However, there are several avenues for more ad-

vance studies which can be roughly categorized into three areas: (i) Exploration

of oxidation physics in new materials, including ultra high temperature composites

(UHTCs). (ii) Modeling anisotropy in porosity and transport properties calibrated

from advanced experimental studies. (iii) Modeling the effect of other degrading

agents like moisture that accelerate degradation (iv) Modeling traction separation

relationships in the matrix using molecular simulations to further understand matrix
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damage at a fundamental level.

6.1 Modeling UHTCs

At extreme temperatures, SiC and ZrB2 surfaces are directly exposed to the am-

bient conditions and may form a porous surface layer of oxides. A micro-scale model

that provides a closer tie-in of this complex oxide layer morphology with mass and

energy transfer at the surface is extremely desireable. The thermal boundary condi-

tions for the microscale model need to obtained from flow simulations or plasma torch

experiments. The numerical micro-scale model can be used to predict sub-surface

temperature and species distribution. Tomographic imaging experiments are also

extremely valuable for future studies. If a 3D microstructure of a oxidized specimen

can be obtained, one could predict anisotropic porosities, 3D pore connectivity and

effective properties (such as conductivity and elastic moduli) accurately. This data

can be used in the microscale material model. Micro-scale 3D images can also be

used to compute micro-crack densities and porosity evolution for developing models

for mechanical damage during ablation. The models developed in this work can then

be used at the micro-scale to compute oxygen and other gas specie concentrations in

the porous oxide matrix and liquid oxides (e.g. boria, silica) under non-equilibrium

conditions[53]. The computed oxygen vapor pressure can be used in bulk reaction

rate equations to predict overall rates of recession and energy release at different

exposure conditions.

6.2 Anisotropic diffusion

The comparison between theory and experiment clearly indicates that the details

of the geometry of anisotropic systems exert an important influence on effective

transport coefficients in [33]. The theoretical calculations indicate that the effective
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diffusivity tensor cannot be accurately predicted in terms of only the void fraction

and the particle geometry. Recently, effects of direction dependent diffusivity have

been investigated by systematically varying rod packing density in [46]. In this

study, the direction dependent normalized diffusivity is obtained using lattice walk

algorithm [47], and it is shown that anisotropic pore structure of the rod system

enables high diffusive migration along the longitudinal direction.

Furthermore, in Payne and co-workers [80, 54], a review of Darcy’s law and the

influence of anisotropic permeability was explored. The earlier contributions that

introduce methods of measuring anisotropic permeability of porous media was pre-

sented in [58]. Because the diffusion of gas species in the pore space is restricted

by anisotropic permeability, the resultant diffusivity was also anisotropic. In the

previous chapters, the importance of geometry also has been emphasized. differ-

ent material configurations as well as the existence of discontinuity introduced time

dependent conductivity, porosity, diffusivity, and permeability. Further extending

these models, introduction of anisotropic properties can be implemented to enhance

simulations. In fact, isotropic material properties are used in the previous chapters;

however when homogenization approaches are used, partially anisotropic effective

quantities are transferred to the macro-scale model. In order to utilize the direction–

dependent properties when using Taylor micro-scale conditions, it is necessary to

find anisotropic material properties at the level of micro-scale.

6.3 Modeling micro- damage with molecular dynamics

Carbon fiber oxidation at high temperatures has been observed to initiate along

cracks in the matrix between the fiber tows and the SiC seal coat. Thus, for evaluat-

ing the mechanical properties of the composite at high temperatures, also becomes
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essential to couple the effect of operating stresses on interfacial failure in the seal

coatings. Increase in crack widths and interface separation in the presence of stresses

and their effect on oxidation needs to be studied using molecular models. To ob-

tain accurate transport coefficients and reaction rate constants for the microstruc-

tural model of the fiber and coating material, one could perform molecular dynamic

simulations([73, 63, 72, 82, 83]) with accurate multi-body potentials [71]. Apart from

the value of obtaining reaction rates for the micro-scale model with minimal physi-

cal assumptions, such a model gives us the predictive ability needed to design new

fiber coating materials to minimize oxidation. The proposed modeling methodology

is shown in Fig. 6.1. Results of crack prediction in microstructure with molecular

Figure 6.1: The transport parameters such as diffusivity and traction–separation laws for the micro-
scale model can be calculated from molecular simulations. We performed a preliminary
study to this end in Ref. [37]

dynamics simulation [37] are shown in the Fig. 6.2 and 6.3. In this simulation, it is
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Figure 6.2: Normal stress displacement response of the interface model: During tensile separation,
the normal stress displacement response shows a dominant peak with associated peak
stress. Peak stress is around 14 GPa.

Figure 6.3: The plastic strain locations during initiation of plasticity. The plastic strains are con-
centrated on grain boundary triple points or sharp corners(SiC is polycrystalline.)

observed that the macroscopically observed nonlinearity in the stress-strain response

is mainly due to the inelastic response of the grain boundaries. Plastic deformation

in the interior of the grains, prior to the initiation of grain boundary cracks, was not

observed. The stress concentrations at the tips of the distributed grain boundary

cracks, and at grain boundary triple junctions, cause a limited amount of plastic

deformation in the high strength grain interiors. Simulations such as this will be

valuable in understanding parameters such as fracture toughness at the continuum
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scale for further refining damage or cohesive crack models.

6.4 SiC oxidation - effect of moisture

In chapters dealing with carbon fiber reinforced silicon carbide (C/SiC), the ma-

trix is assumed to withstand high temperature conditions without oxidation. This

assumption is supported by Jorgensen([31]) who noted that the rate of oxidation is

very slow (an order of magnitude slower) compared to carbon fiber; carbon fiber is

consumed in an hour (see [22] and silicon carbide takes several days. However, the

existence of moisture in the gaseous atmosphere strongly affects the oxidation rate.

Further experimental evidences of the moisture effects on the stress rupture behavior

of ceramic matrix composite (CMC) has been presented in [40]. In attempting to

predict life time of C/SiC in actual use, modeling the effect of other degrading agents

such as moisture becomes essential.
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APPENDIX A

Volume average of heat flux at the micro-scale

Using the governing equation at the micro-scale (Eq. 2.8), we obtain the expression

for ∇ · xq as:

∇ · xq = q + x∇ · q = q − x∇ · (ρcTv)

Using the above equation and application of the generalized divergence theorem, we

can obtain the volume average of heat flux as:

1

V

∫
qdV =

1

V

∫

V

(∇ · xq + x∇ · (ρcTv))dV

=
1

V

∫

S

xqndS +
1

V

∫

SI

x[|qn|]dSI +
1

V

∫

V

x∇ · (ρcTv)dV

The last term in the above equation can be rewritten as:

1

V

∫

V

x∇ · (ρcTv)dV =
1

V

∫

V

∇ · (ρcTx⊗ v)dV − 1

V

∫

V

ρcTvdV

=
1

V

∫

SI

x[|ρc|]TvndSI

In the above derivation, we have used the fact that particle velocity is zero at all

points in the domain except at the interface to eliminate the terms involving volume
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integral of velocity. The above equation can be used to obtain the expression for

volume average of heat flux as:

1

V

∫
qdV =

1

V

∫

S

xqndS +
1

V

∫

SI

x([|qn|] + [|ρc|]Tvn)dSI =
1

V

∫

S

xqndS

As a consequence of this derivation, we prove that the volume averaged heat flux

can be obtained using information on the boundary of the microstructure.
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APPENDIX B

Homogenized Flux Derivation Based on Hill’s
Macro-homogeneity Condition

The fluxes in the homogenization approach are derived such that the macro–homogeneity

condition is satisfied. The micro-scale partial density field of each species i is denoted

as ρ and no subscripts are used to maintain generality. Based on local mass balance

equation (Eq. 3.19), it can be proved that the integral of normal mass flux over the

unit cell surface goes to zero as follows:

∫

S

qndS =

∫

V

∇ · qdV −
∫

SI

[|qn|]dSI

= −
∫

V

∇ · (ρv)dV −
∫

SI

[|qn|]dSI

= −
∫

SI

(vn[|ρ|] + [|qn|])dSI = 0

The above relation is subsequently used for homogenization of the micro-scale flux.

Application of the governing equation (Eq. 3.18) changes the macro-homogeneity

condition to the following form:

∇ρ · q = ∇ρ · q =
1

V

∫

V

(∇ · (ρq)− ρ∇ · q)dV

=
1

V

∫

S

ρqndS +
1

V

∫

SI

[|ρqn|]dSI +
1

V

∫

V

ρ∇ · (ρv)dV

We can reduce the first term in the above equation using the definition of micro-

scale density (Eq. 3.1) and the homogeneous boundary conditions as:
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1

V

∫

S

ρqndS =
1

V

∫

S

[ρref +∇ρ · x]qndS

= ∇ρ · 1

V

∫

S

xqndS ( using

∫

S

qndS = 0)

The second and third terms in the above equations are again reduced using the

generalized divergence theorem as:

1

V

∫

SI

[|ρqn|]dSI +
1

V

∫

V

ρ∇ · (ρv)dV

=
1

V

∫

SI

[|ρqn|]dSI +
1

V

∫

V

∇ · (ρ2v)dV − 1

V

∫

V

∇ρ · (ρv)dV

=
1

V

∫

SI

[|ρqn|]dSI +
1

V

∫

SI

[|ρ2|]vndSI

In the above derivation, we use local mass balance equation and the fact that the

particle velocity is zero at all points in the material except the interface. The second

term in the above equation contains the oxygen density field and flux jump across

the oxidizing interface. This term is reduced as follows:

1

V

∫

SI

[|ρqn|]dSI +
1

V

∫

V

ρ∇ · (ρv)dV

=
1

V

∫

SI

[|ρqn|]dSI +
1

V

∫

V

∇ · (ρ2v)dV − 1

V

∫

V

∇ρ · (ρv)dV

=
1

V

∫

SI

[|ρqn|]dSI +
1

V

∫

SI

[|ρ2|]vndSI

In the above derivation, we have used the notion that oxygen density and oxy-

gen flux is small inside the Carbon fiber. Combining all the above equations, the

macroscopic flux is obtained as:

q =
1

V

∫

S

xqndS
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Using the governing equation at the micro-scale (Eq. 3.18), we obtain the expres-

sion for ∇ · xq as:

∇ · xq = q + x∇ · q = q − x∇ · (ρv)

Using the above equation and application of the generalized divergence theorem, we

can obtain the volume average of heat flux as:

1

V

∫
qdV =

1

V

∫

V

(∇ · xq + x∇ · (ρv))dV

=
1

V

∫

S

xqndS +
1

V

∫

SI

x[|qn|]dSI +
1

V

∫

V

x∇ · (ρv)dV

The last term in the above equation can be rewritten as:

1

V

∫

V

x∇ · (ρv)dV =
1

V

∫

V

∇ · (ρx⊗ v)dV − 1

V

∫

V

ρvdV

=
1

V

∫

SI

x[[ρ]]vndSI

In the above derivation, we have used the fact that particle velocity is zero at all

points in the domain except at the interface to eliminate the terms involving volume

integral of velocity. The above equation can be used along with the interface mass

balance condition (Eq. 3.19) to obtain the expression for volume average of mass

flux as:

1

V

∫
qdV =

1

V

∫

S

xqndS +
1

V

∫

SI

x([|qn|] + [[ρ]]vn)dSI =
1

V

∫

S

xqndS = q

As a consequence of this derivation, we prove that the micro–scale volume average

flux is equal to the macro–scale flux as a consequence of Hill’s macro–homogeneity

condition.
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