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ABSTRACT

We deal with extremal problems in Bergman spaces. If Ap denotes the Bergman

space, then for any given functional φ 6= 0 in the dual space (Ap)∗, an extremal

function is a function F ∈ Ap such that ‖F‖Ap = 1 and Reφ(F ) is as large as

possible.

We give a simplified proof of a theorem of Ryabykh stating that if k is in the

Hardy space Hq for 1/p+ 1/q = 1, and the functional φ is defined by

φ(f) =

∫
D
f(z)k(z) dσ, f ∈ Ap,

where σ is normalized Lebesgue area measure, then the extremal function over the

space Ap is actually in Hp.

We also extend Ryabykh’s theorem in the case where p is an even integer. Let p

be an even integer, and let φ be defined as above. Furthermore, let p1 and q1 be a

pair of numbers such that q ≤ q1 <∞ and p1 = (p− 1)q1. Then F ∈ Hp1 if and only

if k ∈ Hq1 . For p an even integer, this contains the converse of Ryabykh’s theorem,

which was previously unknown. We also show that F ∈ H∞ if the coefficients of the

Taylor expansion of k satisfy a certain growth condition.

Finally, we develop a method for finding explicit solutions to certain extremal

problems in Bergman spaces. This method is applied to some particular classes

of examples. Essentially the same method is used to study minimal interpolation

problems, and it gives new information about canonical divisors in Bergman spaces.
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CHAPTER I

Introduction

In this dissertation, we study extremal problems on Bergman spaces, which are

certain spaces of analytic functions. Much of our work involves other spaces of

analytic functions called Hardy spaces or Hp spaces.

We let C denote the complex numbers, and we let D = {z ∈ C : |z| < 1} be

the unit disc. We let σ denote normalized Lebesgue area measure over D, so that

σ(D) = 1. Then, for 0 < p < ∞, the Bergman space Ap(D), or simply Ap, consists

of all functions analytic in the unit disc such that

‖f‖Ap =

{∫
D
|f |pdσ

}1/p

<∞.

In other words, f ∈ Ap if f is analytic in the unit disc and is in Lp for Lebesgue area

measure on the unit disc. We call ‖ · ‖Ap the Ap-norm; for 1 ≤ p < ∞ it is a true

norm.

The Hardy spaces are closely related to the Bergman spaces. To define them, we

need first to define the integral means of a function f analytic in D. For 0 < p <∞

and 0 < r < 1, the integral mean of f is

Mp(r, f) =

{
1

2π

∫ 2π

0

|f(reiθ)|pdθ
}1/p

.

For p = ∞, we define M∞(r, f) = max0≤θ<2π |f(reiθ)|. More generally, we could

define the integral mean of a harmonic function in exactly the same way.

1
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If f is a fixed analytic or harmonic function, and p is fixed, then Mp(r, f) is an

increasing function of r. For 0 < p ≤ ∞, we say that a function f is in the Hardy

space Hp if f is analytic in D and ‖f‖Hp = limr→1− Mp(r, f) < ∞. We call ‖ · ‖Hp

the Hp-norm; for 1 ≤ p ≤ ∞ it defines a true norm. In a similar way, we define hp to

be the space of all real valued harmonic functions u in D such that limr→1− Mp(r, u)

is finite.

Note that Hp ⊂ Ap. Hardy spaces are generally more tractable than Bergman

spaces, and all functions in Hardy spaces are well behaved in ways that some functions

in Bergman spaces are not.

1.1 Basic Properties of Hardy Spaces

We now describe some basic facts about Hardy spaces for later reference. The

Hardy space H∞ is the space of bounded analytic functions in D. The space H2 is a

Hilbert space, and the set {zn}∞n=0 is an orthonormal basis. If p < q, then Hp ⊃ Hq.

For 1 ≤ p ≤ ∞, the Hardy space Hp with norm ‖ · ‖Hp is a Banach space.

If f ∈ Hp for 0 < p ≤ ∞, then its boundary function f(eiθ) = limr→1− f(reiθ),

exists almost everywhere. In fact, each f ∈ Hp has a nontangential limit at almost

every point on the unit circle, although we will not need this fact. The boundary

function of each f ∈ Hp is in Lp and ‖f(eiθ)‖Lp = ‖f‖Hp . If f ∈ Hp, for 0 < p <∞,

it not only approaches its boundary values nontangentially, but “in the mean.” In

other words,

lim
r→1−

{
1

2π

∫ 2π

0

|f(reiθ)− f(eiθ)|pdθ
}1/p

= 0.

It follows that the polynomials are dense in Hp for 0 < p < ∞. For an analytic

function f(z) =
∑∞

j=0 ajz
j, let Snf(z) =

∑n
j=0 ajz

j denote the nth Taylor polynomial

of f . If f ∈ Hp, then Snf → f in Hp, where 1 < p <∞.
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It is very useful to study the zero-sets of functions in the Hardy space. A basic

tool for this is Jensen’s formula. Let f be a function analytic when |z| < ρ for some

ρ > 0, and let 0 < r < ρ. Suppose f has the zeros z1, z2, . . . , repeated according to

multiplicity, and that the Taylor series of f has leading term αzm. Then

1

2π

∫ 2π

0

log |f(reiθ)| dθ =
∑
|zn|<r

log
r

|zn|
+ log(|α|rm).

Since the zeros of an analytic function are isolated, the set of zn such that |zn| < r

is finite, so there is no issue with convergence of the sum on the right hand side of

the equation.

From Jensen’s formula, one can show that if f ∈ Hp for 0 < p ≤ ∞ and its zeros

are z1, z2, . . . repeated according to multiplicity, then

∑
n

(1− |zn|) <∞.

This is called the Blaschke condition.

Moreover, let z1, z2, . . . be nonzero complex numbers such that
∑

n(1−|zn|) <∞.

Then we may form the infinite product

B(z) = zm
∞∏
n=1

|zn|
zn

zn − z

1− znz
,

which is called a Blaschke product. Such a product converges uniformly on compact

subsets of the unit disc, and thus defines an analytic function. In fact, any Blaschke

product is bounded in the unit disc and |B(eiθ)| = 1 a.e. on the unit circle. The

Blaschke product above has a zero of order m at the origin and has zeros at z1, z2, . . . ,

and these are its only zeros.

For 0 < p ≤ ∞, any function f ∈ Hp may be factored as f = Bg, where B is the

Blaschke product formed from the zeros of f and g is non-vanishing. In this case,

‖f‖Hp = ‖g‖Hp .
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We now discuss the canonical factorization on Hp. A function f ∈ H∞ is said

to be an inner function if |f(eiθ)| = 1 a.e. on the unit circle. Thus, every Blaschke

product is an inner function. Let m denote Lebesgue measure on the unit circle. A

singular inner function is a function of the form

S(z) = exp

(
−
∫ 2π

0

eit + z

eit − z
dµ(t)

)
,

where µ ⊥ m. Each singular inner function is an inner function. If γ ∈ R and ψ is a

function on the unit circle such that ψ(t) ≥ 0 and logψ ∈ L1, and ψ(t) ∈ Lp, then

F (z) = eiγ exp

(
1

2π

∫ 2π

0

eit + z

eit − z
logψ(t) dt

)
,

is called an outer function for Hp. Any such outer function is in fact in Hp. Also,

|F (eiθ)| = ψ(eiθ) a.e. on the unit circle. Each function f ∈ Hp can be factored

uniquely as f = BSF, where B is the Blaschke product formed from the zeros of f ,

and S is a singular inner function, and F is an outer function for Hp.

A very important fact about Hp functions is that if f and g are in Hp for some

p, and f(eiθ) = g(eiθ) on some set of positive measure, then f = g. In particular, Hp

functions are uniquely determined by their boundary values. Related to this is the

fact that each Hp function can be identified with its boundary function, and that

Hp can be identified with the subset of Lp consisting of all boundary functions of Hp

functions. The isomorphism obtained from this identification is an isometry.

The dual space of Hp, denoted by (Hp)∗, consists of all continuous linear function-

als from Hp to C. For 1 ≤ p <∞, the dual space (Hp)∗ is isometrically isomorphic to

Lq/Hq, where 1/p+1/q = 1 and where an equivalence class [g] of g ∈ Lq corresponds

to the functional defined by f 7→ (1/2π)
∫
∂D f(z)g(z) dz. Here ∂D denotes the bound-

ary of D, in other words the unit circle. Equivalently, we may identify (Hp)∗ with
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Lq/Hq
0 , where Hq

0 is the space of all g ∈ Hq such that g(0) = 0, and an equivalence

class [g] for g ∈ Lq corresponds to the functional f 7→ (1/2π)
∫ 2π

0
f(eiθ)g(eiθ) dθ.

Alternatively, for 1 < p < ∞, the dual space (Hp)∗ is isomorphic to Hq under

the isomorphism for which g ∈ Hq corresponds to the functional defined by f 7→

1
2π

∫ 2π

0
f(eiθ)g(eiθ) dθ. Note that strictly speaking, this isomorphism is not linear but

conjugate-linear. Also, this isomorphism is not an isometry unless p = 2. However,

for 1 < p < ∞, there is a constant Ap depending only on p such that if φ ∈ (Hp)∗

corresponds to g ∈ Hq, then

(1.1) ‖φ‖(Hp)∗ ≤ ‖g‖Hq ≤ Ap‖φ‖(Hp)∗ .

Closely related is the fact that the Szegő projection is bounded from Lp to Hp.

The Szegő projection maps L1(∂D) into the space of functions analytic in D and is

defined by

(Sf)(z) =
1

2π

∫ 2π

0

f(eit)

eit − z
eitdt.

If f ∈ H1 then Sf = f , and if f ∈ Lp for 1 < p < ∞ and f =
∑∞

n=−∞ ane
inθ, then

Sf(z) =
∑∞

n=0 anz
n. The fact that the Szegő projection is bounded from Lp onto

Hp when 1 < p < ∞ is equivalent to the theorem of M. Riesz that if a harmonic

function u ∈ hp for some p with 1 < p <∞, and if v is the harmonic conjugate of u

chosen so that v(0) = 0, then v ∈ hp and there is a constant Bp depending only on

p such that Mp(r, v) ≤ BpMp(r, u) for 0 ≤ r < 1.

1.2 Basic Facts about Bergman Spaces

Recall that the space Ap(D) is the space of all functions f analytic in the unit

disc such that

(1.2) ‖f‖Ap =

{∫
D
|f |p dσ

}1/p

<∞.
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If p < q, then Ap ⊃ Aq. In fact, for any domain (i.e. open, connected set) in C, we

may define Ap(Ω) to be the space of all functions f analytic in Ω such that

‖f‖Ap(Ω) =

{∫
Ω

|f |p dA
}1/p

<∞,

where dA denotes Lebesgue area measure. If Ω has at least one boundary component

that consists of more than a single point, then one can show that Ap(Ω) is nonempty.

For the unit disc, both definitions of Ap are the same, except that the norms differ

by a constant multiple. When speaking of Ap(D), we always use the definition in

equation (1.2), since it simplifies matters by making ‖1‖Ap = 1.

As stated before, Bergman spaces are more difficult to work with than Hardy

spaces. The first major difference is that a function in a Bergman space need not

have boundary values. Also, while there is an analogue of canonical factorization

for Ap functions, it does not give a unique factorization. These are just a few of the

difficulties that arise in Bergman spaces that are absent in Hardy spaces.

It can be shown that point evaluation is a bounded linear functional in any Ap

space. In fact, for a general domain Ω, we have that

|f(z)| ≤ π−1/pδ(z)−2/p‖f‖Ap(Ω)

for any function f ∈ Ap(Ω), where δ(z) is the distance from z to the boundary of Ω.

Vukotić [25] obtained the estimate

|f(z)| ≤ (1− |z|2)−2/p‖f‖Ap(D)

for any function f ∈ Ap(D), where 0 < p <∞. For p ≥ 1, this result was also obtained

by Osipenko and Stessin [21]. The polynomials are dense in Ap for 0 < p <∞.

The simplest Bergman space is A2, which is a Hilbert space. The polynomials

1,
√

2 z,
√

3 z2, . . . ,
√
n+ 1 zn, . . . form an orthonormal basis for A2. Because point
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evaluation is a bounded linear functional on A2, the space A2 has a reproducing

kernel K(z, ζ), called the Bergman kernel, with the property that

(1.3) f(z) =

∫
D
K(z, ζ)f(ζ) dσ(ζ)

for all f ∈ A2 and for all z ∈ D. One can show that

K(z, ζ) =
1

(1− ζz)2
.

Since the polynomials are dense in A1, we have that (1.3) holds for all f ∈ A1.

In fact, for any f in L1 we many define the Bergman projection P by

(Pf)(z) =

∫
D

f(ζ)

(1− ζz)2
dσ(ζ).

The Bergman projection maps L1 into the space of functions analytic in D. A non-

trivial fact is that P also maps Lp boundedly onto Ap for 1 < p <∞. If p = 2, then

P is just the orthogonal projection of L2 onto A2.

Closely related to the boundedness of the Bergman projection is the fact that,

for 1 < p < ∞, the dual space (Ap)∗ is isomorphic to Aq, where 1/p + 1/q = 1.

The isomorphism associates k ∈ Aq with the functional defined by f 7→
∫

D fk dσ.

This isomorphism is not an isometry unless p = 2, but if φ ∈ (Ap)∗ is represented by

k ∈ Aq, then

(1.4) ‖φ‖ ≤ ‖k‖Aq ≤ Cp‖φ‖,

where Cp is a constant depending only on p. Note that strictly speaking this isomor-

phism is not linear but conjugate linear.

We will often use equation (1.4) in this dissertation. Accordingly, we adopt the

convention that q and p are conjugate exponents, unless otherwise specified.

If f is analytic in D, recall that Snf denotes its nth Taylor polynomial about the

origin. Then for 1 < p <∞, if f ∈ Ap, the Taylor polynomials Snf → f in Ap.
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1.3 Extremal Problems in Hardy Spaces

Since this dissertation deals with the theory of extremal problems in Bergman

spaces, we first review the corresponding theory for Hardy spaces. These problems

were studied extensively around 1950 by S. Ya. Khavinson, and by W. W. Rogosinski

and H. S. Shapiro (see [5], Chapter 8.) The basic problem is as follows: given a

function k ∈ Lq and the associated functional φ ∈ (Hp)∗ defined by φ(f) =
∫
∂D fk dz,

where 1/p+1/q = 1, we wish to determine which functions f ∈ Hp satisfy ‖f‖Hp = 1

and

Reφ(f) = sup
‖g‖Hp=1

Reφ(g).

We will confine ourselves to discussion of the case where 1 < p <∞, although much

of what we say carries over to the cases p = 1 or p = ∞.

In solving such problems it is helpful to consider the so called “dual extremal

problem.” If the functional φ is associated with k ∈ Lq, the dual extremal problem

is to find a K ∈ Lq such that k −K ∈ Hq and

‖K‖Lq = min
h∈Hq

‖k − h‖Lq .

The function K is called the extremal kernel. It gives rise to the same functional as

the original kernel.

By applying methods from functional analysis, one can show that, for 1 < p <∞,

a unique solution always exists for a given extremal problem, and a unique solution

always exists for the dual problem. In addition,

max
‖f‖Hp=1

Re

∫
∂D
fk dz = min

h∈Hq
‖k − h‖Lq .

In other words, the (Hp)∗ norm of the functional φ equals the Lq norm of the extremal

kernel K. We will generally let F denote the extremal function.
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Using the conditions for equality in Hölder’s inequality, one can show the following:

Let 1 < p < ∞, and let k ∈ Lq, where 1/p + 1/q = 1, and define φ by φ(f) =∫
∂D fk dz. Let F ∈ Hp with ‖F‖Hp = 1 and φ(F ) > 0. Furthermore, let K ∈ Lq be a

function such that k−K ∈ Hq. Then a necessary and sufficient condition that F be

the extremal function for k, and that K be the extremal kernel for k, is that both

1. eiθF (eiθ)K(eiθ) ≥ 0 a.e., and

2. |F (eiθ)|p = ‖K‖−qHq |K(eiθ)|q a.e.

Rational kernels are arguably the most important, since by the Cauchy integral

formula they can represent linear combinations of any functionals which evaluate a

function or one of its derivatives at a point in D. More explicitly, for z ∈ D and

f ∈ Hp, we have

f (n)(z) =
n!

2πi

∫
∂D
f(ζ)

1

(ζ − z)n+1
dζ,

so n!/(z − a)n+1 is the kernel for the functional defined by f 7→ f (n)(a). For rational

kernels, a structural formula exists for both F and K. Let the given kernel k be

analytic in D except for poles at the points β1, . . . , βn, listed according to multiplicity.

Then there are numbers s and σ such that 0 ≤ s ≤ σ ≤ n − 1, and numbers

a1, . . . an−1, each of which lies in D, such that a1, . . . , as are the zeros of K in D, and

as+1, . . . , aσ are the zeros of F in D, and aσ+1, . . . , an−1 ∈ ∂D, and such that

F (z) = A
σ∏

j=s+1

z − aj
1− ajz

n−1∏
j=1

(1− ajz)
2/p

n∏
j=1

(1− βjz)
−2/p, and

K(z) = B

s∏
j=1

z − aj
1− ajz

n−1∏
j=1

(1− ajz)
2/q

n∏
j=1

(1− βjz)
1−(2/q)

z − βj
,

where A and B are complex constants. Using these formulas, F and K can often be

found explicitly.

Minimal interpolation problems are another important type of extremal problem.

In these problems, we are given distinct points z1, z2, . . . , zn in the unit disc, and
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nonnegative integers d1, d2, . . . , dn, and complex numbers w1, w2, . . . , wn, and we are

required to find an f ∈ Hp of smallest norm such that f (dj)(zj) = wj for 1 ≤ j ≤ n.

One could also specify values at an infinite number of points, but we do not deal

with this problem here.

Such a problem may in fact be formulated as a certain dual extremal problem,

and thus for 1 < p <∞ the solution will always exist and be unique.

1.4 Previous Work on Extremal Problems in Bergman Spaces

Some previous work has been done on extremal problems in Bergman spaces,

although the theory is nowhere near as complete as the Hp theory. Similarly to the

Hardy space case, for a given non-zero functional φ ∈ (Ap)∗, we study the extremal

problem of finding a function F ∈ Ap with norm ‖F‖Ap = 1 for which

(1.5) Reφ(F ) = sup
‖g‖Ap=1

Reφ(g) = ‖φ‖.

Such a function F is called an extremal function.

This dissertation concentrates on the case when 1 < p < ∞, and it is known in

such a case that an extremal function always exists and is unique. In the A1 case,

there can be at most one extremal function, but one need not exist (see [26]). In the

case where 1 < p <∞, we say that F is an extremal function for k ∈ Aq if F solves

the extremal problem for the functional φ with kernel k. Note that for p = 2, the

extremal function is F = k/‖k‖A2 .

We also deal with minimal interpolation problems on the Bergman space. An

important example of a minimal interpolation problem is to find F ∈ Ap such that

F has specified zeros, F (0) = 1 (or F (n+1)(0) = 1 if F is supposed to have n zeros at

the origin), and ‖F‖Ap is as small as possible. Essentially the same problem is to find

G ∈ Ap such that G has specified zeros, ‖G‖Ap = 1, and Re{G(0)} (or Re{G(n+1)(0)}
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if G is supposed to have n zeros at the origin) is as large as possible.

For 0 < p <∞, such a function G exists and is unique, as long as the specified zero

set is actually the zero set of some Ap function. Such a G is called a contractive zero-

divisor or canonical divisor, and it has several remarkable properties. For instance,

it has no zeros other than those specified. Another property is that if f ∈ Ap and

every zero of G is also a zero of f , then f/G ∈ Ap and in fact ‖f/G‖Ap ≤ ‖f‖Ap.

These contractive divisors play a similar role to Blaschke products in the Hp theory,

although Blaschke products are isometric divisors in Hp, since ‖f/B‖Hp = ‖f‖Hp

when f vanishes on the zero-set of B. In fact, canonical divisors were first discovered

in p = 2, by Hedenmalm [13]. He noted that Blaschke products are solutions to

the extremal problem of finding the function f ∈ H2 with norm 1, specified zeros,

and the largest possible value at the origin (or the largest possible value of the nth

derivative if f is required to have n zeros at the origin). Duren, Khavinson, Shapiro,

and Sundberg extended his results to 0 < p < ∞ in a series of papers (see [8] and

[7]). MacGregor and Stessin have obtained a structural formula for canonical divisors

with a finite zero set in [20].

Before canonical divisors were discovered, Horowitz found functions with some of

the same properties as canonical divisors, though his functions were not necessarily

in Ap. He used them to obtain important results on zero-sets of Ap functions (see

[16], [15], and [9]).

Vukotić [26] summarizes some known results, as well as discussing the A1 case in

more detail than we do here. In [25], he completely solves the extremal problem for

point evaluation functionals. His result was also obtained, in less general form, by

Osipenko and Stessin in [21].

Ryabykh [22] obtained an important result about extremal problems in Bergman
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spaces with kernels in Hardy spaces, a topic which we study in this dissertation.

Khavinson and Stessin have obtained results about polynomial or rational kernels

for 1 < p < ∞ in [18]. Extremal problems in Bergman space are studied in many

other places. See for example [1] and [17].

1.5 Two Basic Tools

We will use an important characterization of extremal functions in closed sub-

spaces of Lp for 1 < p <∞ (see [23], p. 55).

Theorem A. Let 1 < p < ∞, let X be a closed subspace of Lp, and let φ ∈ X∗.

Assume that φ is not identically 0. A function F ∈ X with ‖F‖ = 1 satisfies

Reφ(F ) = sup
g∈X,‖g‖=1

Reφ(g) = ‖φ‖X∗

if and only if φ(F ) > 0 and ∫
D
h|F |p−1sgnF dσ = 0

for all h ∈ X with φ(h) = 0. If F satisfies the above conditions, then∫
D
h|F |p−1sgnF dσ =

φ(h)

‖φ‖X∗

for all h ∈ X.

For the sake of completeness, we will provide a proof.

Proof. Let q be the conjugate exponent to p, so that 1/p + 1/q = 1. By the Hahn-

Banach theorem, there is a functional Φ ∈ (Lp)∗ such that ‖Φ‖ = ‖φ‖ and such that

φ is the restriction of Φ to X. Let k ∈ Lq be the integral kernel of Φ, which by the

Riesz representation theorem exists and has the property that ‖k‖Lq = ‖Φ‖.
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First, suppose that F ∈ X with ‖F‖ = 1 and

Reφ(F ) = sup
g∈X,‖g‖=1

Reφ(g) = ‖φ‖.

Then

‖k‖Lq = ‖Φ‖ = Φ(F ) =

∫
D
Fk dσ ≤ ‖k‖Lq‖F‖Lq = ‖k‖Lq .

So by the conditions for equality in Hölder’s inequality, k = ‖k‖Lq |F |p−1sgnF , so∫
D |F |

p−1sgnFhdσ = 0 for all h ∈ X such that φ(h) = 0.

Conversely, suppose that ‖F‖ = 1 and
∫

D |F |
p−1sgnFhdσ = 0 for all h ∈ X such

that φ(h) = 0. Then for any f ∈ X, with ‖f‖ = 1, we have φ[f −φ(f)(F/φ(F ))] = 0

so

0 = φ

(
f − φ(f)

F

φ(F )

)
=

∫
D

[
f − φ(f)

F

φ(F )

]
|F |p−1sgnF dσ

=

∫
D
f |F |p−1sgnF dσ −

∫
D

φ(f)

φ(F )
|F |p dσ

=

∫
D
f |F |p−1sgnF dσ − φ(f)

φ(F )
.

But ‖F‖ = 1, so by Hölder’s inequality,

|φ(f)|
φ(F )

=

∣∣∣∣∫
D
f |F |p−1sgnF dσ

∣∣∣∣ ≤ ‖f‖Lp‖|F |p−1sgnF‖Lq = ‖f‖Lp = 1.

Thus, Reφ(f) ≤ Reφ(F ), since φ(F ) > 0. This finishes the proof of the first part of

the theorem.

For the second part, note that if F has the extremal property in question, then

for any h ∈ X, we have that∫
D
h|F |p−1sgnFdσ =

∫
D

[(
h− φ(h)

F

φ(F )

)
+ φ(h)

F

φ(F )

]
|F |p−1 sgnF dσ

= 0 +
φ(h)

φ(F )
‖F‖ =

φ(h)

‖φ‖X∗

since φ(h− (φ(h)/φ(F ))F ) = 0 and ‖F‖ = 1.
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The fact that if F is extremal then
∫

D h|F |
p−1sgnF dσ = 0 for all h such that

φ(h) = 0 may also be proven by a variational method (see [9], p.123).

Similar methods to those above may be used to prove the following theorem. It

may be found in [23], p. 55.

Theorem B. Suppose that X is a closed subspace of Lp(D). Let F ∈ Lp and suppose

that for all h ∈ X, we have ‖F‖ ≤ ‖F + h‖. Then∫
D
h|F |p−1sgnF dσ = 0

for all h ∈ X.

We will also make repeated use of the Cauchy-Green theorem. Recall that ∂/∂z =

(1/2)(∂/∂x− i∂/∂y) and that ∂/∂z = (1/2)(∂/∂x+ i∂/∂y). Also, dz = dx+ idy and

dz = dx− idy.

Cauchy-Green Theorem. If Ω is a region in the plane with piecewise smooth

boundary and f ∈ C1(Ω), then

1

2i

∫
∂Ω

f(z) dz =

∫
Ω

∂

∂z
f(z) dA(z),

where ∂Ω denotes the boundary of Ω.

We will often use this theorem in its “conjugate” version, which says that

i

2

∫
∂Ω

f(z) dz =

∫
Ω

∂

∂z
f(z) dA(z)

as long as the conditions in the theorem hold. This can be derived from the Cauchy-

Green theorem by replacing f by f and then taking complex conjugates of both sides

of the resulting equation.
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1.6 Summary of Results

In Chapter II, we define the notion of uniform convexity, and use it to show that

the extremal function F and kernel k depend continuously on each other in Ap spaces

for 1 < p < ∞. We then use the results of that chapter to give a simplified proof

of Ryabykh’s Theorem, which states that for Ap-extremal problems, if the kernel k

is in the Hardy space Hq, then the extremal function F is in Hp. This chapter first

appeared, in modified form, in [10].

In Chapter III, we extend Ryabykh’s Theorem in the case where p is an even

integer. We show that if k ∈ Hq1 for some q1 such that q ≤ q1 < ∞, then F ∈

H(p−1)q1 . We also prove the converse to this statement, and show that if the Fourier

coefficients of k are sufficiently small, then F ∈ H∞.

In Chapter IV, we develop techniques to solve certain extremal problems explicitly.

We also give a characterization of canonical divisors.



CHAPTER II

Uniformly Convex Spaces and Ryabykh’s Theorem

We begin this section by studying extremal problems over uniformly convex Ba-

nach spaces, a type of Banach space that includes each of Lp, Hp, and Ap when

1 < p < ∞. Given a uniformly convex Banach space X and a linear functional

φ ∈ X∗, we ask the question: what elements x of the space with norm ‖x‖ = 1

maximize Reφ(x)? Because of the uniform convexity, this problem will always have

a unique solution, which is called the extremal element. In this chapter, we show

that the extremal element depends continuously on the functional φ, and it can be

approximated by the solutions of the same extremal problem over subspaces of the

original Banach space. Using these results, we give a streamlined proof of a theorem

of Ryabykh, which says that for a functional defined on the Bergman space Ap, with

kernel in the Hardy space Hq, the extremal element is in Hp, where 1 < p <∞ and

1
p

+ 1
q

= 1.

2.1 Uniform convexity and extremal problems

Let X be a complex Banach space and let X∗ be its dual space. For a given linear

functional φ ∈ X∗ with φ 6= 0, we are interested in all elements x ∈ X with norm

16
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‖x‖ = 1 such that

(2.1) Reφ(x) = sup
‖y‖=1

Reφ(y) = ‖φ‖.

As stated in the introduction, such a problem is referred to as an extremal problem,

and x is an extremal element.

A closely related problem is that of finding x ∈ X such that

(2.2) φ(x) = 1 and ‖x‖ = inf
φ(y)=1

‖y‖.

If x solves the problem (2.1), then x
φ(x)

solves the problem (2.2), and if x solves (2.2),

then x
‖x‖ solves (2.1). To standardize notation, when dealing with elements of general

uniformly convex Banach spaces, we will often denote solutions to (2.1) by x? and

solutions to (2.2) by x�.

For general Banach spaces, the problem (2.1) need not have a solution, and if it

does the solution need not be unique. However, if the Banach space X is uniformly

convex, there will always be a unique solution.

Definition 2.1. A Banach space X is said to be uniformly convex if for each ε > 0,

there is a δ > 0 such that for all x, y ∈ X with ‖x‖ = ‖y‖ = 1,

∥∥1
2
(x+ y)

∥∥ > 1− δ implies ‖x− y‖ < ε.

An equivalent statement is that if {xn} and {yn} are sequences in X such that

‖xn‖ = ‖yn‖ = 1 and ‖xn + yn‖ → 2, then ‖xn − yn‖ → 0. Uniform convexity was

introduced by Clarkson [3], who proved that the Lp spaces are uniformly convex for

1 < p <∞.

Proposition 2.2. Let X be a uniformly convex Banach space, and let {xn} and

{yn} be sequences in X. If for some d > 0, ‖xn‖ → d and ‖yn‖ → d as n→∞, and

‖xn + yn‖ → 2d, then ‖xn − yn‖ → 0.
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Proof. We have that

2 ≥
∥∥∥∥ xn
‖xn‖

+
yn
‖yn‖

∥∥∥∥ =
1

‖xn‖

∥∥∥∥xn +
‖xn‖
‖yn‖

yn

∥∥∥∥
≥ 1

‖xn‖
‖xn + yn‖ −

1

‖xn‖

∥∥∥∥yn − ‖xn‖
‖yn‖

yn

∥∥∥∥→ 2

as n→∞. Hence by uniform convexity,∥∥∥∥ xn
‖xn‖

− yn
‖yn‖

∥∥∥∥→ 0.

But then

‖xn − yn‖ = ‖xn‖
∥∥∥∥ xn
‖xn‖

− yn
‖xn‖

∥∥∥∥
≤ ‖xn‖

∥∥∥∥ xn
‖xn‖

− yn
‖yn‖

∥∥∥∥+ ‖xn‖
∥∥∥∥yn( 1

‖xn‖
− 1

‖yn‖

)∥∥∥∥→ 0.

The following result is basic (see for instance [9], Section 2.2) and gives immedi-

ately the existence and uniqueness of extremal elements.

Proposition 2.3. A closed convex subset of a uniformly convex Banach space has

exactly one element of smallest norm.

Since the problem (2.2) is one of finding an element of minimal norm over a

(closed) subspace of the Banach space, it has a unique solution, and thus we obtain

the following theorem.

Theorem 2.4. If X is a uniformly convex Banach space and φ ∈ X∗ with φ 6= 0,

then the problems (2.1) and (2.2) both have a unique solution.

For later reference, we record the relations

x? =
x�

‖x�‖
= ‖φ‖x�,

x� =
x?

φ(x?)
=

x?

‖φ‖
,

‖φ‖ = φ(x?) =
1

‖x�‖
.

(2.3)
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We now state a lemma which will be applied repeatedly.

Lemma 2.5. Let X be a uniformly convex Banach space, let {xn} and {yn} be

sequences in X, and let φ ∈ X∗ where φ 6= 0. If for some d ≥ 0, ‖xn‖ → d and

‖yn‖ → d as n→∞, and if |φ(xn + yn)| → 2d‖φ‖, then ‖xn − yn‖ → 0.

Proof. Since |φ(xn + yn)| ≤ ‖φ‖‖xn + yn‖, we have that

|φ(xn + yn)|
‖φ‖

≤ ‖xn + yn‖ ≤ ‖xn‖+ ‖yn‖.

But the left and right sides of this inequality both approach 2d, so Proposition 2.2

gives the result.

2.2 Continuous dependence of the solution on the functional

It is important to know whether the extremal element depends continuously on

the functional. This turns out to be true for uniformly convex spaces. Note that

when say a sequence of linear functionals φn approaches a linear functional φ, we

mean that ‖φ− φn‖ → 0.

Theorem 2.6. Suppose that X is a uniformly convex Banach space and that {φn}

is a sequence of nonzero functionals in X∗ such that φn → φ 6= 0. Let x?n denote the

solution to problem (2.1) for φn, and let x? be the solution for φ. Similarly, let x�n

denote the solution to problem (2.2) for φn, and let x� be the solution for φ. Then

x?n → x? and x�n → x�.

Ryabykh [22] gives a different proof of this statement while establishing another

theorem, but our proof is simpler and more direct.

Proof. Note that

φ(x?n) = φn(x
?
n) + (φ− φn)(x

?
n) = ‖φn‖+ (φ− φn)(x

?
n) → ‖φ‖
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so that

φ(x?n + x?) → 2‖φ‖.

Lemma 2.5 now shows that x?n → x?. It follows that x�n → x� since

x�n =
x?n
‖φn‖

→ x?

‖φ‖
= x�.

For given φ, a unique x� solves the problem (2.2):

‖x�‖ = min
φ(x)=1

‖x‖.

It is natural to ask whether different functionals can give rise to the same solution of

the problem (2.2). The following theorem answers this question whenX∗ is uniformly

convex.

Theorem 2.7. Let X be a Banach space and let x ∈ X with x 6= 0. If X∗ is

uniformly convex, then there exists a unique φ ∈ X∗ such that x solves the problem

(2.2) associated with φ.

Proof. By the Hahn-Banach theorem, there is some φ ∈ X∗ such that φ(x) = 1 and

‖φ‖ = 1
‖x‖ . But if for some y ∈ X, φ(y) = 1, then 1 ≤ ‖φ‖‖y‖, or ‖y‖ ≥ ‖φ‖−1 = ‖x‖.

This says that x solves the problem (2.2) associated with φ. To show that φ is unique,

consider the problem of finding ψ� such that

(2.4) ‖ψ�‖ = min
ψ∈X∗,ψ(x)=1

‖ψ‖

We claim that if x solves the problem (2.2) for some θ ∈ X∗, then θ solves the

problem (2.4). In particular, φ solves the problem (2.4). To see this, note that if

x solves (2.2) for θ, then θ(x) = 1. If θ is not a solution of (2.4), then there is a



21

functional ψ such that ‖ψ‖ < ‖θ‖ and ψ(x) = 1. But this is impossible, since it

would imply

1 = |ψ(x)| ≤ ‖ψ‖‖x‖ =
‖ψ‖
‖θ‖

< 1,

where we have used the last relation in (2.3). Since X∗ is uniformly convex, Theorem

2.4 shows that φ is the unique solution to (2.4), which proves the theorem.

When x� determines the functional φ uniquely, it is also natural to ask whether φ

depends continuously on x�. The following theorem answers this question when X∗

is uniformly convex.

Theorem 2.8. (a) Suppose that X is a Banach space whose dual space X∗ is uni-

formly convex. If S is a closed subspace of X, then for any x ∈ S, there exists a

unique φ ∈ S∗ such that x solves the problem (2.2) associated with φ over S.

(b) Moreover, if xn ∈ S and xn → x, and φn is the unique functional in S∗ that

solves the problem (2.2) for xn, then φn → φ.

Proof. Recall that if S is a closed subspace of X, then S∗ is isometrically isomorphic

to X∗/S⊥, where S⊥ is the annihilator of S in X∗. In [19], Section 26, it is shown

that the quotient space of a uniformly convex space is uniformly convex, which shows

that S∗ is uniformly convex. From this and Theorem 2.7, part (a) follows.

Since, as shown in the proof of Theorem 2.7, each φn is the unique solution to the

problem (2.4) with xn in place of x, and since φ is the unique solution of the problem

(2.4), Theorem 2.6 implies part (b).

Since (Lp)∗ = Lq is uniformly convex for 1 < p < ∞, this theorem applies to

the spaces Ap and Hp for 1 < p < ∞. Note that if ‖x‖ = 1, there is not a unique

linear functional φ such that x solves problem (2.1) for φ. Indeed, if x solves (2.1)
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for φ, then it also does so for any positive scalar multiple of φ. However, we can

say something about uniqueness of φ in this case. If ‖x‖ = 1, then x solves problem

(2.2) for φ if and only if x solves problem (2.1) for φ, as follows from the relations

(2.3). Thus, if ‖x‖ = 1, then there is a φ such that x solves (2.1) for φ, and this φ is

unique up to positive scalar multiple.

2.3 Approximation by solutions in subspaces

To obtain Ryabykh’s theorem, we will also need the following theorem, which

allows an extremal element to be approximated by extremal elements over subspaces.

Theorem 2.9. Suppose that X is a uniformly convex Banach space and let X1,

X2, X3, . . . be (closed) subspaces for which X1 ⊂ X2 ⊂ · · · ⊂ X and

⋃
n∈N

Xn = X.

Let φ ∈ X∗, and let

‖φ‖n = sup
x∈Xn,‖x‖=1

|φ(x)|.

Let x?n denote the solution to the problem (2.1) when restricted to the subspace Xn,

and let x�n denote the solution to the problem (2.2) when restricted to Xn. Then

‖φ‖n → ‖φ‖ and x?n → x? and x�n → x� as n→∞.

Here, x? denotes the solution to (2.1) over X, and x� denotes the solution to (2.2)

over X.

Proof. First of all, we know that each x?n and x�n is uniquely determined since a closed

subspace of a uniformly convex space is uniformly convex. Let ε > 0 be given. Since⋃
n∈N Xn is dense in X, we may choose an n such that ‖x?−y‖ < ε for some y ∈ Xn.
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Thus

|φ(y)| = |φ(x?)− φ(x? − y)| ≥ |φ(x?)| − |φ(x? − y)| = ‖φ‖ − |φ(x? − y)|

≥ ‖φ‖ − ‖φ‖ ‖x? − y‖ ≥ ‖φ‖(1− ε).

We also know that ‖y‖ ≤ 1 + ε, so

‖φ‖n ≥
|φ(y)|
‖y‖

≥ (1− ε)‖φ‖
1 + ε

,

and thus for all N ≥ n,

‖φ‖N ≥
(1− ε)‖φ‖

1 + ε
.

But since ‖φ‖ ≥ ‖φ‖m for all m, this implies that

‖φ‖ ≥ lim sup
m→∞

‖φ‖m ≥ lim inf
m→∞

‖φ‖m ≥
(1− ε)‖φ‖

1 + ε
.

Because ε was arbitrary, this shows that ‖φ‖m → ‖φ‖.

Now, φ(x?n +x?) = ‖φ‖n + ‖φ‖ → 2‖φ‖, so Lemma 2.5 shows that ‖x?−x?n‖ → 0.

For x�, the result now follows since

x�n =
x?

‖φ‖n
and x� =

x?

‖φ‖
.

2.4 Ryabykh’s Theorem

With the help of the preceding results, we can now obtain a slightly sharpened

version of Ryabykh’s theorem. Our proof uses some of Ryabykh’s ideas but is simpler

and more concise. We note that Ryabykh’s approach successfully applies to other

extremal problems as well. For example, it applies to some problems of best approx-

imation of a given function by harmonic or analytic functions (see [17]), and to some

nonlinear extremal problems involving non-vanishing functions (see [1]). Note that

we let F denote the solution to the extremal problem instead of f ?, for typographical

convenience.
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Theorem 2.10. Let 1 < p <∞ and let 1/p+ 1/q = 1. Suppose that φ ∈ (Ap)∗ and

φ(f) =
∫

D fk dσ for some k ∈ Hq, where k 6= 0. Then the solution to the extremal

problem (2.1) (with X = Ap) belongs to Hp and satisfies

(2.5) ‖F‖Hp ≤

{[
max(p− 1, 1)

]
Cp‖k‖Hq

‖k‖Aq

}1/(p−1)

,

where Cp is the constant in (1.4).

Of course, this implies that the solution to the problem (2.2) is in Hp as well.

Proof. Let

K(z) =
1

z

∫ z

0

k(ζ) dζ,

so that (zK)′ = k.

Now, the continuous form of Minkowski’s inequality gives

Mq(r, zK) =

{
1

2π

∫ 2π

0

|reiθK(reiθ)|q dθ
}1/q

=

{
1

2π

∫ 2π

0

∣∣∣∣∫ r

0

k(ρeiθ)eiθ dρ

∣∣∣∣q dθ}1/q

≤
∫ r

0

{
1

2π

∫ 2π

0

|k(ρeiθ)|q dθ
}1/q

dρ ≤
∫ r

0

Mq(k, ρ) dρ ≤ ‖k‖Hq .

Thus,

(2.6) |K‖Hq ≤ ‖k‖Hq .

To facilitate calculations involving the Cauchy-Green theorem, we suppose first

that k ∈ C1(D). Let Fn denote the solution to the extremal problem (2.1) over the

space of all polynomials of degree n or less, considered as a subspace of Ap, and let F

be the solution to the same problem over the space Ap. Then by the Cauchy-Green

theorem,

‖Fn‖pHp =
1

2π

∫ 2π

0

|Fn(eiθ)|p dθ =
1

2πi

∫
∂D
|Fn(z)|p z dz

=

∫
D

(
Fn +

p

2
zFn

′
)
|Fn|p−1sgnFn dσ.
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Because (Fn+ p
2
zFn

′) is a polynomial of degree at most n, we can appeal to Theorem

A with X taken to be the subspace of Ap consisting of all such polynomials. The

theorem shows that

‖Fn‖pHp =
1

‖φ‖n
φ
(
Fn +

p

2
zFn

′
)

=
1

‖φ‖n

∫
D
k
(
Fn +

p

2
zFn

′
)
dσ

=
1

‖φ‖n

∫
D

[
∂

∂z

(
FnzK

)
+
p

2

(
∂

∂z

(
zFnk

)
− ∂

∂z

(
FnzK

))]
dσ.

Now another application of the Cauchy-Green theorem gives:

‖Fn‖pHp =
1

2πi‖φ‖n

∫
∂D
zKFn dz −

p

4πi‖φ‖n

∫
∂D
zFnk dz −

p

4πi‖φ‖n

∫
∂D
FnzK dz

=
1

2π‖φ‖n

∫ 2π

0

Fn

[(p
2

)
k +

(
1− p

2

)
K
]
dθ

≤ 1

‖φ‖n
‖Fn‖Hp

∥∥∥(p
2

)
k +

(
1− p

2

)
K
∥∥∥
Hq

Minkowski’s inequality now gives

‖Fn‖pHp ≤
1

‖φ‖n
‖Fn‖Hp

(p
2
‖k‖Hq +

∣∣∣1− p

2

∣∣∣ ‖K‖Hq

)
.

But this implies that(
1

2π

∫ 2π

0

|Fn(reiθ)|p dθ
)1/p

≤ 1

‖φ‖1/(p−1)
n

(p
2
‖k‖Hq +

∣∣∣1− p

2

∣∣∣ ‖K‖Hq

)1/(p−1)

,

when 0 < r < 1. From Theorem 2.9 and the fact that convergence in Ap implies

uniform convergence on compact subsets of the disc, it follows that(
1

2π

∫ 2π

0

|F (reiθ)|p dθ
)1/p

≤ 1

‖φ‖1/(p−1)

(p
2
‖k‖Hq +

∣∣∣1− p

2

∣∣∣ ‖K‖Hq

)1/(p−1)

,

when 0 < r < 1. Now we apply (2.6) to infer that

‖F‖Hp ≤

{(
p

2
+

∣∣∣∣1− p

2

∣∣∣∣)‖k‖Hq

‖φ‖

}1/(p−1)

.

Since we know that ‖k‖Aq ≤ Cp‖φ‖, and that p/2 + |1− (p/2)| = max(p− 1, 1), we

conclude finally that the inequality (2.5) holds under the assumption that k ∈ C1(D).
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If k is a general function in Hq, we can approximate it in Hq norm by a sequence

of functions km ∈ C1(D). (We may even use polynomials, by [5], Theorem 3.3.) Then

the corresponding functionals φm converge to φ, so by Theorem 2.6, the extremal

elements Fm for φm converge to the extremal element F for φ in Ap norm. Since

km ∈ C1(D), we have already found that

(
1

2π

∫ 2π

0

|Fm(reiθ)|p dθ
)1/p

≤

{[
max(p− 1, 1)

]
Cp‖km‖Hq

‖km‖Aq

}1/(p−1)

, 0 < r < 1.

But the convergence of Fm → F in Ap norm implies that Fm(z) → F (z) locally

uniformly, so it follows that(
1

2π

∫ 2π

0

|F (reiθ)|p dθ
)1/p

≤

{[
max(p− 1, 1)

]
Cp‖k‖Hq

‖k‖Aq

}q/p

, 0 < r < 1,

which proves (2.5).



CHAPTER III

Extensions of Ryabykh’s Theorem

In this chapter, we obtain a sharper version of Ryabykh’s theorem in the case

where p is an even integer. As before, we will let the function k ∈ Aq be the kernel

of a functional in (Ap)∗, and F ∈ Ap will be the corresponding extremal function.

Our results are:

• For q ≤ q1 < ∞, the extremal function F ∈ H(p−1)q1 if and only if the kernel

k ∈ Hq1 .

• If the Taylor coefficients of k are “small enough,” then F ∈ H∞.

• The map sending a kernel k ∈ Hq to its extremal function F ∈ Ap is a continuous

map from Hq \ 0 into Hp.

Our proofs rely heavily on Littlewood-Paley theory, and seem to require that p

be an even integer. It is an open problem whether the results hold without this

assumption.

To obtain our results, including a generalization of Ryabykh’s theorem, we will

need the following technical lemmas. Their proofs, which involve Littlewood-Paley

theory, are deferred to the end of the chapter.

In the statement of the lemmas, we will use the following definition of principal

value. If h is a measurable function in the unit disc, define the principal value of its

27
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integral as

p. v.

∫
D
h dA = lim

r→1

∫
rD
h dA,

if the limit exists. Also, recall that Snf denotes the nth Taylor polynomial of f .

Lemma 3.1. Let p be an even integer. Let f ∈ Hp and let h be a polynomial. Then

p. v.

∫
D
|f |p−1sgn ff ′h dσ = lim

n→∞

∫
D
|f |p−1sgn f(Snf)′h dσ.

Lemma 3.2. Suppose that 1 < p1 <∞ and 1 < p2, p3 ≤ ∞, and also that

1 =
1

p1

+
1

p2

+
1

p3

.

Let f1 ∈ Hp1, f2 ∈ Hp2, and f3 ∈ Hp3 . Then∣∣∣∣p. v.∫
D
f1f2f

′
3 dσ

∣∣∣∣ ≤ C‖f1‖Hp1‖f2‖Hp2‖f3‖Hp3

where C depends only on p1 and p2. (Implicit is the claim that the principal value

exists.) Moreover, if p3 <∞, then

p. v.

∫
D
f1f2f

′
3 dσ = lim

n→∞

∫
D
f1f2(Snf3)

′ dσ.

3.1 The Norm-Equality

Let p be an even integer and let q be its conjugate exponent. Let k ∈ Hq and

let F be the extremal function for k over Ap. We will denote by φ the functional

associated with k. Let Fn be the extremal function for k when the extremal problem

is posed over Pn, the space of polynomials of degree at most n. Also, let

(3.1) K(z) =
1

z

∫ z

0

k(ζ) dζ,

so that (zK)′ = k. During proof of Ryabykh’s theorem in Chapter II, an important

step was to show that

1

2π

∫ 2π

0

|Fn(eiθ)|p dθ =
1

2π‖φ|Pn‖

∫ 2π

0

Fn

[(p
2

)
k +

(
1− p

2

)
K
]
dθ.
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We will now derive a similar result for F :

Theorem 3.3. Let p be an even integer, let k ∈ Hq, and let F ∈ Ap be the extremal

function for k. Then

1

2π

∫ 2π

0

|F (eiθ)|ph(eiθ) dθ =
1

2π‖φ‖

∫ 2π

0

F
[(p

2

)
hk +

(
1− p

2

)
(zh)′K

]
dθ,

for every polynomial h.

Proof. Since Ryabykh’s theorem says that F ∈ Hp, we have

1

2π

∫ 2π

0

|F (eiθ)|ph(eiθ) dθ = lim
r→1

i

2π

∫
∂(rD)

|F (z)|ph(z)z dz,

where h is any polynomial. Apply the Cauchy-Green theorem to transform the

right-hand side into

p. v.
1

π

∫
D

(
(zh)′F +

p

2
zhF ′

)
|F |p−1sgnF dA(z).

Invoking Lemma 3.1 with zh in place of h shows that this limit equals

lim
n→∞

1

π

∫
D

(
(zh)′F +

p

2
zh(SnF )′

)
|F |p−1sgnF dA(z).

Since (zh)′F + p
2
zh(SnF )′ is in Ap, we may apply Theorem A to reduce the last

expression to

(3.2) lim
n→∞

1

π‖φ‖

∫
D

(
(zh)′F +

p

2
zh(SnF )′

)
k dA(z).

Recall that we have defined K(z) = 1
z

∫ z
0
k(ζ) dζ. To prepare for a reverse application

of the Cauchy-Green theorem, we rewrite the integral in (3.2) as

1

π‖φ‖

∫
D

[
∂

∂z

{
(zh)′FzK

}
+
p

2

∂

∂z

{
zhSn(F )k

}
− p

2

∂

∂z

{
(zh)′Sn(F )zK

} ]
dA(z).
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Now this equals

lim
r→1

1

π‖φ‖

∫
rD

[
∂

∂z

{
(zh)′FzK

}
+
p

2

∂

∂z

{
zhSn(F )k

}
− p

2

∂

∂z

{
(zh)′Sn(F )zK

} ]
dA(z).

We apply the Cauchy-Green theorem to show that this equals

lim
r→1

[
1

2πi‖φ‖

∫
∂(rD)

(zh)′FzK dz +
ip

4π‖φ‖

∫
∂(rD)

zhSn(F )k dz

− p

4πi‖φ‖

∫
∂(rD)

(zh)′Sn(F )zK dz

]
.

Since F is in Hp and both k and K are in Hq, the above limit equals

1

2πi‖φ‖

∫
∂D

(zh)′FzK dz +
ip

4π‖φ‖

∫
∂D
zhSn(F )k dz

− p

4πi‖φ‖

∫
∂D

(zh)′Sn(F )zK dz

=
1

2π‖φ‖

∫ 2π

0

(zh)′FK + Sn(F )
(p

2
hk − p

2
(zh)′K

)
dθ.

We let n→∞ in the above expression to reach the desired conclusion.

Taking h = 1, we have the following corollary, which we call the “norm-equality”.

Corollary 3.4. (The Norm-Equality). Let p be an even integer, let k ∈ Hq, and

let F be the extremal function for k. Then

1

2π

∫ 2π

0

|F (eiθ)|p dθ =
1

2π‖φ‖

∫ 2π

0

F
[(p

2

)
k +

(
1− p

2

)
K
]
dθ.

The norm-equality is useful mainly because it yields the following theorem.

Theorem 3.5. Let p be an even integer. Let {kn} be a sequence of Hq functions,

and let kn → k in Hq. Let Fn be the Ap extremal function for kn and let F be the

Ap extremal function for k. Then Fn → F in Hp.
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Note that Ryabykh’s theorem shows that each Fn ∈ Hp, and that F ∈ Hp. But

because the operator taking a kernel to its extremal function is not linear, one cannot

apply the closed graph theorem to conclude that Fn → F .

To prove Theorem 3.5 we will use the following lemma involving the notion of

uniform convexity. By xn ⇀ x, we mean that xn approaches x weakly.

Lemma 3.6. Suppose that X is a uniformly convex Banach space, that x ∈ X, and

that {xn} is a sequence of elements of X. If xn ⇀ x and ‖xn‖ → ‖x‖, then xn → x

in X.

This lemma is known. For example, it is contained in Exercise 15.17 in [14].

Proof of Theorem. We will first show that Fn ⇀ F in Hp (that is, Fn converges to

F weakly in Hp). Next we will use this fact and the norm-equality to show that

‖Fn‖Hp → ‖F‖Hp . By the lemma, it will then follow that Fn → F in Hp.

To prove that Fn ⇀ F in Hp, note that Ryabykh’s theorem says that ‖Fn‖Hp ≤

C(‖kn‖Hq/‖kn‖Aq)1/(p−1). Let α = infn ‖kn‖Aq and β = supn ‖kn‖Hq . Here α > 0

because by assumption none of the kn are identically zero, and they approach k,

which is not identically 0. Therefore ‖Fn‖Hp ≤ C(β/α)1/(p−1), and the sequence

{Fn} is bounded in Hp norm.

Now, suppose that Fn 6⇀ F. Then there is some ψ ∈ (Hp)∗ such that ψ(Fn) 6→

ψ(F ). This implies |ψ(Fnj
) − ψ(F )| ≥ ε for some ε > 0 and some subsequence

{Fnj
}. But since the sequence {Fn} is bounded in Hp norm, the Banach-Alaoglu

theorem implies that some subsequence of {Fnj
}, which we will also denote by {Fnj

},

converges weakly in Hp to some function F̃ . Then |ψ(F̃ )− ψ(F )| ≥ ε. Now kn → k

in Aq, and by Theorem 2.6 this implies Fn → F in Ap, which implies Fn(z) → F (z)

for all z ∈ D. Since point evaluation is a bounded linear functional on Hp, we have
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that Fnj
(z) → F̃ (z) for all z ∈ D, which means that F̃ (z) = F (z) for all z ∈ D. But

this contradicts the assumption that ψ(F̃ ) 6= ψ(F ). Hence Fn ⇀ F .

Let φn be the functional with kernel kn, and let φ be the functional with kernel

k. To show that ‖Fn‖Hp → ‖F‖Hp , recall that the norm-equality says

1

2π

∫ 2π

0

|Fn(eiθ)|p dθ =
1

2π‖φn‖

∫ 2π

0

Fn

[(p
2

)
kn +

(
1− p

2

)
Kn

]
dθ.

But, if h is any function analytic in D and H(z) = (1/z)
∫ z

0
h(ζ)dζ, it can be shown

that ‖H‖Hq ≤ ‖h‖Hq , as in the proof of Theorem 2.10. Since kn → k in Hq, it follows

that Kn → K in Hq. Also, kn → k in Ap implies that ‖φn‖ → ‖φ‖. In addition,

‖Fn‖Hp ≤ C for some constant C, and Fn ⇀ F, so the right-hand side of the above

equation approaches

1

2π‖φ‖

∫ 2π

0

F
[(p

2

)
k +

(
1− p

2

)
K
]
dθ =

1

2π

∫ 2π

0

|F (eiθ)|p dθ.

In other words, ‖Fn‖Hp → ‖F‖Hp , and so by Lemma 3.6 we conclude that Fn → F

in Hp.

3.2 Fourier Coefficients of |F |p

Theorem 3.3 can also be used to gain information about the Fourier coefficients

of |F |p, where F is the extremal function. In particular, it leads to a criterion for F

to be in L∞ in terms of the Taylor coefficients of the kernel k.

Theorem 3.7. Let p be an even integer. Let k ∈ Hq, let F be the Ap extremal

function for k, and define K by equation (3.1). Then for any integer m ≥ 0,

1

2π

∫ 2π

0

|F (eiθ)|peimθ dθ =
1

2π‖φ‖

∫ 2π

0

Feimθ
[(p

2

)
k +

(
1− p

2

)
(m+ 1)K

]
dθ.

Proof. Take h(eiθ) = eimθ in Theorem 3.3.
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This last formula can be applied to obtain estimates on the size of the Fourier

coefficients of |F |p.

Theorem 3.8. Let p be an even integer. Let k ∈ Aq, and let F be the Ap extremal

function for k. Let

bm =
1

2π

∫ 2π

0

|F (eiθ)|pe−imθ dθ,

and let

k(z) =
∞∑
n=0

cnz
n.

Then, for each m ≥ 0,

|bm| = |b−m| ≤
p

2‖φ‖
‖F‖H2

[
∞∑
n=m

|cn|2
]1/2

.

Proof. The theorem is trivially true if k 6∈ H2, so we may assume that k ∈ A2 ⊂ Aq.

Let F (z) =
∑∞

n=0 anz
n. Since F ∈ Hp, and p ≥ 2, we have F ∈ H2. Now, using

Theorem 3.7, we find that

b−m =
1

2π

∫ 2π

0

|F (eiθ)|peimθ dθ

=
1

2π‖φ‖

∫ 2π

0

(Feimθ)
[(p

2

)
k +

(
1− p

2

)
(m+ 1)K

]
dθ

=
1

2π‖φ‖

∫ 2π

0

[
∞∑
n=0

ane
i(n+m)θ

][
∞∑
j=0

((p
2

)
cj +

m+ 1

j + 1

(
1− p

2

)
cj

)
e−ijθ

]
dθ

=
1

‖φ‖

∞∑
n=0

an

((p
2

)
cn+m +

m+ 1

n+m+ 1

(
1− p

2

)
cn+m

)
.

The Cauchy-Schwarz inequality now gives

|b−m| ≤
1

‖φ‖

[
∞∑
n=0

|an|2
]1/2 [ ∞∑

n=m

∣∣∣∣(p2) cn +
m+ 1

n+ 1

(
1− p

2

)
cn

∣∣∣∣2
]1/2

≤ p

2‖φ‖

[
∞∑
n=0

|an|2
]1/2 [ ∞∑

n=m

|cn|2
]1/2

.

Since [
∞∑
n=0

|an|2
]1/2

= ‖F‖H2
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the theorem follows.

The estimate in Theorem 3.8 can be used to obtain information about the size of

|F |p and F , as in the following corollary.

Corollary 3.9. If cn = O(n−α) for some α > 3/2, then F ∈ H∞.

Proof. First observe that

∞∑
n=m

(n−α)2 ≤
∫ ∞

m−1

x−2α dx =
(m− 1)1−2α

2α− 1
.

By hypothesis it follows that[
∞∑
n=m

|cn|2
]1/2

= O(m(1−2α)/2).

Thus, Theorem 3.8 shows that bm = O(m(1−2α)/2). Therefore {bm} ∈ `1 if α > 3/2.

But {bm} ∈ `1 implies |F |p ∈ L∞, which implies F ∈ H∞.

In fact, {bm} ∈ `1 implies that |F |p is continuous in D, but this does not necessarily

mean F will be continuous in D. There is a result similar to Corollary 3.9 in [18],

where the authors show that if the kernel k is a polynomial, or even a rational

function with no poles in D, then F is Hölder continuous in D. Their technique relies

on deep regularity results for partial differential equations and applies to 1 < p <∞.

Our result only shows that F ∈ H∞, but it applies to a broader class of kernels when

p is an even integer.

3.3 Relations Between the Size of the Kernel and Extremal Function

In this section we show that if p is an even integer and q ≤ q1 < ∞, then the

extremal function F ∈ H(p−1)q1 if and only if the kernel k ∈ Hq1 . For q1 = q the

statement reduces to Ryabykh’s theorem and its previously unknown converse. The

following theorem is crucial to the proof.



35

Theorem 3.10. Let p be an even integer and let q = p/(p − 1) be its conjugate

exponent. Let F ∈ Ap be the extremal function corresponding to the kernel k ∈ Aq.

Suppose that k ∈ Hq1 for some q1 with q ≤ q1 <∞, and that F ∈ Hp1, for some p1

with p ≤ p1 <∞. Define p2 by

1

q1
+

1

p1

+
1

p2

= 1.

If p2 <∞, then for every trigonometric polynomial h we have∣∣∣∣∫ 2π

0

|F |ph(eiθ) dθ
∣∣∣∣ ≤ C

‖k‖Hq1

‖k‖Aq

‖F‖Hp1‖h‖Lp2 ,

where C is some constant depending only on p, p1, and q1.

The excluded case p2 = ∞ occurs if and only if q = q1 and p = p1. The theorem

is then a trivial consequence of Ryabykh’s theorem.

Proof of Theorem. First let h be an analytic trigonometric polynomial. In the proof

of Theorem 3.3, we showed that

1

2π

∫ 2π

0

|F (eiθ)|ph(eiθ) dθ = lim
n→∞

1

π‖φ‖

∫
D

(
(hz)′F +

p

2
hz(SnF )′

)
k dA(z).(3.3)

An application of Lemma 3.2 gives

lim
n→∞

∫
D
hz(SnF )′k dA = p. v.

∫
D
hzF ′k dA,

so that the right-hand side of equation (3.3) becomes

1

π‖φ‖
p. v.

∫
D

(
(hz)′F +

p

2
hzF ′

)
k dA(z).

Apply Lemma 3.2 separately to the two parts of the integral to conclude that its

absolute value is bounded by

C
1

‖φ‖
‖k‖Hq1‖f‖Hp1‖h‖Hp2 ,
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where C is a constant depending only on p1 and q1. Since

1

‖φ‖
≤ Cp
‖k‖Aq

by equation (1.4), this gives the desired result for the special case where h is an

analytic trigonometric polynomial.

Now let h be an arbitrary trigonometric polynomial. Then h = h1 + h2, where h1

and h2 are analytic polynomials, and h2(0) = 0. Note that the Szegő projection S is

bounded from Lp2 into Hp2 because 1 < p2 <∞. Thus,

‖h1‖Hp2 = ‖S(h)‖Hp2 ≤ C‖h‖Lp2 .

Also,

‖h2‖Hp2 = ‖zS(e−iθh)‖Hp2 = ‖S(e−iθh)‖Hp2 ≤ C‖e−iθh‖Lp2 = C‖h‖Lp2 ,

and so

‖h1‖Hp2 + ‖h2‖Hp2 ≤ C‖h‖Lp2 .

Therefore, by what we have already shown,∣∣∣∣∫ 2π

0

|F (eiθ)|ph(eiθ) dθ
∣∣∣∣ =

∣∣∣∣∫ 2π

0

|F (eiθ)|p(h1(e
iθ) + h2(eiθ)) dθ

∣∣∣∣
≤
∣∣∣∣∫ 2π

0

|F |ph1 dθ

∣∣∣∣+
∣∣∣∣∣
∫ 2π

0

|F |ph2 dθ

∣∣∣∣∣
≤ C

‖k‖Hq1

‖k‖Aq

‖F‖Hp1 (‖h1‖Hp2 + ‖h2‖Hp2 )

≤ C
‖k‖Hq1

‖k‖Aq

‖F‖Hp1‖h‖Lp2 .

For a given q1, we will apply the above theorem with p1 = (p− 1)q1, which then

implies that p1 = pp′2, where p′2 is the conjugate exponent to p2. This will allow us

to bound the Hp1 norm of F in terms of ‖φ‖ and ‖k‖Hq1 .
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Theorem 3.11. Let p be an even integer, and let q be its conjugate exponent. Let

F ∈ Ap be the extremal function for a kernel k ∈ Aq. If, for q1 such that q ≤ q1 <∞,

the kernel k ∈ Hq1 , then F ∈ Hp1 for p1 = (p− 1)q1. In fact,

‖F‖Hp1 ≤ C

(
‖k‖Hq1

‖k‖Aq

)1/(p−1)

,

where C depends only on p and q1.

Proof. The case q1 = q is Ryabykh’s theorem, so we assume q1 > q. Set p1 = (p−1)q1.

Then p1 > p = (p− 1)q. Choose p2 so that

1

q1
+

1

p1

+
1

p2

= 1.

This implies that p2 = p1/(p1 − p), and so its conjugate exponent p′2 = p1/p. Note

that 1 < p2 < ∞. Let Fn denote the extremal function corresponding to the kernel

Snk, which does not vanish identically if n is chosen sufficiently large. Since Snk is

a polynomial, Fn is in H∞ (and thus Fn ∈ Hp1) by Corollary 3.9. Hence for any

trigonometric polynomial h, Theorem 3.10 yields∣∣∣∣ 1

2π

∫ 2π

0

|Fn|ph(eiθ) dθ
∣∣∣∣ ≤ C

‖Snk‖Hq1

‖Snk‖Aq

‖Fn‖Hp1‖h‖Lp2 .

Since the trigonometric polynomials are dense in Lp2(∂D), taking the supremum over

all trigonometric polynomials h with ‖h‖Lp2 ≤ 1 gives

‖|Fn|p‖Lp′2
≤ C

‖Snk‖Hq1

‖Snk‖Aq

‖Fn‖Hp1 ,

which implies

‖Fn‖pHp1 =

{
1

2π

∫ 2π

0

(|Fn(eiθ)|p)p
′
2 dθ

}1/p′2

= ‖|Fn|p‖Lp′2

≤ C
‖Snk‖Hq1

‖Snk‖Aq

‖Fn‖Hp1 ,
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since pp′2 = p1. Because ‖Fn‖Hp1 < ∞, we may divide both sides of the inequality

by ‖Fn‖Hp1 to obtain

‖Fn‖p−1
Hp1 ≤ C

‖Snk‖Hq1

‖Snk‖Aq

,

where C depends only on p and q1. In other words,(
1

2π

∫ 2π

0

|Fn(reiθ)|p1 dθ
)(p−1)/p1

≤ C
‖Snk‖Hq1

‖Snk‖Aq

for all r < 1 and for all n sufficiently large. Note that Snk → k in Hq1 and in Aq.

Since Snk → k in Aq, Theorem 2.6 says that Fn → F in Ap, and thus Fn → F

uniformly on compact subsets of D. Thus, letting n→∞ in the last inequality gives(
1

2π

∫ 2π

0

|F (reiθ)|p1dθ
)(p−1)/p1

≤ C
‖k‖Hq1

‖k‖Aq

for all r < 1. In other words,

‖F‖Hp1 ≤
(
C
‖k‖Hq1

‖k‖Aq

)1/(p−1)

.

The remark following Theorem 2.8 implies that a function F ∈ Ap with unit norm

has a corresponding kernel k ∈ Aq such that F is the extremal function for k, and

this kernel is uniquely determined up to a positive multiple. Theorem 3.11 says that

if p is an even integer and a kernel k belongs not only to the Bergman space Aq but

also to the Hardy space Hq1 for some q1 where q ≤ q1 < ∞, then the Ap extremal

function F associated with it is actually in Hp1 for p1 = (p− 1)q1 ≥ p. It is natural

to ask whether the converse is true. In other words, if F ∈ Hp1 for some p1 with

p ≤ p1 < ∞, must it follow that the corresponding kernel belongs to Hq1? The

following theorem says that this is indeed the case.

Theorem 3.12. Suppose p is an even integer and let q be its conjugate exponent. Let

F ∈ Ap with ‖F‖Ap = 1, and let k be a kernel such that F is the extremal function
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for k. If F ∈ Hp1 for some p1 with p ≤ p1 < ∞, then k ∈ Hq1 for q1 = p1/(p − 1),

and

‖k‖Hq1

‖k‖Aq

≤ C‖F‖p−1
Hp1 ,

where C is a constant depending only on p and p1.

Proof. Let h be a polynomial and let φ be the functional in (Ap)∗ corresponding to

k. Then by Theorem A,

1

‖φ‖

∫
D
k(z)(zh(z))′ dσ =

∫
D
|F (z)|p−1 sgn(F (z))(zh(z))′ dσ

=

∫
D
F p/2F (p/2)−1(zh(z))′ dσ.

By hypothesis, F p/2 ∈ H(2p1)/p and F (p/2)−1 ∈ H2p1/(p−2). A simple calculation shows

that

1

q′1
=
q1 − 1

q1
=
p1 − p+ 1

p1

and thus

p

2p1

+
p− 2

2p1

+
1

q′1
= 1.

Now we will apply the first part of Lemma 3.2 with f1 = F p/2 and f2 = F (p/2)−1

and f3 = zh, and with 2p1/p in place of p1, and 2p1/(p − 2) in place of p2, and q′1

in place of p3. Note that this is permitted since 1 < 2p1/p < ∞, and 1 < q′1 < ∞,

and 1 < 2p1/(p − 2) ≤ ∞. (In fact, we even know that 2p1/(p − 2) < ∞ unless

p = 2, which is a trivial case since then F = k/‖k‖A2 .) With these choices, Lemma

3.2 gives

∣∣∣∣∫
D
F p/2F (p/2)−1(zh(z))′ dσ

∣∣∣∣ ≤ C‖F p/2‖H2p1/p‖F p/2−1‖H2p1/(p−2)‖zh‖
Hq′1

= C‖F‖p/2Hp1‖F‖
(p−2)/2
Hp1 ‖h‖

Hq′1

= C‖F‖p−1
Hp1‖h‖Hq′1

.
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Since ∣∣∣∣∫
D
k(z)(zh(z))′ dσ

∣∣∣∣ ≤ C‖φ‖‖F‖p−1
Hp1‖h‖Hq′1

for all polynomials h, we may define a continuous linear functional ψ on Hq′1 such

that

ψ(h) =

∫
D
k(z)(zh(z))′ dσ

for all analytic polynomials h. Then ψ has an associated kernel in Hq1 , which we

will call k̃. Thus, for all h ∈ Hq′1 , we have

ψ(h) =
1

2π

∫ 2π

0

k̃(eiθ)h(eiθ) dθ.

But then the Cauchy-Green theorem gives∫
D
k(z)(zh(z))′ dσ = ψ(h)

=
1

2π

∫
∂D
k̃(eiθ)h(eiθ) dθ =

i

2π

∫
∂D
k̃(z)h(z)z dz

= lim
r→1

i

2π

∫
∂(rD)

k̃(z)h(z)z dz = lim
r→1

1

π

∫
rD
k̃(z)(zh(z))′ dA

=

∫
D
k̃(z)(zh(z))′ dσ,

(3.4)

where h is any analytic polynomial.

Now, for any polynomial h(z), define the polynomial H(z) so that

H(z) =
1

z

∫ z

0

h(ζ) dζ.

Then substituting H(z) for h(z) in equation (3.4), and using the fact that (zH)′ = h,

we have ∫
D
k̃(z)h(z) dσ =

∫
D
k(z)h(z) dσ

for every polynomial h. But since the polynomials are dense in Ap, and k and k̃ are

both in Aq, which is isomorphic to the dual space of Ap, we must have that k = k̃,

and thus k ∈ Hq1 .
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Now for any polynomial h,

1

2π

∫ 2π

0

k(eiθ)h(eiθ) dθ ≤ C‖φ‖‖F‖p−1
Hp1‖h‖Hq′1

,

and so

1

2π

∫ 2π

0

k(eiθ)h(eiθ) dθ ≤ C‖k‖Aq‖F‖p−1
Hp1‖h‖Hq′1

by inequality (1.4). But if h is any trigonometric polynomial,

1

2π

∫ 2π

0

k(eiθ)h(θ) dθ =
1

2π

∫ 2π

0

k(eiθ)
[
S(h)(eiθ)

]
dθ

≤ C‖k‖Aq‖F‖p−1
Hp1‖S(h)‖

Hq′1

≤ C‖k‖Aq‖F‖p−1
Hp1‖h‖Lq′1

,

where S denotes the Szegő projection. Taking the supremum over all trigonometric

polynomials h with ‖h‖
Lq′1

≤ 1 and dividing both sides of the inequality by ‖k‖Aq ,

we arrive at the required bound.

The main results of this section can be summarized in the following theorem.

Theorem 3.13. Suppose that p is an even integer with conjugate exponent q. Let

k ∈ Aq and let F be the Ap extremal function associated with k. Let p1, q1 be a pair

of numbers such that q ≤ q1 <∞ and

p1 = (p− 1)q1.

Then F ∈ Hp1 if and only if k ∈ Hq1. More precisely,

C1

(
‖k‖Hq1

‖k‖Aq

)1/(p−1)

≤ ‖F‖Hp1 ≤ C2

(
‖k‖Hq1

‖k‖Aq

)1/(p−1)

where C1 and C2 are constants that depend only on p and p1.

Note that if p1 = (p− 1)q1, then q ≤ q1 <∞ is equivalent to p ≤ p1 <∞.
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3.4 Proof of the Lemmas

We now give the proofs of Lemmas 3.1 and 3.2. These proofs are rather technical

and require applications of maximal functions and Littlewood-Paley theory.

Definition 3.14. For a function f analytic in the unit disc, the radial maximal

function is defined on the unit circle by

f ∗(eiθ) = sup
0≤r<1

|f(reiθ)|.

The following is the simplest form of the Hardy-Littlewood maximal theorem (see

for instance [5], p. 12).

Theorem C. (Hardy-Littlewood.) If f ∈ Hp for 0 < p ≤ ∞, then f ∗ ∈ Lp and

‖f ∗‖Lp ≤ C‖f‖Hp ,

where C is a constant depending only on p.

Further results of a similar type may be found in [11].

Definition 3.15. For a function f analytic in the unit disc, the Littlewood-Paley

function is

g(θ, f) =

{∫ 1

0

(1− r)|f ′(reiθ)|2dr
}1/2

.

A key result of Littlewood-Paley theory is that the Littlewood-Paley function, like

the Hardy-Littlewood maximal function, belongs to Lp if and only if f ∈ Hp. For-

mally, the result may be stated as follows (see [27], Volume 2, Chapter 14, Theorems

3.5 and 3.19).

Theorem D. (Littlewood-Paley.) For 1 < p < ∞, there are constants Cp and

Bp depending only on p so that

‖g(·, f)‖Lp ≤ Cp‖f‖Hp
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for all functions f analytic in D, and

‖f‖Hp ≤ Bp‖g(·, f)‖Lp

for all functions f analytic in D such that f(0) = 0.

We now apply the Littlewood-Paley theorem to obtain the following result, from

which Lemmas 3.1 and 3.2 will follow.

Theorem 3.16. Suppose 1 < p1, p2 ≤ ∞, and let p be defined by 1/p = 1/p1 + 1/p2.

Suppose furthermore that 1 < p <∞. If f1 ∈ Hp1 and f2 ∈ Hp2 , and h is defined by

h(z) =

∫ z

0

f1(ζ)f
′
2(ζ) dζ,

then h ∈ Hp and ‖h‖Hp ≤ C‖f1‖Hp1‖f2‖Hp2 , where C depends only on p1 and p2.

Proof. By the definitions of the Littlewood-Paley function and the Hardy-Littlewood

maximal function,

g(θ, h) =

{∫ 1

0

(1− r)|f1(re
iθ)f ′2(re

iθ)|2 dr
}1/2

≤ f ∗1 (θ)

{∫ 1

0

(1− r)|f ′2(reiθ)|2 dr
}1/2

= f ∗1 (θ)g(θ, f2).

Therefore, since h(0) = 0, Theorem D gives

‖h‖Hp ≤ C‖g(·, h)‖Lp ≤ C‖f ∗1 g(·, f2)‖Lp .

Applying first Hölder’s inequality and then Theorem C, we infer that

‖h‖Hp ≤ C‖f ∗1‖Lp1‖g(·, f2)‖Lp2 ≤ C‖f1‖Hp1‖g(·, f2)‖Lp2 .

If p2 <∞, Theorem D allows us to conclude that

‖h‖Hp ≤ C‖f1‖Hp1‖f2‖Hp2 .
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This proves the claim under the assumption that p2 <∞.

If p2 = ∞, then p1 <∞ by assumption. Integration by parts gives

h(z) = f1(z)f2(z)− f1(0)f2(0)−
∫ z

0

f2(ζ)f
′
1(ζ) dζ.

The Hp norm of the first term is bounded by ‖f1‖Hp1‖f2‖Hp2 , by Hölder’s inequal-

ity. The second term is bounded by C‖f1‖Hp1‖f2‖Hp2 for some C, since point

evaluation is a bounded functional on Hardy spaces. The Hp norm of the last

term is bounded by C‖f1‖Hp1‖f2‖Hp2 , by what we have already shown, and thus

‖h‖Hp ≤ C‖f1‖Hp1‖f2‖Hp2 .

Theorem 3.16 will now be used together with the Cauchy-Green theorem to prove

Lemmas 3.2 and 3.1.

Proof of Lemma 3.2. Define

Ir =

∫
rD
f1f2f

′
3 dA and H(z) =

∫ z

0

f2(ζ)f
′
3(ζ) dζ.

Then Theorem 3.16 says that H ∈ Hq and that ‖H‖Hq ≤ C‖f2‖Hp2‖f3‖Hp3 , where

1
q

= 1
p2

+ 1
p3
. By the Cauchy-Green formula,

Ir =
i

2

∫
∂(rD)

f1(z)H(z) dz.

Since 1/p1 + 1/q = 1, Hölder’s inequality gives

|Ir| =
1

2

∣∣∣∣∫
∂(rD)

f1(z)H(z) dz

∣∣∣∣ ≤ πMp1(f1, r)Mq(H, r).

But since ‖H‖Hq ≤ C‖f2‖Hp2‖f3‖Hp3 , this shows that

|Ir| ≤ C‖f1‖Hp1‖f2‖Hp2‖f3‖Hp3 ,

which bounds the principal value in question, assuming it exists.
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To show that it exists, note that for 0 < s < r, the Cauchy-Green formula gives

2|Ir − Is| =
∣∣∣∣∫
∂(rD−sD)

f1(z)H(z) dz

∣∣∣∣
=

∣∣∣∣∫ 2π

0

[
rf1(reiθ)H(reiθ)− sf1(seiθ)H(seiθ)

]
e−iθ dθ

∣∣∣∣
≤
∣∣∣∣∫ 2π

0

f1(reiθ)
(
rH(reiθ)− sH(seiθ)

)
e−iθ dθ

∣∣∣∣
+

∣∣∣∣∫ 2π

0

s
(
f1(reiθ)− f1(seiθ)

)
H(seiθ) e−iθ dθ

∣∣∣∣ .
We let fr(z) = f(rz). Then Hölder’s inequality shows that the expression on the

right of the above inequality is at most

Mp1(f1, r)‖rHr − sHs‖Hq + s‖(f1)r − (f1)s‖Hp1Mq(H, s).

Since p1 < ∞ and q < ∞, we know that (f1)r → f1 in Hp1 as r → 1, and Hr → H

in Hq as r → 1 (see [5], p. 21). Thus the above quantity approaches 0 as r, s → 1,

which shows that the principal value exists.

For the last part of the lemma, what was already shown gives

p. v.

∫
D
f1f2f

′
3 dσ −

∫
D
f1f2(Snf3)

′ dσ = p. v.

∫
D
f1f2(f3 − Snf3)

′ dσ

≤ C‖f1‖Hp1‖f2‖Hp2‖f3 − Sn(f3)‖Hp3 .

By assumption p3 > 1. If also p3 < ∞, then the right hand side approaches 0 as

n→∞, which finishes the proof.

Proof of Lemma 3.1. We know that fp/2 ∈ H2 and f (p/2)−1 ∈ H2p/(p−2). Since h

is a polynomial, we have f (p/2)−1h ∈ H2p/(p−2). Also,

1

2
+
p− 2

2p
+

1

p
= 1.

Thus, Lemma 3.2 with f1 = fp/2, and f2 = f (p/2)−1h, and f3 = f gives the result.



CHAPTER IV

Explicit Solutions of Some Extremal Problems

4.1 Relation of the Bergman Projection to Extremal Problems

In this chapter we show how information about the Bergman projection can be

used to solve certain extremal problems. Recall from Chapter I that the Bergman

projection P is defined by

P(f)(z) =

∫
D

f(ζ)

(1− ζz)2
dσ(ζ), f ∈ L1(D),

and that P is the orthogonal projection from L2(D) onto A2(D). We begin with a

basic theorem.

Theorem 4.1. Suppose that 1 < p < ∞ and let f ∈ Ap and g ∈ Lq, where 1/p +

1/q = 1. Then ∫
D
fg dσ =

∫
D
f P(g) dσ.

Proof. Since P is the orthogonal projection from L2(D) onto A2(D), we have for f

in A2 and g in L2 that∫
D
fg dσ =

∫
D
f [P(g) + (g − P(g))] dσ =

∫
D
f P(g) dσ,

since g − P(g) is orthogonal to A2. Thus, the theorem is true for p = 2.

46
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Now, suppose that p < 2. Let {fn} be a sequence of A2 functions approaching f

in the Ap norm. Then since Lq ⊂ L2,∫
D
fng dσ =

∫
D
fnP(g) dσ,

for all n. Since P(g) ∈ Lq, we may take the limit as n→∞, which gives∫
D
fg dσ =

∫
D
fP(g) dσ.

If p > 2, let {gn} be a sequence of A2 functions approaching g in the Aq norm.

Then since Ap ⊂ A2, ∫
D
fgn dσ =

∫
D
fP(gn) dσ

for all n. But P(gn) → P(g) in the Aq norm because the Bergman projection is

continuous from Lq into Aq. Thus,∫
D
fg dσ =

∫
D
fP(g) dσ.

The next theorem gives the first indication of how the Bergman projection is

related to extremal problems.

Theorem 4.2. Suppose that 1 < p < ∞. Let F ∈ Ap with ‖F‖Ap = 1. Then F is

the extremal function for the functional with kernel

P(|F |p−1 sgnF ) ∈ Aq.

Furthermore, if F is the extremal function for some functional φ ∈ (Ap)∗ with kernel

k ∈ Aq, then

P(|F |p−1 sgnF ) =
k

‖φ‖
.

Proof. Consider the functional ψ ∈ (Ap)∗ that takes a function f ∈ Ap to

ψ(f) =

∫
D
f |F |p−1sgnF dσ.
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This functional has norm at most ‖ |F |p−1sgnF ‖Lq = ‖F‖p/qLp = 1. But also ψ(F ) =

‖F‖pAp = 1, so ψ has norm exactly 1 and F is the extremal function for ψ.

But from Theorem 4.1, it follows that∫
D
f P(|F |p−1 sgnF ) dσ =

∫
D
f |F |p−1sgnF dσ

for any f ∈ Ap, which means that the kernel in Aq representing ψ is P(|F |p−1 sgnF ).

This proves the first part of the theorem.

If F is also the extremal function for φ, it follows that ψ is a positive scalar

multiple of φ, from the remark following the proof of Theorem 2.8. Since ‖ψ‖ = 1

and ψ is a positive scalar multiple of φ, it must be that ψ = φ/‖φ‖. But this implies

that P(|F |p−1 sgnF ) = k/‖φ‖.

The next two theorems describe the relation of the Bergman projection to a sort of

generalized minimal interpolation problem. We will first need the following lemma.

Lemma 4.3. Let V be a vector space over C, and let φ, φ1, . . . , φN be linear func-

tionals on V such that, for v ∈ V, if φ1(v) = · · · = φN(v) = 0, then φ(v) = 0. Then

φ =
∑N

j=1 cjφj for some constants cj.

The statement and proof of this lemma may be found in [4] in Appendix A.2 as

Proposition 1.4, and in [2] as Lemma 14.

Theorem 4.4. Let 1 < p <∞ and let φ1, φ2, . . . , φN ∈ (Ap)∗ be linearly independent.

Then a function F ∈ Ap satisfies

‖F‖Ap = inf{‖f‖Ap : φ1(f) = φ1(F ), . . . , φN(f) = φN(F )}

if and only if P(|F |p−1 sgnF ) is a linear combination of the kernels of φ1, . . . , φN .

Note that this theorem gives a necessary and sufficient condition for a function F

to solve the minimal interpolation problem of finding a function f ∈ Ap of smallest
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norm such that φj(f) = cj for 1 ≤ j ≤ N , where φj ∈ (Ap)∗ are arbitrary linearly

independent functionals and the cj are given constants. Namely, F solves the problem

if and only if φj(F ) = cj for 1 ≤ j ≤ N and P(|F |p−1 sgnF ) is a linear combination

of the kernels of φ1, . . . , φN . Note that for the case 1 < p < ∞, the problem under

discussion will always have a unique solution, by Proposition 2.3.

Proof. Let k1, . . . , kN be the kernels of φ1, . . . , φN , respectively. Suppose that

‖F‖Ap = inf{‖f‖Ap : φ1(f) = φ1(F ), . . . , φN(f) = φN(F )}

and let h be any non-zero Ap function such that φ1(h) = · · · = φN(h) = 0. Since

there are only a finite number of the φj, it is clear that such a function exists. Then

F + h is also in contention to solve the extremal problem, so ‖F‖ ≤ ‖F + h‖. Now

Theorem B shows that ∫
D
|F |p−1sgnF hdσ = 0,

and so by Theorem 4.1 ∫
D
P(|F |p−1 sgnF )h dσ = 0.

Define

ψ(f) =

∫
D
P(|F |p−1 sgnF ) f dσ, f ∈ Ap.

Lemma 4.3 now shows that

ψ =
N∑
j=1

cjφj,

for some constants cj, so P(|F |p−1 sgnF ) is a linear combination of k1, . . . , kn. This

proves the “only if” part of the theorem.

Conversely, suppose P(|F |p−1 sgnF ) is a linear combination of k1, . . . , kn. Then

(4.1) ‖F‖pAp =

∫
D
F |F |p−1sgnF dσ =

∫
D
F P(|F |p−1 sgnF ) dσ,
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by Theorem 4.1. Now let h ∈ Ap be such that φj(h) = 0 for 1 ≤ j ≤ N. Since

P(|F |p−1 sgnF ) is a linear combination of the kj, equation (4.1) gives

‖F‖pAp =

∫
D
(F + h)P(|F |p−1 sgnF ) dσ

=

∫
D
(F + h)|F |p−1sgnF dσ

≤ ‖F + h‖Ap‖|F |p−1sgnF‖Aq

= ‖F + h‖Ap‖F‖p−1
Ap .

Therefore,

‖F‖Ap ≤ ‖F + h‖Ap .

Since h was an arbitrary Ap function with the property that φj(h) = 0 for 1 ≤ j ≤ N ,

this shows that F solves the extremal problem in question.

When we apply this theorem, we will usually have each φj be a derivative-

evaluation functional. By derivative-evaluation functional, we mean a functional

defined by f 7→ f (n)(z0) for some integer n ≥ 0 and some z0 ∈ D.

The next theorem is really another form of Theorem 4.4.

Theorem 4.5. Let φ1, φ2, . . . , φN ∈ (Ap)∗ be linearly independent. Let F ∈ Ap.

Then the following are equivalent.

1. F satisfies

‖F‖Ap = inf{‖f‖Ap : φ1(f) = φ1(F ), . . . , φN(f) = φN(F )}

but does not satisfy

‖F‖Ap = inf{‖f‖Ap : φj1(f) = φj1(F ), . . . , φjM (f) = φjM (F )}

for any proper subsequence {jk}Mk=1 of 1, 2, . . . , N.

2. P(|F |p−1 sgnF ) is a linear combination of the kernels of φ1, . . . , φN , and none

of the coefficients in the linear combination is 0.
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Proof. Note that if F satisfies

‖F‖Ap = inf{‖f‖Ap : φj1(f) = φj1(F ), . . . , φjM (f) = φjM (F )}

for some proper subsequence {jk}Mk=1 of 1, 2, . . . , N, then the previous theorem shows

that P(|F |p−1 sgnF ) is a linear combination of the kernels of the φjk .

Conversely, if P(|F |p−1 sgnF ) is a linear combination of the kernels of the func-

tionals φjk , where {jk}Mk=1 is a proper subsequence of 1, 2, . . . , N , then the previous

theorem shows that F satisfies

‖F‖Ap = inf{‖f‖Ap : φj1(f) = φj1(F ), . . . , φjM (f) = φjM (F )}.

The next two theorems are special cases of Theorems 4.4 and 4.5, with the func-

tionals taken to be φj(h) = h(j)(0), with kernel kj(z) = (j + 1)!zj.

Theorem 4.6. The function P(|F |p−1 sgnF ) is a polynomial of degree at most N if

and only if

‖F‖Ap = inf{‖f‖Ap : f(0) = F (0), . . . , f (N)(0) = F (N)(0)}.

Theorem 4.7. The function P(|F |p−1 sgnF ) is a polynomial of degree N if and only

if N is the smallest integer such that

‖F‖Ap = inf{‖f‖Ap : f(0) = F (0), . . . , f (N)(0) = F (N)(0)}.

The next theorem relates the generalized minimal interpolation problems we have

been discussing with extremal problems.

Theorem 4.8. Let φ1, . . . , φN be linearly independent elements of (Ap)∗ with kernels

k1, . . . , kN respectively, and let F ∈ Ap with ‖F‖Ap = 1. Then the functional for

which F is the extremal function has as its kernel a linear combination of the kj if

and only if

‖F‖Ap = inf{‖f‖Ap : φ1(f) = φ1(F ), . . . , φN(f) = φN(F )}.
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This follows from Theorems 4.2 and 4.4. Recall that although there is no unique

functional for which F is the extremal function, such a functional is unique up

to a positive scalar multiple, which does not affect whether its kernel is a linear

combination of the kj.

One direction of this theorem, the fact that if F is the extremal function for some

kernel which is a linear combination of the kj, then F solves the stated minimal

interpolation problem, is easy to prove directly. The proof is as follows. Let F be

the extremal function for the functional φ, which we assume to have kernel k =∑N
j=1 ajkj. Then

‖F‖Ap = inf{‖f‖Ap : φ(f) = φ(F )}.

But if some function G in Ap satisfies φj(F ) = φj(G) for all j with 1 ≤ j ≤ N , then

φ(G) = φ(F ), which implies that ‖F‖Ap ≤ ‖G‖Ap . This implies that F satisfies

‖F‖Ap = inf{‖f‖Ap : φ1(f) = φ1(F ), . . . , φN(f) = φN(F )}.

We have seen that, in deciding whether a function F solves a certain extremal

problem, it may be helpful to consider the Bergman projection P(|F |p−1 sgnF ).

When doing so, it is often convenient to note that |F |p−1 sgnF = F p/2F (p/2)−1. Here

the branch of F p/2 does not matter, provided that F (p/2)−1 = F p/2F−1.

4.2 Calculating Bergman Projections

Now that we have explored the relation between the Bergman projection and

solutions to extremal problems, we will calculate the Bergman projection in various

cases.
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Proposition 4.9. Let m and n be nonnegative integers. Then

P(zmzn) =


m−n+1
m+1

zm−n, if m ≥ n,

0, if m < n.

This is Lemma 6 in Chapter 2 of [9].

The next theorem is very helpful in calculating the Bergman projection of the

kernel of a derivative-evaluation functional times the conjugate of an Ap function.

Theorem 4.10. Let 1 < q1, q2 ≤ ∞. Let p1 and p2 be the conjugate exponents of q1

and q2. Let

1

q
=

1

q1
+

1

q2

and suppose that 1 < q < ∞. Let p be the conjugate exponent of q. Suppose that

k ∈ Aq1 and that g ∈ Aq2 . Let the functional ψ be defined by ψ(f) =
∫

D fk dσ for all

f ∈ Ap1 . Then P(kg) is the kernel of the functional φ ∈ (Ap)∗ defined by

φ(f) = ψ(fg), f ∈ Ap.

Proof. First note that 1/p + 1/q1 + 1/q2 = 1, so if f ∈ Ap, then fg ∈ Ap1 and the

definition of φ makes sense. Now observe that

φ(f) = ψ(fg) =

∫
D
fgk dσ.

By Theorem 4.1, this equals ∫
D
fP (gk) dσ.

Proposition 4.11. Let g ∈ Ap for 1 < p <∞. Then

P
(

1

(1− az)2
g(z)

)
=

g(a)

(1− az)2
.
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Proof. Since 1/(1 − az)2 is the Bergman kernel, it follows from Theorem 4.10 that

P(g/(1−az)2) is the kernel of the functional defined by f 7→ f(a)g(a). But it is clear

that this kernel is precisely

g(a)

(1− az)2
.

We will study the kernels of various derivative-evaluation functionals. Evaluation

at the origin is somewhat exceptional and simpler than evaluation elsewhere, so we

deal with it first.

Theorem 4.12. The kernel for the functional f 7→ f (n)(0) is (n + 1)!zn. If g ∈ Ap

then

P(zng(z)) =
n∑
j=0

gn−j(0)

(n− j)!

j + 1

n+ 1
zn.

Proof. The first statement can be verified by evaluating∫
D
f(z)zndσ(z)

by writing f as a power series. The second part follows from Proposition 4.9. To

see this, note that by the first part of the theorem, P(zng(z)) is the kernel for the

functional taking f ∈ Ap to

1

(n+ 1)!
(fg)(n)(0) =

1

(n+ 1)!

n∑
j=0

(
n

j

)
f (j)(0)g(n−j)(0),

which has kernel
n∑
j=0

gn−j(0)

(n− j)!

j + 1

n+ 1
zj.

We now study the functional with kernel 1/(1− az)3.

Proposition 4.13. Suppose a ∈ D and a 6= 0, and let 1 ≤ p <∞. Then the function

1

(1− az)3
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is the kernel for the functional in (Ap)∗ defined by

f 7→ a

2
f ′(a) + f(a)

Proof. For every a ∈ D, we have that

f(a) =

∫
D

1

(1− az)2
f(z) dσ(z).

Differentiation with respect to a yields

f ′(a) =

∫
D

2z

(1− az)3
f(z) dσ(z),

so the kernel for the functional f 7→ f ′(a) is 2z/(1− az)3. But

1

(1− az)3
=
a

2

2z

(1− az)3
+

1

(1− az)2
,

so 1/(1− az)3 is the kernel for f 7→ (a/2)f ′(a) + f(a).

Proposition 4.14. Let 1 < p < ∞, and let g ∈ Ap. Suppose a ∈ D and a 6= 0. If

g(a) = 0, then

P
(

1

(1− az)3
g

)
=
a

2
g′(a)

1

(1− az)2
.

Proof. By Theorem 4.10,

P
(

1

(1− az)3
g

)
is the kernel associated with the functional f 7→ a

2
(f ′(a)g(a)+ f(a)g′(a))+ f(a)g(a).

Since g(a) = 0, this equals (a/2)g′(a)f(a). But the kernel for this functional is

a

2
g′(a)

1

(1− az)2
.

We will now deal with the function 1/(1 − az)n, for n ≥ 2, which includes the

earlier results of this section.
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Proposition 4.15. The kernel for the functional f 7→ f (n)(a) is

(n+ 1)!zn

(1− az)n+2
, n = 0, 1, 2, . . .

Proof. We know that

f(a) =

∫
D

1

(1− az)2
f(z) dσ(z).

Differentiation n times with respect to a gives the result.

Proposition 4.16. For each a ∈ D with a 6= 0, there are numbers c0, . . . , cn with

cn 6= 0 such that the function

1

(1− az)n+2

is the kernel for the functional f 7→ c0f(a) + c1f
′(a) + . . .+ cnf

(n)(a).

Proof. We will proceed by induction. The claim is true for n = 0 by the reproducing

property of the Bergman kernel function. For general n, we may write the partial

fraction expansion

zn

(1− az)n+2
=

n+2∑
j=0

bj
(1− az)j

,

for some complex numbers bj. Thus,

zn =
n+2∑
j=0

bj(1− az)n+2−j.

Differentiating both sides n+ 1 times with respect to z gives

0 = b1(−a)n+1(n+ 1)! + b0(−a)n+1(n+ 2)!(1− az).

Since this holds for all z, it follows that b0 = b1 = 0. Since zn/(1− az)n+2 has a pole

of order n+ 2 at 1/a, we see that bn+2 6= 0. Therefore,

1

(1− az)n+2
=

1

bn+2

(
zn

(1− az)n+2
−

n+1∑
j=2

bj
(1− az)j

)
.
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But the first term of the right side of the above equation is a the kernel for the

functional f 7→ (1/(n + 1)!)f (n)(a). Also, each term in the sum
∑n+1

j=2
bj

(1−az)j is the

kernel for a linear functional taking each function f to some linear combination of

f(a), f ′(a), . . . , and f (n−1)(a), by the induction hypothesis. This proves the proposi-

tion.

Proposition 4.17. Let g ∈ Ap for 1 < p <∞, and let a ∈ D with a 6= 0. Suppose g

has a zero of order n at a. Let N ≥ 0 be an integer. Then

P
(

1

(1− az)N+2
g(z)

)
=

N−n∑
k=0

Ck
1

(1− az)k+2

for some complex constants Ck depending on g(m)(a) for 0 ≤ m ≤ N .

Proof. The projection

P
(

1

(1− az)N+2
g(z)

)
is the kernel associated with the functional

f 7→
N∑
j=0

bj(fg)
(j)(a)

for some constants bj, with bN 6= 0, by the previous proposition and Theorem 4.10.

But
N∑
j=0

bj(fg)
(j)(a) =

N∑
j=0

j∑
k=0

bj

(
j

k

)
f (k)(a)g(j−k)(a).

Since g(j)(a) = 0 for 0 ≤ j < n, all terms in the sum with j − k < n are 0. But

this means that the only non-zero terms in the sum occur when k ≤ j − n, so that

k ≤ N − n. Now, set

Bk =
N∑

j=k+n

bj

(
j

k

)
g(j−k)(a),

so
N∑
j=0

bj(fg)
(j)(a) =

N−n∑
k=0

Bkf
(k)(a).
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But the kernel associated to
∑N−n

k=0 Bkf
(k)(a) is

N−n∑
k=0

Bk
(k + 1)!zk

(1− az)k+2
.

But as in the proof of Theorem 4.16, we may show that

zk

(1− az)k+2
=

ck2
(1− az)2

+
ck3

(1− az)3
+ · · ·+ ck,k+2

(1− az)k+2

for some constants ck2, . . . , ck,k+2. Thus we may write

N−n∑
k=0

Bk
(k + 1)!zk

(1− az)k+2
=

N−n∑
k=0

Ck
1

(1− az)k+2

for some constants Ck, depending on g(m)(a) for 0 ≤ m ≤ N .

We will now deal with the function 1/(1 − az). Since the functional with ker-

nel 1/(1 − az)n+2 involves differentiation of order n, it seems reasonable that the

functional with kernel 1/(1− az) involves integration. This is indeed the case.

Proposition 4.18. The function

1/(1− az)

is the kernel for the functional defined on Ap for 1 < p <∞ by

f 7→ 1

a

∫ a

0

f(z) dz.

Proof. Since

1

1− az
=

∞∑
n=0

(az)n,

it follows that

(4.2)

∫
D

zm

1− az
dσ =

∞∑
n=0

∫
D
(az)nzm dσ = am

∫
D
|z|2m dσ =

am

m+ 1
.
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The change in the order of integration and summation is justified by the fact that

the sum converges uniformly in D. Now let f ∈ Ap and write f(z) =
∑∞

m=0 bmz
m.

Define

F (z) =
1

z

∫ z

0

f(ζ) dζ =
∞∑
m=0

bm
m+ 1

zm.

Therefore, by equation (4.2),∫
D

1

1− az
f(z) dσ =

∫
D

1

1− az

(
∞∑
m=0

bmz
m

)
dσ =

∞∑
m=0

bm
am

m+ 1
= F (a).

The interchange of the order of integration and summation is justified by the fact

the partial sums of the Taylor series for f approach f in Ap.

Due to their relation with extremal problems, we are often concerned with pro-

jections of the form P(F p/2F (p/2)−1), where F is an analytic function. This is well

defined because

F p/2F (p/2)−1 = |F |p/F = |F |p−1 sgnF.

The following theorems deal with this.

Theorem 4.19. For 1 ≤ n ≤ N , let dn be a nonnegative integer and let zn ∈ D.

Let k be analytic and a linear combination of the kernels of the functionals given by

f 7→ f (dn)(zn). Let g ∈ Ap for p > 1. Then P(kg) is in the linear span of the set

of all the kernels of functionals defined by f 7→ f (m)(zn), where m is an integer with

0 ≤ m ≤ dn and n is an integer with 1 ≤ n ≤ N .

Proof. Let k =
∑N

n=1 ankn, where kn is the kernel for the functional f 7→ f (dn)(zn).

Then by Theorem 4.10, P(kng) is the kernel of the functional

f 7→ (fg)(dn)(zn) =
dn∑
j=0

(
dn
j

)
f (j)(zn)g

(n−j)(zn).

But this functional is a linear combination of the functionals of the form

f 7→ f (m)(zn),
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where 0 ≤ m ≤ dn.

The next theorem shows that if F p/2 is an analytic function of a certain form,

then F must solve a certain extremal problem.

Theorem 4.20. Let 1 < p < ∞. Given a positive integer N , suppose that F ∈ Ap

and F p/2 is analytic and a linear combination of the kernels kn corresponding to

the functionals f 7→ f (dn)(zn) for some integers dn and some points zn ∈ D, where

1 ≤ n ≤ N. Then F satisfies

‖F‖Ap = inf{‖f‖Ap : f (m)(zn) = F (m)(zn) for all n and m such that

1 ≤ n ≤ N and 1 ≤ m ≤ dn}.

This follows from Theorems 4.19 and 4.5.

The next theorem is a consequence of Theorem 4.19. We give an alternate proof,

based on a computation involving Proposition 4.9.

Theorem 4.21. Let f be a polynomial of degree at most N and let g ∈ Ap for some

p > 1. Then P(fg) is a polynomial of degree at most N .

Proof. Let f =
∑N

j=0 ajz
j. Assume first that g is a polynomial and let the integer

m be the maximum of N and the degree of g. Write g =
∑m

k=0 bkz
k, where bk = 0 if

k > deg(m). Then

P

(
N∑
j=0

ajz
j

m∑
k=0

bkzk

)
= P

 N∑
j=0

ajz
j

N∑
k=0

bkzk

+ P

(
N∑
j=0

ajz
j

m∑
k=N+1

bkzk

)

=
N∑

j,k=0

ajbkP
(
zjzk

)
+

N∑
j=0

m∑
k=N+1

ajbkP
(
zjzk

)
=

∑
0≤k≤j≤N

ajbk
j − k + 1

j + 1
zj−k +

∑
0≤j<k≤N

0 +
N∑
j=0

m∑
k=N+1

0.

The last step follows from Proposition 4.9. Note that the sums from N + 1 to m are

taken to be 0 if N = m. This proves the theorem if g is a polynomial.
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If g is not a polynomial, let {gn} be a sequence of polynomials that approach g

in the Ap norm. Then P(fgn) → P(fg) in Ap. Since each P(fgn) is a polynomial of

degree at most N , so is P(fg).

Using this theorem and Theorem 4.7, we immediately get the following result.

Theorem 4.22. Suppose that F ∈ Ap and F p/2 is a polynomial of degree N . Then

‖F‖Ap = inf{‖f‖Ap : f(0) = F (0), . . . , f (N)(0) = F (N)(0)}.

Note that F p/2 can be a polynomial only if p/2 is rational and all the zeros of F

in D are of order a multiple of s, where r/s is the reduced form of p/2. If p is an

even integer, this poses no restriction. Because of this, the case where p is an even

integer is often easier to work with.

4.3 Solution of Specific Extremal Problems

We will now discuss how to solve some specific minimal interpolation problems.

Since we are dealing with the powers p/2 and 2/p, neither of which need be an

integer, we will have to take care in our calculations. We will introduce a lemma

to facilitate this. The lemma basically says that if f and g are analytic functions

nonzero at the origin, and if f (n)(0) = (gp)(n)(0) for all n such that 0 ≤ n ≤ N, then

(f 1/p)(n)(0) = g(n)(0) for all n such that 0 ≤ n ≤ N.

To state the lemma we first need to introduce some notation. Suppose that the

constants c0, c1, . . . , cN are given and that c0 6= 0, and let h(z) = c0+c1z+· · ·+cNzN .

Suppose that a = zp for some branch of the function zp. Let U be a neighborhood of

the origin such that h(U) is contained in some half plane whose boundary contains

the origin, and such that 0 6∈ h(U). Then we can define zp so that it is analytic in

h(U) and so that cp0 = a. We let βpj (a; c0, c1, . . . , cj) denote the jth derivative of h(z)p
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at 0.

Note that because of the chain rule for differentiation, βj only depends on j, the

constants c0, . . . , cj, and the numbers p and a. For the same reason, the value of β is

the same if we replace the function h in the definition of β by any function h̃ analytic

near the origin such that h̃(j)(0) = cj for 1 ≤ j ≤ N .

Lemma 4.23. Let c0, c1, . . . , cN be given complex numbers, and let p be a real number.

Suppose that c0 6= 0, and let a0 = cp0, for some branch of zp. Then

cj = β
1/p
j (c0; β

p
0(a0; c0), β

p
1(a0; c0, c1), . . . , β

p
N(a0; c0, . . . , cN)) .

Proof. For ease of notation let aj = βpj (a0; c0, . . . , cj) and bj = β
1/p
j (c0; a0, . . . , aN).

Then b0 = c0.

Now let f(z) =
∑N

j=0
cj
j!
zj. Then f (j)(0) = cj for 0 ≤ j ≤ N . Let U be a

neighborhood of 0 such that there exist r0 > 0 and θ0 ∈ R such that

f(U) ⊂
{
reiθ : r0 < r and θ0 −

π

2p
< θ < θ0 +

π

2p

}
.

Then zp can be defined as an analytic function in f(U). Furthermore, the set V =

(f(U))p does not contain 0 but is contained in some half plane, so z1/p can be defined

as an analytic function in V so that it is the inverse of the function zp defined in

f(U).

Now define g(z) = (f(z))p for z ∈ U. Then g(j)(0) = aj and g1/p(0) = c0, so

(g1/p)(j)(0) = bj for 0 ≤ j ≤ N . But g(z)1/p = f(z) for z ∈ U , so bj = cj for

0 ≤ j ≤ N .

We will now use the lemma to solve a specific extremal problem in certain cases.
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Theorem 4.24. Let c0, . . . , cN be given complex numbers, and assume that c0 6= 0.

Suppose that F ∈ Ap, and F (j)(0) = cj for 0 ≤ j ≤ N , and

‖F‖Ap = inf{‖g‖Ap : g(0) = c0, . . . , g
(N)(0) = cN}.

Let a0 = c
p/2
0 for some branch of zp. Define

f(z) =
N∑
j=0

β
p/2
j (a0; c0, . . . , cj)

j!
zj.

Suppose that f has no zeros in D. Then we may define f 2/p so that it is analytic in

D and so that f 2/p(0) = c0. Then

F = f 2/p.

The same result also holds if p is rational, 2/p = r/s in lowest form, and every zero

of f has order a multiple of s.

Proof. Note that f 2/p is analytic in D since we have assumed f has no zeros in D, or

that p is rational and 2/p = r/s in lowest form and f has only zeros whose orders

are multiples of s. Also, f(0) = a0, so we may define f 2/p so that f 2/p(0) = c0. The

jth derivative of f 2/p at 0 is

β
2/p
j

(
c0; β

p/2
0 (a0; c0), . . . , β

p/2
j (a0; c0, . . . , cj)

)
for 0 ≤ j ≤ N , which equals cj by the lemma. Thus f 2/p is in contention to solve

the extremal problem.

But

P

(
|f 2/p|p

f
2/p

)
= P(ff

1−(2/p)
)

is a polynomial of degree at most N by Theorem 4.21, so by Theorem 4.22 we find

F = f 2/p.
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To apply this theorem, we need to show that f has no zeros in the unit disc, or

has only zeros of suitable orders if p is rational. Then f 2/p is the extremal function.

Note that we do not need to know anything about the zeros of the extremal function

itself to apply the theorem. However, if f has no zeros in the unit disc, this theorem

implies that the extremal function F = f 2/p also has no zeros in the unit disc. It

seems likely that if F has no zeros, then F must equal f 2/p, but we do not know a

proof of this.

Example 4.25. The solution to the minimal interpolation problem inAp with f(0) =

1 and f ′(0) = c1 is

F (z) =
(
1 +

p

2
c1z
)2/p

,

provided that |c1| ≤ 2
p
. This is because β

p/2
0 (1; 1, c1) = 1 and β

p/2
1 (1; 1, c1) = (p/2)c1.

For example, if p = 4 and c1 = 1
2
, then

F (z) = (1 + z)1/2.

The above problem is also solved in [21] in more general form. However, the

solution to the extremal problem in the next example was previously unknown.

Example 4.26. The solution to the minimal interpolation problem in Ap for 1 <

p <∞ with F (0) = 1, and F ′(0) = c1, and F ′′(0) = c2 is

F (z) =
{
1 + (p/2)c1z + [(p(p− 2)/4)c21 + (p/2)c2]z

2
}2/p

,

provided that the quadratic polynomial under the 2/p exponent in the equation for

F has no zeros in D.

Linear extremal problems tend to be more difficult to solve than minimal inter-

polation problems involving derivative-evaluation functionals, because values of a

function f and its derivatives are generally easier to calculate than P(|f |p−1 sgn f).
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Nevertheless it is possible to solve some linear extremal problems explicitly by the

methods in this chapter. Here is one example.

Theorem 4.27. Let N ≥ 1 be an integer, let 1 < p <∞, and let b ∈ C satisfy

|b| ≥ 1 +
1

N + 1

(
1− 2

p

)
,

and define

a =

|b|+
√
|b|2 − 4

N+1

(
1− 2

p

)
2

sgn b.

Then the solution to the extremal problem in Ap with kernel zN + b is

F (z) = sgn(a1−(2/p))
(zN + a)2/p

(|a|2 + 1/(N + 1))1/p
.

In the above expression for F (z), the branch of (zN + a)2/p may be chosen arbi-

trarily, but the value of sgn(a1−(2/p)) must be chosen consistently with this choice.

Note that the functional associated with the kernel zN + b is

φ(f) = bf(0) + (1/(N + 1)!)f (N)(0).

Also, observe that the hypothesis of the theorem holds for all N and p if |b| ≥ 3/2.

Proof. The condition

|b| ≥ 1 +
1

N + 1

(
1− 2

p

)
implies that |a| ≥ 1, so that zN + a 6= 0 in D and F is an analytic function. Note

that

‖(zN + a)2/p‖pAp =

∫
D
|zN + a|2 dσ =

∫
D
(zN + a)(zN + a) dσ = |a|2 +

1

N + 1
.

Thus, ‖F‖Ap = 1.

Now

((zN + a)2/p)p/2−1 = a1−2/p +

(
1− 2

p

)
a−2/pzN +O(z2N),
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where we choose branches so that ((zN + a)2/p)p/2 = zN + a. We calculate that

P
(
|zN + a|p−1 sgn(zN + a)

)
= P

(
(zN + a)(zN + a)

1−2/p
)

= P
(

(zN + a)

(
a1−2/p +

(
1− 2

p

)
a−2/p zN +O(z2N)

))
.

But by Proposition 4.9, this equals

P
[
(zN + a)

(
a1−2/p +

(
1− 2

p

)
a−2/p zN

)]
= aa1−2/p +

1

N + 1

(
1− 2

p

)
a−2/p + a1−(2/p)zN

= a1−(2/p)

(
zN + a+

1

N + 1

(
1− 2

p

)
a −1

)
= a1−(2/p)(zN + b).

Thus,

P
{∣∣sgn(a1−(2/p))(zN + a)

∣∣p−1
sgn

(
sgn(a1−(2/p))(zN + a)

)}
= a1−(2/p) sgn(a1−(2/p))(zN + b)

= |a1−(2/p)| (zN + b).

Therefore,

P(F p/2F (p/2)−1) = |a1−(2/p)| zN + b

(|a|2 + 1/(N + 1))(p−1)/p
.

Since ‖F‖Ap = 1, Theorem 4.2 shows that F is the extremal function for the kernel

on the right of the above equation. But that kernel is a positive scalar multiple of

k, so F is also the extremal function for k.

4.4 Canonical Divisors

We will now discuss how our previous results apply to canonical divisors. Recall

that these divisors are the Bergman space analogues of Blaschke products. By the
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zero-set of an Ap function not identically 0, we mean its collection of zeros, repeated

according to multiplicity. Such a set will be countable, since the zeros of analytic

functions are discrete. Given an Ap zero set, we can consider the space Np of all

functions that vanish on that set. More precisely, f ∈ Ap is in Np if it vanishes at

every point in the given zero set, to at least the prescribed multiplicity.

If the zero set does not include 0, we pose the extremal problem of finding G ∈ Np

such that ‖G‖Ap = 1, and such that G(0) is positive and as large as possible. If the

zero set has a zero of order n at 0, we instead maximize G(n)(0). For 0 < p <∞, this

problem has a unique solution, which is called the canonical divisor. For 1 < p <∞,

this follows from the fact that an equivalent problem is to find an F ∈ Np with

F (0) = 1 and ‖F‖Ap as small as possible. By Proposition 2.3, the latter problem has

a unique solution.

In this section, we discuss the problem of determining the canonical divisor when

p is an even integer, and the zero set is finite. We show how the methods of this

chapter can be used to characterize the canonical divisor. Our methods show that if

G is the canonical divisor, then Gp/2 is a rational function with residue 0 at each of

its poles, which is the content of the following theorem.

Theorem 4.28. Let p be an even integer. Let z1, . . . , zN be distinct points in D, and

consider the zero-set consisting of each of these points with multiplicities d1, . . . , dN ,

respectively. Let G be the canonical divisor for this zero set. Then there are constants

c0 and cnj for 1 ≤ n ≤ N and 0 ≤ j ≤ (p/2)dn − 1, such that

G(z)p/2 = c0 +
N∑
n=1

(p/2)dn−1∑
j=0

cnj
(1− znz)j+2

, if zn 6= 0 for all n, and

G(z)p/2 = c0z
(p/2)d1 +

(p/2)d1−1∑
j=0

c1jz
j +

N∑
n=2

(p/2)dn−1∑
j=0

cnj
(1− znz)j+2

, if z1 = 0.
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Proof. We will begin by illustrating the argument in the relatively simple case where

p = 4, each zn 6= 0, and all multiplicities dn = 1. Our goal is to show that Gp/2 is

the kernel for some linear combination of certain derivative-evaluation functionals.

Because we know what the kernel of any derivative-evaluation functional is, we will

be able to show that G has the form stated in the theorem.

Let

hn(z) =
∏

1≤j≤N
j 6=n

z − zj
zn − zj

so that hn(zn) = 1 and hn(zj) = 0 for j 6= n. Let f ∈ Ap. Define

f̂(z) = f(z)−
N∑
n=1

f(zn)hn(z).

Then f̂(zn) = 0 for 1 ≤ n ≤ N . In [9] (as well as [6] and [24]), it is shown that the

canonical divisor of a finite zero set has no zeros on ∂D. Also, the canonical divisor

of any zero set has no excess zeros; i.e., it has only the prescribed zeros and no more.

Thus the function

f̃(z) =
1

G(z)
f̂(z)

is in Ap. But then∫
D
G2f dσ =

∫
D
G(z)2

(
f̂(z) +

N∑
n=1

f(zn)hn(z)

)
dσ

=

∫
D
|G(z)|3 sgn(G(z))f̃(z) dσ +

∫
D
G(z)2

(
N∑
n=1

f(zn)hn(z)

)
dσ

= I + II

We first deal with the term I. The canonical divisor G is a constant multiple of the

function F such that F (zn) = 0 for 1 ≤ n ≤ N and F (0) = 1, and such that F has

the smallest norm possible. Thus by Theorem 4.4, P(|G|3 sgn(G)) is the kernel for

a linear combination of point evaluation functionals at the points 0 and zn. Thus
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there exist constants bn for 0 ≤ n ≤ N such that∫
D
|G|3 sgnGf̃ dσ =

∫
D
P(|G|3 sgnG)f̃ dσ

= b0f̃(0) +
N∑
n=1

bnf̃(zn)

=
b0
G(0)

(
f(0)−

N∑
j=1

f(zj)hj(0)

)

+
N∑
n=1

bn
f ′(zn)−

∑N
j=1 f(zj)h

′
j(zn)

G′(zn)
.

But this is a linear combination of the numbers f(0) and f(zn) and f ′(zn), and

thus I is a linear combination of f(0) and f(zn) and f ′(zn), where the specific linear

combination depends on G and the numbers zn.

Note that the term II is a linear combination of the numbers f(zn), and so both

I and II are linear combinations of the numbers f(0) and f(zn) and f ′(zn). Thus G2

is the kernel for a derivative evaluation functional depending on f(0) and f(zn) and

f ′(zn). Thus, by Proposition 4.15 and Theorem 4.12, and the fact that (Ap)∗ and Aq

are isomorphic, G2 has the desired form.

We now proceed to the general case. Let An = dn((p/2)− 1). For 1 ≤ n ≤ N and

0 ≤ j ≤ An − 1, let hnj be a polynomial such that

h
(m)
nj (zk) =


1, if m = n and k = j

0, otherwise.

For f ∈ Ap, define

f̂(z) = f(z)−
N∑
n=1

An−1∑
j=0

anjhnj(z)

where anj = f (j)(zn). Since f̂ has zeros of order An = dn((p/2)− 1) at each zn, the

function

f̃ =
1

G(p/2)−1
f̂
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is in Ap.

But then∫
D
G
p/2
f dσ =

∫
D
G(z)

p/2

(
f̂(z) +

N∑
n=1

An−1∑
j=0

anjhnj(z)

)
dσ

=

∫
D
|G(z)|p−1sgnG(z)f̃(z) dσ +

N∑
n=1

An−1∑
j=0

anj

∫
D
G(z)

p/2
hnj(z) dσ

= I + II.

Now, II is a linear combination of the numbers anj for 1 ≤ n ≤ N and 0 ≤ j ≤ An−1,

so we turn our attention to I. The canonical divisor G is a constant multiple of the

function F ∈ Ap of smallest norm that has zeros of order dn at each zj and such that

F (m)(0) = 1, where m is the order of the zero-set at 0. Thus as before,∫
D
|G|p−1sgnGf̃ dσ =

∫
D
P(|G|p−1sgnG)f̃ dσ = b0f̃

(m)(0) +
N∑
n=1

dn−1∑
j=0

bnj f̃
(j)(zn),

for some complex constants b0 and bnj. Note that f̃(z) = Gnf̂n where

Gn(z) = (z − zn)
An

1

G(p/2)−1(z)

and

f̂n(z) = (z − zn)
−An f̂(z).

Note that

f̃ (j)(zn) =

j∑
k=0

(
j

k

)
f̂ (k)
n (zn)G

(j−k)
n (zn)

and

f̂ (k)
n (zn) =

k!

(k + An)!

dk+An

dzk+An
f̂(zn)

=
k!

(k + An)!

dk+An

dzk+An

[
f(z)−

N∑
n=1

An−1∑
s=0

anshns(z)

]

Thus, f̃ (j)(zn) is a linear function of the numbers ans and the numbers f (k)(zn) for

0 ≤ k ≤ j + An. Recall that ans = f (s)(zn).
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Also, if m = 0, then

f̃ (m)(0) = G(0)1−(p/2)f̂(0) = G(0)1−(p/2)

(
f(0)−

N∑
n=1

An−1∑
j=0

anjhnj(0)

)
,

so f̃ (m)(0) is a linear function of the numbers anj and f(0) = f (mp/2)(0). If m 6= 0,

then we may assume z1 = 0 and m = d1, and then by the same reasoning as we used

above for f̃ (j)(zn), we see thatf̃ (m)(z1) is a linear function of the numbers anj and

the numbers f (k)(z1) for 0 ≤ k ≤ d1 + A1 = d1 + ((p/2) − 1)d1 = (p/2)d1 = mp/2.

Thus, term

I =

∫
D
G(p/2)−1f̃ dσ

is a linear combination of the numbers f (k)(zn) for 0 ≤ k ≤ (dn−1)+((p/2)−1)dn =

(p/2)dn − 1, and the number f (mp/2)(0).

Therefore, both I and II, and thus
∫

D fG
p/2
dσ, are linear combinations of the

numbers f (k)(zn) for 0 ≤ k ≤ (p/2)dn − 1, and the number f (mp/2)(0). And thus,

Gp/2 is the kernel for a derivative-evaluation functional depending on f (j)(zn) for

1 ≤ n ≤ N and 0 ≤ j ≤ (p/2)dn − 1, as well as fmp/2(0). Therefore Gp/2 has the

desired form.

The previous theorem gave a condition on Gp/2 that must be satisfied if G is the

canonical divisor of a given zero set. The following theorem says that condition,

along with a few other more obviously necessary ones, is also sufficient.

Theorem 4.29. Let p be an even integer. Let z1, . . . , zN be distinct points in D, and

consider the zero-set consisting of each of these points with multiplicities d1, . . . , dN ,

respectively, and let G be the canonical divisor for this zero set. Then G is the unique

function having Ap norm 1 such that G(0) > 0 (or G(m)(0) > 0 if G is required to

have a zero of order m at the origin), and such that Gp/2 has zeros of order pdn/2
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at each zn, and

G(z)p/2 = c0 +
N∑
n=1

(p/2)dn−1∑
j=0

cnj
(1− znz)j+2

if zn 6= 0 for all n or

G(z)p/2 = c0z
(p/2)d1 +

(p/2)d1−1∑
j=0

c1jz
j +

N∑
n=2

(p/2)dn−1∑
j=0

cnj
(1− znz)j+2

if z1 = 0.

Proof. By Theorem 4.28 and the definition of the canonical divisor, the stated con-

ditions are necessary for a function to be the canonical divisor. Suppose that G is

a function satisfying the stated conditions. We will prove the theorem by applying

Theorem 4.4 to P(Gp/2G
(p/2)−1

).

Again, we will first prove the theorem for the case where p = 4, no zn is zero, and

all multiplicities are dn = 1. By Proposition 4.11,

P
(

1

(1− znz)2
G(z)

)
= 0

and

P(G) = G(0),

and by Proposition 4.14

P
(

1

(1− znz)3
G(z)

)
=
zn
2
G′(zn)

1

(1− znz)2
.

Now, by assumptionG2 is a linear combination of terms of the form 1, and (1−znz)−2,

and (1 − znz)
−3, and so P(G2G) is a linear combination of the function 1 and the

functions (1− znz)−2 for 1 ≤ n ≤ N . Thus G is a constant multiple of the canonical

divisor, by Theorem 4.4, since some multiple of the canonical divisor satisfies the

minimal interpolation problem of finding f with f(0) = 1 and f(zn) = 0 and ‖f‖Ap

as small as possible. But the conditions ‖G‖Ap = 1 and G(0) > 0 imply that G must

be the canonical divisor.
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We will now discuss the general case under the assumption that zn 6= 0 for all n.

First, as above, P
(
G

(p/2)−1
)

= G(0)
(p/2)−1

. Now, by Proposition 4.17,

P
(

1

(1− znz)j+2
G(z)

(p/2)−1
)

=

j−((p/2)−1)dn∑
k=0

Cn,j,k
1

(1− znz)k+2
,

where the constants Cn,j,k may depend on G. But if j ≤ (p/2)dn − 1, then j −

((p/2)− 1)dn ≤ dn − 1. Thus

P
(
Gp/2G(z)

(p/2)−1
)

= B0 +
N∑
n=1

dn−1∑
k=0

Bn,k

(1− znz)k+2
,

where Bn,k =
∑(p/2)dn−1

j=k+((p/2)−1)dn
cnjCn,j,k and B0 = c0G(0)

(p/2)−1
. By Theorem 4.4, G

is a multiple of the canonical divisor. But the conditions that G(m)(0) > 0 and

‖G‖Ap = 1 imply that G is the canonical divisor.

The case where z1 = 0 is similar, but we also use the fact that P(zjG
(p/2)−1

) is a

polynomial of degree at most j − [(p/2)− 1]d1, or zero if j < [(p/2)− 1]d1.

From previous work by MacGregor and Stessin [20], a weaker form of Theorem

4.28 is essentially known. In the weaker form of the theorem, one only knows, in the

case that no zn = 0, that

G(z) = c0 +
N∑
n=0

bn
1− znz

+
N∑
n=1

(p/2)dn−1∑
j=0

cnj
(1− znz)j+2

for some constants bn. The case where z1 = 0 is similar. To derive Theorem 4.29

from the weaker form of the theorem, we can use the following proposition.

This proposition also gives another indication of why the residues of Gp/2 must all

be zero. It basically says that nonzero residues would lead to terms in P(Gp/2G
(p/2)−1

)

that were kernels of functionals of the general form

f 7→ 1

a

∫ a

0

f(z)g(z) dz
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where g is an analytic function and a ∈ D. But, as the proposition explains, it would

then be impossible for P(Gp/2G
(p/2)−1

) to be the kernel of a finite linear combination

of derivative-evaluation functionals.

Proposition 4.30. Let g be analytic on D and suppose g is non-zero on ∂D. Let

an ∈ D and an 6= 0 for 1 ≤ n ≤ N , and assume that an 6= aj for n 6= j. Let bn ∈ C

for 1 ≤ n ≤ N. Then if any of the bn are nonzero,

P

(
N∑
n=1

bn
1− anz

g(z)

)

is not the kernel for a functional that is the finite linear combination of derivative-

evaluation functionals.

Note that as is shown in [9] (see also [6] and [24]), the canonical divisor of a

finite zero set is analytic in D and non-zero on ∂D. This allows the proposition to be

applied to Bergman projections of the form

P

(
N∑
n=1

bn
1− anz

G(z)(p/2)−1

)
.

Proof. We know by Proposition 4.18 that

P

(
N∑
n=1

bn
1− anz

g(z)

)

is the kernel for the functional given by

f 7→
N∑
n=1

bn
an

∫ an

0

f(z)g(z) dz.

Suppose that this functional were a linear combination of derivative-evaluation

functionals, which we will denote by f 7→ f (k)(zj), where 1 ≤ j ≤ J and 0 ≤ k ≤ K.

Let h be a function such that h = gf for some f ∈ Ap. For fixed g, the values f (k)(zj)

for 1 ≤ j ≤ J and 0 ≤ k ≤ K are linear combinations of the values h(k)(zj), where
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1 ≤ j ≤ J and 0 ≤ k ≤ K + r(zj), and r(zj) is the order of the zero of g at zj. Thus

the functional defined on the space gAp by

h 7→
N∑
n=1

bn
an

∫ an

0

h(z) dz

must be a linear function of the values h(k)(zj). By gAp, we mean the vector space

of all functions that may be written as g multiplied by an Ap function. Since g is

analytic in D and g is nonzero on ∂D, any polynomial that has all the zeros of g will

be in gAp.

Now for each m there exists a polynomial Hm such that Hm(am) = 1, but

Hm(an) = 0 for all n 6= m, and such that H
(k)
m (zj) = 0 for all j and k such that

1 ≤ j ≤ J and 1 ≤ k ≤ K + r(zj) + 1. Also, we may require that H ′
m has all the

zeros of g, and that Hm(0) = 0. Set hm = H ′
m. Then hm shares all the zeros of g,

and so it is a multiple of g. Thus

N∑
n=1

bn
an

∫ an

0

hm(z) dz = 0,

since the left side of the above equation is a linear combination of the numbers

h
(k)
m (zj) for 1 ≤ j ≤ J and 0 ≤ k ≤ K + r(zj), and each h

(k)
m (zj) = 0. But also, for

each m such that 1 ≤ m ≤ N, we have

N∑
n=1

bn
an

∫ an

0

hm(z) dz =
N∑
n=1

bn
an
Hm(an) =

bm
am

,

so each bm = 0.
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