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CHAPTER 1.  Introduction 

 

 

1.1  Functional MRI 

Functional MRI (fMRI) is a widely preferred imaging modality that highly depends 

on the ability to detect the regional changes in the brain according to a task activation. 

Among fMRI techniques proposed to date, blood oxygenation level dependent (BOLD) 

technique is primarily used, because it is easy to implement and has high functional 

activation contrast. The BOLD fMRI was first described in 1990 by Ogawa et al. [1]. It is 

an indirect measurement of brain activity where the imaging contrast in local draining 

venules and veins is caused by changes in the ratio of oxygenated (diamagnetic) to 

deoxygenated (paramagnetic) hemoglobin (Hb), which accompanies neuronal activity [2]. 

This change in blood oxygenation affects the MR decay parameter, T2*, which, in turn, 

affects T2*-weighted BOLD signal, as shown in Figure 1-1.  

However, even though BOLD fMRI has been widely used, there are various factors 

limiting the current fMRI approach such as, noise from measurement or systematic errors. 

Its spatial or temporal resolution is also limited by relatively long TE, to have optimal 

sensitivity for BOLD signal change, and it also suffers severely from susceptibility 

artifacts, which come from the difference between magnetic susceptibilities of tissue and 

of air [3]. The susceptibility effect becomes even more pronounced at higher static 
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magnetic (B0) field, significantly degrading the performance of current fMRI.  

Thus, the major limitations of the current fMRI technique, which restrict the role in 

brain imaging are limited spatial resolution, limited temporal resolution, and image 

distortions and artifacts.  

 

 

 

Figure 1-1  Example of BOLD fMRI. (a-b) Left column shows an example of visual 
activation (a) ON and (b) OFF mode and right column shows its related brain activation at 
visual cortex area. Activated areas in the brain (above threshold level) are marked as white 
dots in (a). During the task activation, the increase of HbO2 concentration results in the 
increase of T2* parameter which then increases MRI signal intensity which is shown in (c).  
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These limitations make it difficult to specify the brain activation region accurately, 

and make it difficult to study the details of the dynamic behavior and interactions of each 

brain region, which could eventually lead to inaccurate or inadvertent misinterpretation of 

the brain activity. These problems can be at least partially solved by parallel imaging 

methods that use multiple receiver coil arrays and undersampling of k-space data. 

 

 

1.2  Parallel Imaging 

Our overall research goal, ideally, is to find techniques to improve fMRI 

performance by providing better spatial and temporal resolution and image quality. We 

can achieve those goals in fMRI techniques by applying parallel imaging techniques.  

Parallel imaging (PI), which uses an array of multiple coils, was originally 

developed to improve the scan speed by reducing the number of phase encode (PE) lines. 

The effect of magnetic susceptibility artifact, which is one of the main factors causing 

distortions and signal loss in the resulting images, can be significantly suppressed by the 

use of parallel imaging techniques. [4-6] 

Parallel imaging also improves spatial and temporal resolutions by reducing a time-

consuming spatial encoding step by undersampling, and uses additional information, such 

as spatial sensitivity profiles, to reconstruct unaliased images. In addition to reducing 

scan time, researchers also discovered that parallel imaging can overcome the limitation 

of gradient performance and reduces the acoustic noise [5,6].  

The main drawback of PI technique is low SNR due to undersampling of k-space 

data which will be addressed in detail in later section. However, using an array coil 



4 
 

instead of head coil can improve SNR. Moreover, the image distortion due to the 

susceptibility artifact is often more problematic than the SNR penalty, especially when 

using a small reduction factor, i.e., acceleration factor which is the rate of skipped k-

space samples. Although PI technique was originally designed for cardiac imaging, it is 

suitable for functional brain imaging, since fMRI also acquires time series data and 

suffers from susceptibility artifacts. 

Various PI methods have been proposed, and they can be basically divided into three 

categories: image-based, k-space based and hybrid techniques. The most well known 

image domain based methods are SENSE [7] and PILS [8], whereas k-space based 

methods are SMASH [9], Auto-SMASH [10], VD-AUTO-SMASH [11] and GRAPPA 

[12]. On the other hand, SPACE-RIP [13] is a representative hybrid technique in which 

the reconstruction process is done partly in image and partly in k-space domain. SENSE 

[7] and GRAPPA [12] are the main focus of our study, because they are most widely used 

and are commercially available for Cartesian sampled acquisitions.  

 

1.2.1  SENSE 

SENSitivity Encoding (SENSE) was first introduced by Pruessmann et al. in 1999 

[7]. It is an image-domain approach in which reduced-FOV data are acquired and 

sensitivity maps are employed to reconstruct a full-FOV image through a process of 

‘unfolding’ the ‘folded’ image. In other words, the reduced Fourier encoding results in 

folded image as shown in Figure 1-2 and the aliasing artifacts are produced. Then, 

‘unfolding’ of this folded image produces an unaliased image. This is done by using an 

unfolding matrix (U) that is calculated from the noise covariance matrix (Ψ) and 
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sensitivity map matrix (S): 

1 1 1( )H HU S S S− − −= Ψ Ψ     (1.1) 

Multiplying the unfolding matrix by a vector containing ‘folded’ samples from all coils at 

a single spatial location in an aliased image produces a vector of ‘unfolded’ samples from 

several spatial locations. By performing this multiplication for all voxels in the aliased 

image, an ‘unfolded’ image can be obtained. In SENSE, the unaliasing process and the 

multi-coil image combination are combined in this one unfolding process. 

 

 

 

Figure 1-2  (a) The original image and (b-d) ‘folded’ images for Cartesian sampling. (a) A 
full FOV image is reduced to (b-d) reduced FOV images and aliasing patterns were 
produced. The reduced sampling rate is 2 at (b) FE, (c) PE and (d) both FE and PE 
directions. For (d), the actual resulting reduction factor is 4 (=2 ×2), that is, four pixels were 
‘folded’. 
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Determining the sensitivity maps is an important issue for the SENSE method, since 

it is used in the “unfolding” process in SENSE. The sensitivity maps are estimated either 

by prescanning or by self-calibration [7,14,15]. One prescanning approach for 

determining the sensitivity maps is to divide each fully sampled coil image by the body 

coil image, followed by a denoising process[7]. This approach produces accurate image 

reconstructions when there is no patient motion. However, in fMRI, patient motion is 

common due to long scan times, and self-calibrated methods are preferable. Furthermore, 

to skip the acquisition of a body coil image in a prescanning step, a self-calibrating 

approach can be used. The self-calibrating approach divides each coil image by the 

reference image generated by using low resolution map from center k-space data or some 

combination of each coil image, such as sum of squares and geometric mean approaches 

when fully-sampled surface coil images are attainable. The resulting sensitivity maps are 

usually smoothed to extend them beyond the boundaries of the object.  

 

 

1.2.2  GRAPPA 

GeneRalized Autocalibrating Partially Parallel Acquisitions (GRAPPA) [12] is a k-

space based approach in which unsampled data is estimated using information from 

additionally acquired samples in the center k-space, the so-called Auto-Calibration Signal 

(ACS) lines. GRAPPA evolved from two different techniques, variable density (VD-) 

AUTO-SMASH [9-11] and parallel imaging with localized sensitivities (PILS) [8]. VD-

AUTO-SMASH is a generalized version of SMASH where, rather than using a single k-

space line, it uses blocks of k-space lines for calculating missing k-space lines that 
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improves accuracy in modeling coil sensitivity pattern with sharper edges. GRAPPA also 

adopts this estimation approach from block k-space line. However, it is also considered 

an “extended” implementation of a VD-AUTO-SMASH technique in that, instead of 

fitting acquired data into one composite signal, GRAPPA acquires coefficients by fitting 

each component coil signal to the composite signals that are composed of ACS lines from 

each coil as shown in Figure 1-3, thus yielding multiple composite signals. This concept 

was adopted from the PILS technique of separating the unaliasing from the image 

combination process. After producing composite signals, the combination process is 

being done either by nonlinear process such as simple sum-of-squares approach [16] or 

other carefully designed adaptive approaches [17,18].  

In GRAPPA, the fitting process of the jth coil data at (ky-m∆ky)-th line from the 

acquired data is represented by:  

1

1 0
( ) ( , , , ) ( )

bnL

j y y l y y
l b

S k m k n j b l m S k bR k
−

= =

− ∆ = − ∆∑∑   (1.2) 

where L is the number of receive coils in the array, R is the reduction factor, and n(j,b,l,m) 

are the GRAPPA coefficients from l-th coil, b-th neighbor in phase-encoding direction of 

k-space. We use the sum of squares to combine composite images from each coil, but 

other optimal combination techniques can also be used [18]. 
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Figure 1-3  The schematic view of basic (a) VD-AUTO-SMASH and (b) GRAPPA methods. 
For VD-AUTO-SMASH or SMASH techniques, acquired lines from each coil are used to fit 
a single composite line whereas for GRAPPA, those are used to fit an ACS line in coil 4 to 
estimate GRAPPA coefficient. In this manner, SMASH produces one unaliased composite 
image whereas GRAPPA produces unaliased images for each number of coils. For GRAPPA, 
we then combine each unaliased image by sum of squares to make one final composite 
image. 

 

 

1.3  Non-Cartesian Parallel Imaging in fMRI 

Even though both SENSE and GRAPPA were first introduced in Cartesian domain 

[7,12], we mainly focused on reconstructing spiral k-space data, since spiral scan is often 

desirable for functional studies due to its robustness to motion and flow artifact, and the 

efficient use of gradient strength. However, spiral parallel imaging schemes have enjoyed 

only limited use, due to their computational complexity in parallel image reconstruction 

in general. Nonetheless, there have been several attempts to overcome this difficulty in 
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implementing spiral parallel imaging methods. 

Recently, GRAPPA and SENSE have been extended to accommodate spiral 

trajectories [19-22]. Unlike the Cartesian case shown in Figure 1-2, spiral k-space 

acquisition trajectories possess complicated point spread functions (PSF), leading to more 

complex aliasing artifact, as shown in Figure 1-4, when reduced data is acquired. Thus, 

more careful examination is required for spiral trajectories.  

 

 

Figure 1-4 (a) In-vivo human image from fully sampled data, and (b) aliasing patterns of 
from reduced (half Fourier) data for spiral trajectory 
 

 

1.3.1  Spiral SENSE 

We cannot use a simple direct unfolding process in spiral SENSE, such as that used 

in Cartesian SENSE, because undersampled spiral k-space trajectories have complicated 

point spread functions (PSF). Thus, we need to consider other reconstruction methods of 

higher computational complexity. Pruessmann et al. showed that we can apply SENSE to 

arbitrary k-space trajectories via gridding and conjugate-gradient iterative reconstruction 

[22].  

Sutton et al. [19] introduced a method that is an iterative time-segmented Non-

Uniform Fast Fourier Transform (NUFFT) approach that allows for compensation of field 
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inhomogeneity effects during the readout. We focus on Sutton’s method, since this allows 

compensation of the field inhomogeneity effects during the readout. In this method, the 

received signal from lth coil is modeled as 

02 ( ( ) ( ) )( ) ( ) ( ) ( )ri k t r r t
l l ly t s r f r e dr n tπ ω− += +∫   (1.3) 

where sl(r) is the sensitivity map of lth coil, f(r) is the proton density, ω0(r) is the off 

resonance frequency and nl(t) is the noise. In a discretized format, this becomes, 

l l ly AS f n= +         (1.4) 

where 02 ( ( ) ( ) )r j l l ji k t r r t
jla e π ω− += is the entries of Ã and Sl is a diagonal matrix of sensitivity 

map matrix. When we stack the equations (1.4) for each coil, the result is 

y Af=     (1.5) 

which is the system matrix for reconstructing the image from undersampled data using 

the sensitivity maps. We then estimate the image, f, by solving this system equation with 

a regularized least squares cost function,  

2

f

1( ) ( ) so that,
2

arg  min  ( )

f y Af R f

f f

βΨ = − +

= Ψ
   (1.6) 

where y is the k-space data, A is the system matrix, f is the image to reconstruct, R(f) is 

the regularization function and β is its smoothness parameter. In this method, a temporal 

interpolation [23] was used that was optimal in terms of minimizing worst-case 

interpolation error.  
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1.3.2  Spiral GRAPPA 

Gridding is a common approach to reconstruction from spiral data, as with other 

non-Cartesian trajectories. This involves interpolation of spiral data onto a Cartesian grid 

prior to Fourier transformation. As an example of such a reconstruction technique 

compatible with PI method, Heberlein et al. proposed an auto-calibrated spiral GRAPPA 

method [20] in which they assumed that a missing k-space data and its nearest neighbors 

from other shots are approximately aligned along the radial direction as shown in Figure 

1-5(a-b). They applied piecewise GRAPPA to individual sectors, divided in angular 

direction.  

As an alternative, Heidemann et al. proposed a direct spiral GRAPPA method [21], 

in which the original constant-linear-velocity spiral data is regridded onto a trajectory 

with constant-angular-velocity. The trajectory was also divided into a number of groups 

in an angular direction in order to consider each group as a Cartesian domain as shown in 

Figure 1-5(c-d). Cartesian GRAPPA was then applied to each group. This is similar to the 

auto-calibrated approach [20] in that the trajectory is divided into a number of groups and 

each group is considered a Cartesian GRAPPA. However, direct GRAPPA differs from 

auto-calibrated GRAPPA in that it uses interpolation of k-space data by regridding the 

original spiral trajectory onto a different spiral trajectory, which is aligned in angular 

direction. On the other hand, the auto-calibrated approach assumes the alignment to be 

approximately angular in direction for missing k-space data and its neighbors in each 

sector. This approximation becomes cruder when we increase the size of the sector. Thus, 

we focused on the direct GRAPPA approach, since it seemed to be more accurate in 

estimation and more flexible in implementation than the auto-calibrated method, even 



12 
 

though the performances of the two methods have not yet been compared. 

When implementing direct GRAPPA [21], we first remapped the original spiral data 

onto a constant-angular-velocity spiral trajectory. The numbers of neighbors in the 

angular (na) and radial (nr) directions are chosen to minimize root mean square (RMS) 

estimation errors compared to fully-sampled data. The parameter na determines the 

number of groups that divide the new trajectory in the angular direction. Each group 

contains the same number of k-space samples and can be remapped to a Cartesian grid. 

As a Cartesian GRAPPA estimation of missing data, the GRAPPA coefficients can be 

obtained from the j-th coil at the m-th missing k-space line from unacquired shots.  

The most central part of k-space is omitted from the above interpolation scheme 

because unacquired samples do not have uniformly spaced neighbors on both sides. 

These points are estimated separately from their neighbors using interpolation, with 

coefficients determined from an ACS acquisition, i.e., a neighboring shot. Once the 

GRAPPA coefficients and missing data are estimated, image reconstruction can proceed. 

Fieldmap correction is also applied at this stage using a time-segmented CP approach 

[23]. This reconstruction process is repeated for each coil in the array. The final image is 

produced from the square root of the sum of squares of the coil images.  
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Figure 1-5  Spiral GRAPPA methods. (a-b) Auto-calibrated spiral GRAPPA (by Heberlein 
et al.). (a) Data within a small angular sector are approximately aligned in radial direction. 
(b) In each group, data is considered to be aligned in angular direction. (c-d) Direct spiral 
GRAPPA (by Heidemann et al.). c) The original trajectory is remapped onto constant-
angular-velocity spiral trajectory and divided into a number of groups, (d) Each angular 
sector forms one group and each group is considered as rectilinear grid, to which we can 
apply Cartesian GRAPPA. 
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1.4  Spiral TGRAPPA and spiral TSENSE for dynamic fMRI 

Functional MRI usually has time series data in which the signal intensity change in 

time, due to brain activity, is incorporated. When processing this dynamic, time series 

fMRI data, it is necessary to consider whether to update the calibration data, such as 

GRAPPA coefficients and sensitivity maps, and, if so, how it should be done considering 

the fMRI application and computational efficiency.  

Both TGRAPPA [24] and TSENSE [25] are dynamic parallel imaging techniques 

that acquire phase encoding lines (for Cartesian trajectory) or interleaves (for spiral 

trajectory) alternatively at each time point, allowing for the simultaneous acquisition of 

calibration data in a time-interleaved manner with higher effective speed-up factors. The 

data from adjacent time frames are combined and can be taken as fully sampled reference 

data sets. Calibration data, such as coil sensitivity maps or GRAPPA coefficients, are then 

determined from the reference sets and updated at every time point. In this way, separate 

acquisition of reference data can be avoided. Thus, using a multi-shot spiral trajectory 

offers simple implementation of alternating acquisition schemes, such as TSENSE and 

TGRAPPA, which reduce readout length by undersampling the k-space while 

maintaining temporal resolution. For example, for a reduced acquisition method of time-

interleaved techniques, such as TGRAPPA and TSENSE, with a reduction factor of R=2, 

the data from 2 adjacent time points are combined to determine GRAPPA coefficients or 

sensitivity maps. Using these calibration data, the unaliased image is reconstructed for 

each time point.  

The time-interleaved scheme, however, produces additional temporal variations that 

result from imperfect reconstruction of the alternating shots. These fluctuating artifacts 
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are in essence, high temporal frequency components that are frequency-shifted to the 

edge of the band [26].  

To remove the high frequency components of the fluctuating artifacts in TSENSE, 

temporal low-pass filtering is accomplished by the UNaliasing by Fourier-encoding the 

Overlaps using the temporaL Dimension (UNFOLD) method [26,27]. This temporal 

filtering was not applied in the original TGRAPPA method. However, since temporally 

frequency-shifted aliasing artifacts also occur in TGRAPPA images, low-pass temporal 

filtering can also be applied to TGRAPPA to suppress the fluctuating artifacts. In this 

study, we use the UNFOLD terminology to denote the low-pass temporal filtering in 

TSENSE and TGRAPPA.  

 

 

 

Figure 1-6  Representation of (bottom) spiral TGRAPPA and (top) spiral TSENSE with 
UNFOLD (temporal filtering). For spiral GRAPPA, the resampling process changes the 
constant-linear velocity spiral trajectory into a constant-angular velocity spiral trajectory. 
For spiral SENSE, iterative CG algorithm is used for unaliasing. For GRAPPA, calibration 
data is GRAPPA coefficient and for SENSE, senstivitiy map. Note also that coil combination 
process using sum of squares is required for TGRAPPA whereas it is not the case with 
TSENSE. Aliasing artifact that are still not perfectly removed from either SENSE or 
GRAPPA will be further suppressed through UNFOLD temporal filtering.  
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The implementations of TGRAPPA and TSENSE with UNFOLD technique are 

represented in Figure 1-6. As previously described, in spiral TSENSE, we used an 

iterative conjugate gradient (CG) method to reconstruct the final image, whereas in spiral 

TGRAPPA, we used the more computationally efficient conjugate phase (CP) method, 

followed by a sum-of-squares image combination. 

 

 

1.5  Performance Criteria for Parallel fMRI 

Three major criteria for assessing the performance of parallel image reconstruction 

techniques are the activation map, temporal SNR and image domain error. The activation 

map is a widely used measure for localizing brain activated by correlating stimulation 

task with the brain signals. Temporal SNR is required for evaluating the temporal stability. 

On the other hand, the image domain error itself is determined by the difference in 

quality between the reconstructed image, and the reference image reconstructed from 

fully sampled k-space data. 

 

1.5.1  Activation map  

A common approach for acquiring an activation map is through a correlation process 

with a certain reference waveform that can be modeled as a sinusoidal function or a 

“boxcar” function, which is designed according to a task paradigm [28,29]. After 

acquiring an activation map, the map is thresholded to determine the activated region in 

the brain.  
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The simple way to find such a threshold for activation is by transforming a 

correlation coefficient into a t-value via 

2
2

1
rn

r
−

−
    (1.7) 

where (n-2) is the degree of freedom. For functional series data, n is equal to the number 

of entire time points and r is the correlation coefficient. The number of activated pixels, 

which is crude but also widely used in fMRI, is calculated by choosing the pixels above 

the threshold. 

 

1.5.2  Temporal SNR 

Unlike the image domain performance criteria, temporal SNR (TSNR) includes 

temporal fluctuation in a signal that comes from drifts, instrument instabilities, and 

motions, such as those induced by respiratory and cardiac activities [30,31]. TSNR is a 

useful measure of time course stability that has been widely used in fMRI data analysis. It 

is calculated by dividing the temporal mean of time series of image by its standard 

deviation and is defined as 
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µ
=
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    (1.8) 

where n is the number of time point, xi is the time series, µ is the mean signal intensity 

and σ is the temporal standard deviation. 
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1.5.3  Image domain error 

The image domain performance of fMRI is affected by various factors, such as head 

movement, physiological noise and instrument drift. It is mostly evaluated through image 

error between the reconstructed image and the reference image. For partially acquired k-

space data, which are used in parallel imaging, we can set the reference image with the 

fully sampled k-space data. Thus, image domain error is defined as follows. 

fully sampled image - reconstructed image
image domain error [%]= 100

fully sampled image
×  (1.9) 

where ||⋅|| denotes the Frobenius norm.  

 

1.5.4  Geometry factor (g-factor) map 

A geometry factor (g-factor) map can be another image domain performance 

criterion for fMRI when applying parallel imaging. It was firstly presented by Pruessman 

[7] for SENSE, and describes the spatial variations in noise pattern based on coil 

configuration. In mathematical form, it is defined as 

( ) ( )11 1

,,
1H Hg S S S Sρ ρ ρρ ρ

−− − = Ψ Ψ ≥  
   (1.10) 

where ρ denotes the index of the voxel, S is the sensitivity map matrix and Ψ is the 

receiver noise matrix. The value is always at least equal to one, one being the best 

performance. It is called a ‘geometry factor map’ since it is strongly dominated by coil 

geometry and describes the ability to separate aliased pixels by coil configuration. Thus, 

g-factor map is also used to provide an important criterion for the geometric design of 

coil arrays. In addition, this g-factor map also allows for an estimate of image SNR via:  
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for each image voxel, ρ. This relation gives an upper limit for image SNR from reduced 

sampled data by the square root of the reduction factor, R, and image SNR from full 

Fourier encoded data.  

Even though g-factor map has firstly been introduced for SENSE, there also have 

recently been several attempts to define g-factor map for GRAPPA [32,33]. The pseudo 

multiple replica approach by Robson et al. [32] requires time-consuming image 

reconstruction steps, practically using at least 100 images, in order to have accurate 

results, whereas Breuer’s approach [33] provides faster approach by direct calculation 

from GRAPPA coefficients.  

 

 

1.6  Current applications of Parallel Imaging in fMRI 

Despite the SNR reduction due to g-factor or reduced number of samples, the main 

benefit of applying parallel imaging in fMRI is a reduction of susceptibility artifacts as 

demonstrated in Figure 1-7. In addition, parallel imaging has a number of other critical 

benefits for fMRI in improving spatial and temporal resolutions as well as reducing 

acoustic noise as summarized by Golay [6] and de Zwart [5]. Reduction of acoustic noise 

will be effective especially when using EPI, by reducing the sampling bandwidth which, 

in turn, reduces the gradient slew rate, the major source of acoustic noise [5,6,34]. 
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Figure 1-7  The major benefit of using parallel imaging in suppressing the susceptibility 
artifact by reducing the readout length from (a) 18ms to (b) 9ms (SENSE: parallel imaging) 

 

 

The various attempts of researchers to apply parallel imaging to fMRI have been 

largely successful. Weiger [4] demonstrated the advantages of single-shot spiral SENSE 

with an iterative image reconstruction, especially in signal recovery of activation in 

regions affected by field inhomogeneity as well as improved image resolution. Despite 

the SNR reduction due to the shortened readouts as well as difficulties in reproduction of 

stimulation response, he showed there was sufficient evidence that SENSE has the 

potential to improve detection of BOLD fMRI activation in brain regions affected by 

those susceptibility artifacts. 

De Zewart [34] showed that “the SNR penalty incurred with SENSE does not 

necessarily lead to an equal loss in fMRI sensitivity”. FMRI sensitivity is a far more 

critical factor than image SNR in fMRI. In fact, Moeller has shown that SENSE at 7T 

using 32 channels with a fourfold reduction factor leads to a larger number of activations 

due to reduced temporal fluctuation [35]. He has also shown that using more channels is 

more beneficial compared to their previous study using 8 channels [36]. 
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On the other hand, researchers such as Lutcke [37] and Preibisch [38] reached quite 

different conclusions using parallel imaging in fMRI at 2.9T and 1.5T, respectively, 

where they reported that the number of activated pixels are actually reduced using the 

parallel imaging.  

Regardless of reported disadvantages, there have been various attempts by many 

researchers who tried to apply parallel imaging methods to their functional studies and 

have proven parallel imaging method to be successful in analyzing their fMRI data [4,39-

45]. Furthermore, parallel imaging in fMRI has the potential at higher fields to overcome 

drawbacks from susceptibility artifacts and RF energy absorption as well as reduced 

acoustic noise [46]. Since signal intensity increases directly proportional to the field 

strength, higher field strength can also perform as an increased baseline of signal-to-noise 

ratio (SNR), countering the main drawback of parallel imaging, as well as enhanced 

BOLD sensitivity, which in turn, can improve image quality and spatial resolution or 

acquisition speed compared to the lower field strength [47,48]. Thus, parallel imaging 

and high field technique can complement each other. In other words, the main strengths 

of parallel imaging complement the weaknesses of high fields. For example, parallel 

imaging reduces the length of readout, which in turn, results in reduced susceptibility 

artifact. We believe that fMRI community has a strong trend to use higher field due to the 

potential in improving spatial resolution as well as higher sensitivity for functional 

activation [43,47,49]. Since the susceptibility artifact will also become more problematic 

at higher field, the potential benefits that parallel imaging technique in fMRI at higher 

field is compelling. 
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Thus, it becomes obvious from the particular issues described in previous studies, 

parallel imaging can become a powerful tool to provide more useful of activities in the 

brain regions that until now have been hidden by the signal loss or limited resolutions.  

However, for parallel imaging to be more applicable to fMRI, there are several 

issues to be solved, since it still suffers from various kinds of noise, leading to low SNR. 

Other than errors of a systematic nature such as inhomogeneous field, eddy currents, or 

gradient non-linearity, other possible sources of noise in parallel imaging are noise in 

sample values. The sources of noise comes from reduction of number of data, which 

result in SNR reduction or increase in g-factor. Furthermore, noise in calibration data, 

such as the sensitivity maps or GRAPPA coefficients, as well as coil configuration could 

also affect SNR. Although increased SNR at higher field can effectively outweigh the 

SNR penalty inherited with parallel imaging, SNR reduction can still be an issue, 

especially with a high reduction factor.  

SNR for parallel imaging can be improved not only by using higher field but also by 

increasing number of coils [50] or well designing of better array coils. Various attempts 

on designing coil array have been made to further improve parallel imaging, since MR 

community has discovered that parallel imaging can be optimized by reducing coupling 

between surface coils. Coil coupling, even if well characterized and carefully 

incorporated in the reconstruction process, can still give lower baseline for SNR than 

uncoupled coil array system. Thus, researchers have tried to design optimal coil arrays 

that achieve more orthogonal sensitivity profiles, eliminating noise correlation, thus 

producing higher SNR [51-54].  
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However, additional approaches could be made by signal processing approach by 

mitigating possible source of noise during the image reconstruction. For example, noise 

in calibration data, such as sensitivity map or GRAPPA coefficient, is another major 

source which could be improved by applying unbiased coil combination technique [17] or 

by improving estimation of sensitivity map [55-57]. 

 

 

1.7  Research Goal  

The overall goal of my research was to improve the performance of parallel image 

reconstruction for fMRI by mitigating possible noise sources in parallel imaging. This 

was achieved mainly by developing image reconstruction algorithms or improving 

estimation of calibration data as well as by analyzing currently existing methods. We 

envisioned that these approaches will further improve applicability of parallel imaging 

technique for time series fMRI data and in other applications. We focused on spiral 

trajectory since it has desirable characteristics for fMRI: robust to motion and flow 

artifact as well as efficient use of gradient [58-60].  

 

1.8  Description of studies  

First, we optimized the reconstruction algorithm of non-Cartesian SENSE for time 

series functional data. To optimize the reconstruction process, we focused on improving 

sensitivity map estimation by investigating various self-calibrating sensitivity map 

estimation methods as well as analyzing the effect of smoothing of sensitivity map 
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through regularization. Applying regularization to the sensitivity map estimation process 

also makes it feasible to control smoothness and noise of the sensitivity map in spatial 

and temporal domain, thus reducing image domain error and improving temporal SNR 

(TSNR). We also focused on details of the iterative conjugate gradient (CG) algorithm 

with the proper selection of image support region with quadratic regularization which 

controls noise and artifact. 

Second, we examined optimal methods of parallel imaging in fMRI, to take 

advantage of parallel imaging with undersampled data. We examined the different 

approaches for methods of updating calibration data for parallel imaging, for example, 

the sensitivity map or GRAPPA coefficients. We also compared TSENSE with 

interleaved spiral, and SENSE with single-shot spiral, and examined initialization 

methods in reconstruction process which could further speed up the reconstruction 

process of times series fMRI data.   

Lastly, we present a joint estimation approach for simultaneous estimation of the 

image and the sensitivity map, which was developed using an iterative conjugate gradient 

(CG) algorithm. The main rationale behind the technique is that the performance of 

SENSE is highly dependent upon the accuracy of sensitivity map estimation, and the 

inaccuracy of sensitivity estimation can severely degrade reconstructed images. We 

hypothesized that using an iterative algorithm, as in non-Cartesian SENSE could increase 

the degradation even further. Our joint estimation method might improve the 

reconstruction of both image and sensitivity map under circumstances where the initial 

sensitivity map cannot be estimated accurately. The second rationale is the possible 

convenience of not having to estimate the sensitivity map for each study. We 
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hypothesized there is a "global” low resolution, non-object dependent sensitivity pattern 

for each coil configuration that can be used as an initializer for the joint estimation 

method, which can robustly estimate the final sensitivity map as part of the reconstruction 

process. 
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CHAPTER 2.  Improving Non-Cartesian SENSE by 

investigating estimation of sensitivity maps and developing 

improved image reconstruction algorithms 

 

 

In this chapter, we focus on improving the reconstruction algorithm of non-Cartesian 

SENSE. To improve the reconstruction algorithm, we focused on the sensitivity map, 

since it forms the system matrix in (1.5), which directly influences the performance of the 

reconstruction. Specifically, we analyze several estimation methods for sensitivity map. 

We then investigated the effects of the spatial and temporal smoothing of sensitivity map 

on fMRI data. A quadratic regularization of image reconstruction algorithm controls noise 

and artifact, and applying regularization to sensitivity map estimation also makes it 

feasible to control smoothness and noise of the sensitivity map in spatial and temporal 

domain. We also sought to improve the reconstruction algorithm by developing an 

improved regularization method that “softens” the edges of the image support regions.  
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2.1  Sensitivity map estimation using a self-calibrated 

approach 

The performance of SENSitivity Encoding (SENSE) [7,22] highly depends on the 

accuracy of the estimation of the sensitivity map, which is part of the system matrix used 

in reconstruction process. The inaccuracy of sensitivity estimation can severely degrade 

reconstructed images [50], especially when using an iterative algorithm, such as in non-

Cartesian SENSE [22]. In this section, we investigated and compared different self-

calibrated approaches for sensitivity map estimation in non-Cartesian SENSE.  

Our results show that the sensitivity profile estimated from a homogeneous 

reference object, when using the geometric mean or harmonic mean method, usually has 

robust performance for both simulation and human data.  

 

2.1.1  Methods 

The conventional approach to estimate the sensitivity map is to divide each 

individual full-FOV coil image by body coil image which is usually homogeneous [7]. 

Division by the body coil image provides reliable performance when the body coil and 

the array coil images are accurately co-registered. However, this technique may require 

additional scanning, and is sensitive to motion between the acquisition of the body coil 

and array coil images when they are not accurately registered. Thus, to avoid such 

problems, self-calibration approaches have been considered, including low resolution 

[14,61] and sum of squares [7] or geometric mean approach [57].  
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The low resolution approach makes use of the center k-space region. Though this 

low-resolution approach turned out to be viable for spiral trajectories [14,61], if we use 

only the fully sampled region, we get overly smoothed sensitivity maps, and if we use 

outer part of undersampled k-space region, we get aliasing artifact [14]. Furthermore, for 

Cartesian trajectories, where k-space center regions are usually not fully-sampled, this 

approach could not be applied unless we use additional calibration lines, which in turn, 

can reduce acceleration for parallel imaging. These approaches can also suffer from 

contamination of image contrast in the sensitivity maps, particularly when higher 

resolution data are used. Furthermore, since we are dealing with dynamic imaging, such 

as using TSENSE-like interleaved acquisitions, we investigated other self-calibrated 

approaches, which seem to be more general in terms of using more k-space data.  

Perhaps one of the most widely used self-calibrated sensitivity map estimation 

methods is dividing surface coil by sum-of-squares of all coil magnitude [7]. However, to 

the best of our knowledge, there has been no literature on the optimality of the sum-of-

squares approach. We hypothesized that there could be other coil combination approach 

for reference map that would work better than sum-of-squares approach.  

In this section, we investigated four different self-calibrated sensitivity map 

approaches: sum of squares [7,16], geometric mean [57], generalized mean and harmonic 

mean. The first two methods are already proposed in the literature but the latter two are 

new combining methods.  

In TSENSE, the assumption that the sensitivity map between the neighboring time 

points does not change, we can also combine the undersampled data from the several 

neighboring time points to use them as one set of fully sampled data from which we 
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estimate the sensitivity map. The self-calibrated sensitivity map estimation approaches 

are feasible when using this combined fully-sampled data from neighboring time points. 

The sensitivity map of each coil is derived by dividing each coil image by the reference 

images via  

( )
i

i
ref

cS
c ε

=
+

     (2.1) 

where ic  is the acquired image from i-th coil and refc  is the nonnegative reference map, 

followed by smoothing process. The parameter ε is added to the denominator to prevent 

division by zero. This can be further divided by the phase of the one of the coils to avoid 

the underlying object phase term from being added to the sensitivity map. The reference 

images can be calculated from sum of squares, geometric mean, generalized mean and 

harmonic mean, respectively of the individual coil image, as shown in the Table 2-1. 

We implemented four self-calibrated sensitivity map estimation methods and applied 

each to single-shot spiral SENSE with a reduction factor of 2. Data were acquired using a 

TSENSE-like interleaved acquisition manner. Thus, each fully-sampled coil image was 

obtained from combining two neighboring shots, forming full Fourier encoded data. 

Using simulation data, we tested the performance of each method to see the effect of (i) 

sensitivity map of large coil element, (ii) drop-off of coil sensitivity using small coil 

element, and (iii) intensity variations in object with non-uniform pattern.  
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Table 2-1  Calculation of the reference image for the 
self-calibrating sensitivity map estimation methods 
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2.1.2  Results 

Figure 2-1 contains simulation results of using sensitivity maps from each of the 

four self-calibrating estimation methods: (1st column) geometric mean, (2nd column) 

sum of squares, (3rd column) generalized mean with p=1 which corresponds to arithmetic 

mean, and (4th column) harmonic mean approach. 1st row shows estimated sensitivity 

patterns of one of the four coils in the array, 2nd row shows reconstructed SENSE images, 

3rd row shows error maps calculated by taking difference between the estimated image 

and the original image, and 4th row shows original (red) and estimated (blue) image 

profiles along the central line. The error maps are all scaled same for fair comparison 

among the estimation methods. Figure 2-1 contains the simulation result for large coil 

elements (slowly varying sensitivity), Figure 2-2 for small coil elements (steep sensitivity 

pattern) and Figure 2-3 for small coil elements with object with non-uniform pattern.  
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Figure 2-1  Simulation result with large coil element. (1st row) Estimated sensitivity map of 
1st coil, (2nd row) estimated image, (3rd row) error map, and (4th row) the original and 
estimated image profile in red and blue, respectively.  
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Figure 2-2  Simulation result with small coil element where the sensitivity pattern drops 
steeply as it moves away from the coil. (1st row) Estimated sensitivity map of 1st coil, (2nd 
row) estimated image, (3rd row) error map, and (4th row) the original and estimated image 
profile in red and blue, respectively. 
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Figure 2-3  Simulation result with small coil element with an object with low SNR in the 
center. (1st row) Estimated sensitivity map of 1st coil, (2nd row) estimated image, (3rd row) 
error map, and (4th row) the original and estimated image profile in red and blue, 
respectively. 
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Figure 2-4  (top) Reference maps and (bottom) their profiles of uniform circular object  
using four different sensitivity map estimation approaches from (a) large coil element, (b) 
small coil element used in previous simulation, and (c) smaller coil elements with 32 
channels.  
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Figure 2-5  In-vivo human results from 2 different subjects. For each subject, (top) 
reference map for sensitivity map estimation and (bottom) corresponding SENSE images 
(R=2) using each self-calibrated approach, (a) geometric mean, (b) sum of squares, 
(c)generalized mean (p=1), and (d) harmonic mean. (top, b) Sum of squares has non-
homogeneous profile compared to other approaches which produced (bottom, b) SENSE 
image with brighter spot around the edges, whereas geometric mean and harmonic mean 
have relatively homogeneous profile for reference map for both cases, consistent with 
simulation results.  
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From these results, image domain error from the reference object were compared 

and we see that the geometric mean approach led to the best image quality, producing a 

reconstructed object that was closest to the true reference object for the first two 

experiments, and the harmonic mean approach produced the best result for the last 

experiment. The estimated image profiles from the experiments with small coil elements 

show the geometric mean and harmonic mean approach leads to most flat profile among 

all the other sensitivity map estimation methods, which could be explained by comparing 

the profile of reference sensitivity estimated by different approaches. In Figure 2-4, the 

reference images and their profiles from (a) large coil element, and (b) small coil element, 

from 4 channels that was used in simulation experiment shown in Figure 2-1 through 

Figure 2-3 for uniform elliptical object estimated from four different estimation 

approaches are shown. From this figure, we observe that the reference sensitivity map 

from harmonic mean and geometric mean approach, is generally more flat than any other 

approaches with small coil elements and large coil elements, which most closely mimics 

homogeneous body coil image, which most closely mimic homogeneous body coil image. 

Figure 2-4 (c) shows reference maps and their profiles from asymmetric small coil 

element with 32 channels. Comparing harmonic mean and geometric mean, harmonic 

mean approach overestimates the central part of image much more than geometric mean 

approach. 

Figure 2-5 shows in-vivo results using four sensitivity map estimation methods. 

Images from two representative subjects are shown. For each subject, top row 

demonstrates reference map for sensitivity map estimation and bottom row demonstrates 

corresponding SENSE images (Reduction factor, R=2) using each self-calibrated 
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approach, (a) geometric mean, (b) sum of squares, (c) generalized mean (p=1, arithmetic 

mean), and (d) harmonic mean. Sum of squares has non-homogeneous reference map 

compared to other approaches which produced SENSE image (b-bottom) with brighter 

region around the edges, whereas geometric mean and harmonic mean have relatively 

homogeneous reference map for both cases, consistent with simulation results. 

 

2.1.3  Discussion and Conclusions 

From our experiment, geometric mean approach and harmonic mean approach 

produced the best results among the four tested self-calibrated sensitivity map estimation 

methods for both simulation and in-vivo human experiments. Reference profiles, shown 

in Figure 2-4, demonstrate the reason why those two approaches were better than other 

two approaches: the more flat the reference profile, the better the sensitivity map 

estimation. While it is still possible that different coil configuration or different object 

could lead to different conclusions, using our data, we have found that geometric mean or 

harmonic mean approach generally outperformed sum-of-squares approach, which has 

been widely accepted by MR community. In comparing harmonic mean and geometric 

mean, we found that while the harmonic mean approach showed slightly better 

performances in some simulations, the geometric mean approach was generally more 

robust and seemed to perform well in varied conditions.  

We also note that the flatness of profile of the reference map could be a good 

indicator for selecting the best approach to self-calibrated sensitivity map estimation, as 

the flattest reference maps leads to the better reconstructed images.  
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2.2  Effect of Smoothing of the Sensitivity Map1 

In dealing with time series fMRI data, TSENSE [25] can be used to make efficient 

use of time and k-space. Like other image-domain based parallel imaging techniques, the 

performance of TSENSE heavily relies on the accuracy of the sensitivity maps that are 

necessary for the unaliasing process. Thus, accurate estimation of sensitivity maps is 

particularly important. In TSENSE, dynamic updating of sensitivity map is feasible by 

computing sensitivity map from “fully-sampled” image using neighboring data. However, 

due to motion or system instability, sensitivity maps could change during the scan and 

can affect overall quality of reconstructed images. Like the spatial smoothing of 

sensitivity map that suggested in original SENSE paper [7], both spatial smoothing and 

temporal smoothing could be applied to the sensitivity maps to improve robustness to 

those kinds of noise.  

However, the effect of smoothing has not been thoroughly investigated to date. Thus, 

we investigate the effects of sensitivity map smoothing on motion corrupted fMRI data, 

proposing a novel self-calibrated sensitivity map estimation technique that controls noise 

and smoothness via regularization. 

 

 

2.2.1  Methods 

Since TSENSE is a dynamic parallel imaging technique with a time-interleaved 

acquisition scheme, we can combine undersampled neighboring time point data to  

 

1 This section is an extension of our work found in [62].   
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produce a fully-sampled k-space data set. In our experiment, we acquired spiral data with 

a reduction factor of 2. Thus, two neighboring time points were combined to form one 

fully sampled k-space data. Denoting the fully sampled image for each coil l as zl and the 

reference image as zref , we can estimate l-th coil sensitivity map, sl using CG algorithm 

as follows : 

21ˆ arg min { } ( )
2l

l l ref l l
s

s z diag z s R sβ= − +    (2.2) 

where β is a regularization parameter and R(s) is a 1st order spatial roughness penalty 

function which penalizes the roughness of the estimated sensitivity map, sl. Smoothness 

of the estimated sensitivity map is easily controlled by varying β. The reference image, 

zref, can be obtained by taking the sum-of-squares [7], or geometric mean [57] of the 

individual coil images as suggested in Section 2.1. As suggested in previous section, the 

phase of one coil’s image can further be incorporated into this term to prevent inclusion 

of the underlying object’s phase in the sensitivity map. Compared to conventional 

sensitivity map estimation approach which uses division of surface coil image by a 

reference map, our approach can further improve robustness to noise in regions with low 

signal intensity and near edges, since the direct division is avoided.  

To see the effects of spatial smoothing using our proposed approach, sensitivity 

maps were estimated with different smoothness factors by varying β. To determine the 

effects of temporal averaging of sensitivity maps, we changed the number of neighboring 

time points used for moving averages.  

We hypothesized that this spatial smoothing could mitigate problems with noise 

around the edges of the sensitivity maps and that the temporal smoothing could 

potentially deal with inconsistencies in the estimated sensitivity maps due to motion.  
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Figure 2-6  (a) Mean (top) and variance (bottom) of complex sensitivity profile over all time 
points. (b) time course of sensitivity map estimate at the center (blue) and at around the 
edges (red) of the head 
 

 

2.2.2  Experimental Methods 

We collected functional data on a 3T GE scanner with an 8-channel head array coil. 

Imaging parameters were TR = 2s, TE = 25ms, 64×64 matrix size, FOV = 22cm, 5-mm 

thick axial slices, and two-shot gradient echo spiral-out acquisition, each shot being 

undersampled by a reduction factor of 2. During the scan, a visual cue, smaller than entire 

screen, moved and the subject was instructed to move his head right or left in response to 

the position of a visual cue on the screen so that the motion can be generated. We 

acquired a total of 40 time points.  

We estimated sensitivity maps using the above described approach and varied the 

spatial or temporal smoothness by controlling smoothness factors by varying β or by 

choosing different number of temporal averages of sensitivity maps, respectively.  

Estimated sensitivity maps were then applied to iterative SENSE reconstruction with 
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CG algorithm with 17 iterations. As proposed in the original TSENSE method, UNFOLD 

[26] was also used to remove the high frequency artifacts created by alternating 

interleaves. Temporal SNR (TSNR) and image domain error were used as metrics for 

comparing the results. 

 

2.2.3  Results  

Our observations of the temporal variation of the sensitivity maps provides evidence 

that the estimated sensitivity map values in the periphery vary over time more than 

central regions in the object. Figure 2-6(a) shows the magnitude of the mean (top) and 

variance (bottom) of a complex sensitivity map over time. The time course of two voxels 

of the sensitivity map, one at the center (blue) and the other one close to the edge (red), 

are plotted in Figure 2-6(b). The coefficient of variation (=σ/µ) as known as CV, were 

also calculated for each voxel and are also shown. Higher CV values in the edges indicate 

increased temporal fluctuation over that of the center of the object. 

We analyzed the effect of spatial and temporal smoothing in terms of image domain 

error [%] and TSNR [dB]. Figure 2-7 is an example from one subject demonstrating that 

spatial smoothing of sensitivity maps reduces image domain error and improves TSNR, 

(circle) before and (star) after motion correction by MCFLIRT [63]. However, over-

smoothing (log2(β)>7) degrades both performance metrics. Figure 2-8 shows (a) 

sensitivity maps and (b) corresponding SENSE images with respect to the smoothness 

parameter, log2(β), which is shown as the numbers shown at lower right corner. This 

suggests that a good sensitivity map can be obtained by appropriately selecting the 

smoothness of the sensitivity maps. Figure 2-9 shows the mean and standard deviation of 
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error and TSNR from 7 subjects with respect to the smoothness parameter, confirming the 

generality of this finding. 

Furthermore, our results in Figure 2-10 and Figure 2-11 demonstrate that temporal 

smoothing of sensitivity maps also reduces image domain error and improves TSNR, 

with the number of neighboring time points used for the moving average. Further 

investigations of up to 80 moving averages from four subjects are shown in Figure 2-11 

where the average of (blue circle) image domain error [%] and (red star) TSNR [dB] over 

all four subjects are shown. Due to the intersubject variability, the trend is not as clear as 

the result from this single subject, but the overall image domain error decreases and 

TSNR tends to increase as the number of moving average increases, consistent with the 

result shown in Figure 2-10. 

 

 

  

Figure 2-7  Effect of spatial smoothing of sensitivity maps measured as image domain error 
[%] and TSNR [dB] 
 



43 
 

 

 

(a) 

 

 

(b) 

Figure 2-8  (a) Sensitivity map and (b) corresponding SENSE images with respect to the 
smoothness parameter, log2(β) 
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Figure 2-9  Effect of spatial smoothing (regularization) of sensitivity map estimate shown 
as mean and standard deviation of (blue) image domain error and (red) TSNR from 7 
subjects. 
 
 
 
 

 

Figure 2-10  Effect of temporal smoothing of sensitivity map measure as (blue) image 
domain error [%] and (red) TSNR [dB]  
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Figure 2-11  Effect of temporal smoothing of sensitivity map measure as the average of 
(blue circle) image domain error [%] and (red star) TSNR [dB] from four subjects 

 

 

2.2.4  Conclusions 

Effect of spatial and temporal smoothing on the sensitivity map has been 

demonstrated with image error and TSNR. Appropriate spatial smoothing reduces image 

domain error and increases the TSNR whereas, for temporal smoothing, the more 

temporal average we take, the more improvement on both performance criteria. 
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2.3  Selection of image support region using spatially variant 

regularized approaches1 

Selection of image support region (masking region) with advanced regularization for 

non-Cartesian SENSE is presented [64]. Non-Cartesian SENSE involves solving a very 

large system of equations and further, has a complex aliasing pattern, so typically an 

iterative algorithm is used to reconstruct these images. For this case, proper masking can 

improve the conditioning of the reconstruction by excluding the regions that are not of 

interest. We have investigated how the selection of image support region affects the 

performance of non-Cartesian SENSE reconstruction applied to undersampled, single-

shot spiral k-space data. We also applied an additional regularized term to control the 

smoothness of mask region around the edges. We tested our hypotheses on masking 

effects with both simulation and in-vivo human data and our results show that using a 

moderate size mask can improve the image quality. We also found that smoothing the 

mask using the additional regularized term is effective in suppressing aliasing artifact. 

 

2.3.1  Introduction 

Compared to the well-behaved, highly localized and equi-spaced aliasing pattern 

that result from undersampling with Cartesian k-space trajectories, undersampling in non-

Cartesian k-space results in a more complex and widespread aliasing pattern, in which all 

pixels in the reduced sampling image interact with the point spread function of all other 

 

1 This section based primarily on our work found in [64] 
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pixels in the image. Typically, iterative conjugate gradient algorithms are required to 

“unfold” the aliasing across the image [19,22]. Thus, the role of the image support region, 

referred herein as a ‘mask’ which specifies the reconstruction region of interest, can have 

a global effect and thus becomes a more important factor in non-Cartesian SENSE.  

The image support region has been used as prior knowledge in image reconstruction 

and has already proven to be effective in achieving better performance in many areas to 

improve image quality [65-67]. Sedarat used prior knowledge on the support region of 

the image to solve the reconstruction problem from incomplete data via gridding where 

they assumed that object is confined within a circle [65]. Information of finite support 

was also applied to tuning a kernel in gridding approach and has shown to produce better 

results for their reconstruction performance [66]. The effect of choosing the finite support 

region has been further investigated by Plevritis [67] and has shown to be effective in low 

SNR case.  

Thus, image reconstruction of incomplete non-Cartesian data sets, such as parallel 

imaging with a reduced number of acquisitions, where the poor conditioning is a major 

concern and where noise in the measurement can be amplified, the use of prior 

knowledge may be essential in achieving better image quality. We envision that this will 

be especially true when using an iterative algorithm where small error in the model can 

possibly lead to a large degradation of resulting images. However, to the best of our 

knowledge, there has not yet published any work on the effect of selecting the image 

support region for reconstructing non-Cartesian SENSE using an iterative process. 

We investigated how different choices of image support regions affects the 

performance of non-Cartesian SENSE reconstruction with undersampled, single-shot 
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spiral k-space data. To examine the effect of sharp changes around the mask edges as a 

possible source of image artifact, we also propose using an added spatially variant 

regularization term, a so-called ‘soft mask’, to smooth the edges. We expect potential 

improvement on performance of the reconstruction by constraining regions that are 

known to be zero and suppressing edge artifacts. We tested the effect of selecting the size 

of image support region or a soft mask on simulation data and also on time series 

functional data. The time series functional experiment was to see if we should also 

consider the effect of possible motion when selecting the image support region. 

 

2.3.2  Theory 

Size of the Mask:  
 

Non-Cartesian SENSE, as described in Section 1.3.1, uses an iterative conjugate 

gradient (CG) algorithm rather than a direct unfolding process due to the complex 

aliasing pattern. With a reduced acquisition, the image reconstruction process solves an 

ill-conditioned problem. Our goal was to improve the system condition by using a priori 

knowledge of image support region. Thus, we applied a mask with a properly selected 

image support region, so we can exclude background points from x, making the system 

matrix, A, ‘thinner’ which in turn, can result in a better conditioned reconstruction with 

fewer unknown variables. 

 

Smoothness of the Mask:  
 

Our preliminary experiments point to limited aliasing artifact when using a tight 

mask, but this often led to edge artifacts, which were revealed as brightening of the image 
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around the edges as shown in Figure 2-12(a) (black arrow). This comes from small 

inaccuracies in the mask size when it does not fully cover the image, which was also 

observed in [68] for an 1-dimensional case. At any mask size, we also found that the 

sharp edges of a conventional mask seem to contribute to aliasing artifact. Thus, we 

applied an additional term to the regularization function, ||D(b)x||, which gradually 

increases Tikonov regularization of the image outside a tight mask, which, by 

progressively suppressing image intensity outside the object, leads to an effective 

smoothing of the mask around the edges, producing a ‘soft mask’. This yields the cost 

function,  

   2 21( ) ( ) ( )
2

x y Ax R x D b xβ γΨ = − + + .   (2.4) 

Here, D(b) is a diagonal matrix where b is a ‘softening function’ that dictates the 

smoothness around the mask edge. We used two types of softening functions, step and 

Butterworth function, were used in our experiment and are shown in Figure 2-14(top). 

 

2.3.3  Methods 

To determine the effect of mask size and smoothness on SENSE reconstruction, we 

conducted a simulation using a modified Shepp-Logan phantom image. We further 

conducted human experiment using a 3T GE scanner with an 8-channel head array coil. 

Imaging parameters were TR = 2s, TE = 25ms, 64×64 matrix size, FOV = 22 and 5-mm 

thick axial slices. A two-shot gradient echo spiral-out acquisition was used with a 

reduction factor of 2. For simulation, white Gaussian noise was added when generating 

data, so as to mimic measurement error. The sensitivity map used for generating the 

simulated k-space data was used in the reconstruction process to avoid any possible 
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artifact caused by inaccuracies in sensitivity map estimation.  

On the other hand, for the human experiment, the sensitivity map was estimated 

using self-calibrated approach with geometric mean reference as described in Section 2.2 

[57]. To see the impact on a time series of data, we conducted a functional study with a 

visual and motor task with flickering checkerboard and a finger tapping, 4 cycles of 20s 

OFF / 20s ON. Then for reconstruction, we applied a same image supported region with 

and without softening function to all time point data. We implemented SENSE similar to 

Sutton et al. [19] for the unaliasing process. This implementation uses the time-

segmented NUFFT algorithm which allows for compensation of field inhomogeneity 

effects and an iterative CG algorithm with the regularization terms as described above. 

The algorithm was automatically stopped after 15 iterations. Data from two shots 

acquired at two adjacent time points were combined and considered a fully-sampled data 

from which the image was reconstructed and used as a reference. An error map, which is 

the difference between a SENSE reconstructed image from reduced acquisition and the 

reference image, is shown in the results. 

 

2.3.4  Results 

Images and corresponding error maps with different mask sizes without softening 

function are presented in Figure 2-12. Mask size with (a) 0, (b) 1, (c) 4 and (d) 12 pixels 

beyond the object are shown. Mask size 0 represents the tightest mask. The error maps 

are rescaled to the same value. To further investigate the effect of mask size on image 

quality, we increased the size of the mask by one pixel at a time starting from the tightest 

mask which is represented as increased mask size of 0 inError! Reference source not 
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found. Figure 2-13. The resulting image domain errors were calculated by taking the 

difference from and also by normalizing by the fully-sampled data set. The effect of mask 

size on the reconstructed image with a softening function (Butterworth) is also presented. 

Blue line shows the results without softening function and red line, with the softening 

function. 

Figure 2-14(top) shows two different softening functions: (a) Step and (b) 

Butterworth used in our experiment, and Figure 2-14(bottom) shows corresponding error 

maps within the object. The arrows indicate where the differences using two softening 

functions are significant.  

The effect of using a soft mask on human data is also presented in Figure 2-15. 

Figure 2-15(a,c) shows the result without Butterworth softening function and Figure 2-

15(b,d) with the softening function, on the reconstructed image (top) from the slice 

containing motor cortices, and the corresponding error maps (bottom). The results are 

consistent with simulation results. For human functional experiment result, the average of 

normalized image domain percent error from images at 80 time points was 5.1% with the 

softening function with the moderate mask size of 5, and 6.6% without the softening 

function with the largest mask size 12. Temporal SNR (TSNR) and number of activated 

pixels were also calculated for each case. Using the softening function, TSNR was 32dB 

and the number of activated pixels was 58. However, without using the softening function, 

TSNR and the number of activated pixels was only 29dB and 33, respectively. 
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Figure 2-12  Effect of mask size without smoothing. (top) SENSE images when mask size 
increased by (a) 0, (b) 1, (c) 4 and (d) 12 pixels, respectively, beyond the object. (bottom) 
corresponding error maps 
 
 

 

 

 

Figure 2-13  Error map energy within the ROI with respect to increased pixels of mask size. 
(blue) without and (red) with softening function. Butterworth function was used for 
softening function. 
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Figure 2-14  Effect of softening function. (top)Two types of softening functions; (a) Step 
and (b) Butterworth. (bottom) Error map within the ROI, mask size of 12 

 

 

    

Figure 2-15  Human experiments from two different subjects. (top) SENSE images (a,c) 
without and (b,d) with softening function and (bottom) its corresponding error maps 
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2.3.5  Discussion and Conclusions 

Our results show that choosing a moderate size of mask can improve the image 

quality and that smooth masks are effective in suppressing aliasing artifact. In our 

simulation, the tightest mask resulted in an edge effect caused by the overfitting of 

images around the edge which might be due to the roughness penalty in reconstruction 

process itself. This tightest mask also suffers from practical considerations related to 

difficulty in determining the exact edge with smooth sensitivity maps or with motion. The 

error map pattern also changes with respect to mask size: the bigger the mask size, the 

more aliasing artifact in the center of the object. As demonstrated in Error! Reference 

source not found., the energy of the error map is the lowest at the mask size of 4 and is 

shown in Figure 2-12(c). Even though, as suggested in our theory, the smaller mask, the 

better, we would increase the mask size by several pixels to avoid any edge effect while 

still suppressing the aliasing artifact. This could also be a safer approach when dealing 

with human data with dynamic functional experiment where specified region of interest 

could be altered by subject’s motion during the scan. 

As we compare the Figure 2-12(d) and Figure 2-14, without and with using a 

softening function, respectively and also the image error plot shown in Error! Reference 

source not found., smoothing the mask succeeds in reducing the aliasing artifacts at any 

mask size. We also found that among the softening functions, the Butterworth function is 

more desirable than any other functions, for a variety of mask sizes, possibly due to the 

rounded edges of this function. 
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CHAPTER 3.  Optimizing parallel imaging for fMRI 

 

 

Parallel imaging can be applied to fMRI to improve spatial resolution or to reduce 

image distortions by reducing the length of readouts. With higher field strength, the 

benefit of parallel imaging can be greatly increased, because parallel imaging enables us  

to reduce the length of readout, which suppresses image distortions accumulated from the 

field inhomogeneity, one of the biggest problems in high field imaging. 

However, main drawback of applying parallel imaging is reduced SNR or aliasing 

artifact coming from undersampling. Properly selected parallel imaging method could 

lead us to better SNR or suppressed aliasing artifact, which in turn, enhances the use of 

parallel imaging in fMRI. 

In this section, we attempt to optimize parallel imaging in fMRI. This includes 

finding an optimal updating method for calibration data, an optimal acquisition scheme, 

and an optimal initialization method in reconstruction process. For each section, several 

methods will be compared in terms of a number of activations, image domain error, 

temporal SNR, and reconstruction speed for some case. 
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3.1  Updating method for calibration data1 

Our working hypothesis was that changes in the calibration data caused by subject 

motion and other temporal variations will lead to a preference for dynamic updating 

methods for calibration data in parallel imaging reconstruction. Our approach was to 

perform a quantitative comparison of several updating methods to determine the optimal 

updating methods for the two most widely used parallel imaging techniques, GRAPPA 

[12] and SENSE [7].  

Since the calibration data are acquired during the actual scan for GRAPPA and 

SENSE, patient motion or system instability can produce temporal variation in the 

calibration data, i.e., GRAPPA coefficients and sensitivity maps. These temporal 

variations in calibration data over time suggested the need for updating the data, 

effectively adjusting those changes through the reconstruction process. Since the 

calibration data for GRAPPA and SENSE affect the images differently, it was necessary 

to investigate and distinguish the respective updating methods that would provide optimal 

result. GRAPPA coefficients are obtained by fitting each single component coil signal 

from composite signals that are composed of ACS’s from all the coils. On the other hand, 

sensitivity map, which forms an unfolding matrix to reconstruct an unaliased image, are 

estimated either by prescanning or by self-calibration [7,14,57].  

Although a variety of updating methods for the calibration data have been proposed 

for time series parallel imaging [24,25,69], there is, as of yet, no literature comparing the 

performance of these methods. Hence, we conducted quantitative comparisons of the 

 

1 This section is an extension of our work found in [70,71].   
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three most widely used updating methods, static (no updating), dynamic and dynamic 

sliding window techniques. The static (no updating) method should work best if the 

calibration data does not change over time, or if the estimated calibration data that are 

updated at each time point are too variable. On the other hand, the dynamic method 

should work better if the calibration data change over time or the updated estimation of 

each time point is very stable. The sliding window should work better than the single 

dynamic update method if the calibration data estimated from a single time point are not 

robust.  

In our study, we applied the three updating methods to time series functional data 

using two dynamic parallel imaging techniques: TGRAPPA [24] and TSENSE [25], 

which were initially introduced for time-series cardiac MRI data. These methods allow 

for the simultaneous acquisition of the calibration data by alternating shots at each time 

point. These alternating acquisition techniques produce intensity variations that can be 

viewed as high temporal frequency components. In TSENSE, the UNFOLD method 

(UNaliasing by Fourier-encoding the Overlaps using the temporaL Dimension) [26] was 

used to remove the high temporal frequency components by temporal low-pass filtering. 

This temporal filtering was not applied in the original TGRAPPA method, but here, we 

did apply it to obtain a similar effect.  

We used spiral trajectories, since they are more robust to motion and flow artifacts 

as well as very efficient in utilizing the gradient hardware and in rephasing signal loss 

due to magnetic susceptibility effects in fMRI [58-60], though they have some 

disadvantages in that the reconstruction process is more complex and suffers from image 

blur due to off-resonance effects, if left uncorrected. We have extended the GRAPPA and 
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SENSE methods to accommodate the spiral trajectories. Specifically, for spiral GRAPPA, 

we used a direct spiral GRAPPA method [21] proposed by Heidemann et al. in which the 

original spiral data are resampled onto a trajectory with constant angular velocity. For 

spiral SENSE, we used a method proposed by Sutton et al. [19] which uses an iterative 

time-segmented Non-Uniform Fast Fourier Transform (NUFFT) approach that 

compensates for field inhomogeneity effects. 

 

3.1.1  Methods 

We implemented spiral GRAPPA and spiral SENSE methods using existing 

techniques: a direct spiral GRAPPA [21] and iterative SENSE [19] with time-segmented 

field inhomogeneity correction [23]. In spiral GRAPPA, we used a computationally 

efficient conjugate phase (CP) method to correct for off-resonance, followed by a sum-of-

squares image combination, whereas in spiral SENSE, we used an iterative conjugate 

gradient (CG) method, again with off-resonance corrections, to reconstruct the final 

image.  

For our implementations, we optimized a variety of parameters. For example, for 

GRAPPA, we selected the number of angular groups and the number of neighbors for 

interpolation that lead to the smallest squared errors, and for SENSE, we selected a self-

calibrated approach [57] and degrees of smoothing to estimate the sensitivity maps. For 

the iterative CG method for SENSE, the number of iterations was set to 17, based on our 

experience that for most images in our study, the normalized errors between previous 

iterations and current iterations were below 0.1% after 16th or 17th iterations. We also 

applied field map corrections using the time segmented approach [23]. 
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To apply GRAPPA and SENSE to time series data, we implemented TGRAPPA and 

TSENSE. To reduce the high frequency variations from alternation of interleaves, we 

applied UNFOLD [26], temporal low-pass filtering, to both TGRAPPA and TSENSE. A 

low latency Butterworth filter, proposed by Kellman et el. [27] was used, of which the 

passband cut-off of 0.4, corresponding to 80% availability of the full frequency band, 

with a passband flatness of Rp = 1.5dB. The stopband edge frequency ranged over 24% 

of the frequency domain with rejection of Rs = 50dB.  

We applied and compared three different schemes for updating calibration data: a 

static method that uses the calibration data from the first two time points for 

reconstruction of all time points, a dynamic method which uses the current time point and 

its nearest neighboring time point, and a sliding window technique which takes moving 

average of calibration data over a number of time points: 

 

Method 1:  static - uses coefficients/maps from the first two shots only 

Method 2:  dynamic - updates coefficients/maps at each time point 

Method 3:  dynamic - updates coefficients/maps with a sliding window  

 

 

Figure 3-1  Three updating methods for calibration data and their respective time intervals 
for reduction factor R=2 with 2-shot spiral data. The arrow indicates where the calibration 
data are calculated. 
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These three methods are schematically described in Figure 3-1. Each arrow indicates 

a period of time from which the calibration data are acquired. Since we used 2-shot 

spirals with a reduction factor of R=2, the calibration data were calculated from 2 

adjacent time frames. In Method 1, which is a static method, the calibration data were 

acquired from the first 2 time frames, and were used for all subsequent time points. In 

Method 2, the calibration data were acquired and updated every time frame. In Method 3, 

the calibration data were acquired at every time frame, as in Method 2, but a moving 

average of five sets of calibration data was used during the reconstruction process. 

Method 1 requires the least computational time, whereas Method 3 requires the most.  

In-vivo human experiment and phantom experiment were conducted, without and 

with induced motion to see the effect of motion and physiological noise.  

The results of the three updating techniques were compared in terms of the number 

of activated pixels, normalized RMS error in the image domain and TSNR. To calculate 

the number of activated pixels, we calculated the activation maps through the correlation 

coefficient with a sinusoidal reference waveform delayed by 4 seconds and thresholded at 

an uncorrected p value < 0.0002 (two-tailed). Normalized RMS error was calculated by 

taking the difference between reconstructed images from undersampled and fully-

sampled k-space data in the image domain. In our analysis, two-shot k-space data from 

neighboring time points were used as fully-sampled data. The TSNR is a very important 

metric for fMRI studies because signal detection usually relies on detection of specific 

changes in the voxel time course, and is defined by a time course mean signal divided by 

the time course standard deviation [16]. Linear trends were removed prior to processing. 
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3.1.2  Experiments 

We conducted an experiment to compare the performance of three methods for 

updating the calibration data. We collected functional data on a 3T GE scanner with an 8-

channel array coil. Imaging parameters were TR = 2s for a single spiral, TE = 25ms, 

64×64 matrix size, FOV = 22cm, 4-mm thick axial slices, total number of slices = 32, and 

two-shot gradient echo spiral-out acquisition. Seven healthy volunteers, each of whom 

gave informed consent under institutional review board (IRB) approval, were scanned. 

We used a simultaneous finger tapping task and reversing checker board visual 

stimulation, with a task cycle of (20s OFF / 20s ON) repeated 4 times. Thus, the 

paradigm produced a total of 40 time points for the fully sampled (2-shot) data, or 80 

time points for the undersampled parallel imaging data with a reduction factor of 2.  

We first compared the performance of the three updating methods in the absence of 

induced head motion. The subjects were asked not to move their heads during the 

acquisition. We reconstructed the undersampled data using GRAPPA and SENSE with 

the calibration data that were updated with each of the three schemes described before. 

We also conducted another experiment to evaluate the performance of the three updating 

schemes in the presence of randomly induced head movement during the acquisition. 

Using a motion apparatus, we generated the same series of random motions for all 

subjects, which produced 1~4 mm of translational motion and 0.5~1 degree of rotational 

motion. This apparatus consisted of a small air bladder that was filled and drained 

according to a prescribed schedule. The generated motion was uncorrelated with the task. 

Four variations of induced motion experiments were conducted at each functional run 

where we used the same paradigm and applied the same reconstruction methods as in the 
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previous experiment.  

To correct for motion, we used MCFLIRT (Motion Correction using FMRIB's 

Linear Image Registration Tool) to the reconstructed images for both the non-motion and 

induced motion experiments [63]. 

For the non-motion experiment, we used a three-way ANOVA (analysis of variance) 

test to evaluate statistical significance among the three updating methods. The ANOVA 

test used updating methods, subjects and slices as group variables. The null hypothesis 

for our testing was that there was no such effect of using different updating methods on 

each metric. For the induced motion experiment, we used a four-way ANOVA, with four 

different kinds of motion being added as group variables. We set the significance level to 

be 0.01 and the test result with p-value below that level indicated rejecting the null 

hypothesis. 

To account for temporal stability occurring with each subject, we also conducted a 

phantom experiment with an activation phantom to reinforce our conclusion. We 

implemented a phantom with a thin wire to which we applied electric current which 

distorts the magnetic field, thus mimicking the brain activation. The current was 

controlled by an ON/OFF switch during the activation phase with a cycle of (20s OFF / 

20s ON) repeated 4 times as was used in the human experiment. We repeated our 

phantom experiment four times and imaging parameters were same as the human 

experiment. 
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3.1.3  Results 

 

 

Figure 3-2 compares performance criteria for the three updating methods: static 

(Method 1), dynamic (Method 2) and sliding window (Method 3), shown for TGRAPPA 

(top) and TSENSE (bottom) when there is no induced motion with human subjects. For 

TGRAPPA, the dynamic updating method (Method 2) produced the best image quality, 

i.e., lowest image domain error, and the sliding window (Method 3) produced the largest 

number of activated pixel and the best TSNR performance. However, for TSENSE, the 

static updating method (Method 1) resulted in the largest number of activated pixels, the 

best TSNR and image quality. We have examined three adjacent slices containing motor 

cortex area and calculated three metrics from each slice for each subject. The numbers 

shown in the  

 

Figure 3-2 are the averages of the numbers from each slice, since the metrics from 

three adjacent slices were highly correlated. 

In the non-motion experiment, the different updating methods produced statistically 

different results in image domain error for TGRAPPA, and in all three metrics, i.e., the 

number of activated pixels, image domain error and TSNR, for TSENSE. These statistical 

results were obtained from a three-way ANOVA test. We marked the cases where 

statistically different results were produced with a star in the upper right hand corner of 

the respective figures.  

 



64 
 

 

Figure 3-3, on the other hand, shows results for experiment conducted with induced 

head motion and the three updating methods show similar trends as in the case without 

induced head motion, except for the number of activated pixels metric for TGRAPPA. 

Though the functional runs were independent of one another, each updating method had 

similar impact on each functional run. Thus, the numbers from four experiments and 

three slices were averaged altogether for each subject. Motion appears to degrade both 

image domain error and TSNR and also increases the variation across subjects.  

For TGRAPPA, the smallest image domain error was obtained using the dynamic 

updating method (Method 2), and the best TSNR using the sliding window technique 

(Method 3). However, for TSENSE, the static updating method (Method 1) produced the 

largest number of activated pixels, the best image quality and the best TSNR, as was the 

case without induced motion.  

In the motion experiment, for TGRAPPA, statistically different results for image 

domain error were produced by using different updating method. For TSENSE, 

statistically different results for the number of activated pixels and TSNR were produced 

by using different updating methods. These statistical analyses were conducted using a 

four-way ANOVA test. Again, we used a star mark on the upper right corner of the result 

figure where there is statistical impact in using different updating methods.  

In both non-motion and motion experiments with human subjects, the results and the 

statistical analyses showed that the dynamic updating method resulted in the lowest 

image domain error for TGRAPPA, and the static updating method resulted in the largest 

number of activated pixels and the best TSNR for TSENSE.  
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Figure 3-2  Comparison of the three updating methods (blue: Method 1, green: Method 2, 
red: Method 3) for the number of activated pixels, image domain error and TSNR in motor 
cortex slices for (top) TGRAPPA and (bottom) TSENSE reconstructions for data without 
intentional head motion. Stars indicate the case when p<0.01 (ANOVA test) for main effect 
of update methods. 
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Figure 3-3  Comparison of image domain error and TSNR for the three updating methods 
in motor cortex slices for (top) TGRAPPA and (bottom) TSENSE reconstructions for data 
corrupted by motion. The trends of the three updating methods, in the case of motion, are 
comparable to those without intentional motion. Stars indicate the case when p<0.01 
(ANOVA test) for main effect of update methods. 
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Figure 3-4 (a) shows the reconstructed image from the undersampled data (R=2) 

using TGRAPPA (top) and TSENSE (bottom), (b) the error maps after UNFOLD and (c-

d) the TSNR map (c) before and (d) after UNFOLD. The error maps were calculated by 

taking the difference between images from the fully-sampled data and the undersampled 

data and they have been rescaled by a factor of 10 relative to the original images for 

better visualization. To see the effect of UNFOLD more clearly, we used the same image 

scale for TSNR map, before and after the UNFOLD filtering. The effect of UNFOLD 

filtering on voxel time course is also shown in Figure 3-5 where we can see some 

smoothing effect on time course.  

Figure 3-6 shows voxel time-series data from the phantom experiments, after 

UNFOLD filtering.for the three updating methods for (a) TGRAPPA and (b) TSENSE. 

The time course using a sliding window reconstruction for fully-sampled two-shot data 

[72] are also shown. While not provided in detail here, the number of activated pixels, 

image domain error, and TSNR were also calculated for the phantom experiment. The 

phantom results corroborate significant findings from the human experiment, i.e., for 

TGRAPPA, the dynamic updating method (Method 2) and the sliding window approach 

(Method 3) have lower image domain error, and for TSENSE, the dynamic updating have 

the lowest number of activated pixels and TSNR whereas the static updating method 

produced best results for those metrics.  
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Figure 3-4  (top) TGRAPPA and (bottom) TSENSE (a) images reconstructed from 
undersampled data (R=2), (b) the error map (x 10) for a slice through the primary motor 
cortex, (c) TSNR map before UNFOLD and (d) after UNFOLD filtering. 

 

 

 

 

Figure 3-5  Voxel time course of one activated pixel acquired from the experiment from the 
previous section, before (solid) and after (solid with dots) UNFOLD. UNFOLD smoothes the 
time course. The pixel was selected from the image from the motor cortex slice where we 
conducted a finger tapping task 20sec (10 time points) OFF/ON, repeated 4 times 
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Figure 3-6  Voxel time course from phantom experiment using the three updating methods, 
and one reference from fully sampled data (2-shot). Blue: Method 1 (static), Black star: 
Method 2 (dynamic), Magenta diamond: Method 3 (sliding window), Red circle: 2-shot 
(reference). 

 

 

3.1.4  Discussion  

Our results suggest that applying different updating methods affects the performance 

of both TGRAPPA and TSENSE, possibly due to changes in the calibration data over 

time as is described in [62] where the temporal variability of sensitivity map is shown. 

We speculate that temporal variation of system instability or physiological noise as well 

as motion is the main source of temporal variation in calibration data that has affected the 

reconstruction even though estimation method was the same over the time course.  

The human studies showed that, for TGRAPPA, the best image quality was 

produced by the dynamic updating method whereas the best TSNR was produced by the 
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sliding window technique, though this latter finding was not statistically significant. On 

the other hand, for TSENSE, the largest number of activated pixels, the lowest image 

domain error and the highest TSNR were produced by the static updating method. More 

interestingly, the induced motion study results showed trends similar to those above, 

despite the fact that motion degrades both image domain error and TSNR and increases 

the variance among the subjects for both performance criteria. Except as noted above, 

statistical analysis using ANOVA indicated that there were statistically significant 

differences for the human experiments, for both induced motion and non-motion cases. 

These results also confirm the findings of a preference for static sensitivity maps in echo-

planar fMRI [35].  

Our phantom experiment also examined the temporal behavior of each updating 

method in detail, which largely confirmed significant findings from the human data. One 

intriguing observation is that the voxel time course from the activation phantom, shown 

in Figure 3-6, demonstrated an increased lag of the response for the dynamic updating 

method compared to the other two updating methods. In particular, the dynamic updating 

method demonstrates temporal behavior very similar to a two-shot sliding window 

reconstruction. We suggest that this temporal behavior in both TGRAPPA and TSENSE is 

due to correlation between the calibration data and the imaging data (e.g., the missing 

shot) in the dynamic updating method (Method 2), which leads to the parallel imaging 

reconstruction to produce data very similar to two-shot fully sampled data.  

It is reasonable to presume that the sensitivity map has to be updated to track 

changes of the sensitivity pattern over time. However, the dynamic updating method did 

not necessarily produce the best performance in image domain error, especially for 
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TSENSE. This unexpected finding may result from spatially dependent variation in the 

sensitivity maps over time [62], which then leads to variations in the reconstructed 

images. Another underlying cause for the increased variation is that when we form a full 

FOV unaliased image by combining the data from two shots to estimate sensitivity maps, 

there can be imaging artifact due to subject motion between the shots. Furthermore, there 

can be respiration-related phase variations which could also produce artifacts in the 

image domain and large variations between images [73] which, in turn, can further 

degrade the temporal stability of the sensitivity maps. Lastly, it is possible that the actual 

sensitivity map, which we have smoothed, may also be less object-dependent than we 

originally thought, which suggests that for TSENSE, the no updating (static method) is 

preferred. Use of the static updating method also requires the least processing time.  

For TGRAPPA, on the other hand, it is better to update GRAPPA coefficients at each 

time point for better image quality with low image domain error. This may be because 

these coefficients are not spatially dependent parameter and are more insensitive to phase 

variations between the coils and shots. Moreover, the GRAPPA coefficients may also be 

more object dependent and thus, sensitive to bulk motion. Like TSENSE, the use of the 

dynamic update method (e.g. Method 2) can result in reduced temporal resolution as 

shown in Figure 3-6.  

It was somewhat unexpected that different updating methods would be preferred for 

TGRAPPA and TSENSE. Though sensitivity maps and GRAPPA coefficients are 

considered to have roughly a Fourier Transform relationship to each other, that 

relationship is indirect. In particular, in other work, we found that there is spatial 

dependent variability in the sensitivity maps [62] whereas one expects GRAPPA 
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coefficients to have a spatially invariant behavior. Other differences in the temporal 

behavior of calibration data relate to differences in the process for estimation and 

applying this information. For example, for TGRAPPA, GRAPPA coefficients are 

different for the even and the odd shots, whereas for TSENSE, the sensitivity map can be 

exactly the same. This also affects how the moving average approach is implemented 

since only every other time point creates new information for TGRAPPA. Thus, even 

though sensitivity maps and GRAPPA coefficients are estimated at each time point, the 

details of how they are estimated and used are somewhat different. We believe that 

differences account for the differences in the desirability of particular updating 

approaches.   

In Figure 3-4, TGRAPPA (top row) has a uniform error map over the image, which 

may be due to the k-space based reconstruction process. For TSENSE (bottom row), the 

TSNR map shows more spatial variation before the UNFOLD filtering. Applying 

UNFOLD improves the TSNR map and makes it more uniform. The result which shows 

the effect of UNFOLD, which removes only the highest temporal frequency components 

including the secondary artifacts induced by alternating shots from unsuppressed aliasing, 

conforms the findings of Madore [74,75]. For TSENSE, the use of static sensitivity map 

makes alternating shots unnecessary, except for calculation of the initial sensitivity maps. 

This would allow elimination of the UNFOLD filtering. Even though a further 

investigation is beyond the scope of this paper, we might predict that an undersampled 

single-shot SENSE approach might be a better solution for SENSE in fMRI, which is 

consistent with the findings in [35].   

We made no attempt to compare TGRAPPA and TSENSE. While we tried to find 
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and apply optimal parameters for each reconstruction method, there are many variations 

and parameters which can lead to different conclusion of the comparison, such as 

selection method and SNR of ACS lines and implementation of GRAPPA coefficient, or 

regularization parameter for SENSE that governs the overall noise and resolution.  

However, propagation of errors in the image error map as well as intersubject variability 

seems to be consistent with other findings presented in the literatures [76,77].   

In preparing our study, when optimizing the parameters involved in image 

reconstruction algorithms, we have made attempts to find optimal method for each case. 

We also examined effects of different implementations, such as different resolution and 

number of iterations or smoothness of sensitivity map, and have found the result to be 

generally consistent with our current findings. While it certainly is possible that a 

particular approach we did not try may lead to different conclusions, the approaches we 

have examined so far are consistent in both phantom and human studies.   

We confine our conclusions primarily to spiral fMRI case, since in our application 

domain of fMRI focuses more on temporal stability than image clarity and reduced 

parallel imaging artifact, which might be more common concerns in cardiac imaging, and 

aliasing artifact that results from spiral parallel imaging is very different than that in 

Cartesian acquisitions.     

 

3.1.5  Conclusions 

In this study, our objective was to determine the optimal updating method for 

calibration data for time series fMRI data acquired with a reduced spiral acquisition using 

TGRAPPA and TSENSE. For TGRAPPA, the best image quality is achieved by applying 
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the dynamic update method of GRAPPA coefficients whereas for TSENSE, the largest 

number of activated pixels and best TSNR are achieved by applying the static sensitivity 

maps (no updating). This conclusion was confirmed by the statistical analysis. The 

findings in this study may be useful for those who are planning to apply dynamic parallel 

imaging methods to fMRI using spiral imaging. 
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3.2  Acquisition scheme for parallel imaging for fMRI: 

Comparison between undersampled single shot vs. multi-shot 

spiral-out sequences  

Our study on TSENSE and of updating methods in the previous section has pointed 

us to use a static sensitivity map over dynamically updated approach. Since we 

discovered that static sensitivity map outperforms the dynamic updated sensitivity map 

which requires an interleaved acquisition, we reasoned that we can also apply a non-

interleaving technique with static sensitivity map. Furthermore, UNFOLD temporal 

filtering is not necessary for non-interleaving acquisition scheme. In this section, we 

review some characteristics of TSENSE and of UNFOLD temporal filtering, and 

investigate whether a single-shot spiral sequence, which is a non-interleaving technique, 

could be a better solution for fMRI.  

 

3.2.1. Introduction  

TSENSE [25] was introduced to make efficient use of k-t space and avoid the extra 

scan required for estimating sensitivity map by using an interleaved acquisition scheme. 

In addition, sensitivity map can be estimated in self-calibrating manner and update 

dynamically to track changes during the scan due to object motion or other factors. This 

interleaved acquisition has shown to be favored for BOLD fMRI as much as single shot 

spiral for fully Fourier encoded data if motion correction and linear shim are properly 

conducted [78]. However, there has been concern about inconsistencies between each 

shot during the acquisition, which can result in increased artifacts due to phase or 
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amplitude errors, if not treated carefully. This inter-shot inconsistency problem still arises 

in parallel imaging when using an interleaved scheme such as TSENSE and TGRAPPA. 

UNFOLD temporal filtering, designed to remove residual aliasing artifact that are 

modulated to the temporal Nyquist frequency as shown in Figure 3-7, has also shown to 

mitigate this inter-shot variability problem.  

When implementing UNFOLD low-pass temporal filter, we need to carefully design 

the filter in order to effectively filter out artifact from physiological noise and system 

instability as well as motion also at around high frequency region, yet not to lose valuable 

information at those higher temporal frequency regions [27]. More bandwidth can be 

used if the aliased component is relatively static and confined in narrow temporal 

frequency region and further, different filtering choices will likely affect ultimate 

performance. 

 

 

 

Figure 3-7  Temporal frequency spectrum of three representative voxels showing both 
desired and aliasing component. Temporal low pass filter was designed to cut off the aliasing 
component around the Nyquist (±0.5Hz) region.  
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Even though the use of UNFOLD temporal filtering on our TSENSE study has also 

shown to be effective in improving image quality as well as increasing number of 

activated pixels and TSNR, we also found out that UNFOLD temporal smoothing has a 

major drawback of an altered temporal impulse response. Depending on filter parameters, 

this can lead to smoothing, ringing [27] or both. Smoothing of the voxel time course, as 

shown in Figure 3-5, can lead to reduced temporal resolution or other artifacts.  

Thus, given the potential issues with UNFOLD filtering and the desirability of using 

a static sensitivity map, we hypothesized that current interleaving acquisition such as 

TSENSE may not be optimal for a spiral functional MRI experiment, and that use of a 

single undersampled interleave might offer better performance. In the following, we 

investigate the performance for functional MRI of single-shot SENSE relative to 

TSENSE with the effect of UNFOLD temporal filtering.  

 

3.2.2  Methods  

In this experiment, we used the same functional experiment with TSENSE and 

single-shot SENSE, with spiral-out trajectory with a reduction factor of R=2. The same 

visual and motor tasks as well as non-motion and motion experiments were used as in 

Section 3.1. Imaging parameters were also the same as in Section 3.1 and the sequences 

for the experiments are shown in Figure 3-8. For single-shot SENSE, we also interleaved 

two shots at the beginning of the acquisition for sensitivity map calibration. For both 

TSENSE and SENSE, static sensitivity maps from the first two time points were used to 

reconstruct all time point images. 
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Figure 3-8  (Top) Two-shot (interleaved), and (bottom) single-shot spiral out sequence used 
in the experiment. For the single-shot, the first two time points are also interleaved for 
sensitivity map calibration. The arrow shows where static sensitivity map are calibrated for 
both cases. The number below shows the shot number used for acquisition, i.e., 1: first 
interleaf, 2: 2nd interleaf of 2-shot spiral.   
 

 

3.2.3  Experimental Methods 

The functional data were collected on a 3T GE scanner with an 8-channel array coil 

with imaging parameter: TR = 2s, TE = 25ms, 64×64 matrix size, FOV = 22cm, 5-mm 

thick axial slices, total number of slices = 30, and the reduction factor = 2. Total six 

healthy volunteers were given informed consent under institutional review board (IRB) 

approval and scanned. For functional experiment, we used a simultaneous finger tapping 

task and reversing checker board visual stimulation, with a task cycle of (20s OFF / 20s 

ON) repeated 4 times, which produced a total of 80 time points. We ran same functional 

study six times on each subject: three times with a two-shot sequence, three times with a 

single-shot sequence, one of three being without any induced motion, and two of three 

being with two different kinds of randomly induced head motion using a motion 

apparatus. Randomly induced motion was also uncorrelated with the task but 

reproducible among the subject and between each sequence.  
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The data were processed using a non-Cartesian SENSE with an iterative CG 

reconstruction algorithm using a static sensitivity map estimated from the first two time 

points. We then conducted motion correction using MCFLIRT (Motion Correction using 

FMRIB's Linear Image Registration Tool) [63] on both non-induced motion and induced 

motion experiments. UNFOLD low-pass temporal filtering was conducted on both two-

shot and single-shot data order to examine the effect of UNFOLD temporal filtering on 

both cases to control for the effects of temporal smoothing, though it is not necessary for 

single-shot data. For TSNR, which is the time course mean signal divided by the time 

course standard deviation, linear trends were removed prior to processing. 

For comparison between two different sequences, we used a two-way ANOVA 

(analysis of variance) test to evaluate statistical significance. The ANOVA test used type 

of sequence used and subjects as group variables. We set the significance level to be 0.01 

and the test result with p-value below that level indicated rejecting the null hypothesis, 

indicating that there was no considerable difference.  

 

3.2.4  Results 

Comparisons between interleaved two-shot (TSENSE) and single-shot (SENSE) 

spiral sequences and also the effects of UNFOLD temporal filtering on both cases are 

shown in Figure 3-9 as (left) the number of activated pixels, (middle) image domain error 

and (right) TSNR, averaged from the data from six subjects. The 1,2,3 numbers in x-label 

denote the type of experiment we conducted: 1 for non motion experiment, and 2 and 3 

for two different kinds of induced motion experiments, and nl means the number of 

interleaves: nl=2 for two-shot, nl=1 for single shot.  
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Figure 3-9  Average number of activated voxels (left), image domain error (middle) and 
TSNR (right) from 6 subjects for two-shot (nl=2) and single-shot (nl=1) undersampled spiral 
sequences, before and after UNFOLD from 1: No motion, 2: Motion 1, 3: Motion 2 
experiment. 
 
 
 
 
 

 

 
Figure 3-10  TSNR maps from one representative subject, (top) before and (bottom) after 
UNFOLD filtering with (a) two-shot and (b) single-shot data. For fair comparison, the 
values are shown on the same scale. 
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Table 3-1  P-values from the ANOVA test. P-value that are <0.01 are shaded. After 
UNFOLD filtering, difference between using two-shot and single-shot becomes negligible.  

 

 

 

Figure 3-10 demonstrates TSNR maps from one representative subject, (top) before 

and (bottom) after UNFOLD filtering with (a) two-shot and (b) single-shot data. For fair 

comparison, the values are shown on the same scale.   

Two-way ANOVA tests were conducted with group variables, subject and different 

sequences (1 shot vs. 2 shots), before and after UNFOLD, to see the difference between 

two-shot and single-shot sequence. The resulting p-values are shown in Table 3-1. The 

shaded regions indicate when two-shot and single shot are significantly different in 

statistical sense. 
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3.2.5  Discussion 

For the two-shot sequence (TSENSE), the effect of UNFOLD filtering is much 

greater than that of single-shot sequence, since aliasing components were shifted to the 

temporal edges and removed by temporal filtering.  

As we have hypothesized before, UNFOLD was not very effective for single-shot 

SENSE in reducing image domain error or TSNR for single-shot, when compared to that 

of two-shot sequence. Before UNFOLD, single-shot sequence is superior to two-shot for 

the number of activated pixels and TSNR. However, after UNFOLD filtering, they 

become comparable to each other.  

 

3.2.6  Conclusions 

We demonstrated that in terms of overall fMRI performance, single-shot spiral 

SENSE and two-shot spiral TSENSE, both with UNFOLD filtering, are comparable to 

each other. However, for fMRI, where the temporal resolution is an important factor, 

temporal low pass filtering that smoothes the voxel time course should be avoided, or at 

least should be carefully designed. Furthermore, before processing UNFOLD temporal 

filtering, the performance of single-shot SENSE exceeds  that of TSENSE. Therefore, 

we propose to use single-shot spiral, which does not necessary require UNFOLD 

temporal filtering, over TSENSE when applying parallel imaging in fMRI.  
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3.3  Advanced initialization method for accelerating image 

reconstruction of fMRI data 

Iterative algorithms for reconstructing non-Cartesian SENSE suffer from long 

computation time, which is a major reason that hinders people from using non-Cartesian 

trajectories over Cartesian trajectories despite its desirable characteristics such as motion 

and flow robustness as well as efficient gradient hardware utilization. This prolonged 

computation time becomes even more problematic when dealing with multiple time 

series fMRI data. For example, when reconstructing 64×64 images of 80 time points from 

8-channel array coil and R=2 acceleration, using 17 of iterations, the computation times 

is about 24 minutes for iterative SENSE with Matlab on a 2GHz Pentium workstation, 

even using fast NUFFT algorithm [79]. Without further optimization or faster 

computational hardware, this compute would preclude it use for real time processing.  

We hypothesize that for time series fMRI data, computation time could be reduced 

by applying proper initialization that exploits a priori information from previous time 

points. Thus, in this section, we describe a simple, yet powerful method for initializing 

the iterative reconstruction algorithm for non-Cartesian SENSE to achieve faster 

convergence.  
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3.3.1  Introduction 

In solving the non-Cartesian SENSE image reconstruction problem in MRI, our 

purpose is to find an image, f, from the sampled k-space data, y, from the equation, 

y Af ε= +     (3.1) 

where A is the system matrix which contains information on k-space trajectory, fieldmap, 

and sensitivity map for SENSE. Since the dominant noise of MRI signal is known to be 

additive white Gaussian, this system equation is being solved by minimizing a cost 

function, 

21( ) ( )
2

f y Af R fβΨ = − +    (3.2) 

where R(f ) is a regularization function. 

  One of the most efficient and widely used methods to solve this minimization 

problem for non-Cartesian SENSE is the conjugate gradient approach, which is applied in 

our studies of iterative SENSE. The Conjugate Gradient (CG) method is a powerful 

minimization tool and the basic idea of this CG method is to ensure the step to be taken 

into the non-interfering direction. In other words, CG method ensures the step which was 

previously taken in a certain way is never taken again. This is done by constructing the 

search directions by conjugation of the residuals, which is orthogonal to the previous 

search direction [80].  

The number of iterations can be reduced by choosing a good initialization point, i.e., 

starting at the point which is closer to the solution, or by preconditioning which improves 

the condition number of a problem.  

Preconditioning accelerates the algorithm by approximating the system equation into 
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a more suitable form with smaller condition number. A density compensation function 

has been proposed as a preconditioner [22], but has shown to have SNR penalty in the 

reconstructed images [81]. Circulant preconditioner has been proposed and shown to be 

successful for accelerating iterative reconstruction process of tomographic imaging 

[82,83], but no conclusive result has been reported to be successful for MRI [84].  

Besides preconditioning, setting a starting image with a good approximation can 

reduce the number of iterations. For our iterative SENSE reconstruction, an initialization 

with a zero image, followed by a density-compensated conjugate phase image was 

previously used [79]. Other initialization approaches such as using a localized sensitivity 

map with a reduced aliasing pattern [85] or using a low resolution [86] have been 

proposed, especially for iterative SENSE reconstruction. However, for dynamic parallel 

imaging, we can assume that the images reconstructed at each time point are similar to 

each other and share similar convergence point, especially for fMRI where there usually 

is less object movement than in cardiac imaging. We hypothesized that using the final 

converged value of the image from the previous time point as an initial point for 

reconstructing the image at next time point can reduce the number of iterations needed 

 

3.3.2  Methods  

We conducted a simulation experiment with an undersampling factor of 2. We also 

simulated an activation, 10 time points OFF/ON repeated 4 times, which causes %2 

change of maximum intensity at the middle of the image. Image was reconstructed using 

an initial estimate from the reconstructed image of the previous time point. To see the 

effect and robustness to motion which might occur during the scan, we generated a 
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motion to the simulation object; when at 6th time point, the object was shifted 5 pixels to 

the right from the previous time point and moved back to the original location at 7th time 

point. Images were initialized with previous time point image except for the image at first 

time point which was initialized with zeros.  

To evaluate the method with human data, we also conducted a functional imaging 

study using 4 subjects. Data were acquired with single-shot spiral out sequence at the 

reduction factor of 2 and the total number of time points was 80. 

 

3.3.3  Results  

The convergence of image reconstruction for simulation is shown in Figure 3-11, as 

a normalized RMS error, calculated as the difference from previous iteration. The 

corresponding activation map at 3rd, 4th, and 5th iterations, overlaid onto the anatomical 

image are also shown. The red square denotes where the true activation was simulated 

and is expected to occur. The algorithm converges between 5th and 6th iterations, and 

produces a reasonable amount of activation.  

Error convergence plot for each time point, before, during and after the motion is 

generated, is shown in Figure 3-12. Convergence plot of images at 5th through 9th time 

point, when at 6th time point, the object was shifted 5 pixels to the right from the 

previous time point and moved back to the original location at 7th time point. Each image 

was initialized with the image from the previous time point. The algorithm converges 

even with motion, but object motion still has a large impact on the convergence of 

reconstruction especially at the time point where the motion occurs and also at the 

following time point. Compared to non-motion case, 5 more iterations, i.e., total 10 
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iterations, were required for the object that moved 5-pixels from the previous iteration to 

converge, and 10 more iterations, i.e., total 15 iterations, were required for the object that 

came back at the original location at the following time point to converge.  

The in-vivo human functional experiment were also conducted on 4 subjects and the 

reconstructed images at (a) 5th time point, (b) 40th time point, and (c) 80th time points 

using the image from the previous time point as an initial estimate are shown in Figure 3-

13 with 5 number of iterations. However, the error appears to grow as for later time 

points. To test whether the increasing error is from not enough number of iterations, we 

also increased the number of iterations up to 17 while still initializing the image from the 

previous time point and the result is shown in Figure 3-14. Reference images were 

initialized with zeros and error maps from images initialized with the previous time point 

images are also shown. When we increased the number of iterations, the error appears to 

grow even more as for later time points.  

TSNR were calculated from the data from all 4 subjects and are plotted in Figure 3-

15. X-label, 0 denotes the case when we reconstructed images using zeros as an initial 

estimate, whereas 1~15 denotes the case when we started image reconstruction with 

previous time point as an initial estimate and algorithm stopped at 1st, 2nd, 5th, 10th and 

15th iterations, respectively. There are only minimal improvements in the TSNR after the 

5th iteration with a value about 1.3dB smaller than that of case starting with zeros as an 

initial image. 
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Figure 3-11  Simulation Result. Convergence of algorithm (normalized RMS error between 
each iteration) with corresponding activation map at 3rd, 4th, and 5th iterations, overlaid onto 
the anatomical image. 
 
 
 
 

 

Figure 3-12  Impact of initialization method on motion-corrupted data. Convergence plot 
of images at 5th through 9th time point, when at 6th time point, the object was shifted 5 pixels 
to the right from the previous time point and moved back to the original location at 7th time 
point. Image was initialized with previous time point image. Algorithm converges even with 
motion, but object motion still has much impact on the convergence of reconstruction 
especially at the time point where the motion occurs and also at the following time point.  
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Figure 3-13  Images at (a) 5-th time point, (b) 40-th time point, and (c) 80-th time point, 
reconstructed using initialization from previous time point and using 5 number of iterations. 
Images that were reconstructed from initialization using the previous time point image seem 
to produce larger errors as at later time points.  
 
 
 
 
 

 

Figure 3-14  (top) Reference images and (middle, bottom) error maps at (a) 10, (b) 40 and 
(c) 80 time points. (top) Reference images were initialized with zeros and error maps were 
from images initialized with the previous time point images and stopped at (middle) 5th and 
(bottom) 17th iteration.  
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Figure 3-15  TSNR of human experiment. 0: starting with zeros as an initial estimate, 1~15: 
starting with previous time point as an initial estimate, where the algorithm stops at 1st, 2nd, 
5th, 10th and 15th  iterations. TSNR after 5th iteration is about 1.3dB smaller than that of 
starting with zeros.  
 
 
 

3.3.4  Discussion  

We tested initialization with a reconstructed image from the previous time point. Our 

simulation results have shown that the proposed initialization method has converged at 

around 5th iteration, achieving 3-fold acceleration (15 iterations reduced to 5 iterations) of 

iterative algorithm, and have shown to maintain reasonable localization and the number 

of brain activations. However, as we can see from the human experiment, image error 

tends to grow and TSNR has been reduced when using this initialization scheme. The 

activation maps for the human experiments have not been presented due to lack of 

consistent results amongst the subjects. The total number of activated pixels tends to 

decrease, but mostly to only a slight extent after 5th iteration.  
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We suspected from the simulation result that the motion could be a determining 

factor that hinders our initialization method from working, since error tends to grow from 

the previous time point, if not using enough number of iterations. However, our human 

results show that this is not always the case, possibly due to the suboptimal condition 

from using undersampled data, physiological noise that results in phase variations, as 

well as system instability. Further investigation of those effects is the scope of our future 

study.  

 

3.3.5  Conclusions 

Initializing with previous time point on time series fMRI data led us to achieve 3-

fold acceleration in convergence rate. In simulation studies, the algorithm also seemed to 

be robust to motion, though the number of iterations required for convergence is 

increased. However, for in-vivo human experiment, the image domain error was added as 

we reconstruct images towards the end of time point. We also lost TSNR by 1.3dB by 

accelerating the reconstruction time by 3 times, possibly due to the suboptimal condition 

from using undersampled data and ill-conditioning of system matrix.  

Temporal stability as well as image error are trade-offs vs. computation time. 

Though we focused on spiral undersampled data, we believe the conclusion of our 

initialization method can be transferred to reconstruction of image from fully-sampled 

data, or any other non-Cartesian data which requires iterative reconstruction algorithm.   
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CHAPTER 4.  Development of a new reconstruction 

algorithm for parallel imaging: SENSE without acquiring a 

sensitivity map 

 

 

In the previous sections, we focused on improving and analyzing current parallel 

image reconstruction algorithms, mostly for SENSE. Image reconstruction for SENSE is 

preceded by estimation process of calibration data, i.e., sensitivity map, and additional 

scan or careful selection of reference map and/or denoising process is required for the 

process. Sensitivity maps are known to be not only coil dependent but also object 

dependent [87], particularly at high magnetic fields, and thus, they are required to be 

calculated for each scan. There are substantial challenges to sensitivity map estimation in 

the presence of motion or physiological noise.. Moreover, the effects of measurement and 

estimation error can further degrade the sensitivity maps. Thus there still remains 

possibility for inaccuracies in the estimated sensitivity map which can produce errors in 

the reconstructed images.  

We propose a joint estimation method that eliminates the need for the sensitivity 

map estimation process for every scan. Our hypothesis is that, there is a "global” low 

resolution, non-object dependent sensitivity pattern for each coil configuration which 

works, at least “roughly”, for any object. Then, we can use this global sensitivity map for 
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initial value to reconstruct image without additional calibration step for sensitivity map 

which could be achieved by using a joint estimation method. The proposed joint 

estimation method updates sensitivity map during the reconstruction process and has 

shown to be robust when a good global initial sensitivity map is obtained. 

 

4.1  Joint Estimation of image and coil sensitivity map via 

iterative conjugate gradient algorithm for spiral MRI 

 

4.1.1  Introduction 

The performance of SENSitivity Encoding (SENSE) [7,22] highly depends on the 

sensitivity map estimation, since the sensitivity maps are a major component the system 

model in the parallel image reconstruction process. Sensitivity maps can be estimated 

either by self-calibrated approach or by reference scan such as using body coil.  

However, whether using the prescanning method or self-calibrating approach, 

estimating sensitivity maps requires an additional process and there are various factors 

that can lead to inaccuracies in this sensitivity map estimations, such as image 

misregistration between body coil and surface coil, or between the reference scan and 

actual scan due to patient motion. Since the accuracy of sensitivity map has a direct 

bearing on the performance of SENSE, i.e., any inaccuracy in the sensitivity map 

produces errors in the reconstructed images, the estimation step [7,18,55,56,61,62,88,89] 

or post correction [50] needs to be carefully taken which could make SENSE even more 

complicated. 
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When the system matrix for SENSE becomes ill-conditioned, such as in the case of 

higher reduction factors, the effect of inaccuracy in the sensitivity map becomes more 

problematic. A number of attempts have been made for improving accuracy in the 

sensitivity map estimation using polynomial fitting [7] or thin-plate splines [88], followed 

by denoising process, and using wavelet denoising process [56,89], etc. However, we 

could also improve sensitivity map estimation by incorporating the estimation during the 

image reconstruction process. In this case, rather than relying upon a prior estimate of 

sensitivity map, we propose jointly estimate the image and the sensitivity map.  

The concept of the joint estimation methods of image and sensitivity map have 

recently been proposed for Cartesian [90,91] and for spiral [92] trajectories, and have 

shown promising results. These methods use an iterative conjugate gradient (CG) 

algorithm using a penalized weighted least squares (PWLS) cost function and alternates 

between updating the polynomial coefficients of sensitivity map and the image. This 

method does not require regularization of sensitivity map, because the polynomial fitting 

inherently assumes sensitivity map to be smooth.  

We propose using a novel sensitivity map estimation technique which not only 

controls smoothness but also noise via regularization. This method allows a pixel-by-

pixel estimation of sensitivity map for each coil, thus allows more degrees of freedom for 

controlling regional smoothness through the roughness penalty term. We also propose 

adding a constraining term between the updating processes which then could be useful in 

suppressing the divergence of the artifact during the reconstruction process as well as in 

controlling the overall energy in the image for consistency in the data.  

Our another aim is to eliminate the need for the sensitivity map acquisition for every 
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scan by using a global sensitivity map defined for each coil and then by applying a joint 

estimation technique which refines the sensitivity map for each subject and constantly 

updates the maps during the image reconstruction process. A global sensitivity map can 

be estimated from a homogeneous object with low resolution estimation. The proposed 

method uses a novel sensitivity map estimation technique that controls noise and 

smoothness via quadratic regularization in pixel-by-pixel approach, with an energy 

constraint between sensitivity map estimation and image reconstruction. 

In the following sections, we will review joint estimation method using polynomial 

fitting [92] and present our joint estimation with a regularized sensitivity map approach. 

We first simulate various conditions where joint estimation can be preferred in practical 

situation. We also apply a global sensitivity map to our novel joint estimation method. 

The result of our joint estimation method will also be presented for simulation and human 

fMRI data and will be compared with the polynomial fitting approach [92] and a 

conventional non-joint estimation approach [22]. The results will be shown in terms of 

image quality and the error convergence. 

 

4.1.2  Theory 

Conventional non-Cartesian SENSE reconstructs unaliased image through iterative 

CG algorithm. Assuming 1D for simplicity and reduced acquisition for parallel imaging, 

we start from signal equation for MRI, 

2( ) ( ) ( ) i k r
l ls t c r f r e drπ− ⋅= ∫    (4.1) 

where r denotes the space coordinates, k denotes the k-space trajectory, sl(t) denotes the 

undersampled k-space data from l-th receiver coil, cl(t) denotes the sensitivity pattern of 
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l-th coil, and f(r) denotes the image to be reconstructed. Then we acquire the noisy k-

space data: 

( )l ly s t ε= +      (4.2) 

which can also be written as 

2( ) ( ) i k r
l ly c r f r e π ε− ⋅≈ +∑

       (4.3) 

where in matrix form,  

diag{ }= +y A c f εl l .     (4.4) 

The conventional approach solves this equation iteratively by minimizing the following 

cost function,  

0 0
1

( ) diag{ } ( )
L

l
Rβ

=

Ψ = − +∑f y A c f fl l
              (4.5) 

where R0(f) denotes the regularization term. This is usually of a quadratic term, 

2
0

1( )
2

R =f Cf  , where C is the matrix that takes differences among the neighboring 

pixels in the image. β0 denotes the smoothness parameter for the regularization term. 

However, joint estimation not only estimates the image through the abovementioned 

process, but also it estimates the sensitivity maps by minimizing, 

1
( ) diag{ } ( )

L

l
Rβ

=

Ψ = − +∑c y A f c cl l l
            (4.6) 

where the last βR(cl) term is omitted for the polynomial fitting approach, since the 

approach inherently assumes the sensitivity map to be smooth. In this polynomial fitting 

approach, we can model the sensitivity map as [90]: 
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, ,
0 0

( )
N N

i j
l l i j

i j
s r a x y

= =

=∑∑
       (4.7) 

where r = (x, y) is the spatial coordinate for the sensitivity map and al,i,j is the coefficient 

of an N-th order of polynomial. Our regularized sensitivity map approach makes use of 

the last term of equation (4.6), βR(cl), but with the β value, usually bigger than β0 since in 

general, sensitivity maps are smoother than the image.  

Both the two joint estimation processes, just like conventional approach, start with 

the initial value of sensitivity map, usually acquired from the body coil image 

(prescanning) or low resolution, sum-of-squares, geometric mean of each coil image 

(self-calibration). However, we can also start with a non-object dependent, global 

sensitivity map, acquired with a homogeneous object at low resolution which mostly 

contains information on coil sensitivity pattern for the coil configuration through which 

any additional acquiring process for coils sensitivity map could be excluded. 

Joint estimation methods, either the polynomial fitting approach or our regularized 

approach, differ from the conventional approach in that they do update the system matrix 

by updating the sensitivity map. This is done by alternating the sensitivity map estimation 

process and image reconstruction process. We update the system matrix of image 

reconstruction process by updating the sensitivity map estimated from the last iteration 

step of the sensitivity map estimation algorithm. Between the image and sensitivity map 

estimation process, we rescale the image, which is the input of sensitivity map estimation 

process, by constraining the energy in order not for the scaling factor to affect the system 

matrix. This process is schematically shown in Figure 4-1.  

 

 



98 
 

 

 

 

 

 
Figure 4-1  Joint estimation using quadratic regularization with an energy constraint.   
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For joint estimation using polynomial fitting approach, polynomial coefficients, al,i,j, 

are estimated instead of sensitivity map. In Figure 4-1, iterx, and iterc denote the number 

of iteration of CG loop for image reconstruction, sensitivity map estimation, respectively, 

whereas iterloop denote entire loop of alternating between image and sensitivity map 

estimation process. 

 

4.1.3  Experiments  

We first test the performance of this joint estimation approach in various 

circumstances where the system matrix could become ill-conditioned. Our proposed 

method was compared with polynomial joint estimation using simulation data. 

Conditions include scanning at high reduction factor, high off-resonance frequencies and 

white Gaussian noise added to the initially estimated sensitivity map.  

For simulation data, small amount of noise was added and sensitivity map that was 

used to generate the original measurement was used to reconstruct images, unless 

otherwise stated. Fieldmap was corrected using time-segmented approach [79], and the 

reduction factor was 2 except for the simulation experiment on the reduction factor and 

we used a two-shot undersampled spiral trajectory. One out of two-shots was used to 

reconstruct the image and the two-shot, fully-sampled image was used for the reference 

image for calculating NRMS errors in the image.  

For joint estimation methods, sensitivity map was updated three times at every 

7th iteration. The reference image for calculating the NRMS errors was generated from 

the fully-sampled images. 
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4.1.4  Results 

Figure 4-2 shows [71] the simulation result when additive white Gaussian noise 

(AWGN) is added to the initial sensitivity map. The top row shows reconstructed images 

from using (a) conventional, (b) joint estimation with regularized sensitivity and (c) joint 

estimation with polynomial fitting approach when the noise was added to the initial 

sensitivity map with an SNR of 10dB. Corresponding error maps are also shown at the 

bottom row. For joint regularized and joint polynomial approach, 1/4 of the error maps 

have been rescaled for better presentation. The plot in the bottom shows normalized root 

mean squared error convergence plot for SNR=10dB and SNR=20dB cases using the 

three methods above. Both joint regularized and joint polynomial fitting approaches 

converges and are comparable to each other, whereas conventional approach diverges and 

leads to corrupted images as shown in (a). 

Figure 4-3 shows simulation result for the effect of a number of reduction factors 

on joint estimation. For this simulation, the data was generated by generating multi-shot 

spiral data, from 2-shots to 8-shots, for reduction factor from R=2 to R=8, respectively, 

and then images were reconstructed by using only one of the shots. Representative 

images when using a reduction factor R=6 with a (a) regularized and (b) polynomial 

fitting approach are shown in the top and corresponding errormaps are shown in the 

bottom of each Figure (a) and (b) where 1/4 portion of error map has been rescaled for 

better presentation. Figure 4-3 (c) shows NRMS error plot with respect to the reduction 

factor of 2 through 8 for using (dot) regularized and (circle) polynomial fitting approach.  
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Figure 4-2  When WGN is added to initial sensitivity map (~10dB). (top) image 
reconstructed from using (a) conventional, (b) joint estimation with regularized sensitivity 
and (c) joint estimation with polynomial fitting approach, and its (middle) corresponding 
error maps for SNR=10dB in same gray scale. For joint regularized and joint polynomial 
approach, 1/4 of the error maps have been rescaled for better presentation. (bottom) 
NRMSE convergence plot for SNR=10dB and SNR=20dB. Both joint regularized and joint 
polynomial fitting approaches converges and are comparable to each other, whereas 
conventional approach diverges and leads to corrupted images as shown in (a) 
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(c) 

Figure 4-3  The effect of reduction factor, R=2,4,6,8 when using 8 number of coils. (a,b) 
Representative image when a reduction factor R=6 was used. (top) reconstructed SENSE 
images by (a) joint regularized and (b) joint polynomial approach, and (bottom) 
corresponding error maps. 1/4 portion of error map has been rescaled for better 
presentation. (c) NRMS error plot w.r.t. reduction factor 2 through 8 for using (red dot) 
joint regularized and (black circle) joint polynomial fitting approach. 
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Figure 4-4 and Figure 4-5 shows the effect of field inhomogeneity on two joint 

estimation methods. In Figure 4-4, simulation results are shown. The simulated fieldmap 

is shown on the left and the range was 287Hz. SENSE reconstructed images from joint 

estimation using (a) the regularized, (b) the polynomial fitting approach, and (c) the error 

convergence plot are also shown. Joint estimation using the regularized approach 

produced less error in the image in the presence of large field inhomogeneity.  

 

 

 

 

(c) 

Figure 4-4  Effect of field map on two joint estimation methods. (left) Simulated fieldmap 
as well as (a,b) reconstructed images from joint estimation using (a) regularized sensitivity 
and (b) polynomial fitting approach, and (c) error convergence plot are shown. Joint 
estimation using regularized sensitivity approach produces less error in the image in the 
presence of large field inhomogeneity. 
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Figure 4-5  Reconstruction of in-vivo human data slices containing visual cortex, using joint 
estimation with (a) the regularized and (b) the polynomial fitting sensitivity map estimation 
approach. The polyfit approach experiences more artifact as shown in the white arrow. 
 

 

Figure 4-5 shows an example from the in-vivo human data for the slice containing 

visual cortex. Joint estimation methods with the regularized approach and the polynomial 

fitting method are compared. The initial sensitivity map was estimated using a self-

calibrated geometric mean approach. The joint estimation with polynomial fitting 

approach experiences more artifacts as shown in the white arrow. 

We also test joint estimation with a global sensitivity map with in-vivo human data. 

For global sensitivity map, a homogeneous object with a wide coverage was scanned and 

the sensitivity map was then estimated from a self-calibrated approach using 2nd order 

polynomial fitting method. Then, this global sensitivity map, shown in Figure 4-6, was 

used as an initial value for the joint estimation.  

The human result images using the global sensitivity map are shown in Figure 4-7 

for all 30 slices, where (a) shows result of the joint estimation using 3rd order polynomial 

fitting approach and (b) shows that of the proposed regularized approach. The sensitivity 
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map was updated after every seventh iteration and the algorithm stopped after 28 

iterations. Figure 4-8 (1st and 2nd row) also shows in-vivo human results using the global 

sensitivity map. The images from two different in-vivo human data using (top row) joint 

estimation with polynomial approach, (middle row) joint estimation with regularized 

sensitivity map approach, and (bottom row) conventional SENSE without joint 

estimation are shown. Three representative slices were chosen. The joint estimation with 

polynomial fitting approach seems to perform better with the slices where the object 

occupies a larger fraction of the field of view whereas regularized approach seems to 

perform better at inferior slices with a more irregular object with large field 

inhomogeneity. 

 

 

 

Figure 4-6  Initial sensitivity map from different subject at different slice. Using 2nd order 
polynomial fitting approach. 
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(a) 
 
 

 

(b) 
Figure 4-7  When a global sensitivity map from Figure 4-6 is used as an initial value for 
sensitivity map. 30 slices image from joint estimation method using (a) 3rd order polynomial 
fitting approach and (b) proposed regularization approach. 
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Figure 4-8  (1st row) Joint estimation with polynomial fitting, (2nd row) joint estimation with 
regularized sensitivity map, and (3rd row) conventional SENSE images of two different in-
vivo human data using a global sensitivity map. Three representative slices were chosen. 
Joint estimation with polynomial fitting approach seems to perform better with larger 
object whereas regularized approach seems to perform better at inferior slices, agreeable to 
the simulation result. 

 

 

4.1.5  Discussion and Conclusions 

Simulation results using joint estimation methods have demonstrated that there are 

improvements in image quality for cases where the initial sensitivity maps are noisy or 

are corrupted by motion and misregistration. Using a regularized sensitivity map with the 

joint estimation method was shown to work better than polynomial fitting approach for 

higher reduction factors and in the presence of large magnetic field inhomogeneity. This 

latter point was also confirmed from in-vivo human data, for more inferior slices, for 

example, the slice containing the visual cortex area.  
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When implementing the regularized joint estimation method, care should be taken in 

tuning the regularization (smoothness) parameter as well as initialization since our 

experience has shown that this method is much more sensitive to the initialization than 

the polynomial fitting approach. The sensitivity to initialization is likely to due to large 

number of unknowns, relative to the polynomial approach, and the borderline 

conditioning of the reconstruction problem. Thus, while the regularized method produced 

better results in the aforementioned cases with simulations and in-vivo human data, if the 

regularization parameters are not correctly tuned, polynomial fitting process could be 

more robust in other various situations where the system could become more ill-

conditioned.  

While the regularized method is very sensitive to the initialization, we have found 

that a global sensitivity map (object independent) was sufficiently good initialization for 

good reconstruction quality. Using this approach, it is possible to implement SENSE 

reconstruction using joint estimation approach without the need to acquire a sensitivity 

map for each subject.  

Our in vivo human experiment with initializing with a good low-resolution global 

sensitivity map has demonstrated the feasibility of this approach under practical 

conditions. The object dependent aspects of the sensitivity map are then estimated during 

the joint estimation process.  
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 CHAPTER 5.  Conclusions and Future work 

 

 

We focused on improving and optimizing non-Cartesian parallel image 

reconstruction methods for time series functional magnetic resonance imaging (fMRI) to 

create truly effective solutions for current problems of interest, such as reducing image 

distortions from field inhomogeneity and improving spatial and temporal resolutions.  

Among the parallel imaging methods, we focused on SENSitivity Encoding 

(SENSE) and GeneRalized Autocalibrating Partially Parallel Acquisitions (GRAPPA), the 

two most commonly used, appied to spiral k-space trajectories, with dynamic extensions, 

TGRAPPA and TSENSE, respectively.  

Specifically, our research was aimed at improving or developing reconstruction 

algorithms, optimizing parallel imaging method for fMRI data and developing a new 

joint estimation method for image and sensitivity map. 

 

In Chapter 2, we improved the reconstruction algorithm of non-Cartesian SENSE, 

optimized for time series functional data. To optimize the reconstruction process, we 

focused on improving sensitivity map estimation by investigating various self-calibrating 

sensitivity map estimation methods as well as analyzing the effect of spatial and temporal 

smoothing of sensitivity map through regularization.  

In Section 2.1, we compared four self-calibrated sensitivity map estimation methods, 
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geometric mean, sum-of-squares, generalized mean with p=1, i.e., arithmetic mean, and 

harmonic mean approach. We demonstrated that the geometric mean and harmonic mean 

methods that produced a homogeneous profile of reference map, resulting in a high 

quality image reconstruction for SENSE for both simulation and human data. Thus, we 

propose using a geometric mean or harmonic mean approach over widely-accepted sum-

of-squares approach. The process of acquiring reference map data and processing is very 

simple and this could be done in few seconds. Our future work will include obtaining 

quantitative criteria for measuring the flatness of reference map profiles and measuring 

the accuracy of SENSE reconstruction with in-vivo human images.   

In Section 2.2, we investigated the effect of spatial and temporal smoothing on the 

sensitivity map and we found out that appropriate spatial smoothing reduces image 

domain error and increases the TSNR whereas, for temporal smoothing, the more 

temporal average we take, the greater the improvement on both performance criteria, 

though we limit this conclusion to fMRI data since the sliding window technique has 

been shown to be of limited benefit in cardiac imaging. In future studies, we will 

investigate how to choose smoothness parameter and number of moving averages to have 

a good estimate of sensitivity map.  

In Section 2.3, we demonstrated that the regions of support (mask size) does have 

impact on the image quality and usually, a moderate mask size extending several pixels 

beyond the object produces the optimal image quality. We also found that using a soft 

mask with smoother mask edges, i.e., the Butterworth function, resulted in less the 

aliasing artifact. 

In Chapter 3, we investigated several approaches for optimizing parallel imaging in 
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fMRI which includes finding an optimal updating method for calibration data for parallel 

imaging, such as sensitivity map or GRAPPA coefficients, analyzing acquisition schemes 

by comparing interleaved TSENSE with single shot undersampled SENSE, and 

investigating an initialization method in reconstruction process which could further speed 

up the reconstruction process for times series fMRI data.   

In Section 3.1, we analyzed and compared three updating methods, static, dynamic, 

and moving average methods for updating parallel imaging calibration data, as applied to 

time series fMRI data acquired with a reduced spiral acquisition using TGRAPPA and 

TSENSE. Human experiments and phantom experiments, with and without intentional 

induced motion were conducted from which we determined that the best image quality is 

achieved by applying the dynamic update method of GRAPPA coefficients for TSENSE, 

whereas the largest number of activated pixels and best TSNR are achieved by applying 

the static sensitivity maps (no updating) for TSENSE. This conclusion was found to be 

statistically significant. The findings in this study may be useful for those who are 

planning to apply dynamic parallel imaging methods to fMRI using spiral imaging. 

In Section 3.2, we compared single-shot spiral SENSE and two-shot spiral TSENSE 

in terms of overall fMRI performance, both without and with UNFOLD filtering. We 

demonstrated that before processing UNFOLD temporal filtering, the performance of 

single-shot SENSE excels that of TSENSE whereas they are comparable to each other 

after UNFOLD. However, for fMRI study, where the temporal resolution is an important 

factor, applying UNFOLD degrades the temporal resolution, thus might not be desirable 

for fMRI study. Therefore, we propose to use single-shot spiral, which does not necessary 

require UNFOLD temporal filtering, when applying parallel imaging in fMRI. 
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In Section 3.3, we investigated the initialization method using the previous time 

point on time series fMRI data. Using the image from the previous time point led us to 

achieve 3-fold acceleration in convergence rate for simulation studies. However, for in-

vivo human data, we found a reduced temporal SNR by 1~2dB which is not desirable.  

This reduction in TSNR is possibly due to the suboptimal condition from using 

undersampled data and ill-conditioning of system matrix. For future study, we will 

investigate several other possible initializing methods, such as using low resolution for 

images from fully sampled data, with a motion tracking or correction algorithm which 

might give us more robust result for real-time human data. We envision that the 

improvement on initialization will give more practical solution for people who are trying 

to do real-time image reconstruction algorithm for non-Cartesian fMRI data.  

In Chapter 4, we developed a joint estimation method of image and coil sensitivity 

map with a quadratic regularization on the estimation of sensitivity map which resulted in 

much more robust performance compared to non-joint estimation approach when the 

initial sensitivity map is not accurate. Another contribution using our proposed joint 

estimation method is that we can use a global, non-object dependent sensitivity pattern 

which is close enough to the actual sensitivity map to serve as a good initializer for the 

joint estimation method, thus eliminating the need to acquire the sensitivity map for every 

scan for every subject.  This can add time and inconvenience to imaging studies. For 

future work, we can refine the global sensitivity map, by specifying the map for each 

slice or by using physics-based estimation, such as Biot-Savart method, for better global 

sensitivity map.  
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Our future research goals are to extend the current dynamic parallel imaging 

techniques we have developed to higher field and combine it with compressed sensing  

[93-95] approach. Increased SNR at higher field can effectively outweigh the SNR 

penalty inherent with parallel imaging, and the increased magnetic field susceptibility 

effects at higher field can be suppressed by using parallel imaging. Thus, it has become 

obvious that parallel imaging can become a powerful tool to provide effective solutions 

for several issues described in using higher field. Furthermore, compressed sensing and 

parallel imaging are complementary acceleration methods and both approaches can be 

combined to further improve robustness and acceleration.  
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