ATTRACTOR AND BIFURCATION
MORPHING MODES FOR
HIGH-SENSITIVITY SENSING

by
Joosup Lim

A dissertation submitted in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
(Mechanical Engineering)
in The University of Michigan
2011

Doctoral Committee:

Associate Professor Bogdan I. Epureanu, Chair
Professor Robert F. Beck

Assistant Professor Kenn R. Oldham

Visiting Research Scholar Matthew P. Castanier



© Joosup Lim 2011
All Rights Reserved



To my family



ACKNOWLEDGEMENTS

| would like to express my gratitude to my advisor and chaimgfdoctoral committee
Professor Bogdan I. Epureanu for generous support and meedd would like to thank
Professor Robert F. Beck, Professor Kenn Oldham and Dr.héatP. Castanier for their
valuable comments and suggestions, and serving on my dbctonmittee.

| would also like to thank the members of the Vibrations andustics Laboratory who
have helped me through their insights, comments and friepgdis particular | would like
to thank: Steve Yin, Adam Hendricks, Akira Saito, Kiran X.S@uza, Andrew Sloboda,
Darren Holland, Andrew Madden, Sungkwon Hong, Chulwoo Jamng \Woochul Nam.
Additionally, I would like to thank all my friends who have lped me along the way.

| would also like to express my appreciation for my entire ifgrin particular my
parents and in-laws for their love and supports. | would tix¢hank my daughters, Eu-
nice and Joanna for being so adorable. Finally, | would likehtank my lovely wife,

Wonkyoung, for everything.



TABLE OF CONTENTS

DEDICATION . . . . i
ACKNOWLEDGEMENTS . . . . . . . iii
LISTOFFIGURES . . . . . . .. . . Vi
LISTOFTABLES . . . . . . . Xi
CHAPTER
[. Introduction . . . . . . ... 1
1.1 Dissertation Objective . . . . . .. .. .. ... ... ...... 1
1.2 Dissertation Background . . .. ... .. .. .......... 3
1.2.1 Atomic Force Microscopes and Higher Harmonics . . 3
1.2.2 Linear and Nonlinear Analysis for Vibration-BasedtMe
0dS . . . . . 3
1.2.3 Forecasting Bifurcations . . . . ... ... ... ... 5
1.3 DissertationOutline . . . ... ... ... ... ... ...... 6
II. Sensitivity Vector Fields for Atomic Force Microscopes . . . . . . .. 11
2.1 Introduction . . . . . .. . ... 11
2.2 Modeling and Parameter Reconstruction using SVFs . . . . . 14
2.2.1 AFM Microcantilever Model . . . . . ... ... ... 14
2.2.2 SVFsforaMulti-Mode Model . . . . ... ... ... 18
2.3 EnhancementsandResults . .. .. ............... 20
2.3.1 Importance of the Higher Harmonics . . . . . . . .. 21
2.3.2 Sample Points and Verification of the SVFs . . . . .. 23
2.3.3 Level of Sensitivity ofthe SVFs . . . . .. ... ... 25
2.3.4 LinearityoftheSVFs. . ... ... ... ....... 26
2.3.5 Filtering of Sample Points . . . . .. ... ...... 28
2.3.6 Parameter Identifiability by the SVF Approach 30
2.3.7 Correction Factor for Weak Nonlinearity . . ... .. 31
2.3.8 Parameter ReconstructionResults . . . . . ... ... 33
2.4 Conclusionsand Discussion . . . . . . .. ... . ... 35



lll. Exploiting Delayed Nonlinear Feedback for
Sensing Based on Bifurcation Morphing

3.1 Introduction . . . .. ... ... ... 39
3.2 Theory and Modeling

42
3.2.1 Bifurcation morphing with delayed nonlinear feedbac
excitation

........................ 42
3.2.2 Computational model for parameter reconstruction .47
3.3 Results

50
3.3.1 Bifurcation boundary with delayed nonlinear feedbac50
3.3.2 Parameter Reconstruction

............... 55
3.4 ConclusionsandDiscussion . . . . . .. ... .. ........ 60
IV. Forecasting a Class of Bifurcations: Theory and Experirment . . . . . 62
4.1 Introduction . . . . . .. ... 62
4.2 Theory . . . . . . e 65
43 Results . . . . . . e 70
4.3.1 Numericalresults . . . . ... ... .. ........ 71
4.3.2 Experimentalresults . .. ... ... ......... 73
4.4 Discussionand Conclusions . . . . . .. ... ... .. ... 79
V. Forecasting Bifurcation Morphing: Application to Canti lever-based
SENnsSiNg. . . . . . e e 83
5.1 Introduction . . . . . ... . . ... 83
5.2 Background . .. .. .. ... 85
5.2.1 Delayed nonlinear feedback excitations . . . . .. .. 85
5.2.2 Forecasting bifurcations . . ... ... ... .. ... 87
5.3 ResultsandDiscussion . . .. .. ... ... .. ........ 88
5.3.1 Experimentalsetup . . . ... ... .......... 88
5.3.2 Additionaltimedelay. . . . .. ... ... ... ... 89
5.3.3 Cantilever-basedsensing . . . . ... ......... 93
54 Conclusions . . .. .. ... 95
VI. Conclusions . . . . . . . . . ... e 97
6.1 Contributions . . . .. .. ... ... 97
6.2 FutureResearch . . ... ... ..... ... .. ......... 100
BIBLIOGRAPHY



Figure

2.1

2.2

2.3

2.4

2.5

2.6

LIST OF FIGURES

Schematic of the AFM microcantilever model showingggmple dis-
tanceZ, beam deflection(x, t), base excitation(¢), and static deflec-

The frequency of the base excitation is1&t resonancel(l.8 kHz).

The motion of the tip predicted by emode approximation is different

from that of (more accurate) multi-mode approximationsnfR2-mode
through7-mode. . . . . . . . . . . . . . .. 21

The frequency of the base excitatio® i$ kHz, away from the** reso-
nance. Figures above are phase portraits of the tip digpkteobtained
by approximations with different numbers of modes. Theaystynam-
ics changes from periodic motion to chaotic motion due tcefifiects of
thesecondmode. . . . .. . . . ... ... 22

The normalized amplitude of each mode is presented fasa bxcita-

tion 0f 9.9 kHz. The amplitude of the higher modes is shown to decrease
rapidly from the2"d mode, to much less tha®¥o of the1%* mode ampli-

tude forthes"mode. . . . . . . . ... ... 23

The attractor of the system is shown in a Poincaré mag axhas are the
displacement and velocity of the tip of the microcantile\&0 sample

points are randomly chosen over the attractor for the caficui of the
sensitivity vectors. . . . . . . . . 24

The2-norm of the sensitivity vector fieldd|£||,) for a fixed parameter
variation of0.1% (referred to as the baseline parameter variation) of each
parameter is plotted to check the sensitivity level of theFSV With

same variation level of each parameter, the sensitivifiéseoSVFs for

P, P,, and P are lower than those oP; and P,. Hence, levels of
parameter variation§P, andé P, larger thany P; ando P, are considered

for reconstruction. Thus, values to for 6 P, ando P, are considered as

the baseline for variations iR, and P,. As a direct result of that choice,

the magnitudes of the SVFs féf andP; increase. . . . . ... .. .. 25

Vi



2.7

2.8

2.9

2.10

2.11

2.12

The linearity of SVFs for various levels of parametenat@on 6 P; is
demonstrated in two figures in terms of proportionality anglas be-
tween the baseline and the other parameter variations. imearlin-
creases op; and small values of; indicate a strong linearity of the
SVFs with respect to the parameter variatbdfy. . . . . . . . ... .. 26

The linearity of SVFs for various levels of parametenat@on 6P, is
demonstrated in two figures in terms of proportionality angles be-
tween the baseline and the other parameter variations. ridnease of

p; is not linear andy; are becoming much larger than zergjascreases.

This indicates that the SVFs are varying nonlinearly witspest to the
parameter variationPy. . . . . . . . ..o 27

To alleviate the undesired strong nonlinearity of thé=-§¥or some pa-
rameter variations (especially 6, which is the tip-sample distance),

the sample points are selected so that the filtered sampiésgave the

value ofp,q for 6 P, in the range from 9.7 to 10.3. A total of 157 sam-

ple points are selected from the initial 500 sample pointemfitered

with the delay timeAT from 0 to 0.687", whereT is the period of base
excitation. . . . . . .. 29

The linearity of SVFs for various levels of parametetatéon 6 P, after
filtering shows that the strong nonlinearity has been removeweak
nonlinearity, however, is still observed. This weak noadrity leads to
increasing relative errors as the parameter variation Ieggeases. . . . 30

One of the unintended consequences of sample poietsnigtis a re-
duction in the magnitude2{norm) of certain SVFs. The figure shows

that the2-norm of SVFs forP; decreases significantly. This loss of
sensitivity makes it very difficult to detect the variatioh/g simultane-

ously with other parameters which have much higher seitgtv The

SVFs of P, however, still have acceptable magnitude (sensitivifigra
filtering. . . . . . . . 31

Another unintended consequence of sample pointsriiités a change

in the direction of the SVFs. The change in direction may tedohearly
dependent SVFs for distinct parameters. A linear deperedehtP; to

0 Py is revealed by the angle between the SVFs#oand P,. The figures

show that those SVFs become almost linearly dependentfatieeing.

The linear dependence of these SVFs makes it impossibledoseuct

both parameter$; and P, simultaneously. . . . ... ... ... ... 32

vii



2.13

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

3.11

3.12

3.13

Parameterss, P, and P; were chosen for reconstruction by using the

SVF approach. The results obtained are shown. These resealisery
accurate in the variation range fromi % to 1% with a delay timeAT

up to0.5 7. Note that the SVF forP; has lower magnitude2{norm)

than the SVFs of the other parameters. Hence, the recotistruesults
for  P; show larger relative errors than the other parameters.

Schematic of nonlinear feedback control. . . . . . . . . . ...... ..

Two-degree-of-freedom spring-mass system subjecteaitlinear feed-

back excitation. . . . . . . ... ..

Bifurcation boundary withouttime delay. . . .. ... ... .. ..

As time delays increase, the bifurcation boundary cgmgeto a mini-
mal area with increasing numbers of intersections. . . . . ... ..

The bifurcation boundary can be defined in polar cootds)aand the
convergence of the boundary can be demonstrated by thergemee of

Tmin = + « = & = & & & & & 4w a o w n e e e e e e e e e e e

Schematic of the cantilever beam testsystem. . . . . .. ... ..
Cantilever beam model with actuator and sensors. . . . . ... ..
Bifurcation points obtained using analytical and nuoamethods for

cantilever beam model with non-delayed nonlinear feedlexckation.
For delayed nonlinear feedback excitation, only the nuca¢method is

As time delays increase, the stable region convergéetminimal area
with multiple intersections of the boundaries.

As time delay increases, the values on the bifurcatmm®ary con-
verges to the minimum. Furthermore, the noise caused by diehaey

variationis minimized. . . . . . . . ... ...

Additional time delay eliminates disadvantages aahlmsenatural time
delay, it maintains the performance of the proposed apprmeerms of
sensitivity . . . . . . L
Bifurcation boundary with =50ms . . . . .. ... ... ... ..

Bifurcation boundary morphing by mass variations oimgle location.

viii

42

43

44

45

47

a7

49

51

52

56



3.14  Bifurcation morphing modes and proportionality of Hasis within de-
sired range of massvariations. . . . . .. ... ... . L. 58

3.15  Bifurcation morphing modes - different cases (Senmygé&igure) . . . 59

4.1 The rate functiom\ can be measured at each level of perturbation by
measuring-_, r andr,. at timest — At, t andt + At. Note that pertur-
bations do not have to be small. Ont needstobe small. . . . . . . . 67

4.2 Once) is obtained for a certain, the shape of the actual bifurcation can
be predicted without exploring the post-bifurcation regimFor each
i, M, 7) = a(p — 1) and the actual distance betwegrand i can
be estimated (for a known). Note thata can be easily obtained by
measuring (as few as only) two values)offor two distinct values of.. . 68

4.3 Predictions based onare demonstrated using a numerical model for a
supercritical Hopf bifurcation. . . . . .. ... .. ... ... ..... 71

4.4 Each predicted point far in FIG. 4.3a is estimated by line fitting the
measurements of(u, 7) for variousyu.. The slope of the line fitting all

measurements (foragivefisa. . . . .. .. ... ... L. 72
4.5 Predictions based onare demonstrated using a numerical model for a
subcritical Hopf bifurcation. . . . . ... .. ... ... ........ 37

4.6 An aluminum beam is used for experimental tests. Noafifeedback
is designed and applied to generate supercritical or sigairHopf bi-
furcations. Only one of the sensors on the beam is used ie thgser-
iments. From the piezo-sensor output signalhich is proportional to
the amplitude of oscillation, nonlinear feedbacks formed and applied
to the base of the beam (as a locally distributed bending) psiaof

piezo-actuators. . . . . . . ... 74
4.7 4000 values of are obtained for distinetvalues from a transient phase.
The process is repeated 16 times for eackalue. . . . . . . ... ... 75



4.8

5.1

5.2

5.3

5.4

5.5

5.6

Predictions for the bifurcation diagram obtained based are demon-
strated for supercritical and subcritical Hopf bifurcato The upper
plots (a, b and c) are for a supercritical Hopf bifurcatiomg @he lower
plots (d, e and f) are for a subcritical Hopf bifurcation. Tdeshed lines
represent the actual bifurcation diagram measured by egphctual
parameter variations in the post-bifurcation regime. Reshow that
predictions are more accurate when they are basedvaiues obtained
at multiplen values. Also, once is calculated, predictions are most ac-
curate when they are based on measurements at a valueade to the
actual bifurcation, i.e. foy. close tou.. The horizontal bars represent
standard deviation error bars computed for each prediated pn the
bifurcationdiagram. . . . . . .. .. .. L Lo

A clamped-free aluminum beam with piezo actuators ansa®s is used
for experiments. Piezo-sensors and a pair of piezo-agtiate attached
to the aluminum beam. Mass variations are applied to thd tipedoeam.
The sensor output is sent to a real-time processor. The idale time
delay7* is generated during the process of storing data (sensaal¥ign
and creating the nonlinear feedback excitation (STEP1g ddantroller
adds the controlled time delay(STEP2) before the nonlinear feedback
is amplified and sent to the piezo-actuators on the beam. . .. .. .. . .

AsT is increased, the fluctuation of the bifurcation points gltime -
axis is restrained. The increased time delay enhances blstreess of
the sensor by reducing the undesirable high sensitivityartations in
thetimedelay. . . . . . . . . . .. . .. ...

While undesirable high sensitivity to variations in time delay is re-
duced as is increased, the relative sensitivity to mass variatismsain-

tained at the same order of magnitude. . . . . ... ... ... .... 1

The relative sensitivity of the linear mode frequen@A@Hz) in similar
level with the frequency of the limit cycle (6026 Hz)3%; ~ 0.97 which

77

9

is approximately one order of magnitude smaller than thegsed sensor. 92

« is estimated in range qf values withy,,;, = 0.9 and pe. = 1.
The top figure shows the fitted curvessim space based oh values
obtained from experimental data at differentvalues. In the bottom
figure, r (sensor output [V]) is chosen at 0.55 [V] and the ditiee in
u-\ space is presented. Identified(based on the slopes of the fitted
lines at various amplitudes) is 126.2 (with standard deviadf 3.5). . .

The cantilever-based sensor by the proposed approatbndérates re-
markable proportionality in the range of applied mass viams. . . . .



Table
2.1
2.2

2.3

3.1
3.2
3.3

5.1

LIST OF TABLES

Properties of the microcantilever . . . . . ... ........... 20
Weak nonlinearity of P, and correction factorf{) . . .. .. ... .. 31

Parameters reconstructeddf = 0.2 7', and maximum relative errors
calculated in range df < AT < 0.5 T, whereAT is the delay time,

andT is the period of the base excitation . . . . . ... ... ...... 35
Properties of the cantileverbeam . . . . . .. ... ... ...... 49
Frequency Characteristics of the bifurcation boundaryes . . . . . . 55
Reconstruction results from numerical simulations ...... . . . ... 59
Dimensions of the components of thesensor . . . . . . ... ... 89

Xi



CHAPTER|

Introduction

1.1 Dissertation Objective

Analysis of nonlinear dynamics has been essential in a sliyesf engineering fields.
The research in this dissertation focuses on analysis dineam dynamics and its appli-
cations to sensing. Most of current sensing approaches aneasure variations of linear
features of a system to detect variations in parameterd@fest. These methods usually
focus on minimizing the effects of the nonlinear featurescéhtly, however, several new
studies have been focused on high sensitivity nonlineaurfea and have discussed how
to take advantages of them for high-sensitivity sensingtid®darly, attractor morphing
modes and bifurcation morphing modes have been introdusédya-sensitive nonlinear
features for application to sensing and damage detection.

While previous studies of sensitivity vector field (SVF)roduced the basic concept
of attractor morphing modes and example applications, & imgplicitly assumed that
SVFs are uniformly linear to small variations in the systeangmeters throughout the
chaotic attractors. For attractor morphing modes, the gihis dissertation is to discuss
several examples where proportionality of SVF is not wetlieeed due to strong or weak
nonlinearities in the SVF. These nonlinearities are undbi. Hence, a goal is to develop

new techniques to expand the applicability of the SVF metbddose cases. In this work,



a numerical model of a tapping-mode atomic force micros¢ggé) is introduced as an
example. This example is used to discuss nonlinear chaistatse of the AFM and to
demonstrate a novel operation algorithm of the AFM in clamgimes using the SVF
approach.

Bifurcation morphing modes are used with nonlinear feellEitation in applica-
tions. This active interrogation approach has been numiérishown to have high sensi-
tivity to variations in the system parameters of interesiwidver, the bifurcation morphing
method has several challenges when used in practical apphs. First, the effect of the
time delay onto the bifurcation morphing modes should bdistlbecause the time delay
cannot be avoided. Second, the time required to detect theeiion diagram should be
significantly reduced as quick operation is desirable fosees. Third, sweeping param-
eters across bifurcation points is not desirable becausmglthe system into the post-
bifurcation regime can be dangerous. Thus, one objectitle®vork is to develop novel
techniques to enhance the bifurcation morphing methoddosiag, and to demonstrate
experimentally the cantilever-based sensing using thedation morphing method.

To enhance the bifurcation morphing method, a novel appro&forecasting bifurca-
tions is discussed. Forecasting bifurcations before tioeyras a significant challenge and
an important need in several fields. Existing approachestleifurcations before they oc-
cur by exploiting the critical slowing down phenomenon. Hwer, the perturbations used
in those approaches are limited to being very small, andépiesents a significant draw-
back. Large levels of perturbation have not been used maebtause of a lack of an
adequate formulation that is robust to experimental noi$els, a goal of this work is to
develop a mathematical formulation applicable to largelewof perturbation, and to apply

the proposed forecasting approach to enhance the bifancatorphing method.



1.2 Dissertation Background

1.2.1 Atomic Force Microscopes and Higher Harmonics

Since atomic-force microscopes (AFMs) were introduced tfigy have become im-
portant tools for modern nano-science and engineeringdnoscale imaging and surface
manipulation. AFMs are able to resolve surfaces at the atéewel for both conducting
and nonconducting samples. Their applications are braeadjmg from biological science
to nano-electronic engineering. AFMs monitor the dynanoica microcantilever and a
probe tip (which is attached at the end of the microcantilevEhe microcantilever inter-
acts with the sample surface through nonlinear atomicacten forces. Lennard-Jones
(LJ) potentials [2-5] are one of the approaches to modektheslinear forces. Using
LJ potentials, a smooth model for the tip-sample interactsoobtained, which approx-
imates the real contact mechanics. In tapping mode, thansamlaspects of the AFM
dynamics are more significant [6, 7]. Hence, analyzing tlislinearity is essential for
fully enhancing the performance of tapping mode AFM.

Recent studies showed that higher harmonics play an impadée in AFMs [8, 9].
Also, by enhancing and exploiting the dynamics of the higilemonics, the resolution
of AFM can be enhanced [10-13]. In particular, Stark showned the higher harmonics

cannot be neglected in the analysis of the tapping mode ARMISLE].

1.2.2 Linear and Nonlinear Analysis for Vibration-Based Mdhods

Vibration-based techniques have been essential toolofttestructive system identi-
fication [16]. Such system identification has been studiedfeariety of problems such
as sensing and damage detection. Early studies focusedions/énear vibratory prop-
erties for damage detection [17-24]. Recently, nonlingatesn analysis has become an

important part of system identification approaches. Inipalr, It was showed that use of



nonlinear properties of a system has a great potential tarex@hthe sensitivity of damage
detection. Linear systems subject to chaotic excitati®r§8], and chaotic systems either
with or without excitation [29-31] have been discussed oAsvariety of attractor-based
metrics have been demonstrated to quantify geometric @samiftpttractors in state-space
due to system parameter variations. These approacheszratdimensions [32, 33], a
scalar tracking metric [34, 35], and statistical charazédion of the distribution of points
in an attractor [30,31,36—38]. Furthermore, pattern ratam techniques based on proper
orthogonal decomposition of the shape changes betweerttatts (for undamaged and
damaged systems) were proposed. These methods provides ddvatetecting multiple
simultaneous damages and levels [30, 39, 40]. Also, an apprbas been proposed to
enhance sensitivity by enhancing nonlinearity of lineameakly nonlinear systems by
nonlinear feedback excitations [41,42].

Nonlinearities have been shown also to be important in naanano scale vibration-
based methods. Chaotic motions in tapping-mode atomie finicroscopy (AFM) have
been studied [43—-46], and new sensing algorithms usingtichaotions have been dis-
cussed also. These include applications of SVFs [44, 45pcal Iflow variations [47].
The increased importance of AFM [1] also has been accomgdnyieapid growth of var-
ious other cantilever-based sensing approaches. Thesaaapps are usually monitoring
either static (bending-mode) or dynamic (resonant-moelg)anses of cantilever beams.
Among resonant-mode approaches, MEMS/NEMS resonant neasers have demon-
strated remarkable sensitivity [48—53]. Monitoring resoinfrequency is the most com-
mon approach in cantilever-based mass sensors. For highsitigity, the use of higher
order resonance modes and the reduction of device dimenkawe been discussed [54].
Recent approaches have demonstrated to achieve attogpat §) level mass sensing,

by using suspended micro-channel resonators [55], orrateg electronic displacement



transducers [56]. While MEMS/NEMS sensors monitoring dineesonant frequencies
continues to be studied, sensing techniques using nonlfeatures have gained atten-
tion also, such as ones focused on electrostatic nonlireaint [57], parametric reso-

nances [58, 59], or nonlinear modal interactions [60]. &si0f the nonlinear approaches
are important because they suggest that higher sensitmitybe achieved by just chang-
ing the algorithm of sensing for the same sensors which nsaiitechniques, instead of

further dimensional and structural modifications.
1.2.3 Forecasting Bifurcations

Forecasting bifurcations is a significant challenge, esigavhen an accurate model
of the system is not available. Specifically, jump phenonfer@esubcritical and/or saddle-
node bifurcations) are important because they exhibitendehd dramatic changes in the
system dynamics. Jump phenomena have been observed andséidan a variety of
systems, e.g. physical systems governed by equations admeaich as the Schrodinger
equation [61] or the Swift-Hohenberg equation [62], climaystems [63], ecological sys-
tems [64, 65], biomedical systems (exhibiting behavioghsas asthma [66] or epileptic
seizures [67,68]), neuron systems (exhibiting pulse pyapan [69]), and global finance
systems [70].

Several characteristics of systems have been discusséatdéoasting bifurcations of
interest, such as noise-induced spectrum [71], virtualffdbpnomenon [72], skewness of
probability distributions [73] or flickering in bistableg®mns before bifurcations [74, 75].
In particular, the critical slowing down [76] has been saddias the physical basis of
various existing approaches for forecasting bifurcatipfi. Consider an attractor of
the dynamics of a system, such as a stable fixed point, a diaiilecycle or a chaotic

attractor. When a small perturbation is applied to the systine dynamics converge



toward the attractor at some recovery rate. The criticalisig down indicates that this
recovery rate approaches zero as the size of the basin aétaitr shrinks to nil when a
parameter of the system approaches the bifurcation po#jt [As a result, in the pre-
bifurcation regime, the recovery rates decrease as themyapproaches the bifurcation.
These effects can be observed quite far from the bifurcg@i@h Therefore, quantifying
the effects of the critical slowing down is one method whiah be used as an indicator of
nearby bifurcations.

Nearby bifurcations have been predicted in various comgjstems by monitoring
the recovery rates of the system from small perturbationsthbds used have included
monitoring changes in the autocorrelation [79] or the var&[80] of the system response
to small perturbations (which are consequences of theakisiowing down [77]). These
techniques for forecasting bifurcations have been stuftiedarious systems, such as
ecosystems [80—82], climate dynamics [83], cell signal8¥, and ocean dynamics [79].
Such studies are still far from being able to predict/fosttlae most complicated bifurca-
tions when an accurate model of the system is not availabo, An current techniques
there are often two implicit assumptions that the dynamfahie® system takes place on
a very low dimensional manifold, and that the bifurcations eo-dimension one. Even
more importantly, when a physical system is available fstitg, the level of perturbations
which can be applied to the system have to be very small. Shegdause the formulations
based on observations of critical slowing down have beerelEim close proximity to the

attractor (by linearization after eliminating higher orderms).

1.3 Dissertation Outline

The remaining chapters of this dissertation are compilechfa collection of three

manuscripts published or accepted to scientific journatscare manuscript prepared for



submission to a scientific journal. Therefore, some of thekgeound materials as well as
mathematical developments are repeated in various clsapter

Chapter Il expands the SVF approach to a multi-mode systeenenhode shapes vary
due to perturbation in system parameters. The variationadarshapes creates certain
challenges for exploiting SVFs. Specifically, attractoinp® corresponding to identical
initial conditions in the modal space correspond to nomiidal physical states. Hence,
the sensitivity vectors are not zero at the initial time. Hoer, mode shape variations
do not change the most important property of the sensitiatstors that they are propor-
tional to the parameter variations. Hence, the SVF approanltbe applied to parameter
reconstruction for multi-mode dynamics. A discussion @& thodified SVF approach is
presented and several issues related to parameter raaitsirby SVFs are discussed.
To ensure linearity during parameter reconstruction (Wligca crucial property), a spe-
cialized filtering of the sample points used for SVF is regdirThrough this filtering, one
can eliminate undesired possible strong nonlinearity @SkFs. However, after filtering,
certain parameters may be difficult or impossible to reqoicst There are two reasons for
this. First, filtering may cause a significant loss of sewigytifor certain parameter varia-
tions. When one parameter has a very low sensitivity contpréhe other parameters,
it is difficult to reconstruct sets of multiple simultaneqasameter variations that include
the low-sensitivity parameter. Second, filtering may cad¥é&s for distinct parameters
to be linearly dependent. In such situations, it is impdedit reconstruct the parameters
which have linearly dependent SVFs. Nonetheless, one céorpeparameter reconstruc-
tions for sets of parameters which have linearly indepen8¥ifrs. One can also observe
weak nonlinearity of certain parameters even after filtggthe sample points. This issue
can be resolved by introducing a correction factor. One edecutate the correction factor

from the sample SVFs of the corresponding parameter vanigby accounting for the role



of the second order terms. After implementing the novelrfiitg the re-selection of the
available parameters for reconstruction, and after theutation of the correction factor,
the parameter reconstruction by SVF approach performsfaethultiple simultaneous
parameter variations. Chapter Il introduces several rtemiss of bifurcation morphing
and nonlinear feedback excitation [42] for practical apgiions in both damage detection
and sensing. The primary discussion is focused on the tifay de the nonlinear feed-
back excitation. This time delay is unavoidable in pradtaggplications due to the delay
caused by measuring the dynamics, calculating the nomlfieeadback, and forming the
feedback loop. The side-effects of time delays include amdble high sensitivity of the
bifurcation boundary to small variations in the time deld@yat is demonstrated by nu-
merical simulation. To alleviate the effects of this sidie&, an additional time delay is
introduced as a new design parameter. As the controllabkedielay increases, the stable
region surrounded by the bifurcation boundary convergesdmaller area. This conver-
gence provides the great advantage of minimizing the effeatised by variability in the
time delay. The increased time delay also helps to enhamsitisgy and robustness of
the proposed approach. Next, this chapter discussesataibrissues. The sensing ap-
proach based on bifurcation morphing requires two bendingars to be placed at distinct
locations on the beam and used to construct nonlinear fekdtignals. Various sensor
locations are tested to identify the ones which provide tghést sensitivity. By choosing
various sensor locations, the proposed method can be adaptéetecting simultaneous
damages at multiple locations. These features also enah&ng multiple analytes at
multiple locations calibrated for ultra high sensitivith multi-mode clamped-free can-
tilever beam finite element model is used for computationalyssis. Bending sensors and
uniformly distributed bending moments are used for apgjythre nonlinear feedback ex-

citation. Density variations for multiple finite elemente @onsidered as models for mass



variations at certain locations. Parameter reconstmst@we demonstrated for several test
cases (with high sensitivity to simultaneous mass variatat multiple locations).

Chapter IV provides an alternate approach to characteritia recovery rates of dy-
namical systems. Specifically, the rate of change of the iamdel of the dynamics (includ-
ing certain higher order terms) is quantified. This new ctigré&zation shows that critical
slowing down can also be observed when using much largelsle¥gerturbation. By
tracking the change of the recovery rate from large pertiobs, it is possible to predict
both stable and unstable branches in a bifurcation diagf@ihtcourse, when an accurate
numerical model is available, bifurcation branches candmeputed using several compu-
tational bifurcation tools, e.g. AUTO [85], DDE-BIFTOOL §gand PDDE-CONT [87].
Only a few recent studies consider detecting unstable gheriarbits in the bifurcation
diagram experimentally [88-90]. These approaches usedtlans to stabilize unstable
orbits and track them while a parameter of the system isdaBech approaches are use-
ful in detecting many types of bifurcations. However, cotlar-based approaches have
many requirements. In contrast, the proposed approachranesquire a controller and
does not need the parameter to vary (or to enter the posehtfan region). Instead,
this approach predicts the bifurcation and the unstablades simply by tracking the
recovery rate of the system dynamics. These advantages abthe price of limiting
the class of bifurcations which can be tracked. Specificaltyy Hopf and saddle-node
bifurcations can be handled. Nonetheless, the charaeterecovery rates can be used
to predict both the occurrence and the type of bifurcatiales upercritical or subcrit-
ical) before they occur. Numerical simulations and expental results are provided to
demonstrate the use of our technique for forecasting kfions. Limit cycle oscillations
of a simple mechanical system are used in the experimentsinfalate bifurcations of

limit cycle oscillations, properly designed nonlineardback excitations are applied so
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that the desired types of bifurcations take place in an atiserlinear system. Nonlin-
ear feedback excitations have been employed in structaedtthmonitoring [42, 91] and
sensing [92] as an active interrogation approach. Howeherfeedback control, in this
work, is only used as a tool to simulate a desired nonlineaadycs. The proposed ap-
proach does not require any type of control to be appliedhAgitne scale of the system
used herein is very short (compared to several systems nsrdrent studies [77]), our
experimental set-up provides large amounts of data in & shog. Moreover, the results
obtained using the proposed approach suggest that poediatf bifurcations by critical
slowing down can be sufficiently accurate for applicatiomgmhgineered systems which
generally require high precision (such as sensing). Mamgngineered systems experi-
ence the class of bifurcations of interest here (subcksiapercritical Hopf bifurcations
and/or saddle-node bifurcations), e.g. relief valves,[3Bppe memory oscillators [94],
aeroelastic systems [95], machine tools [96], and autaa@imponents such as torque
converter clutches [97].

Chapter V discusses the implementation of the two novelnigctes discussed in
Chapters Il and IV to enhance the bifurcation morphing radthas applied to cantilever-
based sensors. First, the time delay in the controller ieased to minimize the system’s
undesirable sensitivity to small variations in the (unaedile) time delay. Second, a novel
approach of forecasting bifurcations is applied to the ps&l sensor. This approach sig-
nificantly reduces the time required to obtain bifurcatigegdams. Both techniques are
demonstrated experimentally in detecting mass variatbdrastest cantilever beam. The
cantilever-based sensor based on the bifurcation morphethod is demonstrated to be

accurate, quick and robust in the experimental tests.



CHAPTER I

Sensitivity Vector Fields for Atomic Force Microscopes

2.1 Introduction

Atomic-force microscopes (AFMs) have become importantstdor modern nano-
science and engineering for nanoscale imaging and surfacgumoiation since they were
first introduced [1]. AFMs are capable of resolving surfagethe atomic level for both
conducting and nonconducting samples, and their appcgsitare broad, ranging from
biological science to nano-electronic engineering. The operation of an AFM is based
on monitoring the dynamics of a microcantilever and a prgbénthich is attached at the
end of the microcantilever). The microcantilever intesagith the sample surface through
nonlinear atomic interactive forces. One approach to mtue nonlinear forces is by
Lennard-Jones (LJ) potentials [2-5]. Using LJ potentialsmooth model for the tip-
sample interaction is obtained, which approximates thieca#act mechanics. In tapping
mode, the nonlinear aspects of the AFM dynamics are morefisant [6, 7]. Hence,
analyzing this nonlinearity is essential for fully enhawgithe performance of tapping
mode AFM.

Recently, it has been observed that higher harmonics playportant role in AFMs
[8,9]. Also, by enhancing and exploiting the dynamics of bingher harmonics, the reso-

lution of AFM can be enhanced [10-13]. Stark showed that thkedr harmonics cannot

11
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be neglected in the analysis of the tapping mode AFMs [14, Hgrein, we show that
due to nonlinearities under certain operation condititims effects of higher order modes
change the predictions for the system dynamics qualitgtivem periodic to chaotic mo-
tion. These predictions refer to establishing when theaese is periodic (limit cycle
oscillations) and what are its amplitude and frequencyeamantEven with a driving force
at the first resonance, the predictions for the dynamicsmddaduring a single mode can
be quantitatively inadequate despite the fact that high#eranodes have much smaller
amplitudes than the first mode. Herein we demonstrate noallgrithat higher modes
affect the dynamics of the system.

A novel concept referred to as sensitivity vector fields (Syand a novel approach
to determine multiple parameter variations very accuydt@] are also presented. The
proposed approach can be used in many areas such as systéficaten, sensing, dam-
age detection, and others [39, 99]. The approach allows ¢lection of simultaneous
variations of multiple parameters by exploiting the morplgy of chaotic attractors. The
application of this method in the context of AFM assists imlgming the dynamics of
the microcantilever and probe tip, enhances its capalaifiyetecting multiple parameter
variations, and allows a more effective monitoring of thieetive spring constants and
other important parameters of the system. Also, the prapossthod has the advantage
of reducing the calibration effort. This approach opensdber to the accurate operation
of AFMs even in chaotic regimes. By using SVFs, one can oldagurate output infor-
mation (i.e. reconstructed parameters) even with slightaidges or structural changes in
the AFM microcantilever.

Hashmi and Epureanu [39] have shown the basic concept fappkcation of SVFs
to AFMs. Herein, that approach is expanded upon for a muttiensystem where mode

shapes vary due to perturbation in system parameters. Tlaion of mode shapes cre-
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ates certain challenges for exploiting SVFs. Specificdlisaator points corresponding to
identical initial conditions in the modal space corresptmdon-identical physical states.
Hence, the sensitivity vectors are not zero at the initrakti However, mode shape vari-
ations do not change the most important property of the segivectors that they are
proportional to the parameter variations. Hence, the SVfrageh can be applied to
parameter reconstruction for multi-mode dynamics. A dismn of the modified SVF
approach is presented and several issues related to paraeminstruction by SVFs are
discussed.

To ensure linearity during parameter reconstruction (Wwhgca crucial property), a
specialized filtering of the sample points used for SVF isunegl. Through this filter-
ing, one can eliminate undesired possible strong nonlityeafrthe SVFs. However, after
filtering, certain parameters may be difficult or impossiisl@éeconstruct. There are two
reasons for this. First, filtering may cause a significans lofssensitivity for certain pa-
rameter variations. When one parameter has a very low setystompared to the other
parameters, it is difficult to reconstruct sets of multipfataneous parameter variations
that include the low-sensitivity parameter. Second, filigmay cause SVFs for distinct
parameters to be linearly dependent. In such situatiorssirtpossible to reconstruct the
parameters which have linearly dependent SVFs. None#alas can perform parameter
reconstructions for sets of parameters which have lineadgpendent SVFs.

One can also observe weak nonlinearity of certain parasiet@n after filtering the
sample points. This issue can be resolved by introducingri@ction factor. One can
calculate the correction factor from the sample SVFs of thheesponding parameter vari-
ations by accounting for the role of the second order ternfier Amplementing the novel
filtering, the re-selection of the available parametergdaonstruction, and after the cal-

culation of the correction factor, the parameter recowsiva by SVF approach performs
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Figure 2.1: Schematic of the AFM microcantilever model simytip-sample distancg,
beam deflection(z, t), base excitation(t), and static deflectiot.

well for multiple simultaneous parameter variations, asnghin the following.

2.2 Modeling and Parameter Reconstruction using SVFs

2.2.1 AFM Microcantilever Model

Various researchers have proposed models for the tip-gam@raction in tapping
mode AFM [100-103]. Some approaches consider this inferaeis piecewise smooth
while others account for the contact mechanics by emplogingngly nonlinear, yet
smooth potentials. One of the latter models is based on Ldngats, which account
for the attractive and repulsive tip-sample interactiorcés. Although the LJ potentials
lead to a smooth set of equations, the model closely appairsrthe contact mechanics
through the use of very strong nonlinearities. Herein, weoske to use LJ potentials to
avoid mathematical complexity while taking advantage sfgualitative resemblance to
the real contact mechanics. In general, regardless of #wfapdetails of the model used,
the SVF approach can be employed. In fact, the SVF approacheapplied even with-
out a model as long as the parameters of the dynamics are muteodst, and the only

identified quantity is the distance to sample.
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The LJ potential energy and the corresponding tip-sampéeantion force for an AFM

microcantilever are given in the literature [104] as

AR AR _ 0UL; AR AR
126027 627

ULy (2.1)

where A;, A, are the Hamaker constant’,is the radius of the probe tip, ard is an
instantaneous gap between the tip and the surface of sam@eosvn in FIG. 2.1. A
single mode model has been used in the past [105]. Hereireftbets of higher order
modes are of interest in the context of multiple simultarseparameter variations. The

static deflectionv(x) of the microcantilever may be obtained from

EIi" (x) = 0, (2.2)

with the boundary conditions expressed as

@w(0) = 0,
v'(0) = 0,
@"(L) = 0,
—EIV"(L) = AR P L (2.3)

C180[Z — w(L)]® T 6[Z — w(L)]?’
where L is the length of the microcantilever. The equilibnigap between the tip and

sample is denoted by = Z — w(L). The total time-dependent deflection of the micro-

cantileverw(x,t) may be expressed as
w(z,t) = w(z) + y(t) + u(z, t), (2.4)

whereu(x,t) is the microcantilever deflection relative to a non-inériame attached
to its moving base, as shown in FIG. 2.1, ayd) is the excitation which is applied as

base excitation by a piezoelectric actuator located atefieehd of the microcantilever
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in FIG. 2.1. The base excitatigy(t) is modeled as a harmonic motigiit) = Y sin Q.

Next, the equation of motion of the vibrating microcantédemay be expressed as

pAii(z,t) +EI " (z,t)+a" (z)]

B B AR
B 180[7 — u(L,t) — Y sin Qt]8
AR

TS — w(L.f) =V sin Q2 } o —1)

+pAQ?Y sin Qt, (2.5)

wherep is the material density4 is the cross sectional area, add, A, are Hamaker
constants for the microcantilever, afids the delta function. Eq. (2.5) may be rearranged

by using

AR AR
. 220 e~ I 2.6
1807 6772} (z=1L) (2.:6)

ELi" (z) = [

to obtain

pAii(z,t) +EIu" (x,t)

B AR 1 B
B 180 [ —u(L,t) — YsinQtf 78

AR 1 1
o [[ﬁ —u(L,t) = Ysin Q2 n_] } do=1)
+pAQ?Y sin Q. (2.7)

Next, a Ritz approach is used to discretize Eq. (2.7) in spadeobtain a set of ordinary
differential equations. To solve for the linear eigenmode& may consider the linearized
system around its static equilibrium position. Using Eql)2the linearized equivalent
spring constank; ; caused by the gradient of the LJ potential at the equilibjnasition

may be expressed as

_ 8PLJ(Z,w(L,t)) . 2A1R . AQR
brs = ow(L,t)  |,oo 45[Z-w(L)’ 3[Z-w@L) (2.8)
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Next, the deflection(x, t) can be expressed as a sum of eigenmodes as follows

u(@,t) =Y Un(2)To(t). (2.9)

The equation of the free (unforced) linearized system fcheagenmode is

Uy = BuUn =0, (2.10)
wherej3! = ”g‘;i, and the boundary conditions are given by
U,(0) = 0,
Ul0) = 0,
Uy(L) = 0,
—EIU™(L) = —kp,Uy(L). (2.11)

The ordinary differential equations fdr,(¢) are obtained in the usual Galerkin fashion
by substitutingu(x, t) from Eq. (2.9) into Eq. (2.7) and by taking the inner produweith

each of the mode shapes. Finally, one obtains an equationtidmfor each mode.

The modal amplitude®, are nondimensionalized gs = Y205 wherel,,, andrj,

0
are the nominal value of-th mode shape at = L and the equilibrium gap between the
tip and sample for the nominal system. The parameters afeisitéor reconstruction are
denoted byP, = AR, P, = AyR, Py = FI, P, = Z,andP; = §j = ;“—0 The nonlinear

equations of motion in linear modal coordinates are obthase

2

. . wn
gn = _dgn_ 2 gn

Wi

+r,C, L L
fontn (€ — &op — PssinQr)8 €8

+k,C L !
RnUn = )
2 (6 — &ot — PssinQr)? €2
+E, Ps0? sin Q, (2.12)
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where subscripi indicates a nominal value, and

P n n L Tn —

WTQL: 3f37 gn:U()( ~) <T)7 7_:C‘UIOI(:y y:P5:~_7
PA frz o o

_ 0 i

Q=" &o= Z knn, w1 = unperturbed value af;,
w10 -

bkp = ——, FE,=U,(L)=—, d = damping parameter
Unn(L) o )fm ping p e

o Unl) A UL P 0

" 180/)14778‘*)%0 fn27 " 6/)1477(?)’“%0 fn27 770’

L L L
fnl :/ Undxa fn2 :/ Uid% fn3 :/ UnUyledx
0 0 0
2.2.2 SVFs for a Multi-Mode Model

The basic algorithm for the SVF method [39, 98, 99] can be sarread as follows.
Individual sensitivity vectors are collected throughcug attractor for a given set of pa-
rameter variations. These sensitivity vectors are thenpmgd to form one SVF, which
is interpreted as a snapshot. Distinct SVFs are recordedrimmbwn sets of parameter
variations. The collection of snapshots is analyzed by @ropthogonal decomposition to
construct an optimal basis for representing all SVFs usisignall number of basis vector
fields. Each of these basis fields corresponds to a known patafeter variations (in the
parameter space). Once this optimal basis is construcetegttbn can be implemented
as follows. A SVF is sampled by using the attractor of the dyica for a system with
an unknown set of parameter variations. Next, the sampldd iS\projected along the
optimal basis of fields. Finally, the coordinates along eafdhese basis fields are used to
identify/reconstruct the unknown parameter variatiorssfofm SVFs across the attractor,
randomly chosen sample points within the attractor are asaditial points for calculation
of SVFs. The sample points are selected by sampling theraygigponse in time. Note
that the fact that the attractor is visited by the trajectmgures that the samples are likely

distributed throughout the attractor. However, the nundferycles need to use SVFs is
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likely larger than that of other linear-based techniquesnétheless, that may be accept-
able in many applications and is accompanied by two sigmifiadvantages: detection of
multiple simultaneous parameters and increased sehg#ividiscussed next.

From Eq. (2.12), each sample point in state spacehasate variables for &-mode

approximate model. A state vector for each sample point eastefined as
. . T
z;, = [H1§i1 ki&ir o o KRGk ’fkgik] . (2-13)
For simplicity of indexing variables, we defimg,_; = x; andky = k;. Also, we define

Uy-1(L) = Uy(L) andUy(L) = Uy(L). Hence, Eq. (2.13) becomes

17, (2.14)

Z; = [/%121'1 KoZia  +++  Rok—-1%i(2k-1) KokZi2k

wherei is the index of a sample point. A snapshot vector can be defaretie whole set

of sample points for a given set of parameters as
o=z - z - zn, (2.15)

whereN is the total number of sample points. Numerically, the SVifrloa defined as the
difference between the snapshot vectors of the perturbédperturbed systems, which

can be expressed as
s =00 =0, — 0y, (2.16)

whereo, is the snapshot vector for the perturbed system aand the snapshot vector for

the unperturbed system. This numerical SVF is a representatr the SVF expressed as

71
oP

3zi
opP

SP .. 9z

T
, (2.17)
Po oP

oP

Po

s =do = oP -

Py

whereP is a vector containing all parameters. One can further expach entry of the



20

Property Symbol Value
length L 449 pm
width b 46 pm
thickness h 1.7 pm

tip radius R 150 nm
material density ) 2330 kg/m?
elastic modulus E 176 GPa
1% resonance fi 11.804 kHz

Hamaker (repulsive) A,
Hamaker (attractive) A,

1.3596 x 1077 Jm"
1.865 x 107 J

Table 2.1: Properties of the microcantilever

column: of s as

(g,zr_j PO&P)j - % PO(SP (forj=1,---,2k)
— & %Zf’j L % 9P
= % % P05P+0ij_0 % PozijcSP
- %ij ) 5P + ﬁ % . 2;6P, (2.18)

wherel; = Uy + 22

time because;- %
J

o 0P. Eg. (2.18) shows thatis non-zero at the initial sampling
0

2;;0P is nonzero. This is caused by the variations of the mode
Py

shapes due to the parameter variations. The initial noneeno, however, also ensures

the most important property of the SVF that it is proporticioadP. Note that

zero at the initial sampling time because, at that inst%%t. and

all parameter values.

2.3 Enhancements and Results

0z
oP

is
0

are zero for
0

i
oP P

Py

A numerical analysis is carried out for the representatseof the interaction of a soft

monocrystalline silicon microcantilever with thel(l) reactive face of a flat silicon sample

used by Rutzel et al. [105]. The Si-Si interaction paransetee taken from Pfeiffer et al.
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Figure 2.2: The frequency of the base excitation is‘atesonancel(l.8 kHz). The motion
of the tip predicted by a-mode approximation is different from that of (more
accurate) multi-mode approximations, frédamode througty-mode.

[106], and corresponding attractive and repulsive Hamedstants are from Israelachvili

[107] and Basso et al. [108]. The physical parameters uselistéed in Tab. 2.1.

2.3.1 Importance of the Higher Harmonics

When the frequency of the base excitation is at the first @sidrequency of 1.8 kHz,
the responses of the higher order modes are very small irctiefieind velocity. However,
the motion of the tip predicted bylamode approximation is different from that of (more
accurate) multi-mode approximations, fréamode througty-mode. Figs. 2.2a and 2.2b
show that the predictions for the tip motion converge if ast2 modes are used in the
approximation. Figs. 2.2c and 2.2d show, in modal coorémahat the use of the firgt
modes leads to a converged prediction for the dynamics.€elt@ssilts show that kmode

model may be inaccurate even if the higher harmonics are raociler in amplitudes
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Figure 2.3: The frequency of the base excitatiof.iskHz, away from thel** resonance.
Figures above are phase portraits of the tip displacemeairaul by approxi-
mations with different numbers of modes. The system dynaohanges from
periodic motion to chaotic motion due to the effects of theosel mode.

than the first mode.

One may suspect that the results in Fig. 2.2 are caused bydexisting attractors
(i.e. a bistable regime). We explored this interesting gy and found that the cases
studied do not belong to a bistable regime. To check that,tantesl the time marching
simulation using a 1-mode model from initial conditions athare very closely along the
limit cycles observed using the multi-mode models. Also,stgted the time marching
simulation using the multi-mode models from initial comalits which are precisely along
the limit cycles observed using the 1-mode models. In aksathe trajectory experiences
transients and eventually settles onto the same limit syadgresented in Fig. 2.2, without
exhibiting bistability.

Next, we consider a case where the excitation frequency &y d&wm the first reso-
nance. A numerical computation was carried out with thetakion frequency .9 kHz.
The system dynamics changes from periodic motion to chamtiton by adding the ef-
fects of the second mode (as shown in Figs. 2.3a and 2.3b3. Zig and 2.3 show not

only that al-mode approximation is not enough to quantify the dynamidb® system,
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Figure 2.4: The normalized amplitude of each mode is preskfor a base excitation of
9.9 kHz. The amplitude of the higher modes is shown to decregselydrom
the 2" mode, to much less that®o of the 15 mode amplitude for the'®
mode.

but they show also that Bmode approximation may fail to predict even qualitativislg
dynamics of the system. Note that in FIG. 2.4, the amplitifdbehigher modes is shown
to decrease rapidly from th&! mode, to much less thai? of the 1** mode amplitude

for the4*™ mode. Hence, a-mode model is used in the results hereafter.

2.3.2 Sample Points and Verification of the SVFs

To perform parameter reconstruction by using the SVF ambr,aane first chooses the
sample points to be used from the (tip displacement) atirauftthe system. The axes
in the plots in FIG. 2.5 show the displacement and velocityhef tip of the microcan-
tilever. The points in FIG. 2.5a are collected at instantsnre which are separated by
one period!’ of the excitation. Thus, FIG. 2.5a is a Poincar map of the dyos (for the

tip of the cantilever) of th&-mode approximate model of the AFM microcantilever. The
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a. Attractor of the system b. Sample points from the attracto

Figure 2.5: The attractor of the system is shown in a Posmcaap. The axes are the
displacement and velocity of the tip of the microcantiles0 sample points
are randomly chosen over the attractor for the calculatioth® sensitivity
vectors.

points shown in FIG. 2.5b represent the sampled points wihersensitivity vectors are
calculated. In general, the sensitivity vectors do not Havee collected at all points in
the (sampled) attractor, but just at a few of these pointthédrstudy discussed herein, 500
sample points were randomly chosen. However the numbengbles does not necessar-
ily have to be as large as 500. We chose this large number gflegruints to demonstrate
the linear independence of the SFVs and discuss certaiessstated to the nonlinearity
of sensitivity vectors at some locations (as presentedamdxt sections). Theoretically,
there can be as few sample points as parameters to be detéttade, the number of
cycles at a single locus does not have to be extremely largeektr, while that theoreti-
cal lower limit is possible, the approach performs muchdretthen more points are used,
especially when multiple parameters are to be identifiednamsk is present in the data.
Note thatAT can be interpreted as a tool for adjusting the sensitivitthefanalysis.
For shortAT', the sensitivity is low, whereas for lony7’, the sensitivity tends to be higher.
Thus, from the perspective of experimental measuremdr@grtcial issue is the level of
parameter variation that is of interest and the capabifithe experimental apparatus (i.e.

the sampling rate and the smallest measuraldg. If the parameter variations of interest
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Figure 2.6: The2-norm of the sensitivity vector fieldg|€||,) for a fixed parameter varia-
tion of 0.1% (referred to as the baseline parameter variation) of eadnpeter
is plotted to check the sensitivity level of the SVFs. Witmgavariation level
of each parameter, the sensitivities of the SVFsRgr P, and Ps are lower
than those ofP; and P,. Hence, levels of parameter variatiohB, andd P,
larger thary P; andé P, are considered for reconstruction. Thus, valuek6f
for P, andj P, are considered as the baseline for variation8iand . As a
direct result of that choice, the magnitudes of the SVF4aand P, increase.

are small, then a largehT" should be used. The values f&fT" used in this study are
of the order of one period’ of the excitation. The best results were obtainedAdr of

approximately 0.47".

2.3.3 Level of Sensitivity of the SVFs

After verifying the calculation of the SVFs, the parametecanstruction has been
tested for alb parameters®, = AR, P, = AR, P3 = EI, Py = Z,andP5; = 3. ltis
observed that the parameter sif,(Py, Ps) is reconstructed well for cases with a low level
of variation (lower thar.5%), while the whole set df parameters cannot be reconstructed
accurately. To investigate the causes of the failure of trarpeter reconstruction that
include P, andP,, one can check the sensitivity of the SVFs for each paramatetion.

To check this sensitivity, one can observe 2agorm of the sensitivity vector fieldg€||,)

for a fixed parameter variation 0f1% (referred to as the baseline parameter variation)
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Figure 2.7: The linearity of SVFs for various levels of pagder variation) P is demon-
strated in two figures in terms of proportionality and andlesveen the base-
line and the other parameter variations. The linear inega$p; and small
values ofo; indicate a strong linearity of the SVFs with respect to theapa
eter variation Ps.

of each parameter. As shown in FIG. 2.6a, the sensitivitidhed SVFs forP;, P, and
P5 are lower than those d?; and P,. Hence, only levels of parameter variatiaifg and
0P, larger thany P; and§ P, can be reconstructed. Thus, valuesi® for 6P, andd P
are considered as the baseline for variationB,iand 7. Of course, a direct result of that

choice is that the magnitude of the SVFs fgrand P, increase, as shown in FIG. 2.6b.

2.3.4 Linearity of the SVFs

The most important property of the SVFs is that they varydimhewith the level of
variation in each single parameter. To check this lineaoite can generate) test SVFs
for each parameter starting from the baseline parameteticar and up tol0 times that

variation. A proportionality factor and an angle betweenFS\¢an be defined for each
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Figure 2.8: The linearity of SVFs for various levels of paeder variation) P, is demon-
strated in two figures in terms of proportionality and andlesveen the base-
line and the other parameter variations. The increagg @ not linear and
a; are becoming much larger than zerojaacreases. This indicates that the
SVFs are varying nonlinearly with respect to the paramedegationJ P;.

single parameter variatian?; (: = 1,--- ,5) as

S. .
p; = H ZJ||2 (]:17 710)7
Isiall,
a; = angle between;; ands; ;
= cos ! S
[Isi.al {lsi;l

where

si; = SVF for a variation iy P; of magnitudej - 6 P,
0P, = parameter variation of parametgsfor the baseline SVF

s;1 = baseline SVF

Note thaty; is the angle between two higher-dimensional vectors asettfibove. Hence,
this angle is a measure of linear independence. When the azgro, the two vectors are

proportional to each other, while when the angle is closétoor 270°, the two vectors
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are almost perpendicular to each other. Thus, the condidrddeal linearity is as follows,

by :ju

__Nno
Oéj —0

As an example, the proportionality and angle for the saiisitvector fields of Ps
are shown in FIG. 2.7. As the variation level increases, MEsShave amplitudes which
increase linearly with P5. This linear increase is indicated by the magnitudesdrms)
of the SVFs and their small angles with respect to the SVATebaseline variatiof\ ;.

In contrast to the SVFs faP;, the SVFs forP, exhibit a weakly nonlinear variation with
respect to the magnitude of parameter variation. Bgras the variation level increases,
the SVF amplitudes increase nonlinearly, and the direafoimne SVFs change. That is

demonstrated in FIG. 2.8 fay,.

2.3.5 Filtering of Sample Points

An important information one may require from the parameseonstruction is the
variation of P;, which is the tip-sample distance. The ability to accurately detect the
tip-sample distance while simultaneously monitoring othEM parameters is an impor-
tant advantage of the SVF approach for the general operattiamiomic force microscopes.
Simultaneously identifying multiple parameter variasas much easier when the nonlin-
earity of the SVFs foiP; is minimized. To that aim, a novel point filtering is appliedhe
samples used in the SVF. Consider the SVFsHprFrom FIG. 2.8, the sample points are
selected so that the filtered sample points have the val%’fﬁ% in the range from 9.7 to
10.3. Atotal of 157 sample points are selected when filtengl thve delay timeAT from
0 to 0.687, whereT is the period of base excitation. Similarly, 121 sample tsoare
selected withAT from 0 to 0.77'. The first set of 157 filtered sample points are chosen

for parameter reconstruction hereafter. The filtered samplnts from the initial set of
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Figure 2.9: To alleviate the undesired strong nonlinearityhe SVFs for some parameter
variations (especially fos P, which is the tip-sample distance), the sample
points are selected so that the filtered sample points haveetlne ofp,, for
0P, in the range from 9.7 to 10.3. A total of 157 sample points atecied
from the initial 500 sample points when filtered with the gdiane AT from
0 to 0.687", whereT is the period of base excitation.

sample points are shown in FIG. 2.9. After filtering, the S\&is P, exhibit linearity,
similar to the SVFs fo’s. As an example, the SVFs &1, from the filtered sample points
are shown in FIG. 2.10.

One can still observe a weak nonlinearity in the SVFs, wheads to increasing rel-
ative errors as the parameter variation level increasepresented in Tab. 2.2. A cor-
rection factor to account for this weak nonlinearity of théFs for P, is introduced in

Section 2.3.7 below.
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Figure 2.10: The linearity of SVFs for various levels of paeder variation P, after fil-
tering shows that the strong nonlinearity has been remo&etdeak nonlin-
earity, however, is still observed. This weak nonlinealyds to increasing
relative errors as the parameter variation level increases

2.3.6 Parameter Identifiability by the SVF Approach

After increasing the baseline variation level to reach aaigsensitivity, and after
filtering the sample points}”, and P, cannot be reconstructed by the SVF approach.
The reasons for the failure are discussed next. One of theanded consequences of
filtering is a reduction in the magnitude of certain SVFs. 2@ 1 shows that the SVFs for
P, decreases significantly. This loss of the sensitivity makesry difficult to detect the
variation of P; simultaneously with other parameters which have much higgasitivities.
The SVFs ofP,, however, still have acceptable sensitivity after filtgrin

Another unintended consequence of filtering is a changeeiditection of the SVFs.
The change in directions may lead to linearly dependent SgFsdlistinct parameters.
Linear dependence (collinearity) of two parameters areldak by comparing the angles
between their SVFs. Consider for example the SVFgioand P,. FIG. 2.12 shows that
those SVFs become almost linearly dependent after filterifige linear dependence of
these SVFs makes it impossible to reconstruct both parasvgtend P, simultaneously.

Due to the loss of the sensitivity and the linear dependehdestinct SVFs,P, and P, are
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Figure 2.11: One of the unintended consequences of samipits fiitiering is a reduction
in the magnitude-norm) of certain SVFs. The figure shows that 2heorm
of SVFs for P, decreases significantly. This loss of sensitivity makegiyv
difficult to detect the variation of?, simultaneously with other parameters
which have much higher sensitivities. The SVFsHf however, still have
acceptable magnitude (sensitivity) after filtering.

eliminated from the parameter reconstruction.

2.3.7 Correction Factor for Weak Nonlinearity

To resolve the weak nonlinearity of the SVFs fgras shown in FIG. 2.10 and Tab. 2.2,
a correction factor is introduced. The parameter recoatmiis generally achieved under
the assumption that higher order terms in Eq. (2.17) aragibty, so that the SV, sp,
(for a magnitude) P; of variation for ;) depends linearly oAP;. Note thats; ;p, refers

to a general value fa¥P;, which is not necessarily - 6P, ;. Hence, the notatios, sp, is

Variation Normalization Relative Error [%]  f.

0.002 1.9947 —0.2634 —2.6274
0.003 2.9842 —0.5256 —2.6211
0.004 3.9685 —0.7865 —2.6148
0.005 4.9477 —1.0461 —2.6085
0.006 5.9217 —1.3045 —2.6022
0.007 6.8907 —1.5616 —2.5960
0.008 7.8546 —1.8715 —2.5898
0.009 8.8135 —2.0722 —2.5836
0.010 9.7674 —2.3257 —2.5774

Table 2.2: Weak nonlinearity @tP, and correction factorf{)
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Figure 2.12: Another unintended consequence of sampleagbitering is a change in
the direction of the SVFs. The change in direction may lealh&arly de-
pendent SVFs for distinct parameters. A linear dependehé&xoto 0 P is
revealed by the angle between the SVFsiRpandP,. The figures show that
those SVFs become almost linearly dependent after filterTing linear de-
pendence of these SVFs makes it impossible to reconstrtictdaoameters
P, and P, simultaneously.

distinct from the previous notatios) ;. Also note that, when the parameter variatiar)
is at its baseline valu&F, ;, then the SVF is denoted By, . The linearity ensures that

Isi1ll

27 5P,

||si.sp, 0P, (2.19)

This assumption has to be modified #8y. Considering the higher order effectséa?, on
the corresponding SVFs, one obtains

_ Isially

> 0Py

(6P, + f.0P? + HO.T). (2.20)

||si,5Pi

The correction factof, in Eq. (2.20) is the dominant nonlinear term, and the highéeo
terms (.0O.T'.) are neglected. Using Eq. (2.20), the corrected paramat&tionj P; can

be expressed as

P
5P, = 5Py, (2.21)
’ 1+4fo0P,

wherej P, . is the corrected (actual) parameter variation, &Rgd, is the obtained parame-
ter variation from the parameter reconstruction based o{ZE$9) under the assumption

of linearity.
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One can calculate the correction factrfrom the test SVFs used for the linearity

check by using an equation f@y obtained from Eq. (2.20) and expressed as

53,,0 + fCéPi/,zc 5Pi/,o
0P+ f.OP2, 0P,

(2.22)

where the parameter variatiofi®, ., andd P, , are for the baseline variation &%, and the
variationsé P, ., andd P/, are for the test variations af;. One value forf, is obtained
for each test case/variation. When calculating the camedactor forj P,, the baseline
variation is0.1% and the test variations are in the range f@8% to 1%. The calculated
correction factors are shown in the last column of Tab. 2.2e @an observe the small
changes iry. as the variation level increases. These small differeneelkely due to the
H.O.T. from Eqg. (2.20) which are ignored in the calculationfpf Nonetheless, the level
of the differences iry. is acceptable in the parameter reconstruction. The valyigfadm

the variation level 00.6% (f. = —2.6022) is chosen for all the parameter reconstruction
results in next section.

The correction factor suggested here is a calibration pofor the SVF approach, but
the number of measurements required for that is not verglargrein, we used a large
number of SVFs just to demonstrate that the correction fasttndeed approximately
constant throughout the parameter range of interest. Nhwatiethe correction factor is

mathematically derived from Eg. (2.22) as a direct consecei@f the higher order terms

affecting SVFs, and can be applied to the SVF approach foymanlinear systems.

2.3.8 Parameter Reconstruction Results

Based on the analyses presented in the previous sectiarsngiarsP;, P, and P
were chosen for reconstruction by using the SVF approacte réhults obtained were
very accurate in the variation range fronri% to 1%. Two sample cases are presented in

FIG. 2.13 and Tab. 3.3.
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Figure 2.13: Parametery;, P, and P; were chosen for reconstruction by using the SVF
approach. The results obtained are shown. These result®greccurate
in the variation range from-1% to 1% with a delay timeAT up t00.5 7.
Note that the SVF for’; has lower magnitude2¢norm) than the SVFs of
the other parameters. Hence, the reconstruction result&#oshow larger
relative errors than the other parameters.

As we noted previously, the SVFs fék have lower magnitude than those of the other
parameters. Hence, the reconstruction results fgrshow larger relative errors than the
other parameters. FIG. 2.13 shows that the parameter regotien for all parameters
is very accurate with a delay tim&7 up to0.5 7. The parameter reconstruction results
for AT = 0.2 T are shown in Tab. 3.3. The maximum relative errors for thegaage
variation and the physical variation are calculated in #wege of A7 from 0 to 0.5 7.
Tab. 3.3 shows that the maximum physical relative error agredhparameter variations
is about0.04% of § P5, which is very small. As in FIG. 2.11, the sensitivity of the'fss
of P; is the largest. Tab. 3.3 also shows that the reconstrucgdiogmance for Caséis
more robust than that for Cage This is likely becausé P, in Casel is larger than Ps,

and that is consistent with the result shown in FIG. 2.11.
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Relative Reconstruction Percentage Max Percent Max Pdiysic

Case 0P Parameter Performed at Relative Relative Relative
Variation AT =02T Error [%]  Error [%] Error [%0]
0P; 0.003 0.002998 0.0672 0.3665 0.0011
1 0P, 0.009 0.008990 0.1210 0.5558 0.0050
0P 0.006 0.005870 2.1681 3.9039 0.0234
0P; 0.007 0.006981 0.2742 1.3657 0.0096
2 0Py 0.005 0.004990 0.2005 3.5514 0.0178
0P 0.006 0.005876 2.0667 7.0141 0.0421

Table 2.3: Parameters reconstructed\dt = 0.2 7', and maximum relative errors calcu-
lated in range of) < AT < 0.5 T, whereAT is the delay time, and’ is the
period of the base excitation

2.4 Conclusions and Discussion

The major influence of the higher harmonics onto the tappingemAFM dynamics
has been discussed. For certain regimes, higher order rhaglesdbeen shown to predict
chaotic dynamics for the system although a single-modecappation predicts limit cy-
cle oscillations. These observations have been demoedtat discussed along with the
application of the sensitivity vector fields (SVFs) to theeddion of multiple simultaneous
parameter variations in the chaotic regime.

In the common tapping-mode AFM operation, the microcaveitas excited near a
resonant frequency, and variations in the amplitude ofithé tycle experienced by the
cantilever is measured to detect variations in the tip-dardigplacement. For example,
one may perform numerical simulations with an excitati@gfrency near the first resonant
frequency of the cantilever (11.8 kHz) f&=10 nm and separately fégf=10.01 nm (i.e.
for a 0.1% variation inZ). The change in the amplitude of the limit cycle due to the
0.1% variation inZ is approximately 0.012 nm. Hence, the relative change inliéunde
(ratio of the change in the amplitude versus the limit cyctgbtude) is approximately
0.0026. This quantity is much smaller than the relative isigitg obtained using SVFs.

However, the two sensitivities are hard to compare direddpnetheless, these results
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suggest that it is generally more effective to measure thergience of the trajectories in
chaotic attractors than it is to measure variation in theldauage of limit cycles. Also, note
that the SVFs are formed based not only on displacementddmba velocities. Also,
note that the main focus of this chapter is to demonstratetbomilize chaotic dynamics of
the AFM for sensing, and how to take advantages of chaot@chtirs in terms of detection
of multiple parameter variations.

Various issues regarding the implementation of the SVF @aagr for AFM and the
methods to resolve those issues have been discussed. €gatie most important prop-
erty of the SVF approach, which is the linearity of the SVFsdmgle parameter vari-
ations, an approach of filtering sample points was introduwegh a focus on the most
important parameterH,;). By filtering, one can generally ensure a satisfactoryllefe
linearity for all parameters to be reconstructed. Afteefilig, the re-selection process is
performed by investigating the SVFs for each single paramairiation. The possible sig-
nificant loss of sensitivity and the possible linear depecdeamong distinct parameters
have been discussed. Thus, certain parameters had to heatéochfrom the reconstruc-
tion process.

A correction factor has been introduced to resolve the wesidtimearity of the SVFs
of certain parameter variations (ed@P?;). The correction factor has been calculated from
test SVFs of known single parameter variations. The pamnvetiations identified using
the correction factor have been shown to be very accurate.

The use of SVFs for AFM in tapping mode has been shown to rasatt accurate pa-
rameter reconstruction. The operation of the atomic formeaacope in a chaotic regime
and by using a parameter reconstruction based on the SVieagipto the multi-mode
microcantilever model has several advantages. First, ane@woid calibration efforts for

searching the linear operation conditions. Second, thaiatfbrce microscope can be op-
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erated accurately with high sensitivity even when multgeameter changes occur in the
system. The third and most important advantage is that omeigathe atomic force mi-
croscope to determine the tip-sample distance while sanattusly monitoring multiple
parameters of the AFM microcantilever.

An important requirement for the proposed approach is thigyato collect/measure
the SVF at sample locations. To do that it is not necessaryhiiinitial conditions to
be extremely close. That requirement can be eliminatedgXample, by the use of point
cloud averaging (PCA) approach [39, 98, 99]. The PCA apprdeas been demonstrated
both numerically and experimentally. Using PCA for the AFRdpiossible. However, the
focus of this paper is to demonstrate that SVFs can be usedffactive, and provide
enhanced sensitivity and the ability to measure multiplaupeters simultaneously. The
next level of development of the approach is the use of PCA aweh beyond that, the
use of embedded coordinates. Certainly, those are ex¢gpigs which are part of future
work. However, they are beyond the scope of this paper.

To use experimental data, one has to first decide if a modelaitahle and is to be
used or not. If a model is to be used, then the model is sindjlak®ta is collected, and
the attractor is computed. Next, samples are numericallgated for various parameter
variation levels, and the linearity assumption is evalddend sample point filtering is
applied).

If a model is not available or not to be used, then the pro®{gp the device) is used
to collect data. The attractor is measured using the ackparamental set-up. Then pa-
rameter variations are applied experimentally, and therdefd attractor is collected. The
SVFs are estimated (using either data that include veryedlusial conditions, or using
PCA). The linearity is estimated based on the measured SMiesmeasured samples are

then filtered as described herein (note that the filter isia@ait this calibration stage). The
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end results are samples of the full SVFs. These SVF samp@dsrathe locations (in the

attractor) where the linearity is acceptable. Finallyeathe calibration is performed, an
actual parameter reconstruction (measurement) can berperd as follows. An attractor
is collected for a system with unknown parameters. The c@tkdata is used to deter-
mine the sensitivity vectors at the locations where thealiitg assumption is acceptably
satisfied and where SVFs have been measured.

Note that, if the parameter variations are larger than abgduhen the usual available
measurement techniques should be used. The proposed epprogaides much enhanced
sensitivity, which is not needed when the parameter vanatare large. Also, if multiple
parameters exhibit nonlinear behavior, then the approadateacribed in the manuscript
cannot be used for detecting multiple parameter variatsimsiitaneously. A generaliza-
tion of the approach is possible, but that is beyond the sobties paper.

Also, note that the choice a7 can indeed be based on the linearity requirements
(relative toP; for example). However\T can also be chosen in relation to the parameter
variations expected. These two aspects are connectedalhgter variations are small, a

largerAT can be used because the linearity requirement is satisield(@erAT values).



CHAPTER III

Exploiting Delayed Nonlinear Feedback for
Sensing Based on Bifurcation Morphing

3.1 Introduction

Vibration-based techniques have been essential toolsolodestructive system iden-
tification over 40 years. [16] Such system identification basn applied to a variety of
problems such as sensing and damage detection. Early aiptts focused on various
linear vibratory properties for damage detection [17—-Rgcently nonlinear system anal-
ysis has become an important aspect of system identificappnoaches. For example,
several studies showed that use of nonlinear propertiessgétm has a great potential
for damage detection by providing an enhanced sensitifty. instance, linear systems
subject to chaotic excitation [25-28], and chaotic systeitiger with or without excita-
tion [29-31] have been exploited. Also, a variety of attbadtased metrics have been
presented to quantify geometric changes of attractorsate-space due to system pa-
rameter variations, e.g. damage. These approaches userigxapxponents or attractor
dimensions [32, 33], a scalar tracking metric [34, 35], atadistical characterization of
the distribution of points in an attractor [30, 31, 36—38pr Further enhancement, pattern
recognition techniques based on proper orthogonal decsitipo of the shape changes

between attractors (for undamaged and damaged systems)wmrosed. These meth-

39
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ods provide a basis for detecting multiple simultaneousatges and levels [30, 39, 40].
Furthermore, a novel approach has been proposed to enhamsiévity by enhancing
nonlinearity of linear or weakly nonlinear systems by meainsonlinear feedback exci-
tations [41,42].

Nonlinearities have been studied and were shown to be i@t micro and nano
scale vibration-based methods as well. For example, ahawdtions in tapping-mode
atomic force microscopy (AFM) have been studied [43—46], mew operating algorithms
using chaotic motions have also been discussed. These sed ba sensitivity vector
fields [44, 45] or local flow variations. [47] The increasee w§ AFM [1] also has been
accompanied by rapid growth of various other cantileveseblessensing techniques. These
techniques are usually monitoring either static (bendimage) or dynamic (resonant-
mode) responses of cantilever beams. Among resonant-npgaeaeches, nanomechani-
cal resonant mass sensors have demonstrated remarkasikeyggn48—53] Monitoring
resonant frequency is the most common approach in cantibmsed mass sensors, and
continues to be studied for sensing increasingly smallglesmass. For higher sensitiv-
ity, the use of higher order resonance modes and the reduzftidevice dimensions have
been discussed. [54] Recent approaches have been devedopeteve attogrami(—*®
g) level mass sensing, by using suspended micro-channelatss [55], or integrated
electronic displacement transducers [56]. While MEMS/NE8&nsors monitoring linear
resonant frequencies continues to be studied, sensingite@s using nonlinear features
have gained attention in various studies, such as onesddaus electrostatic nonlinear
forcing [57], parametric resonances [58, 59], or nonlimeadal interactions. [60]

In this paper, several new studies of the novel concept ofr¢ation morphing and
nonlinear feedback excitation [42] are presented for pralkcapplications in both damage

detection and sensing. The primary discussion is focusédeotime delay in the nonlinear
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feedback excitation. This time delay is unavoidable in ficat applications due to the
delay caused by measuring the dynamics, calculating thieneain feedback, and forming
the feedback loop. The side-effects of time delays inclutkiesirable high sensitivity of
the bifurcation boundary to small variations in the timeagel That is demonstrated by
numerical simulation. To alleviate the effects of this seffect, an additional time delay
is introduced as a new design parameter. As the controltabke delay increases, the
stable region surrounded by the bifurcation boundary cgeseto the smallest area. This
convergence provides the great advantage of minimizingffieets caused by variability
in the time delay. The increased time delay also helps tora#sensitivity and robustness
of the proposed approach.

Next, the paper discusses calibration issues. The sengimgach based on bifurcation
morphing requires two bending-sensors to be placed ahdidtications on the beam and
used to construct nonlinear feedback signals. Variousosémsations are tested to identify
the ones which provide the highest sensitivity. By choosiagous sensor locations, the
proposed method can be adapted for detecting simultaneousges at multiple locations.
These features also enable sensing multiple analytes aiptaubcations calibrated for
ultra high sensitivity. A multi-mode clamped-free cantéde beam finite element model
is used for computational analysis. Bending-sensors aifdraomy distributed bending
moments are used for applying the nonlinear feedback exmtaDensity variations for
multiple finite elements are considered as models for massticans at certain locations.
Parameter reconstructions are demonstrated for sevstalases with high sensitivity to

simultaneous mass variations at multiple locations.
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Figure 3.1: Schematic of nonlinear feedback control.

3.2 Theory and Modeling

3.2.1 Bifurcation morphing with delayed nonlinear feedba& excitation

A closed loop system for nonlinear feedback excitation iesf sensors, a controller,
and an actuator. As shown in FIG. 3.1, the process of calogldéedback excitation
(STEP2) may generate the majority of the time delgy, (while the time delay caused
by the signal transfer from sensors to controller input (BIEand the signal transfer
from controller output to actuator (STEP4) are much shaated can be neglected. To
exploit the boundary between stable and unstable dynamiqgsairameter identification,
it is important to investigate the influence of the time dedaythe bifurcation boundary.
Note that an additional time delay can be applied by the controller (STEP3). The entire
time delay is thus = t; + t,.

To gain an analytical perspective on the bifurcation marghwith delayed nonlinear

feedback, one may start from the basic concept of bifurnatiorphing method with non-
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Figure 3.2: Two-degree-of-freedom spring-mass systerjestdnl to nonlinear feedback
excitation.

linear feedback presented by Yin et al. [42]. For the lin¢abisity analysis, the nonlinear
feedback term is ignored. The equation of motion fonaOF system can be expressed

as
Mii + Cu + Ku = Guy, (3.1)

where matrice®/I, C, andK are the mass, damping, and stiffness matri€eis the linear
feedback gain matrixu is the displacement vector, ang is the delayed displacement
vector.

Two sensors are considered for feedback in the proposedagpr Thus(G is com-
posed of two feedback gain parametéfs and G,. Eq. (3.1) can be solved fax by

seeking a solution of the form

(3.2)

ugy = ue

wherer is time delay of the feedback excitation. Substituting BoR) into Eq. (3.1), one

obtains
(M +AC+K—Ge M u=0. (3.3)
For a non-trivial solution to exist, the matrix

AN = XM+ AC + K — Ge™ (3.4)
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must be singular. Hence, the characteristic equation afyfteeem is

det [A(N)] = 0. (3.5)

Bifurcation boundary of Hopf bifurcation on th&,-G, parameter space can be obtained

by solving Eq. (3.6) for\ = +jw. One obtains

det [A(+jw)] = 0, (3.6)

which consists of real and imaginary parts that must varkigmce,

Re{det [A(+jw)]} =0,

Im{det [A(£jw)]} = 0. (3.7)

Eqg. (3.7) has 3 undetermined variablés (G, w). The frequencw can be interpreted as
the frequency of the limit cycle which appears right aftex thifurcation occurs. As there
are only two equations, and the goal is to obtain the bifisodioundary in the parameter
space (-,, (G), one can fixv as various values and solve for the correspondigand

Gy. This can be done for increasingfrom w = 0 to higher frequency as needed.

o
o o0 .
Stable
Region

Unstable

—2r Region

-4+
-6

-8+

-10 I I I I
-10 -8 -6 -4 -2 0 2

Figure 3.3: Bifurcation boundary without time delay.
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Figure 3.4: As time delays increase, the bifurcation boayndanverges to a minimal area
with increasing numbers of intersections.

To observe the influence of the time delay, consider the gmpb-degree-of-freedom
(2-DOF) mass-spring model from Yin et al. [42], as shown iGFB.2. The equation of

motion for this system is as same as Eq. (3.1), where

mq 0 Cl+Cy —Co ]471 + ]fg —/{32
M = , C= , K= ,
0 mo —C9 Cy _k2 k2
0 0
G =
G, Gy

The system parameters arg = my = 1, ¢; = ¢o = 1 andk; = ko = 1. Solving Eq. (3.7)
for G, andG, at variousv, one obtains a curve in the parameter space. This curveegivid

the space into stable and unstable regions, as shown in Eigand 3.4 . Without time
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delay ¢ = 0), G, andG, can be obtained as

G, = -2+2
w
—w+witw
G = (3.8)

FIG. 3.3 shows the bifurcation boundary formed by Eq. ()ting thatlim,,_.o G, = oo,
lim,, oo Gy = —00, and‘% < 0 for all w, this boundary divides the parameter space into
half-opened regions: an unstable region (left-hand sidd)astable region (right-hand
side). This is obvious for the 2-DOF system because it only dree pair of roots for
Eq. (3.6). Hence, every solution is a bifurcation point ia garameter space.

Applying time delay to the systemr (£ 0), there are now an infinite number of roots
for Eq. (3.6), as the equation becomes transcendetitedndG, are obtained as

o - v (w* + 2) cos(Tw) + (Wb + bw? — 2) sin(Tw)
a - - w3 )
.5 3 4 2 _ ;
G, — (—w® 4+ w’ + w) cos(Tw) + (2w* 4 2w* — 1) sin(Tw) (3.9)

w3

Every set of (=, GG;) does not physically represent a threshold between stablarsstable
dynamics of the system anymore because a bifurcation oocuysf the corresponding
roots arehe first pairpassing through the imaginary axis to right-hand side o€tmplex
plane. As shown in Figs. 3.4a and 3.4Db, a solution curvesstadrsecting itself and forms
a closed region including the origin. Note that the origimha parameter space means no
feedback excitation to the system, and the region incluttegorigin is always stable.
From FIG. 3.4a and FIG. 3.4b, the stable region of the sysseohserved to converge to
the smallest area as the time delay increases. Figs. 3.42.4madhow the uppermost and
lowermost areas of FIG. 3.4b. An increasing number of ilgiens of the boundary are
observed as the time delay increases.

As not all pairs (&, G,) are on the bifurcation boundary, we consider polar coarteis

in the parameter space. The bifurcation boundary can beedefor a givenr as a set of
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Figure 3.5: The bifurcation boundary can be defined in padardinates, and the conver-
gence of the boundary can be demonstrated by the convergéngg,

minimum radius £,,,;,,) for all # from 0 to 27, as shown in FIG. 3.5a. FIG. 3.5b shows the
convergence of,,;, as the time delay increases, ahd= 0,7 (i.e. G, = 0 andr,,;, IS
the minimum of|G,|). Another interesting phenomenon observed through thiyticed
calculations is that the frequency of the instability néwr bifurcation boundary becomes
less sensitive to parameter changes when the time delagais®s. This phenomenon is
also observed for the computational model and demonsttéésach boundary curve
corresponds to a very narrow range of frequencies for thg d@lveloped (or converged)

bifurcation boundary.

3.2.2 Computational model for parameter reconstruction

Nonlinear

EE| | Piezo-Actuator Sa Sb Piezo-Sensors
4 A\ / B

mass variations

Figure 3.6: Schematic of the cantilever beam test system.
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In this section we consider a closed loop system composedofi@oller which acts
on a clamped-free cantilever beam structure, as shown in¥B5 The cantilever beam,
the actuator, and the sensors are modeled using a finite miéonmulation. In FIG. 3.7,
a 2D elastic beam element is used for modeling. The outpudcti sensor is considered
proportional to the bending of the finite element at the lioceadf the sensor. The actuator
is considered to create a uniformly distributed bending mnalong its length (10 adja-
cent nodes). Mass variations are applied at multiple looati An aluminum beam with
physical properties given in Tab. 3.1 is considered. ANS¥ Gsied to form the mass and
stiffness matrices for a model with 100 BEAM3 elements. Tépgation of motion for the

FEM structural model with nonlinear feedback excitatioexpressed as
Mii + Cu + Ku = Gs + Nps(s), (3.10)

where matricegM, C, andK are mass, damping, and stiffness matriggsand N are
linear and nonlinear feedback gain matricass the vector of nodal displacements and
rotations, and is the vector of sensor outputs. The vegbg(s) contains the entries of
each raised to power 3. Two sensors (placed at distinctitotgtare used. Thus,is a

2 x 1 vector expressed as
_ T _ T
s={sq sp} ={-Ta1+Tre2 —Te+Te2}, (3.11)

wherer; andr, are the rotations of the 2 nodes on an element as shown in FTG. 3
andps(s) = {s2 s;}7. Subscriptsz andb indicate the element index among the 100
elements which represent all the possible sensor locatidres vectors can be expressed

in terms ofu as follows

s = Eu, (3.12)



wherekE is given by

andu is expressed as

u={ g - 24 Yal Tal Ta2 Ya2
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Figure 3.7: Cantilever beam model with actuator and sensors

Table 3.1: Properties of the cantilever beam

Property Symbol Value
Length L 0.28 m
Width b 0.03m
Height h 1.27-102m
Young's Modulus FE 69.9 GPa
Poisson Ratio 1 0.33

Density p 2660 kg/m?

Considering time delay in feedback excitation and the esgpom of delayed sensor

outputs, in terms ofE anduy, the final equation of motion for delayed nonlinear feedback

is expressed as

Mi + Cu + Ku = GEu, + Np; (Euy) .

(3.13)

Once the equations of motion for the discretized system btaireed, the model can be

reduced by general modal analysis. Calculatingrthe m normalized eigenmatri¥,,
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composed of eigenvectors of the system, and introducingntbial coordinate vectox,

vectorsu anduy can be expressed as

u = V,x,

Uy = Vde. (314)
Substitutingx into Eq. (3.13) and multiplying bW ” one obtains

vl MV,%+VICV,x+ VLKV, x

m

=VIGEV,,xs+ VI Np; (EV,,x,) . (3.15)
A final m-DOF reduced order model is obtained as
Ix + Dx + Qx = G,x4 + N, p3 (E,x,4), (3.16)

wherel is the identity matrixD is a diagonal matrix with diagonal values2af;(; and(2
is a diagonal matrix with diagonal valueswf. For numerical simulations; are assumed

to all have a value af.1.

3.3 Results

3.3.1 Bifurcation boundary with delayed nonlinear feedbak

Although challenging, it is possible to obtain the bifuroatboundary for the can-
tilever model with delayed nonlinear feedback by an anedytpproach. In addition, the
bifurcation boundary can be identified by numerically camgting bifurcation diagrams
for multiple locations in the parameter space. Resultsinétefor both the analytical and
the numerical methods are shown in FIG. 3.8 for the specis# o zero delays. Points
A, B and C correspond to parameter valu@s,(G;) shown, whereas the frequency of the
dynamics in the post bifurcation regime is indicated byThe results given by the two

methods match very well. All results below are based on nigalesimulations.
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Figure 3.8: Bifurcation points obtained using analyticadl anumerical methods for can-
tilever beam model with non-delayed nonlinear feedbackt&xen. For de-
layed nonlinear feedback excitation, only the numericahoe is used.

In the bifurcation morphing approach choosing sensor ionatS, and S, is impor-
tant, not unlike other methods. Thus, twenty combinatiohsvMo sensors were tested
with sensors at five different locations on the beam to oliiatter sensitivity to variations
in mass at a few designated locations. The selected conumnaittwo sensors{, and
Sy) corresponds to the finite elements located around 60% atd@ahe beam length
from its clamped end. The nonlinear feedback gains were fikethg simulations, as
N, = N, = —0.05. Bifurcation boundaries in th€,-G, parameter space were obtained
for increasing time delays from near zero to 50 ms. As timayelIncrease, the stable
region converges to the smallest area in the parameter,smasbown in FIG. 3.9. Dotted
lines are the bifurcation boundaries for time delays frofinr@is to 0.5 ms. The lines with
roman labels are final bifurcation boundaries for the suyieral Hopf bifurcations which
occurs when the time delay is 50 ms. Circles indicate inttices of two different bound-
ary curves distinguished by the difference in frequencyhie post-bifurcation regime.
These frequencies can be compared with those for the finaldawies. The dotted line
corresponding te = 0.4 ms is the closest to the boundary VIII. The frequencies f th

(dotted) boundary range from 1485 Hz to 1490 Hz. The bound&iyhas frequencies
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Figure 3.9: As time delays increase, the stable region e¢gegeo the minimal area with
multiple intersections of the boundaries.

from 1491 Hz to 1492 Hz. On the boundary V, closest linesat0.4 msT = 0.5 ms have
frequency ranges of 931943 Hz and 910- 921 Hz respectively, while the final boundary
has frequency range only in 928929 Hz. Hence, the whole bifurcation boundary con-
sists of multiple boundary curves divided by intersectjamsich have distinct frequency
characteristics. Multiple boundary curves can be monitdoe parameter reconstruction
and are effective for detection of simultaneous mass vanston multiple locations, as
demonstrated in the next section.

Next, consider a constaidt, = —162.5. One point on the boundary VIl can then
be monitored in detail to evaluate the effects of the timaygeAs shown in FIG. 3.10a,
the value ofG, (at the bifurcation point) fluctuates (with large variasdand converges
to the minimum value of7, as the time delay increases. This behavior suggests that a
smaller stable region is beneficial because the searchouaegs for detecting the bifur-

cation boundary starts from the origin of the parameter spadoreover, an important
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Figure 3.10: As time delay increases, the values on thedafion boundary converges
to the minimum. Furthermore, the noise caused by time dedaiation is
minimized.

advantage comes from the fact ti{@t converges to a certain value. The large fluctua-
tion of GG, obtained for shorter time delays in FIG. 3.10a are undedesifabcause small
errors in the controlled time delay may result in unintendatisubstantial variations in

the bifurcation boundary. As in FIG. 3.10b, the convergenic€', is essential to reduce

the influence of errors in controlling the time delay. In thigire, AACja is shown to con-

verge to nearly zero as the time delay increases. Additionaldelay reduces undesirable
sensitivity of the system to errors in the controller, anddtps maintain performance in
terms of sensitivity and proportionality to mass variasavhich are essential for param-
eter reconstruction. In FIG. 3.11, proportionality is regented by a normalized value.
A value of 1 indicates good proportionality within monitdreange. Mass variations are

applied within a range from 0.05% to 0.2% of the total mas$eftieam. Sensitivity can

be defined as a nondimensional quantity given by

G =

m

: (3.17)

s[Epol

wherem is the total beam mas&m is the mass variation an@ is a feedback gain on the

bifurcation boundary. Similar to Eq. (3.17), one may defime $ensitivity of the natural
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Figure 3.11: Additional time delay eliminates disadvaetsgaused by natural time delay,
it maintains the performance of the proposed approachnsef sensitivity

frequency shift as
Aw
S = A=, (3.18)

wherew is a natural frequency of the beam. A maximuiy) of 1.43 is obtained forAm
at location A, and 8.25 foAm at location B, as shown in FIG. 3.11. Locations A and B
correspond to the finite elements located around 30% and 9QPe deam length from
its clamped end. For same mass variations, the maximum w@hl6g among the first 5
lowest natural frequencies (up to 1.6 kHz) is 1.462 at therimsural frequency (28.2 Hz)
for Am at location B. Overall, the bifurcation morphing is obselte have sensitivities
starting from about the same order as frequency shifts tmaher of magnitude higher.
Nondimensional values have been used to compare the s#iestiNonetheless, there
are other aspects of the proposed bifurcation morphingoagpr which differentiate it
from the more common, frequency shift methods. For exanfdquency shift methods

usually require very low damping (high quality factor) esjpdly in the lower frequency
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Table 3.2: Frequency Characteristics of the bifurcatiomralary curves
Index Frequency of Limit Cycle [Hz]

I 153~ 154

I 168 ~ 169

1] 451 ~ 452

\Y, 469 ~ 470

\Y, 928 ~ 929

Vi 946 ~ 947
VIi 1472 ~ 1473
VI 1491 ~ 1492

range, while limit cycle oscillations (beyond the bifuiicat point) are much less depen-
dent on damping regardless of their frequency. Furtherimbesvalues of the gaings(,
G,) are applied to the system, and hence are known with higlsefutton than resonant

frequencies which have to be measured.

3.3.2 Parameter Reconstruction

The bifurcation boundary for parameter reconstructiorbisimed for a time delay of

50 ms, as shown in FIG. 3.12. Each boundary curve is numbaredtieasing order by
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the frequency of the post bifurcation regime. As presentediab. 3.2, narrow ranges
of frequencies are observed for all bifurcation boundariBise boundary curves V and
VIl are used to apply the bifurcation morphing method andcedesimultaneous mass
variations at multiple locations. Mass variations are egapht two distinct locations, A
and B. A 5% variation of the mass of a single finite element isliad to construct the
basis for parameter reconstruction. Also, 10%, 15% and 28&3atons of the mass of a
single finite element are applied to demonstrate the prigpadity of the basis. From the
physical properties assumed for the cantilever beam (Tap.tBe total beam mass is 28.4
g, and each finite element has a mass of 284 mg. Hence the rangess variations are
approximately from 14 mg to 56 mg, which are 0.0590.2% variations compared to the

total mass of the beam.

No variation
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—+— 10%
*— 156%
20%

No variation %”/Nm% 1 -100
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—— 10%
-120] 4 1 -120
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a. Am at location A b. Am at location B

Figure 3.13: Bifurcation boundary morphing by mass vasiadion a single location.

The bifurcation morphing in the parameter space caused géesnass variation is
shown in FIG. 3.13. The circle indicates an area which is tleaintersection between the
bifurcation boundary curves V and VII. In this intersectemea, the bifurcation morphing
is not proportional to the mass variations because the twadery curves overlap each
other as mass changes. Excluding the intersection regagtions of the bifurcation

points are measured at four locations along each of the twadsry curves, which leads
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to a total of eight points. As demonstrated in FIG. 3.13, ¢heme many portions of the
bifurcation boundary which can be probed in detail. Howgtteait is beyond the scope
of this paper. Here, we choose to focus on one portion of thendbary. This portion
was chosen in a quasi ad-hoc fashion. Of course, an optinsizledtion process can be
designed.

The bifurcation morphing modes are presented by plottiegs/driation ofGG, (on the
y-axis) versud, (on thez-axis), as shown in Figs. 3.14a and 3.14b. In these figures,
the left side of the intersection region is the boundary ebwll and the right side is the
boundary curve V. Mass variations are applied at locatiom &IiG. 3.14a and location
B in FIG. 3.14b. A mass variation of 5% is used to constructlihsis for reconstruc-
tion of mass variations at each location. These figures shatveach boundary curve
varies in a way which makes it hard to detect simultaneousmasations using only a
single boundary curve. Nonetheless, each boundary cunte @stinct frequency char-
acteristics) varies differently for the same mass vanmtand linearly independent bases
for distinct locations can be constructed by using a contlmnaf two or more boundary
curves.

The proportionality of each basis to mass variations is destrated in Figs 3.14c and
3.14d. The amount of morphing of the bifurcation boundarg whtained for 5%, 10%,
15% and 20% mass variation. Next the linearity of this manghéan be compared (as a
ratio) to the baseline variation of 5%. The ratio which isasbéd for a perfect linearity is
of 1 for 5%, 2 for 10%, 3 for 15% and 4 for 20%. The results in Adisic and 3.14d show
that proportionality is ensured for the eight points forgnthe basis, while some points in
the intersection region fail to maintain proportionality.

Parameter reconstruction is demonstrated for five diftarases of simultaneous mass

variations. Thes x 2 basis matrixB is formed by twos x 1 basis vectordy 4 for location
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Figure 3.14: Bifurcation morphing modes and proportiagadf the basis within desired
range of mass variations.

A andbj for location B as
B=[bs bpl. (3.19)
Then, the equation used to reconstruct (identify) the magation can be expressed as
BAm = ¢, (3.20)

whereAm is the2 x 1 vector of mass variations at location Aand®m = {Am, Amp}7,
andc; is the8 x 1 vector of bifurcation morphing mode for the test cases fra@.B.15
(details in Tab. 3.3). The amount of mass variation can betifiied by solving the overde-

termined system of equations in Eq. (3.20) simply as

Am = Btc;. (3.21)
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Results obtained for several cases of multiple mass vanisiby the bifurcation mor-
phing approach with delayed nonlinear feedback are showraln 3.3. For each case,
simultaneous mass variations are applied at both locaffasd B) within a range from
5% to 20% variations of the mass of a single finite element. Mmhgimum relative error
for the parameter reconstruction is 3.65% among the tesiedsc Note that this rela-
tive error is calculated for the variation level (expresse@dercentage). Thus, the actual

physical relative error is much smaller.

Table 3.3: Reconstruction results from numerical simatsi
Case location Variation Reconstruction Relative Error [%]

1 A 0.07 0.0674 3.65
B 0.18 0.1787 0.72
2 A 0.08 0.0784 2.04
B 0.14 0.1392 0.54
3 A 0.12 0.1190 0.87
B 0.09 0.0896 0.42
4 A 0.13 0.1292 0.58
B 0.07 0.0697 0.38
5 A 0.18 0.1797 0.18
B 0.04 0.0397 0.67
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3.4 Conclusions and Discussion

New studies of the bifurcation morphing and nonlinear femttlexcitation have been
presented. The primary topic was the time delay. Time dedaynavoidable for a feed-
back control system. This (naturally embedded time delay) ltave disadvantageous
side-effects for sensors based on bifurcation morphingalticular, it produces undesir-
able high sensitivity of the boundary to small variationgha time delay and that makes
it difficult to achieve high sensing performance. To resdhis critical issue, additional
time delay can be applied in the feedback excitation. Asithe tlelay increases, the bi-
furcation boundary is observed to converge onto a smalliardee parameter space. Fur-
thermore, the convergence/stabilization of the bifuoratioundary significantly reduces
the sensitivity of the boundary morphing to fluctuationshe time delay. As a conse-
guence, the additional time delay enhances the bifurcationphing method by reducing
and stabilizing the stable region of the system in the paranspace.

Unintended side-effects of the additional time delay ase abserved. As time delay
increases, the bifurcation boundary curves within the staetpiency range (for the post
bifurcation regime) are longer in the parameter space. Atsme time, as a result of
the convergence of the stable region, the total length dbiffaecation boundary becomes
shorter as the time delay increases. As a consequence offasth phenomena, the bi-
furcation boundary has limited range of frequencies, aatl tbsults in variations of the
boundary which are alike for different types (i.e. levets;dtions) of parameter (mass)
variations. Therefore, it becomes harder to identify Ilheandependent bases for mul-
tiple parameter variations (such as variations of varigpes and locations). This issue
is compensated by the increased number of intersectioresv@zkas the time delay in-

creases. Intersections divide the bifurcation boundamuttiple boundary curves with
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distinct characteristics. Using multiple boundary curtbe bifurcation morphing method
successfully detects simultaneous parameter (mass}ivasa Note that various combi-
nations of sensors have to be tested for finding the highasitsaties. A similar process

can be applied to other applications involving structuréh warious sensor locations and
damage (parameter variation) locations.

Only supercritical Hopf bifurcations were considered. @ttypes of bifurcation can
be considered also but are not discussed. Nonethelessusariher types of bifurcation
can be induced by designing the form of the nonlinear feddbacitation.

The level of energy injection by the controller may be highdome types of structures
and applications such as damage detection method. Howbigtevel is common for
vibration-based cantilever sensors (like resonant massosg). The high sensitivity and
the ability to detect multiple simultaneous parameteratarns show a great potential for

sensing.



CHAPTER IV

Forecasting a Class of Bifurcations: Theory and
Experiment

4.1 Introduction

Forecasting bifurcations (i.e. predicting bifurcatiom$dre they occur) is a significant
challenge, especially when an accurate model of the systameoest is not available. In
this work, we focus on a certain class of bifurcations. Sjadly, jump phenomena (via
subcritical and/or saddle-node bifurcations) are impdria many applications because
they correspond to sudden and dramatic changes in the syisteamics. These types
of nonlinear phenomena have been observed and discussedhirety of systems, e.g.
physical systems governed by equations of motion such aSdhedinger equation [61]
or the Swift-Hohenberg equation [62], climate systems,[@8blogical systems [64, 65],
biomedical systems (exhibiting behaviors such as asth®jdi6epileptic seizures [67,
68]), neuron systems (exhibiting pulse propagation [} global finance systems [70].

Several system characteristics have been explored focdstieag bifurcations of in-
terest (e.g. noise-induced spectrum [71], virtual Hopfrigmeenon [72], skewness of
probability distributions [73] or flickering in bistableg®mns before bifurcations [74, 75]).
In particular, the critical slowing down phenomenon [76¥Heeen employed as the un-

derlying physical basis of various existing approacheddogcasting the occurrence of

62
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bifurcations [77]. Consider an attractor of the dynamica @lystem (e.g. a stable fixed
point, a stable limit cycle or a chaotic attractor). When almperturbation is applied
to the system, the dynamics converge toward the attracteorate (recovery) rate. The
critical slowing down means that this recovery rate appneazero as a parameter of the
system varies and the size of the basin of attraction shtokd [78]. As a consequence,
in the pre-bifurcation regime, the recovery rates (from lfp@rturbations) decrease as
the system approaches the bifurcation. These effects cabdsrved quite far from the
bifurcation [77]. Hence, quantifying the effects of thetical slowing down is one method
which can be used as an indicator of nearby bifurcations.

Nearby bifurcations have been predicted in various comgystems by monitoring
the recovery rates of the system framall perturbations. Methods used have included
monitoring changes in the autocorrelation [79] or the var&[80] of the system response
to small perturbations (which are consequences of theakrisiowing down [77]). These
techniques for forecasting bifurcations have been stuftiedarious systems, such as
ecosystems [80—82], climate dynamics [83], cell signal8#j, and ocean dynamics [79].
Such studies are still far from being able to predict/fosttihae most complicated bifurca-
tions when an accurate model of the system is not availabo, An current techniques
there are often two implicit assumptions that the dynamfahie system takes place on
a very low dimensional manifold, and that the bifurcations eo-dimension one. Even
more importantly, when a physical system is available fstitg, the level of perturbations
which can be applied to the system have to be very small. Shegdause the formulations
based on observations of critical slowing down have beeretbin close proximity to the
attractor (by linearization after eliminating higher orderms).

In this paper, an alternate approach to characterizingetb@very rates of dynamical

systems is proposed. Specifically, the rate of change of niq@itude of the dynamics
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(including certain higher order terms) is quantified. Thesvrcharacterization shows that
critical slowing down can also be observed when using mufetaevels of perturba-
tion. By tracking the change of the recovery rate from largegyrbations, it is possible
to predict both stable and unstable branches in a bifurcalimgram. Of course, when an
accurate numerical model is available, bifurcation brascban be computed using sev-
eral computational bifurcation tools, e.g. AUTO [85], DIEFFTOOL [86] and PDDE-
CONT [87]. Only a few recent studies consider detecting alvist periodic orbits in the
bifurcation diagram experimentally [88—90]. These apphes use controllers to stabilize
unstable orbits and track them while a parameter of the syst@aried. Such approaches
are useful in detecting many types of bifurcations. Howgwentroller-based approaches
have many requirements. In contrast, the proposed appdusshnot require a controller
and does not need the parameter to vary (or to enter the gaostdtion region). Instead,
this approach predicts the bifurcation and the unstablades simply by tracking the
recovery rate of the system dynamics. These advantages abthe price of limiting
the class of bifurcations which can be tracked. Specificalyy Hopf and saddle-node
bifurcations can be handled. Nonetheless, the charagterecovery rates can be used to
predict both the occurrence and the type of bifurcatiores @upercritical or subcritical)
before they occur.

Numerical simulations and experimental results are pexvid demonstrate the use of
our technique for forecasting bifurcations. Limit cycleitiations of a simple mechanical
system are used in the experiments. To simulate bifurcaidrhimit cycle oscillations,
properly designed nonlinear feedback excitations areieghgb that the desired types of
bifurcations take place in an otherwise linear system. Meal feedback excitations have
been employed in structural health monitoring [42, 91] asdstng [92] as an active in-

terrogation approach. However, the feedback control,i;yghper, is only used as a tool
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to simulate desired nonlinear dynamics. The proposed apprdoes not require any type
of control to be applied. As the time scale of the system usgdih is very short (com-
pared to several systems used in current studies [77]), xperienental set-up provides
large amounts of data in a short time. Moreover, the resblitsived using the proposed
approach suggest that predictions of bifurcations byaaiitslowing down can be suffi-
ciently accurate for applications to engineered systemshndenerally require high preci-
sion (such as sensing). Many of engineered systems expettiea class of bifurcations of
interest here (subcritical/supercritical Hopf bifurcais and/or saddle-node bifurcations),
e.g. relief valves [93], shape memory oscillators [94] catastic systems [95], machine

tools [96], and automotive components such as torque ctanautches [97].

4.2 Theory

This section presents a method to forecast bifurcationssbngutime series collected
onlyin the pre-bifurcation regime. The method is based on olasiervof how the system
recovers to its equilibrium state from perturbations. Saalecovery of the oscillation
amplitude to equilibrium is shown in FIG. 4.1. Discussiomudses on forecasting co-
dimension one supercritical/subcritical Hopf bifurcatsicand saddle-node bifurcations.

Consider a nonlinear system with the perturbed dynamiceactexized by an ampli-
tuder, and a fixed point or periodic dynamics characterized by aplituder. Consider
also that a perturbation with a certain levglis applied initially to the system. When
the system has a stable behavior, it converges from thalipérturbation-, back onto
the (stable) fixed point or the (stable) limit cycle of amydie 7 as shown in FIG. 4.1.
When the system has an unstable fixed point or an unstabledytie, the amplitude

diverges away fronk. The time rate of change of the amplitude in either of theses&s
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considered to be of the form

F=rlo(p = pe) = p(r)], (4.1)

whereq is a fixed parameter of the systemis a controlled/monitored parameter of the
systemy... is the critical value of the parametgrwhere a bifurcation occurs, andr) is

a polynomial function of- with p(0) = 0. Note thatp(r) is assumed to be independent
of the control parameter. This is an important assumption which delineates the rafge
application of the proposed method. Here> 0, and the pre-bifurcation regime corre-
sponds tq: < u.. In the pre-bifurcation regime, the dynamics of the systes & fixed
point atr = 0. In the post-bifurcation regime, the dynamics has one fia@dt@atr = 0
and another at, wherer is given byp(7) = a(u — p.). Also, note that, in generady is
not known unless an accurate model for the system is avail&tdrein, we consider an
unknown that has to be identified/detected.

The rate of change of the phageof the system is not considered because we do
not focus on infinite period bifurcations or other similafuocations. The phase of the
system can be defined for any system exhibiting a limit cyslallation of periodl to
reveal the fact that the dynamics is periodic. Hertcearies by2r when time varies by
T. Only a generic phase definition is needed because the mo@pgproach uses only
the amplitude of the oscillations as input data (and theesysesponse is assumed to be
periodic). Hencef andé do not significantly influence the analytic formulation.

The rate of amplitude variation at times defined as

dlogr

AMp,r) = prat (4.2)

Using Eq. (5.4) one obtains

Apor) = 1 =l — u) — plr). 4.3)
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Figure 4.1; . . .
g The rate function\ can be measured at each level of perturbation by measuring

r_,r andr, attimest — At, t andt + At. Note that perturbations do not have
to be small. OnlyAt needs to be small.

The rate of amplitude variatioh in Eq. (4.3) is a function of: (the controlled/measured
parameter) and (the amplitude at time), and is composed of two terms. The first term
a(pu — p.) is the distance from the current parameter valde the critical value.,. scaled
by the fixed coefficient.. The second term(r) is a polynomial which characterizes the
type of bifurcation.

Consider that measurements are collected at timesAt, ¢t andt + At to obtain
three amplitudes_, » andr, as shown in FIG. 4.1. To determirkg one can employ the

following approximation

_dlogr _, logr, —logr_

A(/’L7T> - dt 2At ) (4'4)

which holds for smallAt. Note that the measured perturbatiensr andr, do not have
to be infinitesimal as long a&t is small.
Generally,\A can be exploited in either the\ space or the:-\ space. First, consider

the dynamics of the system for a fixed parametand a varying perturbation level As
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a. dependence of onr for a fixedu b. bifurcation diagram

Figure 4.2: . . . , .
g Once )\ is obtained for a certaip, the shape of the actual bifurcation can be

predicted without exploring the post-bifurcation regirker each, A(u, 7;) =

a(pu — fv) and the actual distance betwegrand i can be estimated (for a
known «). Note thato can be easily obtained by measuring (as few as only)
two values of) for two distinct values ofi.

shown in FIG. 4.2a, the dependence\ain r is a polynomial given by

Alp,r) = Ao —pl(r), (4.5)

where), = a(p — p.) represents the rate of amplitude variation whetends to zero,
Au,r = 0). Different polynomialsp(r) correspond to distinct types of bifurcations.
Therefore, the shape of(x, ) in the -\ space can be used to determine the type of
bifurcation which takes place at= .. Note that the bifurcation is forecasted, i.e. itis
identifiedbeforeit takes place (using only values which are less than). This ability to
forecast is not found in other existing techniques [85-90].

In general, for a given parameter value= /i, a system may have several coexisting
fixed points or limit cycles. Consider the amplitugjef one of those stable/unstable fixed
points or limit cycles. As shown in FIG. 4.2b, all poin{®, (7;) on the bifurcation curve

satisfy the equation of motion and correspond to fixed pdorts. Hence,

(i, 73) = 7 [(fi — pe) — p(7)] = 0. (4.6)
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Now, recall the dependence dfonr expressed in Eq. (4.3) (and presented in FIG. 4.2a).

For all7;, the value of\(y, 7;) is the same, as we show here

M, 75) = alp— pe) — p(7s)

= alp—fi+p—pe) —p(F). (4.7)
Using Eg. (4.6), one obtains
0
A7) = = i)+ ali = u =7l
= a(p—p). (4.8)

Eq. (4.8) reveals the fact that the value\adt; represents the distance (scalechyrom

the currentu to . Note that for each, A(u, 7;) is a line in theu-\ space, which has the
slope ofa and crosses thg-axis (\ = 0) at i. An example of such a line (defined by
Eq. (4.8)) is shown in FIG. 4.4. One can meas\fe, ;) for as few as two distinct values
of 1 to obtain this line. This requirement is distinct from ciaasapproaches whegehas

to have many values which span both the pre-bifurcation laag@ost-bifurcation regimes.
Next, the fixed coefficientv can be estimated as it is the slope of the line (defined by
Eq. (4.8)). One can then measuvéfor a given value of°, and a given value of) and
computen as

A= A ). (4.9)

(8
Finally, the bifurcation diagram can be predicted by theo$g@bints (i, 7).

Note that\ is derived without eliminating higher order terms. Hends,definition
can be used at any level of perturbation. Based on the valugsablarge amplitudes,
one may predict the distance o from the currenj: by estimating\y = «o(u — p.) from
Eq. (4.5). In most cases, it is a challenge to observe thesydiynamics (and estimate

A) from very small perturbations because the measuremerdstoél dynamics can be
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obscured by noise. Therefore, the estimated valug & more accurate if obtained using

data collected for sufficiently large amplitudes.

The general algorithm for forecasting the bifurcation d#g using this approach is as

follows:

1. For a given value of the paramejer= p; (with £ = 1--- M, whereM is chosen
by the user), a perturbation is applied to the system, anditag values-; (with
j =1---N,where N is chosen by the user) are collected at various tistamnces

k.

2. Using Eq. (4.4), the rate of amplitude variatibp = A(u, ;) is computed at time

tipforallj=1---N.

3. The slopey; of the line(u, r;) vs. iy is computed for each; (j = 1--- N). Note
that theseV values ofa; can be averaged ovgito obtain an average value affor

improved noise rejection.

4. Avalue offij; is obtained for each,, (k =1--- M) and eachr; (j = 1--- N) using
Eq. (4.9) (where has a valug; of r;) and the sloper obtained at step 4. Note that
these)/ values offi;;, can be averaged ovérto obtain an average value for for

improved noise rejection.

The bifurcation diagram is finally obtained as the plotp¥s. /i, for j =1--- N (where

T’j:’f’j).

4.3 Results

In this section we demonstrate our approach by applyingsit iira numerical model

and then to an experimental system.
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Figure 4.3: . . .
g Predictions based ahare demonstrated using a numerical model for a super-

critical Hopf bifurcation.
4.3.1 Numerical results

Forward (supercritical) and backward (subcritical) Hoptitcations are considered.
The governing equations of motion for systems with suchrbétions are of the form
shown in Eq. (5.4). They are characterized by two differgpées of polynomialg(r) as

follows

pe(r) = Br?, (4.10)

m(r) = —Br?4+yr. (4.11)

The values ofJ = 1 and~y = 1 are used to obtain numerical data. The valueg.cinda
from Eq. (5.4) are considered to pe = 0 anda = 1. The results obtained foy, and the
predictions made for both bifurcations are presented in BlGand FIG. 4.5.

For a supercritical Hopf bifurcation, values fdrwere obtained in a range @ffrom
tmin = —1 10 e = —0.5, with a given initial perturbation amplitudg = 0.8. The
curve shown in FIG. 4.3a is the exact bifurcation diagranaieid by analytically solving
7 = 0 for r at everyu between—1.2 and1. The points [, 7) in FIG. 4.3a are predictions
obtained by the proposed approach using multiple curvescoflected for distinct values

of u betweenu,,;, and u,..... Specifically, the values of for a certain amplitudé on
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'gure Each predicted point fatin FIG. 4.3a is estimated by line fitting the measure-

ments ofA\(u, 7) for variousy. The slope of the line fitting all measurements
(for a givenr) is a.

the dotted line shown in FIG. 4.3b are projected ontothespace as shown in FIG. 4.4.
As discussed in Section Il, this line has the slopevadnd crosses thg-axis (\=0) at
ii. All predicted points shown in FIG. 4.3a are obtained by #w@e approach under the
assumption thatv is unknown (and must be measured). Note that, anceidentified,
measurements of for a singleu value are sufficient to obtain a prediction for the entire
bifurcation diagram in FIG. 4.3a.

For a subcritical Hopf bifurcation, the range considered;favas fromg,,;,, = —2
to umer = —1, and the initial perturbation amplitude wag = 1. The results shown
in FIG. 4.5 were obtained by exactly the same procedure athéosupercritical Hopf
bifurcation (FIG. 4.3). However, the curves obtained astinict because the polynomial
used to generate the (numerical) data is that given in Eql)4nstead of Eq. (4.10).
Additional important results are observed in the suba@itease. For example, the new
approach can successfully predict the saddle-node bifarcaf cycles located at point S
in FIG. 4.5a. The predicted points approximate very wellgkact location of the saddle-

node bifurcation. In addition, the large amplitude of thesegimg limit cycle at point S is
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captured accurately.
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Figure 4.5: - . .
g Predictions based ok are demonstrated using a numerical model for a sub-

critical Hopf bifurcation.

The predicted bifurcation diagrams obtained basedlimeasured in the pre-bifurcation
regime perfectly match the analytical diagrams for the mizaémodels of general Hopf
bifurcations considered. The predicted information idelsi the locations of the bifurca-
tion points, and the whole bifurcation diagram, includihg unstable limit cycles. The
curves of\ vs. r were obtained by tracking the time history of the systemrayits
recovery from the initial perturbations.

Several time history plots shown as inserts in FIG. 4.3a 46d 45a demonstrate that
it is not easy to discern specific bifurcation charactersstwithout proper analysis. Our
approach presents a clear characterization of the timerl@stboth qualitatively (between
different types of bifurcations), and quantitatively (iveen different values gf for the
same bifurcation). Our technique is experimentally dertratesd and verified in the next

section for limit cycle bifurcations of a mechanical osaidiry system.
4.3.2 Experimental results
A clamped-free aluminum beam is used in the experiments.ndode supercritical

or subcritical Hopf bifurcations in the system dynamicsnliveear feedback excitations

are applied to enhance the nonlinearity of the system [42fliadyram of the experimen-
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tal system is shown in FIG. 4.6. As shown in the figure, a pszesor and a pair of
piezo-actuators are attached to the aluminum beam. Therseatput signal is condi-

tioned through a charge amplifier and is the input to a reaé-fprocessor. In the real-time
processor, the sensor output data is stored while the dataasused to form a designed
nonlinear feedback excitation, which is then amplified agak $0 the piezo-actuators on
the beam. Note that the feedback controller is not a req@neiof the proposed approach
to forecast bifurcations, but is used only for creating @eyswhich exhibits the desired
bifurcations. The proposed approach only uses the timesdgta from the sensor. The
controller actuation is used to provide an excitation whigpeatedly induces large level
perturbations to the system. That is done for the sake ofrgwpatal validation and is not

needed when other external perturbations exist or can bly egplied. Also, note that

the large level perturbations applied do not have to be idaint

Host PC

Nonlinear Real-time
Feedback processor

Charge
Amplifier

S

Figure 4.6: . . . . :
g An aluminum beam is used for experimental tests. Nonlineedlback is de-

signed and applied to generate supercritical or subdritiogf bifurcations.
Only one of the sensors on the beam is used in these expesinfemm the
piezo-sensor output signawhich is proportional to the amplitude of oscilla-
tion, nonlinear feedback’ is formed and applied to the base of the beam (as a
locally distributed bending) by a pair of piezo-actuators.
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Figure 4.7: . - .
g 4000 values of\ are obtained for distinat values from a transient phase. The

process is repeated 16 times for eachalue.

To induce desired supercritical or subcritical Hopf bifatrons, nonlinear feedback
is generated from the piezo-sensor output signahich is proportional to the oscillation
amplitude. The nonlinear feedback is applied to the beam l@sally distributed bending)
by a pair of piezo-actuators attached on both (upper andr)osiges of the beam. The

nonlinear feedback’ can be expressed as a function of the sensor outasit
F = ps+Bs®+7s°, (4.12)

wherey is the control parameter, atland~ are the nonlinear feedback gains, which are
fixed for each desired bifurcation. For creating a supecatitHopf bifurcation, nonlinear
gain parameters are fixed 8s= —0.01 and~ = 0, with 20 dB of charge amplifier gain.
For creating a subcritical Hopf bifurcation and a saddldenbifurcation, nonlinear gain
parameters are fixed ais= 5 andy = —0.05, with 10 dB of charge amplifier gain. These
parameters were chosen based on a few preliminary expeehtests.

Each experiment consists of two steps. The first step is @iobte actual bifurcation
diagram by the classic method of parameter sweeping. Tésistperformed so that the
predictions obtained using our approach can be comparduketadtual bifurcation dia-

gram. To obtain the actual bifurcation diagram, the lineadback gain (the controllable
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parametey.) is changed from pre-bifurcation values to post-bifur@atvalues in the pa-
rameter space. For subcritical bifurcations, a reversepwethe parameter is also applied
(to capture the jump phenomenon at the saddle-node bifoncaf cycles). After ignor-
ing transients, the amplitude of the limit cycle oscillasas obtained and plotted vs. its
corresponding parameter value to obtain a bifurcationrdiag The bifurcation diagram
obtained by this classic method is shown in FIG. 4.8 in forrdaghed lines. Note that the
lines in FIGs 4.8b and 4.8c which (at first glance) may look l#n imperfect bifurcation
are an artifact of the plotting of the results. They are cdusethe finite step size be-
tween each parameter value considered in the classicabrheltines (connecting actual
measured points) are used instead of points for betteriNigibecause the results of our
approach are marked as circles (with error bars). Also, uh&jphenomena presented
in FIGs 4.8d, 4.8e and 4.8f are caused by subcritical Hopfrb#tion and saddle-node
bifurcation. Note that the jump phenomena may also be obddr supercritical Hopf
bifurcations as a delay effect for systems with slowly vagyparameters [109]. However,
in the experiment herein the applied nonlinear feedbacks$sgthed specifically to induce
a subcritical Hopf bifurcation, and the parameters of tretesy are maintained constant
long enough to reach steady-state for each parameter value.

The second and critical step is to predict the bifurcatimatmn and shape using only
A values obtained in there-bifurcationregime. To obtain the curve of for a fixed
parameten:, a perturbation is applied to the system. The perturbasocaused by a
harmonic excitation (with a high frequency and a certainlgoge) which is applied to the
system for a very short time, to provide a desired pertuobathfter the perturbation, the
dynamics of the system in its transient regime (as the systeovers from its perturbed
state) are recorded. Specifically, the amplitude of thellatoin is measured during the

transient phase. In this case, recovery is complete whetnahgients decay to zero. Note
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Predictions for the bifurcation diagram obtained based ane demonstrated
for supercritical and subcritical Hopf bifurcations. Theper plots (a, b and
c) are for a supercritical Hopf bifurcation, and the loweotpl(d, e and f)
are for a subcritical Hopf bifurcation. The dashed linegespnt the actual
bifurcation diagram measured by applying actual parametgations in the
post-bifurcation regime. Results show that predictioesaore accurate when
they are based ohvalues obtained at multipjevalues. Also, once is calcu-
lated, predictions are most accurate when they are base@asurements at a
value ofy close to the actual bifurcation, i.e. fprclose tou.. The horizontal
bars represent standard deviation error bars computeadbrgredicted point
on the bifurcation diagram.

that the frequency of the short perturbations is choseredimshe resonant frequency of

the system. Other types of perturbations can be appliedevemthey may place more

stringent restrictions on the data acquisition (samplisg rand resolution). Although

interesting, the study of other perturbations is beyondstugpe of this paper.

The resonant frequency of the system (close to the bifuncatvas measured exper-

imentally and found to be approximately 6.1 kHz for both sapggcal and subcritical

Hopf bifurcations. The sampling rate of the data acquisitias approximately 200 kHz.

The measured dependence\adn r for supercritical and subcritical Hopf bifurcations

is shown in FIG. 4.7. For a given value pf a time series of 4000 individualvalues was
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obtained as the system decayed to the equilibrium (zert®. staen the values of were
obtained using Eq. (4.4) for thosesalues. This process was repeated 16 times for gach
value. In obtaining\ values using Eg. (4.4), experimental noise can affect svables of
r and lead to large errors ik Hence, values below a pre-set minimum amplitude were
eliminated. This minimum amplitude depends on the dataiaitiqun system used. For
the results herein, the value used was 50 mV. Note that ourades$ designed to provide
estimates for the values ofeven when these values are small. This is accomplished by
taking advantage of data obtained from larger perturbatiand by using the curves af
in ther-\ plane. These results are demonstrated in FIG. 4.7, wherantipditude of the
dynamics- is proportional to the output voltage of the sensor.

For the supercritical Hopf bifurcation, values ofvere chosen between,,;,, = 0.45
and i« = 0.95. Similarly, for the subcritical bifurcatiorny values betweem,,,;, = 1
and u,,.. = 2 were used. 11 distinct values pfwere selected for the experiments in
each of these ranges. In the\ space, line fitting was conducted to predict the location of
each corresponding limit cycle amplitude (similar to whatsvdone using numerical data
to obtain the results in FIG. 4.4). Also, the valuenofvas estimated based on the slopes of
the lines in theu-\ space. The value ef obtained for the supercritical Hopf bifurcation is
ay = 195.82 (with a standard deviation of 1.56), and for the subcrittdapf bifurcation
is o, = 66.81 (with a standard deviation of 2.93). As shown in FIG. 4.8, phedictions
using Eq. (4.9) match the actual bifurcation diagrams vesil.w

Our results also show that a bifurcation can be predictetequell even when mea-
surements obtained at a single valueuadre used (once is obtained). Note that in all
measurementg; is lower than the value where the system actually encouttierbifur-
cation (atyu..).

Figures 4.8b, 4.8c, 4.8e and 4.8f present the predictiotasrsa using measurements
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at single values gfi. Figures 4.8b and 4.8e show results obtained using a valugvbfch

IS tmin, and is the farthest from the actual bifurcationggt Figures 4.8c and 4.8f show
results obtained using a valuesoivhich is ..., and is the closest to the actual bifurcation
(atu.). As the parameter approaches its bifurcation valye, the predictions based on

are more accurate. Note, however, that the bifurcation Ispredicted even when using
measurements collected @at,;,,. These measurements are quite far from the bifurcation
(half way between zero feedback and the actual bifurcatbamt) For the subcritical Hopf
bifurcation (FIGs. 4.8d, 4.8e and 4.8f), one can observe @ldifference between the
actual and the predicted bifurcation points. However,alresults are reliable, especially
considering that the values pfare chosen in a range well belgy(where the saddle-node

emerges).

4.4 Discussion and Conclusions

A new method of characterizing the dynamics of a nonlineatesy during its tran-
sient recovery to a stable limit cycle or a stable fixed pofieraperturbations (in the
pre-bifurcation regime) was presented. The proposed apprs designed for forecasting
bifurcations of fixed points or limit cycles. By keeping algher order (nonlinear) infor-
mation in the formulation, the perturbation levels do notéhto be small. Allowing for
large perturbations is important because it can be chatigrig measure recovery from
small perturbations due to a loss of accuracy caused by an@er a lack of resolution in
measurement. In most cases, operating with larger pettansas a good way to resolve
such accuracy issues and obtain better predictions of thechtions without the need to
explore the post-bifurcation regime. Also, the recovemgsaobtained using large per-
turbations enable the prediction of locations in paramgperce where the stable/unstable

limit cycles lie as well as the amplitudes of those limit @sl
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Another important feature of the proposed method is itgtgliid accurately predict
saddle-node bifurcations and unstable limit cycles fordhge of subcritical Hopf bifur-
cations. There are several recent studies to experimeritdlibw unstable branches by
means of feedback control. However, those studies diffeddmentally from the ap-
proach in this paper. The proposed method predicts the hledb@anches without fol-
lowing them, i.e. in the pre-bifurcation regime (where tlygstem always recovers to its
equilibrium). From a practical standpoint, this is cleathg safest way to investigate a
system. Furthermore, the use of feedback in this paper ysfonthe purpose of creating
a well known system which can be used for quantitative evanaf the predictions our
method provides. In contrast to other experimental tealesd88-90], the feedback is
not needed (and not used) for forecasting the bifurcatiotiseounstable branches. Due to
its minimal requirements (i.e. time series data), the pseganethod has strong potential
for application to other areas, such as biological systamsitural systems, where the im-
plementation of feedback control for the purpose of forgrgdbifurcations or measuring
unstable branches may be difficult.

A clamped-free aluminum beam with a nonlinear feedbacktaton was introduced
for experimental verification of the proposed method. Thallasory system with nonlin-
ear feedback has several advantages for testing nonliegamiues. First, desired types
of bifurcations can be induced easily in the system becdesadnlinearity of the system
comes from the control feedback (which can be designed fdr specific case of inter-
est). Second, the predicted shape of the bifurcation cartaéned very quickly because
(oncea is known) a single time history of the recovery from a largeydation contains
all necessary information for the range of the correspandmplitudes as well. This con-
trasts with classical techniques where the bifurcatioaipater has to be varied and many

steady-state curves have to be measured to obtain the diiimadiagram. In addition,
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the results using the proposed approach are very accuratie edmpared with results of
classical techniques.

In the experiments, the actuation (by the controller) waslus induce perturbations
repeatedly. Multiple perturbations were used for two reas¢l) to enhance the accuracy
of the predictions, and (2) to develop a method to predictalie branches, to be used
precisely when the response of the sysisravailable for multiple perturbations. Note
that, when multiple perturbations are available, they ddiawe to be the same (e.g., they
do not have to have a similar level). Some can be large and samaé#, or they can be
large and of different levels. In fact, natural (small orgkay perturbations can be used.
The only requirement here is that the system recovers taugilerium state from these
perturbations. For example, the proposed method (using senies) can be applied to a
system which undergoes an impulse-type disturbance doparation (e.g., an aeroelastic
system encountering a gust during flight) which causesdlargmall) perturbations after
which the system recovers to its regular (stable) operatmglitions.

Of course, the proposed approach has restrictions on itgcapiity. First, the dy-
namics are assumed to be effectively one dimensional anddigrand the bifurcation
is assumed to be co-dimension one. Currently availablentqabs also consider limited
types of dynamics and co-dimension one bifurcations. Theshes (and ours) are still far
from being able to predict/forecast bifurcations for thestnmomplex systems, especially
when an accurate model of the system of interest is not dlailé&Second, if the system
does not experience large perturbations (either inducedtural), then one cannot fully
take advantage of the proposed method. However, the propggeoach can still be used
(in a limited sense) by monitoring small perturbationsheitinduced or natural) to locate
the bifurcation point. Third, the perturbations are assiiteebe of a magnitude which

does not make the system switch between different attictdhat is, the assumption
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is that the system reverts to its initial equilibrium pasiti(or to its initial periodic limit
cycle oscillation) in time after the perturbation subsidésurth, the nonlinear terms are
assumed to be independent of the control parameter. Thesietions are necessary when
one needs to forecast the bifurcation (instead of detedtiogsweeping up and/or down
a system parameter).

The proposed technique enables the use of larger pertonbatiels which broadens
its applicability as compared to existing techniques basethe critical slowing down. In
addition to predicting where bifurcations occur, the pregubapproach can be used to an-
ticipate the type of the bifurcations (supercritical or sutiical) and predict their branches
without exploring the post-bifurcation regime. Due to thhardatic change in the dynam-
ics at bifurcations, predicting subcritical and saddlebifurcations without placing the

system in the post-bifurcation regime provides great athges in many applications.



CHAPTER YV

Forecasting Bifurcation Morphing: Application to
Cantilever-based Sensing

5.1 Introduction

Since atomic force microscopes (AFM) have been introduggdvprious cantilever-
based sensing techniques have been proposed as tools onsvéiglds. Specifically,
MEMS and NEMS resonant sensors have been studied and shomavéoremarkable
sensitivity [48-53]. In common resonant sensing techrsgoleanges in resonant frequen-
cies of a cantilever are monitored to detect local mass tamnis.caused by the adsorption
or attachment of analytes of interest onto the sensor. Mianlyes have addressed the idea
of enhancing the sensitivity of such resonant sensors. $aeftihigher order resonance
modes, and dimensional reduction of the cantilever have biescussed for enhancing
sensitivity [54]. Recently, attogrami{'® ¢) level mass sensing was demonstrated by
structural modifications of the resonant sensors, such sfgeaded micro-channel res-
onators [55], or integrated electronic displacement ttansrs [56].

Various studies of features of nonlinear systems have @&eno btudied for application
to cantilever-based sensors, such as electrostatic manlforcing [57], parametric reso-
nances [58, 59], and nonlinear modal interactions [60].dfési1of nonlinear approaches

are important because they suggest that higher sensitmitype achieved by just chang-

83
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ing the algorithm of sensing (for the same sensors whichinsar techniques) instead of
applying dimensional or structural modifications.

Bifurcation morphing by nonlinear feedback excitation isavel nonlinear approach
for damage detection and sensing [42,91]. This nonlinearageh is based on inducing a
bifurcation by nonlinear feedback applied to a linear dtritez The change in the bifurca-
tion point can then be measured and tracked as the systemgiara vary. That leads to
information about the morphing of the bifurcation bounderyhe parameter space. Re-
cently, it has been numerically demonstrated that the ¢afimn morphing approach has
high sensitivity for cantilever-based sensors. Thoseltebave been complemented by
a study of the effects of the time delay on the bifurcationpharg created by nonlinear
feedback excitation [110]. In practical applications, time delay is unavoidable due to
the delay caused by measuring the dynamics, creating thmeanfeedback, and forming
the feedback loop. This unavoidable time delay may causedirable high sensitivity of
the bifurcation points to small variations in the time del@gdditional time delay in the
controller has been numerically shown to reduce that uralgsi sensitivity and enhance
the robustness of the sensor.

While the bifurcation morphing approach has high sensjtisa parameter variations,
its use is hindered by the fact that detecting bifurcatian{saising the common technique
of sweeping parameters from pre-bifurcation to post-l#tion regions (in the parame-
ter space) takes a long time and requires the system to baabjeerate safely in the
post-bifurcation regime. To characterize bifurcationsckly and maintain the system
in the safe pre-bifurcation regime during operation, theen¢ approach of forecasting
bifurcations developed by the authors [111] is applied togbnsor. Forecasting bifurca-
tions has been based on monitoring various system chastict®rsuch as noise-induced

spectra [71], virtual Hopf phenomena [72], skewness of agbdliy distributions [73] or
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flickering in bistable regions before bifurcations [74,.7B&rticularly, the critical slowing
down phenomenon [76, 78] has been studied as a tool for pireglinifurcations [77] (by
monitoring the recovery rate of the system from small pédtions). These techniques
for forecasting bifurcations have been discussed for asityeof applications, including
ecosystems [80—82], climate systems [83], cell signal8dj,[and ocean dynamics [79].
It has been demonstrated recently [111] that forecastipgogghes can predict not only
the bifurcation point, but also the type of bifurcation bymtoring the rates at which the
system recovers from large perturbation levels. Thesentguks can also be applied to
the engineered systems which generally require higheracg(111].

In this chapter, an experimental investigation of a prqietgf a cantilever-based sen-
sor using bifurcation morphing coupled with delayed nogdinfeedback excitation and
employing bifurcation forecasting is presented. Briefagptual and theoretical aspects
of this work are introduced in Sec. 5.2. Experimental resate presented in Sec. 5.3

where the effects of the controlled time delay are explongtié context of mass sensing.

5.2 Background

5.2.1 Delayed nonlinear feedback excitations

The main idea of the bifurcation morphing approach is to wmglnlinear feedback
excitations to the system to actively destabilize its dyitarand create bifurcation points
in the parameter space [42]. The goal is to create bifuncgtimints which have high
sensitivity to small parameter variations in the systemcddse these bifurcations are
created by controlled nonlinear feedback, desired typdsfofcation can be induced by
specifically designed nonlinear feedback. For examplesiden one of the most common

types of bifurcations, namely Hopf bifurcations. The noahr feedback excitatioR
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Figure 5.1: A clamped-free aluminum beam with piezo actisaémd sensors is used for
experiments. Piezo-sensors and a pair of piezo-actuateratached to the
aluminum beam. Mass variations are applied to the tip of &b The
sensor output is sent to a real-time processor. The unaieidane delayr*
is generated during the process of storing data (sensoalsignd creating
the nonlinear feedback excitation (STEP1). The contraltits the controlled
time delayr (STEP2) before the nonlinear feedback is amplified and gent t
the piezo-actuators on the beam.

applied to create Hopf bifurcations can be expressed as
F(t) = ps(t)+ Bs(t)’ +ys(t)’, (5.1)

wheres is the output of the sensor used in the feedback loop,aisda linear feedback
gain (the control parameter), whiteand~ are cubic and quintic nonlinear feedback gains.
For creating supercritical Hopf bifurcations, is negative andy is zero. For creating
subcritical Hopf bifurcations; is positive andy is negative.

Theoretically,/'(t) depends only or(¢). In practical applications, however, there is
an unavoidable time delay generated in the controller. Rpeession of the nonlinear

feedback in Eq. (5.1) is thus expressed as
F(t) = ps(t—7%)+ Bs(t —77)° +ys(t — 7)°, (5.2)

where7* is the unavoidable time delay in the controller. This dekayes place during
STEP1, as shown in FIG. 5.1. Note that the time delays duigmpstransfers are negli-

gible.
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In the past, it has been shown numerically that the bifunogbioints obtained by this
approach are sensitive to small variations in the time detagspecially when™ is very
short [110]. The sensitivity to fluctuations it is undesirable because the sensor may
lose robustness. To address this problem, an additional dietay is implemented as
a control parameter in STEP2, as shown in FIG. 5.1. Then, dméinear feedback in

Eq. (5.2) can be rewritten as
F(t) = ps(t — Tor) + Bs(t — Tior)® +75(t — Tror)°, (5.3)

wherer,,, is the total time delay;,; = 7*+7. Inthe past, it was shown that the bifurcation
point lost its sensitivity to variations in the time delayascreased. Specifically, as
increases, the bifurcation points converge to values wéiiehinsensitive ta but they are
sensitive to mass variations in the system [110]. Hencegdhélever-based sensor based
on the bifurcation morphing approach can operate with ecgmobustness ta,; and

good sensitivity to mass variations for large enough

5.2.2 Forecasting bifurcations

Consider a codimension-one bifurcation where the chartgeofahe amplitude of the

dynamics of a system can be expressed as

F=rlo(pn = pe) = p(r)], (5.4)

whereq is a fixed parameter (which is generally unknown unless anrate model of
the system is provided), is a (known) control parameter,. is a critical value of the
control parameter (where a bifurcation occurs), afid is a polynomial function of-
with p(0) = 0 (and assumed to be independent of the control paramterhe system
has a fixed point at = 0 in the pre-bifurcation regime. In the post-bifurcationireg,

there are additional fixed poinfsgiven byp(7) = a(u — u.). Also, the change rate of
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amplitude) at timet is defined as

M) = T = L= o ) — o) (5.5)

Chapter IV provides details regarding the use\a forecast bifurcations. In par-
ticular, Chapter IV numerically and experimentally shoWwattthis method can forecast
supercritical and subcritical Hopf bifurcations and saddbde bifurcations accurately.
Furthermore, when forecasting subcritical Hopf bifurcat and saddle-node bifurcations,
this approach successfully predicts the locations and itudpk of the saddle-nodes, and
the unstable branches of the bifurcation diagram. Thisaaar is safe as the system
operates only in the pre-bifurcation regime, and all regplidata is collected in the pre-
bifurcation regime. Furthermore, (onceis identified) this approach can forecast the
bifurcation point and the bifurcation diagram very quicklgd accurately, because data
collected for a single perturbation given to the system @hgley in the pre-bifurcation

regime) is sufficient for forecasting [111].

5.3 Results and Discussion

5.3.1 Experimental setup

A clamped-free aluminum beam with piezo actuators and ssisased. As shown in
FIG. 5.1, a piezo-sensor and a pair of piezo-actuators taelatd to the aluminum beam.
The sensor output is sent to a real-time processor. The iseigg@l is input to the real-
time processor. This data is stored and also used to creasignéd nonlinear feedback
excitation. Note that the unavoidable time delayis generated during the process of
storing data and creating the nonlinear feedback exaité8@ EP1). The controller inserts
an additional time delay (STEP2) before the nonlinear feedback is amplified and sent t

the piezo-actuators on the beam.
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The dimensions of the aluminum beam and those of a single @etator patch
are provided in Tab. 5.1. The total mass of the cantilevemb&éh the piezo actuators
attached to both sides of the beam is approximatély~ 34.5 g. To simulate mass
variations, small amounts of mass are added to the tip ofitil@iaum beam in increments
of approximatelyn = 20 mg. Note that{; is approximately6 x 104

Herein, only the supercritical Hopf bifurcation is congiel@with fixed nonlinear gains
of 3 = —0.01 andy = 0 in EqQ. (5.3). Note that is the linear feedback gain in Eq. (5.3),
and hence it is the controlled parameter for the experiméit$®, note that is increased
by the controller, and* is the unavoidable time delay (unknown quantity). Finaligte
that the proposed sensor measures variations in the paithis bifurcation diagrani(7),
instead of just the bifurcation poipt.. Here,r represents the amplitude of the stable limit

cycle in the post-bifurcation regime corresponding to aigal of the linear gain. Thus,

fe = (7 = 0).

5.3.2 Additional time delay

To test the effects of the time delay on the system, an additibme delayr was
added in the controller. In the experimentsyas varied from) ms to5 ms with a step
of 0.01 ms. At each value of the time delay the bifurcation diagram was estimated.

For clarity, this estimation (which is not used for sensingps done just by the classical

Table 5.1: Dimensions of the components of the sensor
Aluminum beam Length 280 mm
Width 27.5 mm
Thickness 1.4 mm
Density 2660 kg/m?
Piezo actuator Length 60 mm
Width 15 mm
Thickness 1 mm
Density 7800 kg/m?




90

I S—
=0

At

N1=0.06

0 1 2 3 4 5
controlled time delay, t [ms]

Figure 5.2: Asr is increased, the fluctuation of the bifurcation points gltime 7-axis is
restrained. The increased time delay enhances the rokssthéhe sensor by
reducing the undesirable high sensitivity to variationthetime delay.

technique of sweeping parameters across the bifurcation. p¢/henr = 0 (i.e. 7y =
7*), the bifurcation point was found to he ~ 4.57. As shown in FIG. 5.2, changes
significantly asr varies from 0 ms to 0.06 ms. These changes in the bifurcatamt p
within a narrow range of,,; is undesirable because sensing cannot be robust to fluortgati
iN Tyor.

In FIG. 5.2, the fluctuations of the bifurcation point due to the variation in the
time delay is gradually restrained asncreases. For example, comparing the region of
T =0 ~ 1 ms and the region af = 4 ~ 5 ms, one may note how the increased time delay
reduces the influence of the variation in the time delay. Mpeemental results shown in
FIG. 5.2 are consistent with the numerical results preopsesented for a FEM model
of the cantilever beam with nonlinear feedback excitatiat0].

To evaluate the sensitivity of the sensor, one can define adimansional relative

sensitivity as

g (5.6)

-Leh

where P is the parameter used for sensing, anid the system property of which vari-

ations are to be detected. In the experiments, the parametepresents th@ values
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lgure 5.3 While undesirable high sensitivity to variations in the¢iclelay is reduced as

T is increased, the relative sensitivity to mass variatiensaintained at the
same order of magnitude.

in the bifurcation diagrani(7), and the system propertyis the mass of the system .
Hence, the relative sensitivity of interest$§,. While the undesirable large fluctuation

of the bifurcation boundary in the-;. space (as shown in FIG. 5.2) is restrainedras
increases, the relative sensitivity to mass variation leenlshown computationally to be
maintained [110]. Herein, we observe experimentally theeséehavior. Once signifi-
cantly large fluctuations (observed befare- 1 ms) are reduced, the relative sensitivity is
maintained at a level @(10) as7 varies. Sample cases are presented in FIG. 5.3 for mass
variationsAM of 0, m, 2m, and3m. Forr = 1 ms (FIG. 5.3a), the relative sensitivity is
Sﬁ} ~ 9.1. ForT = 4.95 ms (FIG. 5.3b), the relative sensitivityﬂg{j[ ~ 11.9. The relative
sensitivities at other time delays have been observed ® $iavilar magnitudes also.

The curve shown in FIG. 5.2 has local minima (which are smalan 1) at time
delays.,. The relative sensitivity of the bifurcations to mass véaias is observed to
approach zero at these values of the time delay. Nonethéhesproportionality ofA:
to mass variations was experimentally measured at severaldelaysr. ;, and that pro-
portionality could still be observed despite the signifitatow sensitivity. As the relative

sensitivity becomes smaller, however, it is likely thatseg can be significantly affected
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Figure 5.4:

The relative sensitivity of the linear mode frequency (621 in similar level
with the frequency of the limit cycle (6026 Hz) $§; ~ 0.97 which is approx-
imately one order of magnitude smaller than the proposesiosen

by small errors or noise. Interestingly, the intervals eswr,.; and.,,, are approxi-
mately constantA7. ~ 0.16 ms. That is a value very close to the period of the limit cycle
of the system near the bifurcation point, whiclis= 0.166 ms.

The reason why the sensitivity of the bifurcation pointgdo is significantly low for
delays near.; may be explained by the fact that the sensitivity of the loiftion points to
small changes in the frequency (or period) of the limit cyslieery low. That is consistent
with analytical results for a simple two-degree-of-freedspring-mass system subject to
nonlinear feedback excitations [110], where the bifumapoint is a function of the fre-
guency of the limit cycle which appears just after the bifi@n. The correlation between
the value ofA7, and the period of the limit cycle indicates that the loss of##vity of the
sensor may take place independent of the time delay, at airc@thase of the dynamics
of the system (and that phase is constant as the time delas)aNote that it is diffi-
cult to estimate the exact phase which causes the loss afiggynbecauser;,; cannot be

accurately identified as* is unknown.
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Figure5.5: . . . .
g « is estimated in range gf values withy,,;, = 0.9 and .. = 1. The

top figure shows the fitted curves in\ space based oi values obtained
from experimental data at differeptvalues. In the bottom figure, r (sensor
output [V]) is chosen at 0.55 [V] and the fitted line in\ space is presented.
Identified o (based on the slopes of the fitted lines at various amplijudes
126.2 (with standard deviation of 3.5).

5.3.3 Cantilever-based sensing

The novel cantilever-based sensor based on forecastingcaifon morphing was ex-
perimentally tested for detecting mass variations. Themomsensing approach of mon-
itoring linear resonant frequency shifts was also testedguthe same cantilever beam.
To compare these two approaches, a linear resonant freguéng. ~ 6216 Hz was
monitored. This frequency was used because the frequenttyedfmit cycle near the
bifurcation point is near 6216 Hz, at approximately 6026 Hz.

Based on the frequency-amplitude plot in FIG. 5.4, the iadatensitivity of the cor-
responding linear frequency to mass variatior5§ ~ 0.97. Note that this value is
approximately one order of magnitude smaller than the seitgiobtained by monitor-
ing the points on the bifurcation diagram. One may compaggehative sensitivities for
different points on the bifurcation diagraimand the linear mode frequency. In doing
so, the level of accuracy of measuringandw, should be considered also. In that con-

text one may note that obtaining the bifurcation diagrantreghtforward and accurately
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done using bifurcation forecasting based directly on thretseries data, while capturing
the resonant frequency can be challenging especially whHarga damping is present.
Furthermore, the forecasting approach enables very quitlaecurate characterization of
the overall bifurcation diagram. Particularly, the forsitag approach can be employed in
its most accurate fashion when used for high sensitivitgisgn First, an accurate value
of a can be identified through repeated calibration tests indhge ofy. of interest (in
the pre-bifurcation region) as shown in FIG. 5.5. Seconkealfvalue of. for sensor op-
eration can be accurately chosen (near the known bifurcgiint). Third, various time
delays can be applied and tested for enhancing the perfaarafrthe sensor. Fourth, as
the forecasting approach takes advantages of the largerdsnofudata obtained from a
single recovery of the system, just adding a few repeateal/ezg cycles can greatly en-
hance the accuracy of the forecasted bifurcation diagraimlitile (experimental) effort.
As shown in FIG. 5.3, the horizontal error-bars for most @& giredicted points of the
bifurcation diagram are very narrow. That indicates thausate values are obtained by
the forecasting approach when a well established caldratiocess is used. Therefore,
the actual performance difference between the proposesingeapproach and the shifts
in linear mode frequency can be larger than that revealeddéogamparison of the relative
sensitivities.

After calibration, the proposed cantilever-based sens® w@sted for detecting mass

variations ofm, 2m and3m atT = 4.95 ms. The proportionality; is defined as

Aﬁixm(f)
Di= s (5.7)
Al (7)
where the subscript indicates the level of mass variationideal sensing and proportion-
ality, eachp; should have the integer value®©fAs shown in FIG. 5.6, the cantilever-based

sensor based on the proposed approach exhibits remarkabplerfoonality in the range of
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Figure 5.6: The cantilever-based sensor by the proposewagip demonstrates remark-
able proportionality in the range of applied mass variation

applied mass variations (whers chosen in a proper range).
5.4 Conclusions

The application of bifurcation morphing created by nordinfeedback excitations has
been demonstrated for a cantilever-based sensor. Two temleliques have been imple-
mented to enhance the cantilever-based sensor.

First, short and unavoidable time delays in the controléar cause undesirable high
sensitivity of the bifurcation points to small fluctuatioimsthis time delay. Additional
time delay in the controller can reduce this undesirablesisigity without significantly
affecting the high performance of sensing. However, upadysng the effects of addi-
tional time delay, periodic loss of sensitivity has beenesbed. At those time delays,
the bifurcation morphing has been observed to lose its Batsto both variations in the
time delay and in the mass. The periodicity of the loss of itigitg was observed to be
correlated with the period of the limit cycle (in the postdocation regime). That may be
caused by a certain delay-independent phase of the dynaftios system.

Second, detecting bifurcation points by sweeping paraméteough the bifurcation

point takes a long time. The approach of forecasting bitizoa was applied and was
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shown to significantly reduce the time required to detect bifurcation points and measure
the overall bifurcation diagram. This forecasting approach has been experimentally shown
to be quick and accurate when applied to the cantilever-based sensor. Comparing sensi-
tivities, the bifurcation morphing approach has been observed to be about one order of
magnitude higher than that of the linear mode frequency shift. Furthermore, the bifurca-
tion diagrams obtained by the forecasting approach have been shown to have remarkable
accuracy (with very small errors), especially when the sensor system is precisely cali-
brated.

The experimental results of mass sensing highlight the high performance of the pro-
posed cantilever-based mass sensor. Nonetheless, this approach can be applied to sensing

various other parametric variations in a diversity of systems of interest.



CHAPTER VI

Conclusions

6.1 Contributions

The original contributions of this dissertation can be siarized as follows:

¢ In Chapter Il, various issues regarding application of th& @pproach have been
discussed. To achieve the most important property of the &fifoach, which is
the linearity of the SVFs for single parameter variatiors approach for filtering
sample points was introduced with a focus on the most impbgarameter of in-
terest. By filtering, one can generally ensure a satisfadémel of linearity for all
parameters to be reconstructed. After filtering, the reedin process is performed
by investigating the SVFs for each single parameter vamatl he possible signifi-
cant loss of sensitivity and the possible linear dependanng distinct parameters
due to filtering have been discussed. Thus, certain parasreae to be eliminated
from the reconstruction process. A correction factor hanbetroduced to resolve
the weak nonlinearity of the SVFs of certain parameter Yiara. The correction
factor has been calculated from test SVFs of known singlamater variations.
The parameter variations identified using the correcti@tofahave been shown to
be very accurate. Using AFM as an example chaotic systenefopdstration of the

new approaches, the major influence of the higher harmonicstbe tapping mode
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AFM dynamics has been discussed. For certain regimes, hager modes have
been shown to predict a chaotic dynamics for the system wth@ single-mode

approximation predicts limit cycle oscillations.

In Chapter Ill, new studies of the bifurcation morphing amshimear feedback ex-
citation have been presented. The primary topic was thediehy. Time delay is
unavoidable in feedback control systems. This naturallpesided time delay pro-
duces undesirable high sensitivity of bifurcation morghio small variations in the
time delay, and that makes it difficult to achieve high-sevigy. As the time delay
is increased by the controller, the bifurcation boundaghserved to converge onto
a small area in the parameter space. Furthermore, the gamea/stabilization of
the bifurcation boundary significantly reduces the serigjtof the bifurcation mor-
phing to fluctuations in the time delay. As a consequenceadional time delay
enhances the bifurcation morphing method by reducing aatoilgting the stable

region of the dynamics in the parameter space.

In Chapter 1V, a method of characterizing the dynamics of @inear system dur-
ing its transient recovery to a stable limit cycle or a stdbded point after pertur-
bations (in the pre-bifurcation regime) was presented. fgiogposed approach is
designed for forecasting bifurcations of fixed points orifiaycles. By keeping all
higher order (nonlinear) information in the formulatiohgtperturbation levels do
not have to be small. In most cases, operating with largdugstions is a good
way to resolve accuracy issues for measuring small petiorisaand to obtain bet-
ter predictions of the bifurcations. The proposed techaigpiables the use of larger
perturbations which broadens its applicability as comghdeceexisting techniques

based on the critical slowing down. In addition to predigtinhere bifurcations
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occur, the proposed approach can be used to anticipateghetythe bifurcations
(supercritical or subcritical) and predict their branchethout exploring the post-
bifurcation regime. Due to the dramatic change in the dyparai bifurcations,
predicting subcritical and saddle-node bifurcations waithplacing the system in

the post-bifurcation regime provides great advantagesaimyapplications.

In Chapter V, bifurcation morphing by nonlinear feedbackitation was applied
to cantilever-based sensors. The two novel techniquesisied in Chapter Il
and Chapter IV were implemented to enhance the proposedevantbased sen-
sor. First, additional time delay in the controller was &gl A periodic loss of
sensitivity was observed. At those time delays, the bifiimoamorphing has been
observed to lose its sensitivity to both variations of tmeetidelay and the sensed
mass. The periodicity of the loss of sensitivity in synchzation with the period
of the limit cycle suggests that the low sensitivity occura a&ertain phase of the
dynamics of the system, and the phase is independent ofrtigedelay. Second,
the approach of forecasting bifurcations was applied toisagantly reduce the time
required to detect bifurcation points and bifurcation déays. The forecasting ap-
proach was experimentally shown to be quick and accurateplication to the
proposed cantilever-based sensing. Comparing the bifarcenorphing and the
linear mode frequency shift, the relative sensitivity ofubtation morphing was
observed to be one order of magnitude higher. Furthermdr@jrong bifurcation
diagrams by the forecasting approach was shown to have kablaraccuracy with
very small errors, when it is specifically calibrated for awm sensor system. The
experimental results of mass sensing demonstrate the bifirmance of the pro-

posed cantilever-based sensor.
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6.2 Future Research

Below are some ideas for future research that may expanapiestpresented in this

dissertation.

e Development of MEMS/NEMS cantilever-based sensors usingpé approach of

forecasting bifurcation morphing with delayed nonlinear feedback excitation

The prototype of the cantilever-based sensor demonsteatiel, robust and accu-
rate performance of sensing. Furthermore, the relativeitaty of the proposed
sensor was observed to be one order of magnitude largeraoftthe common
approach of measuring linear frequency shifts. Also, detgbifurcation diagrams
can be more accurate than measuring the frequency of theamismode. These
experimental results suggest that the development of MBSIS sensing device

using the proposed approach could impact MEMS sensingfignily.

e Attractor and bifurcation morphing modes for various types of structures

Cantilever-beam structures have been considered in this. wdonetheless, theo-
retically all of the proposed approaches are not limiteddergain type of structure.
One of the area of recommended future work is the applicatiotine proposed

techniques to various types of other structures.

e Design of new nonlinear feedback excitation to induce difient types of bifur-

cations for application to cantilever-based sensing

As bifurcations in the proposed approach are induced byifsgmly designed non-
linear feedback excitations, various types of bifurcagioan be tested by re-designing
the feedback excitation. For example, subcritical bifticces can be tested for

cantilever-based sensing. As the jump phenomena at a saaldpifurcation point
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or at a saddle-node bifurcation point are more dramatic @bsiin the dynamics
than supercritical bifurcation, it is likely that they caa detected with higher sen-
sitivity. Nonetheless, the system is affected by small retiedisturbances also.
Hence, further studies are needed to make the sensor robustiésirable external

disturbances.

Development of the cantilever-based sensor using multiplpiezo-sensors for
two dimensional bifurcation boundary morphing to detect muitiple simulta-

neous parameter variations

Two dimensional bifurcation boundary morphing was nunaycdiscussed and
shown to have high sensitivity and ability to detect mu#ipimultaneous parameter
variations [42,110]. The cantilever-based sensor wasldped for one dimensional
bifurcation morphing for detecting a single parameteratasi in this dissertation.
The development and experimental test of a sensor usingrtveoger dimensional

bifurcation morphing would be the next step.

Application of the forecasting approach to multidisciplinary areas of research

interests

In addition to the bifurcation point, the proposed approatforecasting bifurca-

tions in this dissertation is capable of predicting exacphtondes and locations of
the saddle-nodes and the stable/unstable branches offtineabion diagram. This

ability of characterizing bifurcations in the pre-bifutican regime with easy appli-
cability (no controller needed) can have significant adzges in applications to a
diversity of systems which requires non-invasive evatreti Those may include
biomedical applications, such as cardiac dynamics, astirepileptic seizures. As

this approach is shown to have remarkable accuracy, thqdeajons may also
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include engineered systems, such as aeroelastic syst@msraring gusts during

flight.



BIBLIOGRAPHY

103



[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

104

BIBLIOGRAPHY

G. Binnig, C. F. Quate, and C. Gerber. Atomic force micaze. Physical Review
Letters 56(9):930 — 933, 1986.

MH Lee and WH Jhe. General theory of amplitude-modulatomic force mi-
croscopy.Physical Review Letter97(3):id. 036104, 2006.

SM Lin, CT Liauh, WR Wang, and SH Ho. Analytical solution&the first three
frequency shifts of afm non-uniform probe subjected to #mnhrd-jones force.
Ultramicroscopy 106(6):508 — 515, 2006.

M Tsukada, N Sasaki, R Yamura, N Sato, and K Abe. Featureardilever motion
in dynamic-mode afmSurface Sciencel01(3):355 — 363, 1998.

K Wolf and O Gottlieb. Nonlinear dynamics of a noncontagtatomic force mi-
croscope cantilever actuated by a piezoelectric layeurnal of Applied Physics
91(7):4701 - 4709, 2002.

NA Burnham, AJ Kulik, G Gremaud, and GAD Briggs. Nanosabhonics -
the dynamics of small nonlinear contactBhysical Review Lettey4(25):5092
—5095, 1995.

R Garcia and A San paulo. Attractive and repulsive tipipke interaction regimes
in tapping-mode atomic force microscog@hysical Review B60(7):4961 — 4967,
1999.

O Sahin, CF Quate, O Solgaard, and A Atalar. Resonant tiaicrresponse in
tapping-mode atomic force microscopyhysical Review B69(16):id. 165416,
APR 2004.

MV Salapaka, HS Bergh, J Lai, A Majumdar, and E McFarlaktlilti-mode noise
analysis of cantilevers for scanning probe microscaoyurnal of Applied Physics
81(6):2480 — 2487, 1997.

M Balantekin and A Atalar. Enhanced higher-harmoni@ag@img in tapping-mode
atomic force microscopy.Applied Physics Letters87(24):id. 243513, DEC 12
2005.



105

[11] M Balantekin and A Atalar. Enhancing higher harmonita tapping cantilever by
excitation at a submultiple of its resonance frequemtyysical Review Br1(12):id.
125416, MAR 2005.

[12] TR Rodriguez and R Garcia. Compositional mapping ofas@s in atomic force
microscopy by excitation of the second normal mode of therocantilever. Ap-
plied Physics Letters84(3):449 — 451, 2004.

[13] RW Stark and WM Heckl. Higher harmonics imaging in tagpmode atomic-
force microscopyReview of Scientific Instrumeni®4(12):5111 — 5114, 2003.

[14] RW Stark. Spectroscopy of higher harmonics in dynarteceac force microscopy.
Nanotechnologyl5(3):347 — 351, 2004.

[15] RW Stark, G Schitter, M Stark, R Guckenberger, and A $tem State-space
model of freely vibrating and surface-coupled cantilewanamics in atomic force
microscopy.Physical Review B59(8):id. 085412, FEB 2004.

[16] S. W. Doebling, C. R. Farrar, M. B. Prime, and D. W. SheviDamage identifi-
cation and health monitoring of structural and mechanigatesns from changes
in their vibration characteristics: a literature revieReport LA-13070-MS, Los
Alamos National laboratories, Los Alamos, NIA96.

[17] C. H. Loh and I. C. Tou. A system-identification approachthe detection of
changes in both linear and nonlinear structural paramekagthquake Engineer-
ing & Structural Dynamics24(1):85-97, January 1995.

[18] M. O. Abdalla, K. M. Grigoriadis, and D. C. Zimmerman. Hanced structural
damage detection using alternating projection methaés Journa) 36(7):1305—
1311, July 1998.

[19] R. S. Pappa, G. H. James, and D. C. Zimmerman. Autonomaodsl identification
of the space shuttle tail ruddelournal of Spacecraft and Rocke85(2):163-169,
Mar-Apr 1998.

[20] D. C. Zimmerman. Model validation and verification ofga and complex space
structureslinverse Problems In Engineering(2):93-118, 2000.

[21] K. D’Souza and B. I. Epureanu. Damage detection in m@dr systems using
system augmentation and generalized minimum rank pettarbtheory. Smart
Materials & Structures14(5):989-1000, October 2005.

[22] V. K. Amaravadi, K. Mitchell, V. S. Rao, and M. M. Derrisd&tructural integrity
monitoring of composite patch repairs using wavelet anslgsd neural networks.
Proceedings of SPIE: Smart Structures and Materials 2008ai$ Structures and
Integrated Systemd4701(1):156-166, 2002.



106

[23] B. Amizic, V. K. Amaravadi, V. S. Rao, and M. M. Derriso. wd-dimensional
wavelet mapping techniques for damage detection in straictystems.Proceed-
ings of SPIE: Smart Structures and Materials 2002: ModelBiginal Processing,
and Contro] 4693(1):267-278, 2002.

[24] H. Sohn and C. R. Farrar. Damage diagnosis using timessanalysis of vibration
signals.Smart Materials & Structuresl0(3):446—-451, June 2001.

[25] J. M. Nichols, L. N. Virgin, M. D. Todd, and J. D. Nichol©n the use of attractor
dimension as a feature in structural health monitoriddechanical Systems and
Signal Processingl7(6):1305-1320, November 2003.

[26] J. M. Nichols, S. T. Trickey, M. D. Todd, and L. N. Virgirstructural health moni-
toring through chaotic interrogatioMeccanica 38(2):239-250, 2003.

[27] J. M. Nichols, M. D. Todd, and J. R. Wait. Using state spacedictive model-
ing with chaotic interrogation in detecting joint preloamb$ in a frame structure
experiment.Smart Materials & Structuresl2(4):580-601, August 2003.

[28] J. M. Nichols, M. D. Todd, M. Seaver, and L. N. Virgin. Us&chaotic excitation
and attractor property analysis in structural health nooimg. Physical Review E
67(1), January 2003.

[29] B. I. Epureanu, L. S. Tang, and M. P. Paidoussis. Exiplgithaotic dynamics for
detecting parametric variations in aeroelastic systefisa Journal 42(4):728—-
735, April 2004.

[30] B. I. Epureanu and S. H. Yin. Identification of damage maeeroelastic system
based on attractor deformation€omputers & Structures82(31-32):2743-2751,
December 2004.

[31] B. I. Epureanu, S. H. Yin, and M. M. Derriso. Attractoaded damage detection
in a plate subjected to supersonic flonBroceedings of SPIE: Health Monitor-
ing and Smart Nondestructive Evaluation of Structural analdgjical Systems I|I
5394(1):340-350, 2004.

[32] R. S. Chancellor, R. M. Alexander, and S. T. Noah. Détecparameter changes
using experimental nonlinear dynamics and chaa¥ournal of Vibration and
Acoustics-Transactions of the Asmé&8(3):375-383, July 1996.

[33] W. J. Wang, Z. T. Wu, and J. Chen. Fault identification aating machinery
using the correlation dimension and bispectidonlinear Dynamics25(4):383—
393, August 2001.

[34] D. Chelidze, J. P. Cusumano, and A. Chatterjee. A dynahsiystems approach to
damage evolution tracking, part 1: Description and expenital applicationJour-
nal of Vibration and Acoustics-Transactions of the Asiti&4(2):250-257, April
2002.



107

[35] J. P. Cusumano, D. Chelidze, and A. Chatterjee. A dynahsystems approach to
damage evolution tracking, part 2: Model-based validatiod physical interpre-
tation. Journal of Vibration and Acoustics-Transactions of the Ash24(2):258—
264, April 2002.

[36] B. I. Epureanu, S. H. Yin, and M. M. Derriso. High-sensty damage detection
based on enhanced nonlinear dynam@smart Materials & Structuresl4(2):321—
327, April 2005.

[37] I. Trendafilova. State space modelling and represemtdor vibration-based dam-
aged assessmeribamage Assessment of Structures, Proceedwfs-2:547-555,
2003.

[38] I. Trendafilova. A state space based approach to heatthitoring of vibrating
structures. Modern Practice In Stress and Vibration Analys#10-4:203-210,
2003.

[39] A Hashmi and B Epureanu. Sensitivity resonance anactir morphing quanti-
fied by sensitivity vector fields for parameter reconstiuttiNonlinear Dynamics
45(3-4):319 — 335, 2006.

[40] A. |. Hashmi and B. I. Epureanu. Sensitivity vector feelibr damage detection
and sensingSmart Structures and Materials 2005: Sensors and Smartties
Technologies for Civil, Mechanical, and Aerospace, PTSA 3r5765:236 — 244,
2005.

[41] B. I. Epureanu, S. H. Yin, and E. H. Dowell. Enhanced inedr dynamics for
accurate identification of stiffness loss in a thermo-shing) panel.Nonlinear Dy-
namics 39(1-2):197-211, January 2005.

[42] S. H. Yin and B. I. Epureanu. Enhanced nonlinear dynaraied monitoring bifur-
cation morphing for the identification of parameter vagas. Journal of fluids and
structures 21(5-7):543-559, December 2005.

[43] F. Jamitzky, M. Stark, W. Bunk, W. M. Heckl, and R. W. $tacChaos in dynamic
atomic force microscopyNanotechnologyl7(7):S213-S220, Jan 2006.

[44] J. Lim and B. I. Epureanu. Multimode dynamics of atorfocse-microscope
tip-sample interactions and application of sensitivitgtee fields. Proceedings
of SPIE: Sensors and Smart Structures Technologies fot, Gidchanical, and
Aerospace Systems 20B529(1):65293Y, 2007.

[45] J. Lim and B. I. Epureanu. Sensitivity vector fields féomic force microscopes.
Nonlinear Dynamics59(1):113-128, 01 2010.

[46] W. M. Zhang, G. Meng, J. B. Zhou, and J. Y. Chen. Nonlirgddgramics and chaos
of microcantilever-based tm-afms with squeeze film dammfigcts. Sensors-
Base| 9(5):3854-3874, Jan 20009.



108

[47] M. Liu and D. Chelidze. A new type of atomic force micrope based on chaotic
motions.Int J Nonlin Mech 43(6):521-526, Jan 2008.

[48] A. Gupta, D. Akin, and R. Bashir. Single virus particleass detection using
microresonators with nanoscale thicknesgqplied Physics Letter84(11):1976—
1978, Jan 2004.

[49] B. llic, H. G. Craighead, S. Krylov, W. Senaratne, C. Qlaed P. Neuzil. Attogram
detection using nanoelectromechanical oscillatodeurnal of Applied Physigs
95(7):3694-3703, Jan 2004.

[50] B. llic, Y. Yang, and H. G. Craighead. Virus detectionngsnanoelectromechanical
devices.Applied Physics Letter85(13):2604—-2606, Jan 2004.

[51] D. Lange, C. Hagleitner, A. Hierlemann, O. Brand, andBdltes. Complemen-
tary metal oxide semiconductor cantilever arrays on a sioblp: Mass-sensitive
detection of volatile organic compoundsnal Chem74(13):3084—3095, Jan 2002.

[52] N. V. Lavrik and P. G. Datskos. Femtogram mass deteaiging photothermally
actuated nanomechanical resonatokpplied Physics Letter82(16):2697-2699,
Jan 2003.

[53] T. Thundat, E. A. Wachter, S. L. Sharp, and R. J. Warm&mtection of mercury-
vapor using resonating microcantileveré\pplied Physics Letter$6(13):1695—
1697, Jan 1995.

[54] M. Narducci, E. Figueras, M. J. Lopez, |. Gracia, J. @ader, P. lvanov, L. F.,
and C. Cane. Sensitivity improvement of a microcantilevesdal mass sensor.
Microelectron Eng86(4-6):1187-1189, Jan 20009.

[55] T. P. Burg, M. Godin, S. M. Knudsen, W. Shen, G. Carlsorg.JFoster, K. B., and
S. R. Manalis. Weighing of biomolecules, single cells andjld nanopatrticles in
fluid. Nature 446(7139):1066—-1069, Jan 2007.

[56] M. Li, H. X. Tang, and M. L. Roukes. Ultra-sensitive netfinased cantilevers for
sensing, scanned probe and very high-frequency applicatibat Nanotechnol
2(2):114-120, Jan 2007.

[57] M. I. Younis and F. Alsaleem. Exploration of new concefidr mass detection
in electrostatically-actuated structures based on neatiphenomenalournal of
Computational and Nonlinear Dynamijce$(2):021010, Jan 2009.

[58] W. H. Zhang and K. L. Turner. Application of parametrgsonance amplification in
a single-crystal silicon micro-oscillator based mass serfSensor Actuat A-Phys
122(1):23-30, Jan 2005.

[59] J.F. Rhoads, S. W. Shaw, and K. L. Turner. Nonlinear dyica and its applications
in micro- and nanoresonators?roceedings of the ASME Dynamic Systems and
Control Conference 2008, Pts A andfgages 543-572, 2009.



109

[60] A. Vyas, D. Peroulis, and A. K. Bajaj. A microresonatasign based on non-
linear 1:2 internal resonance in flexural structural modg&dicroelectromech S
18(3):744-762, Jan 2009.

[61] U Bortolozzo, M. G Clerc, and S Residori. Local theonytloé slanted homoclinic
snhaking bifurcation diagranPhysical Review E78(3):036214, Jan 2008.

[62] Andrea Sacchetti. Universal critical power for nomar schrodinger equations with
a symmetric double well potentiaPhysical Review Letteyd403(19):194101, Jan
2009.

[63] Timothy M Lenton, Hermann Held, Elmar Kriegler, Jim W IHaVolfgang Lucht,
Stefan Rahmstorf, and Hans Joachim Schellnhuber. Tippamyents in the earth’s
climate system.Proceedings of the National Academy of Sciences of the dUnite
States of Americal05(6):1786—1793, Jan 2008.

[64] M Scheffer, S Carpenter, JA Foley, C Folke, and B Walkeatastrophic shifts in
ecosystemsiNature 413(6856):591-596, Jan 2001.

[65] Margot Parkes. Personal commentaries on "ecosystemishaman well-being:
Health synthesis - a report of the millennium ecosystemsassent”. Ecohealth
3(3):136-140, Jan 2006.

[66] JG Venegas, T Winkler, G Musch, MFV Melo, D Layfield, N Mgdekos, AJ Fis-
chman, RJ Callahan, G Bellani, and RS Harris. Self-orgametchiness in asthma
as a prelude to catastrophic shift¢ature 434(7034):777-782, Jan 2005.

[67] B Litt, R Esteller, J Echauz, M D’Alessandro, R Shor, Tridg P Pennell, C Ep-
stein, R Bakay, M Dichter, and G Vachtsevanos. Epileptizigeis may begin hours
in advance of clinical onset: A report of five patientdeuron 30(1):51-64, Jan
2001.

[68] PE McSharry, LA Smith, and L Tarassenko. Prediction mifeptic seizures: are
nonlinear methods relevant®ature Medicing9(3):241-242, Jan 2003.

[69] D Golomb and GB Ermentrout. Bistability in pulse prop#ign in networks of
excitatory and inhibitory population®hysical Review Lettey86(18):4179-4182,
Jan 2001.

[70] Robert M May, Simon A Levin, and George Sugihara. Compghlstems - ecology
for bankers.Nature 451(7181):893-895, Jan 2008.

[71] C Jeffries and K Wiesenfeld. Observation of noisy preous of dynamical insta-
bilities. Physical Review A31(2):1077-1084, Jan 1985.

[72] K Wiesenfeld. Virtual hopf phenomenon - a new precuisgperiod-doubling bi-
furcations.Physical Review A32(3):1744-1751, Jan 1985.



110

[73] Vishwesha Guttal and Ciriyam Jayaprakash. Changiewskss: an early warning
signal of regime shifts in ecosystentscology Letters11(5):450-460, Jan 2008.

[74] S. R Carpenter, W. A Brock, J. J Cole, J. F Kitchell, and IMPace. Leading
indicators of trophic cascadeBcology Letters11(2):128-138, Jan 2008.

[75] N Berglund and B Gentz. Metastability in simple climatedels: Pathwise analy-
sis of slowly driven langevin equationStochastics and Dynamic2:327-356, Jan
2001.

[76] S. H. Strogatz. Nonlinear Dynamics and Chaos- With Applications to Physics
Biology, Chemistry, and Engineering 1st edilestview Press, 2001.

[77] Marten Scheffer, Jordi Bascompte, William A Brock, ¥c Brovkin, Stephen R
Carpenter, Vasilis Dakos, Hermann Held, Egbert H van Nesx Re&tkerk,
and George Sugihara. Early-warning signals for criticahsitions. Nature
461(7260):53-59, Jan 2009.

[78] C Wissel. A universal law of the characteristic retumé near threshold€ecolo-
gia, 65(1):101-107, Jan 1984.

[79] Thomas Kleinen, Hermann Held, and Gerhard Petsch&d-H&he potential role
of spectral properties in detecting thresholds in the egrghem: application to the
thermohaline circulationOcean Dynamics3:53, Jan 2003.

[80] SR Carpenter and WA Brock. Rising variance: a leadirdjcator of ecological
transition.Ecology Letters9(3):308-315, March 2006.

[81] Ryan A Chisholm and Elise Filotas. Critical slowing doas an indicator of tran-
sitions in two-species modeldournal of Theoretical Biology257(1):142-149, Jan
2009.

[82] Egbert H van Nes and Marten Scheffer. Slow recovery fimerturbations as a
generic indicator of a nearby catastrophic shimerican Naturalist169(6):738—
47, Jun 2007.

[83] Vasilis Dakos, Marten Scheffer, Egbert H van Nes, MicBrovkin, Vladimir
Petoukhov, and Hermann Held. Slowing down as an early wasignal for abrupt
climate change.Proceedings of the National Academy of Sciences of the dUnite
States of Americal05(38):14308-14312, Jan 2008.

[84] C P Bagowski and J E Ferrell, Jr. Bistability in the jnkscade.Current Biology
11(15):1176-82, Aug 2001.

[85] E. Doedel, A. Champneys, T. Fairgrieve, Y. KuznetsavSBndstede, and X. Wang.
AUTO 97: continuation and bifurcation software for ordiyadifferential equa-
tions 1998.



111

[86] K Engelborghs, T Luzyanina, and D Roose. Numericalro#dition analysis of de-
lay differential equations using dde-biftoohCM Transactions on Mathematicacl
Software 28(1):1-21, MAR 2002.

[87] R. Szalai. PDDE-CONT: a continuation and bifur- cation software forlae
differential equations2005.

[88] J Sieber, A Gonzalez-Buelga, S. A Neild, D. J Wagg, and rBuskopf. Exper-
imental continuation of periodic orbits through a fol®hysical Review Letters
100(24):244101, Jan 2008.

[89] Jan Sieber and Bernd Krauskopf. Control based bifionaanalysis for experi-
ments.Nonlinear Dynamics51(3):365-377, Jan 2008.

[90] David A. W. Barton and Stephen G. Burrow. Numerical ¢omdtion in a physi-
cal experiment: Investigation of a nonlinear energy haeresASME Conference
Proceedings2009(49019):361-368, 2009.

[91] Kiran D’Souza and Bogdan | Epureanu. Nonlinear fee#lmxiliary signals for
system interrogation and damage detectidtroceedings of the Royal Society A
- Mathematical Physical and Engineering Sciencé64(2100):3129-3148, Jan
2008.

[92] Kiran D’Souza and Bogdan | Epureanu. Detection of gladoad local parame-
ter variations using nonlinear feedback auxiliary sigraaid system augmentation.
Journal of Sound and Vibratig329(13):2463-2476, Jan 2010.

[93] A Maccari. Saddle-node bifurcations of cycles in agtlialve. Nonlinear Dynam-
ics, 22(3):225-247, Jan 2000.

[94] V Piccirillo, J. M Balthazar, and B. R Pontes. Analyliciudy of the nonlinear
behavior of a shape memory oscillator: Part i-primary resme and free response
at low temperatureNonlinear Dynamics59(4):733-746, Jan 2010.

[95] K. W Chung, Y. B He, and B. H. K Lee. Bifurcation analysisatwo-degree-of-
freedom aeroelastic system with hysteresis structurdimearity by a perturbation-
incremental methodlournal of Sound and Vibratiqi320(1-2):163—-183, Jan 2009.

[96] T Kalmar-Nagy, G Stepan, and FC Moon. Subcritical hapirgation in the delay
equation model for machine tool vibrationdonlinear Dynamics26(2):121-142,
Jan 2001.

[97] Firoz Ali Jafri, Amit Shukla, and David F Thompson. A nenical bifurcation
study of friction effects in a slip-controlled torque core clutch. Nonlinear Dy-
namics 50(3):627-638, Jan 2007.

[98] B. Epureanu and A. Hashmi. Parameter reconstructisedan sensitivity vector
fields. Journal of Vibration and Acoustics - Transactions of the AS1R8(6):732—
740, December 2006.



[99]

[100]

[101]

[102]

[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

[111]

112

SH Yin and Bl Epureanu. Structural health monitoringé@ on sensitivity vector
fields and attractor morphindg?hilosophical Transactions of the Royal Society A-
Mathematical Physical and Engineering Scien@g4(1846):2515 — 2538, 2006.

AS Paulo and R Garcia. Unifying theory of tapping-mattamic-force microscopy.
Physical Review B66(4):id. 041406, JUL 15 2002.

A Sebastian, MV Salapaka, DJ Chen, and JP Clevelandnétac and power bal-
ance tools for tapping-mode atomic force microscojmirnal of Applied Physigs
89(11):6473-6480, Jan 2001.

K Yagasaki. Nonlinear dynamics of vibrating microtbavers in tapping-mode
atomic force microscopyPhysical Review Br0(24):id. 245419, DEC 2004.

X Zhao and H Dankowicz. Characterization of interenitt contact in tapping-
mode atomic force microscopyournal of Computational and Nonlinear Dynam-
ics, 1(2):109-115, APR 2006.

M Ashhab, MV Salapaka, M Dahleh, and | Mezic. Melnikbased dynamical
analysis of microcantilevers in scanning probe microscdpgnlinear Dynamics
20(3):197 — 220, 1999.

S Rutzel, Sl Lee, and A Raman. Nonlinear dynamics ofmateforce-microscope
probes driven in lennard-jones potentid®soceedings of the Royal Society of Lon-
don Series A-Mathematical Physical and Engineering Seig#59(2036):1925 —
1948, 2003.

O Pfeiffer, C Loppacher, C Wattinger, M Bammerlin, U €8y, M Guggisberg,
S Rast, R Bennewitz, E Meyer, and HJ Guntherodt. Using hifigeural modes in
non-contact force microscopppplied Surface Sciencg&57(4):337 — 342, 2000.

Jacob N Israelachvili.Intermolecular and surface forcesLondon : Academic
Press, Inc., 1992.

M Basso, L Giarre, M Dahleh, and | Mezic. Complex dynesnin a harmoni-
cally excited lennard-jones oscillator: Microcantilexsample interaction in scan-
ning probe microscopeslournal of Dynamic Systems Measurement and Cagntrol
122(1):240 — 245, 2000.

SM Baer, T Erneux, and J Rinzel. The slow passage thr@ugopf-bifurcation
- delay, memory effects, and resonancgiam Journal of Applied Mathematics
49(1):55-71, Jan 1989.

Joosup Lim and Bogdan | Epureanu. Exploiting delayedlinear feedback for
sensing based on bifurcation morphingternational Journal of Structural Stabil-
ity and Dynamicsaccepted for publication, 2010.

Joosup Lim and Bogdan I. Epureanu. Forecasting a ofakgurcations: Theory
and experimentPhys. Rev. E83(1):016203, Jan 2011.



