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CHAPTER I

Introduction

1.1 Dissertation Objective

Analysis of nonlinear dynamics has been essential in a diversity of engineering fields.

The research in this dissertation focuses on analysis of nonlinear dynamics and its appli-

cations to sensing. Most of current sensing approaches are to measure variations of linear

features of a system to detect variations in parameters of interest. These methods usually

focus on minimizing the effects of the nonlinear features. Recently, however, several new

studies have been focused on high sensitivity nonlinear features and have discussed how

to take advantages of them for high-sensitivity sensing. Particularly, attractor morphing

modes and bifurcation morphing modes have been introduced as high-sensitive nonlinear

features for application to sensing and damage detection.

While previous studies of sensitivity vector field (SVF) introduced the basic concept

of attractor morphing modes and example applications, it was implicitly assumed that

SVFs are uniformly linear to small variations in the system parameters throughout the

chaotic attractors. For attractor morphing modes, the goalof this dissertation is to discuss

several examples where proportionality of SVF is not well achieved due to strong or weak

nonlinearities in the SVF. These nonlinearities are undesirable. Hence, a goal is to develop

new techniques to expand the applicability of the SVF methodto those cases. In this work,

1
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a numerical model of a tapping-mode atomic force microscope(AFM) is introduced as an

example. This example is used to discuss nonlinear characteristics of the AFM and to

demonstrate a novel operation algorithm of the AFM in chaotic regimes using the SVF

approach.

Bifurcation morphing modes are used with nonlinear feedback excitation in applica-

tions. This active interrogation approach has been numerically shown to have high sensi-

tivity to variations in the system parameters of interest. However, the bifurcation morphing

method has several challenges when used in practical applications. First, the effect of the

time delay onto the bifurcation morphing modes should be studied because the time delay

cannot be avoided. Second, the time required to detect the bifurcation diagram should be

significantly reduced as quick operation is desirable for sensors. Third, sweeping param-

eters across bifurcation points is not desirable because driving the system into the post-

bifurcation regime can be dangerous. Thus, one objective ofthis work is to develop novel

techniques to enhance the bifurcation morphing method for sensing, and to demonstrate

experimentally the cantilever-based sensing using the bifurcation morphing method.

To enhance the bifurcation morphing method, a novel approach of forecasting bifurca-

tions is discussed. Forecasting bifurcations before they occur is a significant challenge and

an important need in several fields. Existing approaches detect bifurcations before they oc-

cur by exploiting the critical slowing down phenomenon. However, the perturbations used

in those approaches are limited to being very small, and thisrepresents a significant draw-

back. Large levels of perturbation have not been used mainlybecause of a lack of an

adequate formulation that is robust to experimental noise.Thus, a goal of this work is to

develop a mathematical formulation applicable to large levels of perturbation, and to apply

the proposed forecasting approach to enhance the bifurcation morphing method.
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1.2 Dissertation Background

1.2.1 Atomic Force Microscopes and Higher Harmonics

Since atomic-force microscopes (AFMs) were introduced [1], they have become im-

portant tools for modern nano-science and engineering for nanoscale imaging and surface

manipulation. AFMs are able to resolve surfaces at the atomic level for both conducting

and nonconducting samples. Their applications are broad, ranging from biological science

to nano-electronic engineering. AFMs monitor the dynamicsof a microcantilever and a

probe tip (which is attached at the end of the microcantilever). The microcantilever inter-

acts with the sample surface through nonlinear atomic interaction forces. Lennard-Jones

(LJ) potentials [2–5] are one of the approaches to model these nonlinear forces. Using

LJ potentials, a smooth model for the tip-sample interaction is obtained, which approx-

imates the real contact mechanics. In tapping mode, the nonlinear aspects of the AFM

dynamics are more significant [6, 7]. Hence, analyzing this nonlinearity is essential for

fully enhancing the performance of tapping mode AFM.

Recent studies showed that higher harmonics play an important role in AFMs [8, 9].

Also, by enhancing and exploiting the dynamics of the higherharmonics, the resolution

of AFM can be enhanced [10–13]. In particular, Stark showed that the higher harmonics

cannot be neglected in the analysis of the tapping mode AFMs [14,15].

1.2.2 Linear and Nonlinear Analysis for Vibration-Based Methods

Vibration-based techniques have been essential tools for nondestructive system identi-

fication [16]. Such system identification has been studied for a variety of problems such

as sensing and damage detection. Early studies focused on various linear vibratory prop-

erties for damage detection [17–24]. Recently, nonlinear system analysis has become an

important part of system identification approaches. In particular, It was showed that use of
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nonlinear properties of a system has a great potential to enhance the sensitivity of damage

detection. Linear systems subject to chaotic excitation [25–28], and chaotic systems either

with or without excitation [29–31] have been discussed. Also, a variety of attractor-based

metrics have been demonstrated to quantify geometric changes of attractors in state-space

due to system parameter variations. These approaches use attractor dimensions [32,33], a

scalar tracking metric [34,35], and statistical characterization of the distribution of points

in an attractor [30,31,36–38]. Furthermore, pattern recognition techniques based on proper

orthogonal decomposition of the shape changes between attractors (for undamaged and

damaged systems) were proposed. These methods provide a basis for detecting multiple

simultaneous damages and levels [30, 39, 40]. Also, an approach has been proposed to

enhance sensitivity by enhancing nonlinearity of linear orweakly nonlinear systems by

nonlinear feedback excitations [41,42].

Nonlinearities have been shown also to be important in microand nano scale vibration-

based methods. Chaotic motions in tapping-mode atomic force microscopy (AFM) have

been studied [43–46], and new sensing algorithms using chaotic motions have been dis-

cussed also. These include applications of SVFs [44, 45] or local flow variations [47].

The increased importance of AFM [1] also has been accompanied by rapid growth of var-

ious other cantilever-based sensing approaches. These approaches are usually monitoring

either static (bending-mode) or dynamic (resonant-mode) responses of cantilever beams.

Among resonant-mode approaches, MEMS/NEMS resonant mass sensors have demon-

strated remarkable sensitivity [48–53]. Monitoring resonant frequency is the most com-

mon approach in cantilever-based mass sensors. For higher sensitivity, the use of higher

order resonance modes and the reduction of device dimensions have been discussed [54].

Recent approaches have demonstrated to achieve attogram (10−18 g) level mass sensing,

by using suspended micro-channel resonators [55], or integrated electronic displacement
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transducers [56]. While MEMS/NEMS sensors monitoring linear resonant frequencies

continues to be studied, sensing techniques using nonlinear features have gained atten-

tion also, such as ones focused on electrostatic nonlinear forcing [57], parametric reso-

nances [58,59], or nonlinear modal interactions [60]. Studies of the nonlinear approaches

are important because they suggest that higher sensitivitycan be achieved by just chang-

ing the algorithm of sensing for the same sensors which use linear techniques, instead of

further dimensional and structural modifications.

1.2.3 Forecasting Bifurcations

Forecasting bifurcations is a significant challenge, especially when an accurate model

of the system is not available. Specifically, jump phenomena(via subcritical and/or saddle-

node bifurcations) are important because they exhibit sudden and dramatic changes in the

system dynamics. Jump phenomena have been observed and discussed in a variety of

systems, e.g. physical systems governed by equations of motion such as the Schrödinger

equation [61] or the Swift-Hohenberg equation [62], climate systems [63], ecological sys-

tems [64, 65], biomedical systems (exhibiting behaviors such as asthma [66] or epileptic

seizures [67, 68]), neuron systems (exhibiting pulse propagation [69]), and global finance

systems [70].

Several characteristics of systems have been discussed forforecasting bifurcations of

interest, such as noise-induced spectrum [71], virtual Hopf phenomenon [72], skewness of

probability distributions [73] or flickering in bistable regions before bifurcations [74, 75].

In particular, the critical slowing down [76] has been studied as the physical basis of

various existing approaches for forecasting bifurcations[77]. Consider an attractor of

the dynamics of a system, such as a stable fixed point, a stablelimit cycle or a chaotic

attractor. When a small perturbation is applied to the system, the dynamics converge
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toward the attractor at some recovery rate. The critical slowing down indicates that this

recovery rate approaches zero as the size of the basin of attraction shrinks to nil when a

parameter of the system approaches the bifurcation point [78]. As a result, in the pre-

bifurcation regime, the recovery rates decrease as the system approaches the bifurcation.

These effects can be observed quite far from the bifurcation[77]. Therefore, quantifying

the effects of the critical slowing down is one method which can be used as an indicator of

nearby bifurcations.

Nearby bifurcations have been predicted in various complexsystems by monitoring

the recovery rates of the system from small perturbations. Methods used have included

monitoring changes in the autocorrelation [79] or the variance [80] of the system response

to small perturbations (which are consequences of the critical slowing down [77]). These

techniques for forecasting bifurcations have been studiedfor various systems, such as

ecosystems [80–82], climate dynamics [83], cell signaling[84], and ocean dynamics [79].

Such studies are still far from being able to predict/forecast the most complicated bifurca-

tions when an accurate model of the system is not available. Also, in current techniques

there are often two implicit assumptions that the dynamics of the system takes place on

a very low dimensional manifold, and that the bifurcations are co-dimension one. Even

more importantly, when a physical system is available for testing, the level of perturbations

which can be applied to the system have to be very small. That is because the formulations

based on observations of critical slowing down have been derived in close proximity to the

attractor (by linearization after eliminating higher order terms).

1.3 Dissertation Outline

The remaining chapters of this dissertation are compiled from a collection of three

manuscripts published or accepted to scientific journals and one manuscript prepared for
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submission to a scientific journal. Therefore, some of the background materials as well as

mathematical developments are repeated in various chapters.

Chapter II expands the SVF approach to a multi-mode system where mode shapes vary

due to perturbation in system parameters. The variation of mode shapes creates certain

challenges for exploiting SVFs. Specifically, attractor points corresponding to identical

initial conditions in the modal space correspond to non-identical physical states. Hence,

the sensitivity vectors are not zero at the initial time. However, mode shape variations

do not change the most important property of the sensitivityvectors that they are propor-

tional to the parameter variations. Hence, the SVF approachcan be applied to parameter

reconstruction for multi-mode dynamics. A discussion of the modified SVF approach is

presented and several issues related to parameter reconstruction by SVFs are discussed.

To ensure linearity during parameter reconstruction (which is a crucial property), a spe-

cialized filtering of the sample points used for SVF is required. Through this filtering, one

can eliminate undesired possible strong nonlinearity of the SVFs. However, after filtering,

certain parameters may be difficult or impossible to reconstruct. There are two reasons for

this. First, filtering may cause a significant loss of sensitivity for certain parameter varia-

tions. When one parameter has a very low sensitivity compared to the other parameters,

it is difficult to reconstruct sets of multiple simultaneousparameter variations that include

the low-sensitivity parameter. Second, filtering may causeSVFs for distinct parameters

to be linearly dependent. In such situations, it is impossible to reconstruct the parameters

which have linearly dependent SVFs. Nonetheless, one can perform parameter reconstruc-

tions for sets of parameters which have linearly independent SVFs. One can also observe

weak nonlinearity of certain parameters even after filtering the sample points. This issue

can be resolved by introducing a correction factor. One can calculate the correction factor

from the sample SVFs of the corresponding parameter variations by accounting for the role
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of the second order terms. After implementing the novel filtering, the re-selection of the

available parameters for reconstruction, and after the calculation of the correction factor,

the parameter reconstruction by SVF approach performs wellfor multiple simultaneous

parameter variations. Chapter III introduces several new studies of bifurcation morphing

and nonlinear feedback excitation [42] for practical applications in both damage detection

and sensing. The primary discussion is focused on the time delay in the nonlinear feed-

back excitation. This time delay is unavoidable in practical applications due to the delay

caused by measuring the dynamics, calculating the nonlinear feedback, and forming the

feedback loop. The side-effects of time delays include undesirable high sensitivity of the

bifurcation boundary to small variations in the time delay.That is demonstrated by nu-

merical simulation. To alleviate the effects of this side-effect, an additional time delay is

introduced as a new design parameter. As the controllable time delay increases, the stable

region surrounded by the bifurcation boundary converges toa smaller area. This conver-

gence provides the great advantage of minimizing the effects caused by variability in the

time delay. The increased time delay also helps to enhance sensitivity and robustness of

the proposed approach. Next, this chapter discusses calibration issues. The sensing ap-

proach based on bifurcation morphing requires two bending sensors to be placed at distinct

locations on the beam and used to construct nonlinear feedback signals. Various sensor

locations are tested to identify the ones which provide the highest sensitivity. By choosing

various sensor locations, the proposed method can be adapted for detecting simultaneous

damages at multiple locations. These features also enable sensing multiple analytes at

multiple locations calibrated for ultra high sensitivity.A multi-mode clamped-free can-

tilever beam finite element model is used for computational analysis. Bending sensors and

uniformly distributed bending moments are used for applying the nonlinear feedback ex-

citation. Density variations for multiple finite elements are considered as models for mass
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variations at certain locations. Parameter reconstructions are demonstrated for several test

cases (with high sensitivity to simultaneous mass variations at multiple locations).

Chapter IV provides an alternate approach to characterizing the recovery rates of dy-

namical systems. Specifically, the rate of change of the amplitude of the dynamics (includ-

ing certain higher order terms) is quantified. This new characterization shows that critical

slowing down can also be observed when using much larger levels of perturbation. By

tracking the change of the recovery rate from large perturbations, it is possible to predict

both stable and unstable branches in a bifurcation diagram.Of course, when an accurate

numerical model is available, bifurcation branches can be computed using several compu-

tational bifurcation tools, e.g. AUTO [85], DDE-BIFTOOL [86] and PDDE-CONT [87].

Only a few recent studies consider detecting unstable periodic orbits in the bifurcation

diagram experimentally [88–90]. These approaches use controllers to stabilize unstable

orbits and track them while a parameter of the system is varied. Such approaches are use-

ful in detecting many types of bifurcations. However, controller-based approaches have

many requirements. In contrast, the proposed approach doesnot require a controller and

does not need the parameter to vary (or to enter the post-bifurcation region). Instead,

this approach predicts the bifurcation and the unstable branches simply by tracking the

recovery rate of the system dynamics. These advantages comeat the price of limiting

the class of bifurcations which can be tracked. Specifically, only Hopf and saddle-node

bifurcations can be handled. Nonetheless, the characterized recovery rates can be used

to predict both the occurrence and the type of bifurcations (i.e. supercritical or subcrit-

ical) before they occur. Numerical simulations and experimental results are provided to

demonstrate the use of our technique for forecasting bifurcations. Limit cycle oscillations

of a simple mechanical system are used in the experiments. Tosimulate bifurcations of

limit cycle oscillations, properly designed nonlinear feedback excitations are applied so
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that the desired types of bifurcations take place in an otherwise linear system. Nonlin-

ear feedback excitations have been employed in structural health monitoring [42, 91] and

sensing [92] as an active interrogation approach. However,the feedback control, in this

work, is only used as a tool to simulate a desired nonlinear dynamics. The proposed ap-

proach does not require any type of control to be applied. As the time scale of the system

used herein is very short (compared to several systems used in current studies [77]), our

experimental set-up provides large amounts of data in a short time. Moreover, the results

obtained using the proposed approach suggest that predictions of bifurcations by critical

slowing down can be sufficiently accurate for applications to engineered systems which

generally require high precision (such as sensing). Many ofengineered systems experi-

ence the class of bifurcations of interest here (subcritical/supercritical Hopf bifurcations

and/or saddle-node bifurcations), e.g. relief valves [93], shape memory oscillators [94],

aeroelastic systems [95], machine tools [96], and automotive components such as torque

converter clutches [97].

Chapter V discusses the implementation of the two novel techniques discussed in

Chapters III and IV to enhance the bifurcation morphing method as applied to cantilever-

based sensors. First, the time delay in the controller is increased to minimize the system’s

undesirable sensitivity to small variations in the (unavoidable) time delay. Second, a novel

approach of forecasting bifurcations is applied to the proposed sensor. This approach sig-

nificantly reduces the time required to obtain bifurcation diagrams. Both techniques are

demonstrated experimentally in detecting mass variationsof a test cantilever beam. The

cantilever-based sensor based on the bifurcation morphingmethod is demonstrated to be

accurate, quick and robust in the experimental tests.



CHAPTER II

Sensitivity Vector Fields for Atomic Force Microscopes

2.1 Introduction

Atomic-force microscopes (AFMs) have become important tools for modern nano-

science and engineering for nanoscale imaging and surface manipulation since they were

first introduced [1]. AFMs are capable of resolving surfacesat the atomic level for both

conducting and nonconducting samples, and their applications are broad, ranging from

biological science to nano-electronic engineering. The core operation of an AFM is based

on monitoring the dynamics of a microcantilever and a probe tip (which is attached at the

end of the microcantilever). The microcantilever interacts with the sample surface through

nonlinear atomic interactive forces. One approach to modelthese nonlinear forces is by

Lennard-Jones (LJ) potentials [2–5]. Using LJ potentials,a smooth model for the tip-

sample interaction is obtained, which approximates the real contact mechanics. In tapping

mode, the nonlinear aspects of the AFM dynamics are more significant [6, 7]. Hence,

analyzing this nonlinearity is essential for fully enhancing the performance of tapping

mode AFM.

Recently, it has been observed that higher harmonics play animportant role in AFMs

[8, 9]. Also, by enhancing and exploiting the dynamics of thehigher harmonics, the reso-

lution of AFM can be enhanced [10–13]. Stark showed that the higher harmonics cannot

11
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be neglected in the analysis of the tapping mode AFMs [14, 15]. Herein, we show that

due to nonlinearities under certain operation conditions,the effects of higher order modes

change the predictions for the system dynamics qualitatively from periodic to chaotic mo-

tion. These predictions refer to establishing when the response is periodic (limit cycle

oscillations) and what are its amplitude and frequency content. Even with a driving force

at the first resonance, the predictions for the dynamics obtained during a single mode can

be quantitatively inadequate despite the fact that higher order modes have much smaller

amplitudes than the first mode. Herein we demonstrate numerically that higher modes

affect the dynamics of the system.

A novel concept referred to as sensitivity vector fields (SVFs), and a novel approach

to determine multiple parameter variations very accurately [98] are also presented. The

proposed approach can be used in many areas such as system identification, sensing, dam-

age detection, and others [39, 99]. The approach allows the detection of simultaneous

variations of multiple parameters by exploiting the morphology of chaotic attractors. The

application of this method in the context of AFM assists in analyzing the dynamics of

the microcantilever and probe tip, enhances its capabilityof detecting multiple parameter

variations, and allows a more effective monitoring of the effective spring constants and

other important parameters of the system. Also, the proposed method has the advantage

of reducing the calibration effort. This approach opens thedoor to the accurate operation

of AFMs even in chaotic regimes. By using SVFs, one can obtainaccurate output infor-

mation (i.e. reconstructed parameters) even with slight damages or structural changes in

the AFM microcantilever.

Hashmi and Epureanu [39] have shown the basic concept for theapplication of SVFs

to AFMs. Herein, that approach is expanded upon for a multi-mode system where mode

shapes vary due to perturbation in system parameters. The variation of mode shapes cre-
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ates certain challenges for exploiting SVFs. Specifically attractor points corresponding to

identical initial conditions in the modal space correspondto non-identical physical states.

Hence, the sensitivity vectors are not zero at the initial time. However, mode shape vari-

ations do not change the most important property of the sensitivity vectors that they are

proportional to the parameter variations. Hence, the SVF approach can be applied to

parameter reconstruction for multi-mode dynamics. A discussion of the modified SVF

approach is presented and several issues related to parameter reconstruction by SVFs are

discussed.

To ensure linearity during parameter reconstruction (which is a crucial property), a

specialized filtering of the sample points used for SVF is required. Through this filter-

ing, one can eliminate undesired possible strong nonlinearity of the SVFs. However, after

filtering, certain parameters may be difficult or impossibleto reconstruct. There are two

reasons for this. First, filtering may cause a significant loss of sensitivity for certain pa-

rameter variations. When one parameter has a very low sensitivity compared to the other

parameters, it is difficult to reconstruct sets of multiple simultaneous parameter variations

that include the low-sensitivity parameter. Second, filtering may cause SVFs for distinct

parameters to be linearly dependent. In such situations, itis impossible to reconstruct the

parameters which have linearly dependent SVFs. Nonetheless, one can perform parameter

reconstructions for sets of parameters which have linearlyindependent SVFs.

One can also observe weak nonlinearity of certain parameters even after filtering the

sample points. This issue can be resolved by introducing a correction factor. One can

calculate the correction factor from the sample SVFs of the corresponding parameter vari-

ations by accounting for the role of the second order terms. After implementing the novel

filtering, the re-selection of the available parameters forreconstruction, and after the cal-

culation of the correction factor, the parameter reconstruction by SVF approach performs
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Figure 2.1: Schematic of the AFM microcantilever model showing tip-sample distanceZ,
beam deflectionu(x, t), base excitationy(t), and static deflectioñw.

well for multiple simultaneous parameter variations, as shown in the following.

2.2 Modeling and Parameter Reconstruction using SVFs

2.2.1 AFM Microcantilever Model

Various researchers have proposed models for the tip-sample interaction in tapping

mode AFM [100–103]. Some approaches consider this interaction as piecewise smooth

while others account for the contact mechanics by employingstrongly nonlinear, yet

smooth potentials. One of the latter models is based on LJ potentials, which account

for the attractive and repulsive tip-sample interaction forces. Although the LJ potentials

lead to a smooth set of equations, the model closely approximates the contact mechanics

through the use of very strong nonlinearities. Herein, we choose to use LJ potentials to

avoid mathematical complexity while taking advantage of its qualitative resemblance to

the real contact mechanics. In general, regardless of the specific details of the model used,

the SVF approach can be employed. In fact, the SVF approach can be applied even with-

out a model as long as the parameters of the dynamics are not ofinterest, and the only

identified quantity is the distance to sample.
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The LJ potential energy and the corresponding tip-sample interaction force for an AFM

microcantilever are given in the literature [104] as

ULJ =
A1R

1260Z7
−

A2R

6Z
, PLJ = −

∂ULJ

∂Z
=

A1R

180Z8
−

A2R

6Z2
, (2.1)

whereA1, A2 are the Hamaker constants,R is the radius of the probe tip, andZ is an

instantaneous gap between the tip and the surface of sample as shown in FIG. 2.1. A

single mode model has been used in the past [105]. Herein, theeffects of higher order

modes are of interest in the context of multiple simultaneous parameter variations. The

static deflectioñw(x) of the microcantilever may be obtained from

EIw̃′′′′(x) = 0, (2.2)

with the boundary conditions expressed as

w̃(0) = 0,

w̃′(0) = 0,

w̃′′(L) = 0,

−EIw̃′′′(L) = −
A1R

180[Z − w̃(L)]8
+

A2R

6[Z − w̃(L)]2
, (2.3)

where L is the length of the microcantilever. The equilibrium gap between the tip and

sample is denoted bỹη = Z − w̃(L). The total time-dependent deflection of the micro-

cantileverw(x, t) may be expressed as

w(x, t) = w̃(x) + y(t) + u(x, t), (2.4)

whereu(x, t) is the microcantilever deflection relative to a non-inertial frame attached

to its moving base, as shown in FIG. 2.1, andy(t) is the excitation which is applied as

base excitation by a piezoelectric actuator located at the left end of the microcantilever
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in FIG. 2.1. The base excitationy(t) is modeled as a harmonic motiony(t) = Y sinΩt.

Next, the equation of motion of the vibrating microcantilever may be expressed as

ρAü(x, t) +EI [u′′′′(x, t) + w̃′′′′(x)]

=

{

−
A1R

180[η̃ − u(L, t)− Y sinΩt]8

+
A2R

6[η̃ − u(L, t)− Y sinΩt]2

}

δ(x− L)

+ρAΩ2Y sin Ωt, (2.5)

whereρ is the material density,A is the cross sectional area, andA1, A2 are Hamaker

constants for the microcantilever, andδ is the delta function. Eq. (2.5) may be rearranged

by using

EIw̃′′′′(x) =

[

−
A1R

180η̃8
+

A2R

6η̃2

]

δ(x− L) (2.6)

to obtain

ρAü(x, t) +EIu′′′′(x, t)

=

{

−
A1R

180

[

1

[η̃ − u(L, t)− Y sin Ωt]8
−

1

η̃8

]

+
A2R

6

[

1

[η̃ − u(L, t)− Y sinΩt]2
−

1

η̃2

]}

δ(x− L)

+ρAΩ2Y sinΩt. (2.7)

Next, a Ritz approach is used to discretize Eq. (2.7) in spaceand obtain a set of ordinary

differential equations. To solve for the linear eigenmodes, one may consider the linearized

system around its static equilibrium position. Using Eq. (2.1), the linearized equivalent

spring constantkLJ caused by the gradient of the LJ potential at the equilibriumposition

may be expressed as

kLJ = −
∂PLJ (Z,w(L, t))

∂w(L, t)

∣

∣

∣

∣

u=0

=
2A1R

45 [Z − w̃(L)]9
−

A2R

3 [Z − w̃(L)]3
. (2.8)
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Next, the deflectionu(x, t) can be expressed as a sum of eigenmodes as follows

u(x, t) =

∞
∑

n=1

Un(x)Tn(t). (2.9)

The equation of the free (unforced) linearized system for each eigenmode is

U ′′′′
n − β4

nUn = 0, (2.10)

whereβ4
n = ρAω2

n

EI
, and the boundary conditions are given by

Un(0) = 0,

U ′
n(0) = 0,

U ′′
n(L) = 0,

−EIU ′′′′
n (L) = −kLJUn(L). (2.11)

The ordinary differential equations forTn(t) are obtained in the usual Galerkin fashion

by substitutingu(x, t) from Eq. (2.9) into Eq. (2.7) and by taking the inner productswith

each of the mode shapes. Finally, one obtains an equation of motion for each mode.

The modal amplitudesTn are nondimensionalized asξn = Un0(L)Tn

η̃0
, whereUn0 andη̃0

are the nominal value ofn-th mode shape atx = L and the equilibrium gap between the

tip and sample for the nominal system. The parameters of interest for reconstruction are

denoted byP1 = A1R, P2 = A2R, P3 = EI, P4 = Z, andP5 = ȳ = Y
η̃0

. The nonlinear

equations of motion in linear modal coordinates are obtained as

ξ̈n = −dξ̇n −
ω2
n

ω2
10

ξn

+κnCn1

{

1

(ǫ− ξtot − P5 sin Ω̄τ)8
−

1

ǫ8

}

+κnCn2

{

1

(ǫ− ξtot − P5 sin Ω̄τ)2
−

1

ǫ2

}

+EnP5Ω̄
2 sin Ω̄τ, (2.12)
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where subscript0 indicates a nominal value, and

ω2
n =

P3fn3
ρAfn2

, ξn =
Un0(L)Tn(τ)

η̃0
, τ = ω10t, ȳ = P5 =

Y

η̃0
,

Ω̄ =
Ω

ω10

, ξtot =
∞
∑

n=1

κnξn, w10 = unperturbed value ofw1,

κn =
Un(L)

Un0(L)
, En = Un0(L)

fn1
fn2

, d = damping parameter,

Cn1 = −
U2
n0(L)

180ρAη̃90ω
2
10

P1

fn2
, Cn2 =

U2
n0(L)

6ρAη̃30ω
2
10

P2

fn2
, ǫ =

η̃

η̃0
,

fn1 =

∫ L

0

Undx, fn2 =

∫ L

0

U2
ndx, fn3 =

∫ L

0

UnU
′′′′
n dx.

2.2.2 SVFs for a Multi-Mode Model

The basic algorithm for the SVF method [39, 98, 99] can be summarized as follows.

Individual sensitivity vectors are collected throughout the attractor for a given set of pa-

rameter variations. These sensitivity vectors are then grouped to form one SVF, which

is interpreted as a snapshot. Distinct SVFs are recorded under known sets of parameter

variations. The collection of snapshots is analyzed by proper orthogonal decomposition to

construct an optimal basis for representing all SVFs using asmall number of basis vector

fields. Each of these basis fields corresponds to a known set ofparameter variations (in the

parameter space). Once this optimal basis is constructed, detection can be implemented

as follows. A SVF is sampled by using the attractor of the dynamics for a system with

an unknown set of parameter variations. Next, the sampled SVF is projected along the

optimal basis of fields. Finally, the coordinates along eachof these basis fields are used to

identify/reconstruct the unknown parameter variations. To form SVFs across the attractor,

randomly chosen sample points within the attractor are usedas initial points for calculation

of SVFs. The sample points are selected by sampling the system response in time. Note

that the fact that the attractor is visited by the trajectoryensures that the samples are likely

distributed throughout the attractor. However, the numberof cycles need to use SVFs is
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likely larger than that of other linear-based techniques. Nonetheless, that may be accept-

able in many applications and is accompanied by two significant advantages: detection of

multiple simultaneous parameters and increased sensitivity as discussed next.

From Eq. (2.12), each sample point in state space has2k state variables for ak-mode

approximate model. A state vector for each sample point can be defined as

zi =
[

κ1ξi1 κ1ξ̇i1 · · · κkξik κkξ̇ik

]T

. (2.13)

For simplicity of indexing variables, we definēκ2l−1 = κl andκ̄2l = κl. Also, we define

Ū2l−1(L) = Ul(L) andŪ2l(L) = Ul(L). Hence, Eq. (2.13) becomes

zi =
[

κ̄1zi1 κ̄2zi2 · · · κ̄2k−1zi(2k−1) κ̄2kzi2k
]T

, (2.14)

wherei is the index of a sample point. A snapshot vector can be definedfor the whole set

of sample points for a given set of parameters as

σ = [z1 · · · zi · · · zN ]
T , (2.15)

whereN is the total number of sample points. Numerically, the SVF can be defined as the

difference between the snapshot vectors of the perturbed and unperturbed systems, which

can be expressed as

s = δσ = σp − σ0, (2.16)

whereσp is the snapshot vector for the perturbed system, andσ0 is the snapshot vector for

the unperturbed system. This numerical SVF is a representation for the SVF expressed as

s = δσ =

[

∂z1
∂P

∣

∣

∣

∣

P0

δP · · ·
∂zi
∂P

∣

∣

∣

∣

P0

δP · · ·
∂zN
∂P

∣

∣

∣

∣

P0

δP

]T

, (2.17)

whereP is a vector containing all parameters. One can further expand each entryj of the
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Property Symbol Value
length L 449 µm
width b 46 µm
thickness h 1.7 µm
tip radius R 150 nm
material density ρ 2330 kg/m3

elastic modulus E 176 GPa
1st resonance f1 11.804 kHz
Hamaker (repulsive) A1 1.3596× 10−70 Jm6

Hamaker (attractive) A2 1.865× 10−19 J

Table 2.1: Properties of the microcantilever

columni of s as

(

∂zi
∂P

∣

∣

∣

∣

P0

δP

)

j

=
∂ (κ̄jzij)

∂P

∣

∣

∣

∣

P0

δP (for j = 1, · · · , 2k)

= κ̄j

∂zij
∂P

∣

∣

∣

∣

P0

δP+
∂κ̄j

∂P

∣

∣

∣

∣

P0

zijδP

=
Ūj

Ūj0

∂zij
∂P

∣

∣

∣

∣

P0

δP+
1

Ūj0

∂Ūj

∂P

∣

∣

∣

∣

P0

zijδP

=
∂zij
∂P

∣

∣

∣

∣

P0

δP+
1

Ūj0

∂Ūj

∂P

∣

∣

∣

∣

P0

zijδP, (2.18)

whereŪj = Ūj0 +
∂Ūj

∂P

∣

∣

∣

P0

δP. Eq. (2.18) shows thats is non-zero at the initial sampling

time because1
Ūj0

∂Ūj

∂P

∣

∣

∣

P0

zijδP is nonzero. This is caused by the variations of the mode

shapes due to the parameter variations. The initial nonzeroterm, however, also ensures

the most important property of the SVF that it is proportional to δP. Note that ∂zij
∂P

∣

∣

∣

P0

is

zero at the initial sampling time because, at that instant,∂ξij
∂P

∣

∣

∣

P0

and ∂ξ̇ij
∂P

∣

∣

∣

P0

are zero for

all parameter values.

2.3 Enhancements and Results

A numerical analysis is carried out for the representative case of the interaction of a soft

monocrystalline silicon microcantilever with the (111) reactive face of a flat silicon sample

used by Rutzel et al. [105]. The Si-Si interaction parameters are taken from Pfeiffer et al.
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Figure 2.2: The frequency of the base excitation is at1st resonance (11.8 kHz). The motion
of the tip predicted by a1-mode approximation is different from that of (more
accurate) multi-mode approximations, from2-mode through7-mode.

[106], and corresponding attractive and repulsive Hamakerconstants are from Israelachvili

[107] and Basso et al. [108]. The physical parameters used are listed in Tab. 2.1.

2.3.1 Importance of the Higher Harmonics

When the frequency of the base excitation is at the first resonant frequency of11.8 kHz,

the responses of the higher order modes are very small in deflection and velocity. However,

the motion of the tip predicted by a1-mode approximation is different from that of (more

accurate) multi-mode approximations, from2-mode through7-mode. Figs. 2.2a and 2.2b

show that the predictions for the tip motion converge if at least2 modes are used in the

approximation. Figs. 2.2c and 2.2d show, in modal coordinates, that the use of the first2

modes leads to a converged prediction for the dynamics. These results show that a1-mode

model may be inaccurate even if the higher harmonics are muchsmaller in amplitudes
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Figure 2.3: The frequency of the base excitation is9.9 kHz, away from the1st resonance.
Figures above are phase portraits of the tip displacement obtained by approxi-
mations with different numbers of modes. The system dynamics changes from
periodic motion to chaotic motion due to the effects of the second mode.

than the first mode.

One may suspect that the results in Fig. 2.2 are caused by two coexisting attractors

(i.e. a bistable regime). We explored this interesting possibility and found that the cases

studied do not belong to a bistable regime. To check that, we started the time marching

simulation using a 1-mode model from initial conditions which are very closely along the

limit cycles observed using the multi-mode models. Also, westarted the time marching

simulation using the multi-mode models from initial conditions which are precisely along

the limit cycles observed using the 1-mode models. In all cases, the trajectory experiences

transients and eventually settles onto the same limit cycles as presented in Fig. 2.2, without

exhibiting bistability.

Next, we consider a case where the excitation frequency is away from the first reso-

nance. A numerical computation was carried out with the excitation frequency at9.9 kHz.

The system dynamics changes from periodic motion to chaoticmotion by adding the ef-

fects of the second mode (as shown in Figs. 2.3a and 2.3b). Figs. 2.2 and 2.3 show not

only that a1-mode approximation is not enough to quantify the dynamics of the system,
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9.9 kHz. The amplitude of the higher modes is shown to decrease rapidly from
the 2nd mode, to much less than1% of the1st mode amplitude for the4th

mode.

but they show also that a1-mode approximation may fail to predict even qualitativelythe

dynamics of the system. Note that in FIG. 2.4, the amplitude of the higher modes is shown

to decrease rapidly from the2nd mode, to much less than1% of the1st mode amplitude

for the4th mode. Hence, a3-mode model is used in the results hereafter.

2.3.2 Sample Points and Verification of the SVFs

To perform parameter reconstruction by using the SVF approach, one first chooses the

sample points to be used from the (tip displacement) attractor of the system. The axes

in the plots in FIG. 2.5 show the displacement and velocity ofthe tip of the microcan-

tilever. The points in FIG. 2.5a are collected at instants intime which are separated by

one periodT of the excitation. Thus, FIG. 2.5a is a Poincar map of the dynamics (for the

tip of the cantilever) of the3-mode approximate model of the AFM microcantilever. The
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a. Attractor of the system b. Sample points from the attractor

Figure 2.5: The attractor of the system is shown in a Poincar´e map. The axes are the
displacement and velocity of the tip of the microcantilever. 500 sample points
are randomly chosen over the attractor for the calculation of the sensitivity
vectors.

points shown in FIG. 2.5b represent the sampled points wherethe sensitivity vectors are

calculated. In general, the sensitivity vectors do not haveto be collected at all points in

the (sampled) attractor, but just at a few of these points. Inthe study discussed herein, 500

sample points were randomly chosen. However the number of samples does not necessar-

ily have to be as large as 500. We chose this large number of sample points to demonstrate

the linear independence of the SFVs and discuss certain issues related to the nonlinearity

of sensitivity vectors at some locations (as presented in the next sections). Theoretically,

there can be as few sample points as parameters to be detected. Hence, the number of

cycles at a single locus does not have to be extremely large. However, while that theoreti-

cal lower limit is possible, the approach performs much better when more points are used,

especially when multiple parameters are to be identified andnoise is present in the data.

Note that∆T can be interpreted as a tool for adjusting the sensitivity ofthe analysis.

For short∆T , the sensitivity is low, whereas for long∆T , the sensitivity tends to be higher.

Thus, from the perspective of experimental measurements, the crucial issue is the level of

parameter variation that is of interest and the capability of the experimental apparatus (i.e.

the sampling rate and the smallest measurable∆T ). If the parameter variations of interest
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Figure 2.6: The2-norm of the sensitivity vector fields (‖s‖2) for a fixed parameter varia-
tion of 0.1% (referred to as the baseline parameter variation) of each parameter
is plotted to check the sensitivity level of the SVFs. With same variation level
of each parameter, the sensitivities of the SVFs forP1, P2, andP5 are lower
than those ofP3 andP4. Hence, levels of parameter variationsδP1 andδP2

larger thanδP3 andδP4 are considered for reconstruction. Thus, values of1%
for δP1 andδP2 are considered as the baseline for variations inP1 andP2. As a
direct result of that choice, the magnitudes of the SVFs forP1 andP2 increase.

are small, then a larger∆T should be used. The values for∆T used in this study are

of the order of one periodT of the excitation. The best results were obtained for∆T of

approximately 0.4T .

2.3.3 Level of Sensitivity of the SVFs

After verifying the calculation of the SVFs, the parameter reconstruction has been

tested for all5 parametersP1 = A1R, P2 = A2R, P3 = EI, P4 = Z, andP5 = ȳ. It is

observed that the parameter set (P3, P4, P5) is reconstructed well for cases with a low level

of variation (lower than0.5%), while the whole set of5 parameters cannot be reconstructed

accurately. To investigate the causes of the failure of the parameter reconstruction that

includeP1 andP2, one can check the sensitivity of the SVFs for each parametervariation.

To check this sensitivity, one can observe the2-norm of the sensitivity vector fields (‖s‖2)

for a fixed parameter variation of0.1% (referred to as the baseline parameter variation)
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Figure 2.7: The linearity of SVFs for various levels of parameter variationδP5 is demon-
strated in two figures in terms of proportionality and anglesbetween the base-
line and the other parameter variations. The linear increases ofpj and small
values ofαj indicate a strong linearity of the SVFs with respect to the param-
eter variationδP5.

of each parameter. As shown in FIG. 2.6a, the sensitivities of the SVFs forP1, P2, and

P5 are lower than those ofP3 andP4. Hence, only levels of parameter variationsδP1 and

δP2 larger thanδP3 andδP4 can be reconstructed. Thus, values of1% for δP1 andδP2

are considered as the baseline for variations inP1 andP2. Of course, a direct result of that

choice is that the magnitude of the SVFs forP1 andP2 increase, as shown in FIG. 2.6b.

2.3.4 Linearity of the SVFs

The most important property of the SVFs is that they vary linearly with the level of

variation in each single parameter. To check this linearity, one can generate10 test SVFs

for each parameter starting from the baseline parameter variation and up to10 times that

variation. A proportionality factor and an angle between SVFs can be defined for each
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Figure 2.8: The linearity of SVFs for various levels of parameter variationδP4 is demon-
strated in two figures in terms of proportionality and anglesbetween the base-
line and the other parameter variations. The increase ofpj is not linear and
αj are becoming much larger than zero asj increases. This indicates that the
SVFs are varying nonlinearly with respect to the parameter variationδP4.

single parameter variationδPi (i = 1, · · · , 5) as

pj ≡
‖si,j‖2
‖si,1‖2

(j = 1, · · · , 10),

αj ≡ angle betweensi,1 andsi,j

= cos−1 si,1 · si,j
‖si,1‖ ‖si,j‖

where

si,j = SVF for a variation inδPj of magnitudej · δPi,b,

δPi,b = parameter variation of parameterPi for the baseline SVF,

si,1 = baseline SVF.

Note thatαj is the angle between two higher-dimensional vectors as defined above. Hence,

this angle is a measure of linear independence. When the angle is zero, the two vectors are

proportional to each other, while when the angle is close to90◦ or 270◦, the two vectors
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are almost perpendicular to each other. Thus, the conditionfor ideal linearity is as follows,

pj = j,

αj = 0◦.

As an example, the proportionality and angle for the sensitivity vector fields ofP5

are shown in FIG. 2.7. As the variation level increases, the SVFs have amplitudes which

increase linearly withδP5. This linear increase is indicated by the magnitudes (2-norms)

of the SVFs and their small angles with respect to the SVF for the baseline variationδP5,b.

In contrast to the SVFs forP5, the SVFs forP4 exhibit a weakly nonlinear variation with

respect to the magnitude of parameter variation. ForP4, as the variation level increases,

the SVF amplitudes increase nonlinearly, and the directionof the SVFs change. That is

demonstrated in FIG. 2.8 forP4.

2.3.5 Filtering of Sample Points

An important information one may require from the parameterreconstruction is the

variation ofP4, which is the tip-sample distanceZ. The ability to accurately detect the

tip-sample distance while simultaneously monitoring other AFM parameters is an impor-

tant advantage of the SVF approach for the general operationof atomic force microscopes.

Simultaneously identifying multiple parameter variations is much easier when the nonlin-

earity of the SVFs forP4 is minimized. To that aim, a novel point filtering is applied to the

samples used in the SVF. Consider the SVFs forP4. From FIG. 2.8, the sample points are

selected so that the filtered sample points have the value of‖s4,10‖2
‖s4,1‖2

in the range from 9.7 to

10.3. A total of 157 sample points are selected when filtered with the delay time∆T from

0 to 0.68T , whereT is the period of base excitation. Similarly, 121 sample points are

selected with∆T from 0 to 0.7T . The first set of 157 filtered sample points are chosen

for parameter reconstruction hereafter. The filtered sample points from the initial set of
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Figure 2.9: To alleviate the undesired strong nonlinearityof the SVFs for some parameter
variations (especially forδP4, which is the tip-sample distance), the sample
points are selected so that the filtered sample points have the value ofp10 for
δP4 in the range from 9.7 to 10.3. A total of 157 sample points are selected
from the initial 500 sample points when filtered with the delay time∆T from
0 to 0.68T , whereT is the period of base excitation.

sample points are shown in FIG. 2.9. After filtering, the SVFsfor P4 exhibit linearity,

similar to the SVFs forP5. As an example, the SVFs ofP4 from the filtered sample points

are shown in FIG. 2.10.

One can still observe a weak nonlinearity in the SVFs, which leads to increasing rel-

ative errors as the parameter variation level increases, aspresented in Tab. 2.2. A cor-

rection factor to account for this weak nonlinearity of the SVFs for P4 is introduced in

Section 2.3.7 below.
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Figure 2.10: The linearity of SVFs for various levels of parameter variationδP4 after fil-
tering shows that the strong nonlinearity has been removed.A weak nonlin-
earity, however, is still observed. This weak nonlinearityleads to increasing
relative errors as the parameter variation level increases.

2.3.6 Parameter Identifiability by the SVF Approach

After increasing the baseline variation level to reach a higher sensitivity, and after

filtering the sample points,δP1 andδP2 cannot be reconstructed by the SVF approach.

The reasons for the failure are discussed next. One of the unintended consequences of

filtering is a reduction in the magnitude of certain SVFs. FIG. 2.11 shows that the SVFs for

P1 decreases significantly. This loss of the sensitivity makesit very difficult to detect the

variation ofP1 simultaneously with other parameters which have much higher sensitivities.

The SVFs ofP2, however, still have acceptable sensitivity after filtering.

Another unintended consequence of filtering is a change in the direction of the SVFs.

The change in directions may lead to linearly dependent SVFsfor distinct parameters.

Linear dependence (collinearity) of two parameters are checked by comparing the angles

between their SVFs. Consider for example the SVFs forP2 andP4. FIG. 2.12 shows that

those SVFs become almost linearly dependent after filtering. The linear dependence of

these SVFs makes it impossible to reconstruct both parametersP2 andP4 simultaneously.

Due to the loss of the sensitivity and the linear dependence of distinct SVFs,P1 andP2 are
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Figure 2.11: One of the unintended consequences of sample points filtering is a reduction
in the magnitude (2-norm) of certain SVFs. The figure shows that the2-norm
of SVFs forP1 decreases significantly. This loss of sensitivity makes it very
difficult to detect the variation ofP1 simultaneously with other parameters
which have much higher sensitivities. The SVFs ofP2, however, still have
acceptable magnitude (sensitivity) after filtering.

eliminated from the parameter reconstruction.

2.3.7 Correction Factor for Weak Nonlinearity

To resolve the weak nonlinearity of the SVFs forP4 as shown in FIG. 2.10 and Tab. 2.2,

a correction factor is introduced. The parameter reconstruction is generally achieved under

the assumption that higher order terms in Eq. (2.17) are negligible, so that the SVFsi,δPi

(for a magnitudeδPi of variation forPi) depends linearly onδPi. Note thatsi,δPi
refers

to a general value forδPi, which is not necessarilyj · δPi,b. Hence, the notationsi,δPi
is

Variation Normalization Relative Error [%] fc
0.002 1.9947 −0.2634 −2.6274
0.003 2.9842 −0.5256 −2.6211
0.004 3.9685 −0.7865 −2.6148
0.005 4.9477 −1.0461 −2.6085
0.006 5.9217 −1.3045 −2.6022
0.007 6.8907 −1.5616 −2.5960
0.008 7.8546 −1.8715 −2.5898
0.009 8.8135 −2.0722 −2.5836
0.010 9.7674 −2.3257 −2.5774

Table 2.2: Weak nonlinearity ofδP4 and correction factor (fc)
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a. Before filtering b. After filtering

Figure 2.12: Another unintended consequence of sample points filtering is a change in
the direction of the SVFs. The change in direction may lead tolinearly de-
pendent SVFs for distinct parameters. A linear dependence of δP2 to δP4 is
revealed by the angle between the SVFs forP2 andP4. The figures show that
those SVFs become almost linearly dependent after filtering. The linear de-
pendence of these SVFs makes it impossible to reconstruct both parameters
P2 andP4 simultaneously.

distinct from the previous notationsi,j. Also note that, when the parameter variationδPi

is at its baseline valueδPi,b, then the SVF is denoted bysi,1. The linearity ensures that

‖si,δPi
‖2 =

‖si,1‖2
δPi,b

δPi. (2.19)

This assumption has to be modified forP4. Considering the higher order effects ofδP4 on

the corresponding SVFs, one obtains

‖si,δPi
‖2 =

‖si,1‖2
δPi,b

(δPi + fcδP
2
i +H.O.T ). (2.20)

The correction factorfc in Eq. (2.20) is the dominant nonlinear term, and the higher order

terms (H.O.T.) are neglected. Using Eq. (2.20), the corrected parameter variationδPi can

be expressed as

δPi,c =
2

1 +
√

1 + 4fcδPi,o

δPi,o, (2.21)

whereδPi,c is the corrected (actual) parameter variation, andδPi,o is the obtained parame-

ter variation from the parameter reconstruction based on Eq. (2.19) under the assumption

of linearity.
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One can calculate the correction factorfc from the test SVFs used for the linearity

check by using an equation forfc obtained from Eq. (2.20) and expressed as

δP ′
i,c + fcδP

′2
i,c

δPi,c + fcδP 2
i,c

=
δP ′

i,o

δPi,o

, (2.22)

where the parameter variationsδPi,c, andδPi,o are for the baseline variation ofPi, and the

variationsδP ′
i,c, andδP ′

i,o are for the test variations ofPi. One value forfc is obtained

for each test case/variation. When calculating the correction factor forδP4, the baseline

variation is0.1% and the test variations are in the range from0.2% to1%. The calculated

correction factors are shown in the last column of Tab. 2.2. One can observe the small

changes infc as the variation level increases. These small differences are likely due to the

H.O.T. from Eq. (2.20) which are ignored in the calculation offc. Nonetheless, the level

of the differences infc is acceptable in the parameter reconstruction. The value offc from

the variation level of0.6% (fc = −2.6022) is chosen for all the parameter reconstruction

results in next section.

The correction factor suggested here is a calibration process for the SVF approach, but

the number of measurements required for that is not very large. Herein, we used a large

number of SVFs just to demonstrate that the correction factor is indeed approximately

constant throughout the parameter range of interest. Note that the correction factor is

mathematically derived from Eq. (2.22) as a direct consequence of the higher order terms

affecting SVFs, and can be applied to the SVF approach for many nonlinear systems.

2.3.8 Parameter Reconstruction Results

Based on the analyses presented in the previous sections, parametersP3, P4 andP5

were chosen for reconstruction by using the SVF approach. The results obtained were

very accurate in the variation range from−1% to 1%. Two sample cases are presented in

FIG. 2.13 and Tab. 3.3.
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Figure 2.13: ParametersP3, P4 andP5 were chosen for reconstruction by using the SVF
approach. The results obtained are shown. These results arevery accurate
in the variation range from−1% to 1% with a delay time∆T up to0.5 T .
Note that the SVF forP5 has lower magnitude (2-norm) than the SVFs of
the other parameters. Hence, the reconstruction results for δP5 show larger
relative errors than the other parameters.

As we noted previously, the SVFs forP5 have lower magnitude than those of the other

parameters. Hence, the reconstruction results forδP5 show larger relative errors than the

other parameters. FIG. 2.13 shows that the parameter reconstruction for all parameters

is very accurate with a delay time∆T up to0.5 T . The parameter reconstruction results

for ∆T = 0.2 T are shown in Tab. 3.3. The maximum relative errors for the percentage

variation and the physical variation are calculated in the range of∆T from 0 to 0.5 T .

Tab. 3.3 shows that the maximum physical relative error among all parameter variations

is about0.04% of δP5, which is very small. As in FIG. 2.11, the sensitivity of the SVFs

of P3 is the largest. Tab. 3.3 also shows that the reconstruction performance for Case1 is

more robust than that for Case2. This is likely becauseδP4 in Case1 is larger thanδP3,

and that is consistent with the result shown in FIG. 2.11.
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Relative Reconstruction Percentage Max Percent Max Physical
Case δP Parameter Performed at Relative Relative Relative

Variation ∆T = 0.2 T Error [%] Error [%] Error [%]
δP3 0.003 0.002998 0.0672 0.3665 0.0011

1 δP4 0.009 0.008990 0.1210 0.5558 0.0050
δP5 0.006 0.005870 2.1681 3.9039 0.0234
δP3 0.007 0.006981 0.2742 1.3657 0.0096

2 δP4 0.005 0.004990 0.2005 3.5514 0.0178
δP5 0.006 0.005876 2.0667 7.0141 0.0421

Table 2.3: Parameters reconstructed at∆T = 0.2 T , and maximum relative errors calcu-
lated in range of0 ≤ ∆T ≤ 0.5 T , where∆T is the delay time, andT is the
period of the base excitation

2.4 Conclusions and Discussion

The major influence of the higher harmonics onto the tapping mode AFM dynamics

has been discussed. For certain regimes, higher order modeshave been shown to predict

chaotic dynamics for the system although a single-mode approximation predicts limit cy-

cle oscillations. These observations have been demonstrated and discussed along with the

application of the sensitivity vector fields (SVFs) to the detection of multiple simultaneous

parameter variations in the chaotic regime.

In the common tapping-mode AFM operation, the microcantilever is excited near a

resonant frequency, and variations in the amplitude of the limit cycle experienced by the

cantilever is measured to detect variations in the tip-sample displacement. For example,

one may perform numerical simulations with an excitation frequency near the first resonant

frequency of the cantilever (11.8 kHz) forZ=10 nm and separately forZ=10.01 nm (i.e.

for a 0.1% variation inZ). The change in the amplitude of the limit cycle due to the

0.1% variation inZ is approximately 0.012 nm. Hence, the relative change in amplitude

(ratio of the change in the amplitude versus the limit cycle amplitude) is approximately

0.0026. This quantity is much smaller than the relative sensitivity obtained using SVFs.

However, the two sensitivities are hard to compare directly. Nonetheless, these results
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suggest that it is generally more effective to measure the divergence of the trajectories in

chaotic attractors than it is to measure variation in the amplitude of limit cycles. Also, note

that the SVFs are formed based not only on displacements but also on velocities. Also,

note that the main focus of this chapter is to demonstrate howto utilize chaotic dynamics of

the AFM for sensing, and how to take advantages of chaotic attractors in terms of detection

of multiple parameter variations.

Various issues regarding the implementation of the SVF approach for AFM and the

methods to resolve those issues have been discussed. To achieve the most important prop-

erty of the SVF approach, which is the linearity of the SVFs for single parameter vari-

ations, an approach of filtering sample points was introduced with a focus on the most

important parameter (P4). By filtering, one can generally ensure a satisfactory level of

linearity for all parameters to be reconstructed. After filtering, the re-selection process is

performed by investigating the SVFs for each single parameter variation. The possible sig-

nificant loss of sensitivity and the possible linear dependence among distinct parameters

have been discussed. Thus, certain parameters had to be eliminated from the reconstruc-

tion process.

A correction factor has been introduced to resolve the weak nonlinearity of the SVFs

of certain parameter variations (e.g.δP4). The correction factor has been calculated from

test SVFs of known single parameter variations. The parameter variations identified using

the correction factor have been shown to be very accurate.

The use of SVFs for AFM in tapping mode has been shown to resultin an accurate pa-

rameter reconstruction. The operation of the atomic force microscope in a chaotic regime

and by using a parameter reconstruction based on the SVF approach to the multi-mode

microcantilever model has several advantages. First, one can avoid calibration efforts for

searching the linear operation conditions. Second, the atomic force microscope can be op-
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erated accurately with high sensitivity even when multipleparameter changes occur in the

system. The third and most important advantage is that one can use the atomic force mi-

croscope to determine the tip-sample distance while simultaneously monitoring multiple

parameters of the AFM microcantilever.

An important requirement for the proposed approach is the ability to collect/measure

the SVF at sample locations. To do that it is not necessary forthe initial conditions to

be extremely close. That requirement can be eliminated, forexample, by the use of point

cloud averaging (PCA) approach [39, 98, 99]. The PCA approach has been demonstrated

both numerically and experimentally. Using PCA for the AFM is possible. However, the

focus of this paper is to demonstrate that SVFs can be used, are effective, and provide

enhanced sensitivity and the ability to measure multiple parameters simultaneously. The

next level of development of the approach is the use of PCA and, even beyond that, the

use of embedded coordinates. Certainly, those are excitingtopics which are part of future

work. However, they are beyond the scope of this paper.

To use experimental data, one has to first decide if a model is available and is to be

used or not. If a model is to be used, then the model is simulated, data is collected, and

the attractor is computed. Next, samples are numerically collected for various parameter

variation levels, and the linearity assumption is evaluated (and sample point filtering is

applied).

If a model is not available or not to be used, then the prototype (or the device) is used

to collect data. The attractor is measured using the actual experimental set-up. Then pa-

rameter variations are applied experimentally, and the deformed attractor is collected. The

SVFs are estimated (using either data that include very close initial conditions, or using

PCA). The linearity is estimated based on the measured SVFs.The measured samples are

then filtered as described herein (note that the filter is applied at this calibration stage). The
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end results are samples of the full SVFs. These SVF samples are for the locations (in the

attractor) where the linearity is acceptable. Finally, after the calibration is performed, an

actual parameter reconstruction (measurement) can be performed as follows. An attractor

is collected for a system with unknown parameters. The collected data is used to deter-

mine the sensitivity vectors at the locations where the linearity assumption is acceptably

satisfied and where SVFs have been measured.

Note that, if the parameter variations are larger than about1% then the usual available

measurement techniques should be used. The proposed approach provides much enhanced

sensitivity, which is not needed when the parameter variations are large. Also, if multiple

parameters exhibit nonlinear behavior, then the approach as described in the manuscript

cannot be used for detecting multiple parameter variationssimultaneously. A generaliza-

tion of the approach is possible, but that is beyond the scopeof this paper.

Also, note that the choice of∆T can indeed be based on the linearity requirements

(relative toP5 for example). However,∆T can also be chosen in relation to the parameter

variations expected. These two aspects are connected. If parameter variations are small, a

larger∆T can be used because the linearity requirement is satisfied (for larger∆T values).



CHAPTER III

Exploiting Delayed Nonlinear Feedback for
Sensing Based on Bifurcation Morphing

3.1 Introduction

Vibration-based techniques have been essential tools for nondestructive system iden-

tification over 40 years. [16] Such system identification hasbeen applied to a variety of

problems such as sensing and damage detection. Early explorations focused on various

linear vibratory properties for damage detection [17–24].Recently nonlinear system anal-

ysis has become an important aspect of system identificationapproaches. For example,

several studies showed that use of nonlinear properties of asystem has a great potential

for damage detection by providing an enhanced sensitivity.For instance, linear systems

subject to chaotic excitation [25–28], and chaotic systemseither with or without excita-

tion [29–31] have been exploited. Also, a variety of attractor-based metrics have been

presented to quantify geometric changes of attractors in state-space due to system pa-

rameter variations, e.g. damage. These approaches use Lyapunov exponents or attractor

dimensions [32, 33], a scalar tracking metric [34, 35], and statistical characterization of

the distribution of points in an attractor [30, 31, 36–38]. For further enhancement, pattern

recognition techniques based on proper orthogonal decomposition of the shape changes

between attractors (for undamaged and damaged systems) were proposed. These meth-

39
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ods provide a basis for detecting multiple simultaneous damages and levels [30, 39, 40].

Furthermore, a novel approach has been proposed to enhance sensitivity by enhancing

nonlinearity of linear or weakly nonlinear systems by meansof nonlinear feedback exci-

tations [41,42].

Nonlinearities have been studied and were shown to be important in micro and nano

scale vibration-based methods as well. For example, chaotic motions in tapping-mode

atomic force microscopy (AFM) have been studied [43–46], and new operating algorithms

using chaotic motions have also been discussed. These are based on sensitivity vector

fields [44, 45] or local flow variations. [47] The increased use of AFM [1] also has been

accompanied by rapid growth of various other cantilever-based sensing techniques. These

techniques are usually monitoring either static (bending-mode) or dynamic (resonant-

mode) responses of cantilever beams. Among resonant-mode approaches, nanomechani-

cal resonant mass sensors have demonstrated remarkable sensitivity. [48–53] Monitoring

resonant frequency is the most common approach in cantilever-based mass sensors, and

continues to be studied for sensing increasingly smaller scale mass. For higher sensitiv-

ity, the use of higher order resonance modes and the reduction of device dimensions have

been discussed. [54] Recent approaches have been developedto achieve attogram (10−18

g) level mass sensing, by using suspended micro-channel resonators [55], or integrated

electronic displacement transducers [56]. While MEMS/NEMS sensors monitoring linear

resonant frequencies continues to be studied, sensing techniques using nonlinear features

have gained attention in various studies, such as ones focused on electrostatic nonlinear

forcing [57], parametric resonances [58,59], or nonlinearmodal interactions. [60]

In this paper, several new studies of the novel concept of bifurcation morphing and

nonlinear feedback excitation [42] are presented for practical applications in both damage

detection and sensing. The primary discussion is focused onthe time delay in the nonlinear
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feedback excitation. This time delay is unavoidable in practical applications due to the

delay caused by measuring the dynamics, calculating the nonlinear feedback, and forming

the feedback loop. The side-effects of time delays include undesirable high sensitivity of

the bifurcation boundary to small variations in the time delay. That is demonstrated by

numerical simulation. To alleviate the effects of this side-effect, an additional time delay

is introduced as a new design parameter. As the controllabletime delay increases, the

stable region surrounded by the bifurcation boundary converges to the smallest area. This

convergence provides the great advantage of minimizing theeffects caused by variability

in the time delay. The increased time delay also helps to enhance sensitivity and robustness

of the proposed approach.

Next, the paper discusses calibration issues. The sensing approach based on bifurcation

morphing requires two bending-sensors to be placed at distinct locations on the beam and

used to construct nonlinear feedback signals. Various sensor locations are tested to identify

the ones which provide the highest sensitivity. By choosingvarious sensor locations, the

proposed method can be adapted for detecting simultaneous damages at multiple locations.

These features also enable sensing multiple analytes at multiple locations calibrated for

ultra high sensitivity. A multi-mode clamped-free cantilever beam finite element model

is used for computational analysis. Bending-sensors and uniformly distributed bending

moments are used for applying the nonlinear feedback excitation. Density variations for

multiple finite elements are considered as models for mass variations at certain locations.

Parameter reconstructions are demonstrated for several test cases with high sensitivity to

simultaneous mass variations at multiple locations.
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Figure 3.1: Schematic of nonlinear feedback control.

3.2 Theory and Modeling

3.2.1 Bifurcation morphing with delayed nonlinear feedback excitation

A closed loop system for nonlinear feedback excitation consists of sensors, a controller,

and an actuator. As shown in FIG. 3.1, the process of calculating feedback excitation

(STEP2) may generate the majority of the time delay (t1), while the time delay caused

by the signal transfer from sensors to controller input (STEP1) and the signal transfer

from controller output to actuator (STEP4) are much shorterand can be neglected. To

exploit the boundary between stable and unstable dynamics for parameter identification,

it is important to investigate the influence of the time delayon the bifurcation boundary.

Note that an additional time delayt2 can be applied by the controller (STEP3). The entire

time delay is thusτ = t1 + t2.

To gain an analytical perspective on the bifurcation morphing with delayed nonlinear

feedback, one may start from the basic concept of bifurcation morphing method with non-
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Figure 3.2: Two-degree-of-freedom spring-mass system subjected to nonlinear feedback
excitation.

linear feedback presented by Yin et al. [42]. For the linear stability analysis, the nonlinear

feedback term is ignored. The equation of motion for anm-DOF system can be expressed

as

Mü+Cu̇+Ku = Gud, (3.1)

where matricesM,C, andK are the mass, damping, and stiffness matrices,G is the linear

feedback gain matrix,u is the displacement vector, andud is the delayed displacement

vector.

Two sensors are considered for feedback in the proposed approach. Thus,G is com-

posed of two feedback gain parametersGa andGb. Eq. (3.1) can be solved foru by

seeking a solution of the form

u = ūeλt,

ud = ūeλte−λτ , (3.2)

whereτ is time delay of the feedback excitation. Substituting Eq. (3.2) into Eq. (3.1), one

obtains

[

λ2M+ λC+K−Ge−λτ
]

ū = 0. (3.3)

For a non-trivial solution to exist, the matrix

Λ(λ) = λ2M+ λC+K−Ge−λτ (3.4)
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must be singular. Hence, the characteristic equation of thesystem is

det [Λ(λ)] = 0. (3.5)

Bifurcation boundary of Hopf bifurcation on theGa-Gb parameter space can be obtained

by solving Eq. (3.6) forλ = ±jω. One obtains

det [Λ(±jω)] = 0, (3.6)

which consists of real and imaginary parts that must vanish.Hence,

Re{det [Λ(±jω)]} = 0,

Im{det [Λ(±jω)]} = 0. (3.7)

Eq. (3.7) has 3 undetermined variables (Ga, Gb, ω). The frequencyω can be interpreted as

the frequency of the limit cycle which appears right after the bifurcation occurs. As there

are only two equations, and the goal is to obtain the bifurcation boundary in the parameter

space (Ga, Gb), one can fixω as various values and solve for the correspondingGa and

Gb. This can be done for increasingω from ω = 0 to higher frequency as needed.
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Figure 3.3: Bifurcation boundary without time delay.
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Figure 3.4: As time delays increase, the bifurcation boundary converges to a minimal area
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To observe the influence of the time delay, consider the simple two-degree-of-freedom

(2-DOF) mass-spring model from Yin et al. [42], as shown in FIG. 3.2. The equation of

motion for this system is as same as Eq. (3.1), where

M =







m1 0

0 m2






, C =







c1 + c2 −c2

−c2 c2






, K =







k1 + k2 −k2

−k2 k2






,

G =







0 0

Ga Gb






.

The system parameters arem1 = m2 = 1, c1 = c2 = 1 andk1 = k2 = 1. Solving Eq. (3.7)

for Ga andGb at variousω, one obtains a curve in the parameter space. This curve divides

the space into stable and unstable regions, as shown in Figs.3.3 and 3.4 . Without time
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delay (τ = 0), Ga andGb can be obtained as

Ga = −
ω4 + 2

ω2
,

Gb =
−ω5 + ω3 + ω

ω3
. (3.8)

FIG. 3.3 shows the bifurcation boundary formed by Eq. (3.8).Noting thatlimω→0Gb = ∞,

limω→∞ Gb = −∞, and δGb

δω
< 0 for all ω, this boundary divides the parameter space into

half-opened regions: an unstable region (left-hand side) and a stable region (right-hand

side). This is obvious for the 2-DOF system because it only has one pair of roots for

Eq. (3.6). Hence, every solution is a bifurcation point in the parameter space.

Applying time delay to the system (τ 6= 0), there are now an infinite number of roots

for Eq. (3.6), as the equation becomes transcendental.Ga andGb are obtained as

Ga = −
ω (ω4 + 2) cos(τω) + (ω6 + 5ω2 − 2) sin(τω)

ω3
,

Gb =
(−ω5 + ω3 + ω) cos(τω) + (2ω4 + 2ω2 − 1) sin(τω)

ω3
(3.9)

Every set of (Ga,Gb) does not physically represent a threshold between stable and unstable

dynamics of the system anymore because a bifurcation occursonly if the corresponding

roots arethe first pairpassing through the imaginary axis to right-hand side of thecomplex

plane. As shown in Figs. 3.4a and 3.4b, a solution curve starts intersecting itself and forms

a closed region including the origin. Note that the origin inthe parameter space means no

feedback excitation to the system, and the region includingthe origin is always stable.

From FIG. 3.4a and FIG. 3.4b, the stable region of the system is observed to converge to

the smallest area as the time delay increases. Figs. 3.4c and3.4d show the uppermost and

lowermost areas of FIG. 3.4b. An increasing number of intersections of the boundary are

observed as the time delay increases.

As not all pairs (Ga,Gb) are on the bifurcation boundary, we consider polar coordinates

in the parameter space. The bifurcation boundary can be defined for a givenτ as a set of
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Figure 3.5: The bifurcation boundary can be defined in polar coordinates, and the conver-
gence of the boundary can be demonstrated by the convergenceof rmin.

minimum radius (rmin) for all θ from 0 to 2π, as shown in FIG. 3.5a. FIG. 3.5b shows the

convergence ofrmin as the time delay increases, andθ = 0, π (i.e. Gb = 0 andrmin is

the minimum of|Ga|). Another interesting phenomenon observed through the analytical

calculations is that the frequency of the instability near the bifurcation boundary becomes

less sensitive to parameter changes when the time delay increases. This phenomenon is

also observed for the computational model and demonstratesthat each boundary curve

corresponds to a very narrow range of frequencies for the fully developed (or converged)

bifurcation boundary.

3.2.2 Computational model for parameter reconstruction

S S
a b
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Piezo-Sensors

Nonlinear
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Piezo-Actuator

A B

mass variations

Figure 3.6: Schematic of the cantilever beam test system.
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In this section we consider a closed loop system composed of acontroller which acts

on a clamped-free cantilever beam structure, as shown in FIG. 3.6. The cantilever beam,

the actuator, and the sensors are modeled using a finite element formulation. In FIG. 3.7,

a 2D elastic beam element is used for modeling. The output of each sensor is considered

proportional to the bending of the finite element at the location of the sensor. The actuator

is considered to create a uniformly distributed bending moment along its length (10 adja-

cent nodes). Mass variations are applied at multiple locations. An aluminum beam with

physical properties given in Tab. 3.1 is considered. ANSYS is used to form the mass and

stiffness matrices for a model with 100 BEAM3 elements. The equation of motion for the

FEM structural model with nonlinear feedback excitation isexpressed as

Mü+Cu̇+Ku = Gs +Np3(s), (3.10)

where matricesM, C, andK are mass, damping, and stiffness matrices,G andN are

linear and nonlinear feedback gain matrices,u is the vector of nodal displacements and

rotations, ands is the vector of sensor outputs. The vectorp3(s) contains the entries ofs

each raised to power 3. Two sensors (placed at distinct locations) are used. Thus,s is a

2× 1 vector expressed as

s = {sa sb}
T = {−ra1 + ra2 − rb1 + rb2}

T , (3.11)

wherer1 and r2 are the rotations of the 2 nodes on an element as shown in FIG. 3.7,

andp3(s) = {s3a s3b}
T . Subscriptsa andb indicate the element index among the 100

elements which represent all the possible sensor locations. The vectors can be expressed

in terms ofu as follows

s = Eu, (3.12)
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whereE is given by

E =







0 · · · 0 0 −1 0 0 1 · · · · · · · · · · · · · · · · · · · · · · · · 0

0 · · · · · · · · · · · · · · · · · · · · · · · · 0 0 −1 0 0 1 · · · 0






,

andu is expressed as

u = { x11 · · · xa1 ya1 ra1 xa2 ya2 ra2 · · · xb1 yb1 rb1 xb2 yb2 rb2 · · · rn2 }T .

The first subscript indicates element number, and the secondsubscript denotes the node

number for each element.

...... ... ...

Actuator

Sensor Mass Variation

rr
21

Figure 3.7: Cantilever beam model with actuator and sensors.

Table 3.1: Properties of the cantilever beam
Property Symbol Value
Length L 0.28 m
Width b 0.03 m
Height h 1.27 · 10−3 m
Young’s Modulus E 69.9 GPa
Poisson Ratio µ 0.33
Density ρ 2660 kg/m3

Considering time delay in feedback excitation and the expression of delayed sensor

outputsd in terms ofE andud, the final equation of motion for delayed nonlinear feedback

is expressed as

Mü+Cu̇+Ku = GEud +Np3 (Eud) . (3.13)

Once the equations of motion for the discretized system are obtained, the model can be

reduced by general modal analysis. Calculating then × m normalized eigenmatrixVm
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composed of eigenvectors of the system, and introducing themodal coordinate vectorx,

vectorsu andud can be expressed as

u = Vmx,

ud = Vmxd. (3.14)

Substitutingx into Eq. (3.13) and multiplying byVT
m one obtains

VT
m MVmẍ+VT

mCVmẋ +VT
mKVmx

= VT
mGEVmxd +VT

mNp3 (EVmxd) . (3.15)

A final m-DOF reduced order model is obtained as

Iẍ+Dẋ+Ωx = Grxd +Nrp3 (Erxd) , (3.16)

whereI is the identity matrix,D is a diagonal matrix with diagonal values of2ωiζi andΩ

is a diagonal matrix with diagonal values ofω2
i . For numerical simulations,ζi are assumed

to all have a value of0.1.

3.3 Results

3.3.1 Bifurcation boundary with delayed nonlinear feedback

Although challenging, it is possible to obtain the bifurcation boundary for the can-

tilever model with delayed nonlinear feedback by an analytical approach. In addition, the

bifurcation boundary can be identified by numerically constructing bifurcation diagrams

for multiple locations in the parameter space. Results obtained for both the analytical and

the numerical methods are shown in FIG. 3.8 for the special case of zero delays. Points

A, B and C correspond to parameter values (Ga, Gb) shown, whereas the frequency of the

dynamics in the post bifurcation regime is indicated byf . The results given by the two

methods match very well. All results below are based on numerical simulations.
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Figure 3.8: Bifurcation points obtained using analytical and numerical methods for can-
tilever beam model with non-delayed nonlinear feedback excitation. For de-
layed nonlinear feedback excitation, only the numerical method is used.

In the bifurcation morphing approach choosing sensor locationsSa andSb is impor-

tant, not unlike other methods. Thus, twenty combinations of two sensors were tested

with sensors at five different locations on the beam to obtainbetter sensitivity to variations

in mass at a few designated locations. The selected combination of two sensors (Sa and

Sb) corresponds to the finite elements located around 60% and 80% of the beam length

from its clamped end. The nonlinear feedback gains were fixedduring simulations, as

Na = Nb = −0.05. Bifurcation boundaries in theGa-Gb parameter space were obtained

for increasing time delays from near zero to 50 ms. As time delays increase, the stable

region converges to the smallest area in the parameter space, as shown in FIG. 3.9. Dotted

lines are the bifurcation boundaries for time delays from 0.1 ms to 0.5 ms. The lines with

roman labels are final bifurcation boundaries for the supercritical Hopf bifurcations which

occurs when the time delay is 50 ms. Circles indicate intersections of two different bound-

ary curves distinguished by the difference in frequency in the post-bifurcation regime.

These frequencies can be compared with those for the final boundaries. The dotted line

corresponding toτ = 0.4 ms is the closest to the boundary VIII. The frequencies for this

(dotted) boundary range from 1485 Hz to 1490 Hz. The boundaryVIII has frequencies
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Figure 3.9: As time delays increase, the stable region converges to the minimal area with
multiple intersections of the boundaries.

from 1491 Hz to 1492 Hz. On the boundary V, closest lines atτ = 0.4 msτ = 0.5 ms have

frequency ranges of 931∼ 943 Hz and 910∼ 921 Hz respectively, while the final boundary

has frequency range only in 928∼ 929 Hz. Hence, the whole bifurcation boundary con-

sists of multiple boundary curves divided by intersections, which have distinct frequency

characteristics. Multiple boundary curves can be monitored for parameter reconstruction

and are effective for detection of simultaneous mass variations on multiple locations, as

demonstrated in the next section.

Next, consider a constantGb = −162.5. One point on the boundary VII can then

be monitored in detail to evaluate the effects of the time delay. As shown in FIG. 3.10a,

the value ofGa (at the bifurcation point) fluctuates (with large variations) and converges

to the minimum value ofGa as the time delay increases. This behavior suggests that a

smaller stable region is beneficial because the searching process for detecting the bifur-

cation boundary starts from the origin of the parameter space. Moreover, an important
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Figure 3.10: As time delay increases, the values on the bifurcation boundary converges
to the minimum. Furthermore, the noise caused by time delay variation is
minimized.

advantage comes from the fact thatGa converges to a certain value. The large fluctua-

tion of Ga obtained for shorter time delays in FIG. 3.10a are undesirable because small

errors in the controlled time delay may result in unintendedbut substantial variations in

the bifurcation boundary. As in FIG. 3.10b, the convergenceof Ga is essential to reduce

the influence of errors in controlling the time delay. In thisfigure, ∆Ga

∆τ
is shown to con-

verge to nearly zero as the time delay increases. Additionaltime delay reduces undesirable

sensitivity of the system to errors in the controller, and ithelps maintain performance in

terms of sensitivity and proportionality to mass variations which are essential for param-

eter reconstruction. In FIG. 3.11, proportionality is represented by a normalized value.

A value of 1 indicates good proportionality within monitored range. Mass variations are

applied within a range from 0.05% to 0.2% of the total mass of the beam. Sensitivity can

be defined as a nondimensional quantity given by

SG
m =

∆G
G
∆m
m

, (3.17)

wherem is the total beam mass,∆m is the mass variation andG is a feedback gain on the

bifurcation boundary. Similar to Eq. (3.17), one may define the sensitivity of the natural
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Figure 3.11: Additional time delay eliminates disadvantages caused by natural time delay,
it maintains the performance of the proposed approach in terms of sensitivity

frequency shift as

Sω
m =

∆ω
ω

∆m
m

, (3.18)

whereω is a natural frequency of the beam. A maximumSG
m of 1.43 is obtained for∆m

at location A, and 8.25 for∆m at location B, as shown in FIG. 3.11. Locations A and B

correspond to the finite elements located around 30% and 90% of the beam length from

its clamped end. For same mass variations, the maximum valueof Sω
m among the first 5

lowest natural frequencies (up to 1.6 kHz) is 1.462 at the first natural frequency (28.2 Hz)

for ∆m at location B. Overall, the bifurcation morphing is observed to have sensitivities

starting from about the same order as frequency shifts to oneorder of magnitude higher.

Nondimensional values have been used to compare the sensitivities. Nonetheless, there

are other aspects of the proposed bifurcation morphing approach which differentiate it

from the more common, frequency shift methods. For example,frequency shift methods

usually require very low damping (high quality factor) especially in the lower frequency
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Figure 3.12: Bifurcation boundary withτ = 50 ms

Table 3.2: Frequency Characteristics of the bifurcation boundary curves
Index Frequency of Limit Cycle [Hz]

I 153∼ 154
II 168∼ 169
III 451 ∼ 452
IV 469∼ 470
V 928∼ 929
VI 946∼ 947
VII 1472∼ 1473
VIII 1491 ∼ 1492

range, while limit cycle oscillations (beyond the bifurcation point) are much less depen-

dent on damping regardless of their frequency. Furthermore, the values of the gains (Ga,

Gb) are applied to the system, and hence are known with higher resolution than resonant

frequencies which have to be measured.

3.3.2 Parameter Reconstruction

The bifurcation boundary for parameter reconstruction is obtained for a time delay of

50 ms, as shown in FIG. 3.12. Each boundary curve is numbered in increasing order by
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the frequency of the post bifurcation regime. As presented in Tab. 3.2, narrow ranges

of frequencies are observed for all bifurcation boundaries. The boundary curves V and

VII are used to apply the bifurcation morphing method and detect simultaneous mass

variations at multiple locations. Mass variations are applied at two distinct locations, A

and B. A 5% variation of the mass of a single finite element is applied to construct the

basis for parameter reconstruction. Also, 10%, 15% and 20% variations of the mass of a

single finite element are applied to demonstrate the proportionality of the basis. From the

physical properties assumed for the cantilever beam (Tab. 3.1), the total beam mass is 28.4

g, and each finite element has a mass of 284 mg. Hence the range of mass variations are

approximately from 14 mg to 56 mg, which are 0.05%∼ 0.2% variations compared to the

total mass of the beam.
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Figure 3.13: Bifurcation boundary morphing by mass variations on a single location.

The bifurcation morphing in the parameter space caused by a single mass variation is

shown in FIG. 3.13. The circle indicates an area which is nearthe intersection between the

bifurcation boundary curves V and VII. In this intersectionarea, the bifurcation morphing

is not proportional to the mass variations because the two boundary curves overlap each

other as mass changes. Excluding the intersection region, variations of the bifurcation

points are measured at four locations along each of the two boundary curves, which leads
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to a total of eight points. As demonstrated in FIG. 3.13, there are many portions of the

bifurcation boundary which can be probed in detail. However, that is beyond the scope

of this paper. Here, we choose to focus on one portion of the boundary. This portion

was chosen in a quasi ad-hoc fashion. Of course, an optimizedselection process can be

designed.

The bifurcation morphing modes are presented by plotting the variation ofGa (on the

y-axis) versusGb (on thex-axis), as shown in Figs. 3.14a and 3.14b. In these figures,

the left side of the intersection region is the boundary curve VII and the right side is the

boundary curve V. Mass variations are applied at location A in FIG. 3.14a and location

B in FIG. 3.14b. A mass variation of 5% is used to construct thebasis for reconstruc-

tion of mass variations at each location. These figures show that each boundary curve

varies in a way which makes it hard to detect simultaneous mass variations using only a

single boundary curve. Nonetheless, each boundary curve (with distinct frequency char-

acteristics) varies differently for the same mass variation, and linearly independent bases

for distinct locations can be constructed by using a combination of two or more boundary

curves.

The proportionality of each basis to mass variations is demonstrated in Figs 3.14c and

3.14d. The amount of morphing of the bifurcation boundary was obtained for 5%, 10%,

15% and 20% mass variation. Next the linearity of this morphing can be compared (as a

ratio) to the baseline variation of 5%. The ratio which is obtained for a perfect linearity is

of 1 for 5%, 2 for 10%, 3 for 15% and 4 for 20%. The results in Figs3.14c and 3.14d show

that proportionality is ensured for the eight points forming the basis, while some points in

the intersection region fail to maintain proportionality.

Parameter reconstruction is demonstrated for five different cases of simultaneous mass

variations. The8× 2 basis matrixB is formed by two8× 1 basis vectors,bA for location
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Figure 3.14: Bifurcation morphing modes and proportionality of the basis within desired
range of mass variations.

A andbB for location B as

B = [bA bB] . (3.19)

Then, the equation used to reconstruct (identify) the mass variation can be expressed as

B∆m = ci, (3.20)

where∆m is the2×1 vector of mass variations at location A and B,∆m = {∆mA ∆mB}
T ,

andci is the8 × 1 vector of bifurcation morphing mode for the test cases from FIG. 3.15

(details in Tab. 3.3). The amount of mass variation can be identified by solving the overde-

termined system of equations in Eq. (3.20) simply as

∆m = B+ci. (3.21)
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Figure 3.15: Bifurcation morphing modes - different cases (Semi-Temp Figure)

Results obtained for several cases of multiple mass variations by the bifurcation mor-

phing approach with delayed nonlinear feedback are shown inTab. 3.3. For each case,

simultaneous mass variations are applied at both locations(A and B) within a range from

5% to 20% variations of the mass of a single finite element. Themaximum relative error

for the parameter reconstruction is 3.65% among the tested cases. Note that this rela-

tive error is calculated for the variation level (expressedin percentage). Thus, the actual

physical relative error is much smaller.

Table 3.3: Reconstruction results from numerical simulations
Case location Variation Reconstruction Relative Error [%]
1 A 0.07 0.0674 3.65

B 0.18 0.1787 0.72
2 A 0.08 0.0784 2.04

B 0.14 0.1392 0.54
3 A 0.12 0.1190 0.87

B 0.09 0.0896 0.42
4 A 0.13 0.1292 0.58

B 0.07 0.0697 0.38
5 A 0.18 0.1797 0.18

B 0.04 0.0397 0.67
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3.4 Conclusions and Discussion

New studies of the bifurcation morphing and nonlinear feedback excitation have been

presented. The primary topic was the time delay. Time delay is unavoidable for a feed-

back control system. This (naturally embedded time delay) can have disadvantageous

side-effects for sensors based on bifurcation morphing. Inparticular, it produces undesir-

able high sensitivity of the boundary to small variations inthe time delay and that makes

it difficult to achieve high sensing performance. To resolvethis critical issue, additional

time delay can be applied in the feedback excitation. As the time delay increases, the bi-

furcation boundary is observed to converge onto a small areain the parameter space. Fur-

thermore, the convergence/stabilization of the bifurcation boundary significantly reduces

the sensitivity of the boundary morphing to fluctuations in the time delay. As a conse-

quence, the additional time delay enhances the bifurcationmorphing method by reducing

and stabilizing the stable region of the system in the parameter space.

Unintended side-effects of the additional time delay are also observed. As time delay

increases, the bifurcation boundary curves within the samefrequency range (for the post

bifurcation regime) are longer in the parameter space. At the same time, as a result of

the convergence of the stable region, the total length of thebifurcation boundary becomes

shorter as the time delay increases. As a consequence of boththese phenomena, the bi-

furcation boundary has limited range of frequencies, and that results in variations of the

boundary which are alike for different types (i.e. levels, locations) of parameter (mass)

variations. Therefore, it becomes harder to identify linearly independent bases for mul-

tiple parameter variations (such as variations of various types and locations). This issue

is compensated by the increased number of intersections observed as the time delay in-

creases. Intersections divide the bifurcation boundary inmultiple boundary curves with
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distinct characteristics. Using multiple boundary curves, the bifurcation morphing method

successfully detects simultaneous parameter (mass) variations. Note that various combi-

nations of sensors have to be tested for finding the highest sensitivities. A similar process

can be applied to other applications involving structures with various sensor locations and

damage (parameter variation) locations.

Only supercritical Hopf bifurcations were considered. Other types of bifurcation can

be considered also but are not discussed. Nonetheless, various other types of bifurcation

can be induced by designing the form of the nonlinear feedback excitation.

The level of energy injection by the controller may be high for some types of structures

and applications such as damage detection method. However,this level is common for

vibration-based cantilever sensors (like resonant mass sensors). The high sensitivity and

the ability to detect multiple simultaneous parameter variations show a great potential for

sensing.



CHAPTER IV

Forecasting a Class of Bifurcations: Theory and
Experiment

4.1 Introduction

Forecasting bifurcations (i.e. predicting bifurcations before they occur) is a significant

challenge, especially when an accurate model of the system of interest is not available. In

this work, we focus on a certain class of bifurcations. Specifically, jump phenomena (via

subcritical and/or saddle-node bifurcations) are important in many applications because

they correspond to sudden and dramatic changes in the systemdynamics. These types

of nonlinear phenomena have been observed and discussed in avariety of systems, e.g.

physical systems governed by equations of motion such as theSchrödinger equation [61]

or the Swift-Hohenberg equation [62], climate systems [63], ecological systems [64, 65],

biomedical systems (exhibiting behaviors such as asthma [66] or epileptic seizures [67,

68]), neuron systems (exhibiting pulse propagation [69]),and global finance systems [70].

Several system characteristics have been explored for forecasting bifurcations of in-

terest (e.g. noise-induced spectrum [71], virtual Hopf phenomenon [72], skewness of

probability distributions [73] or flickering in bistable regions before bifurcations [74,75]).

In particular, the critical slowing down phenomenon [76] has been employed as the un-

derlying physical basis of various existing approaches forforecasting the occurrence of

62
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bifurcations [77]. Consider an attractor of the dynamics ofa system (e.g. a stable fixed

point, a stable limit cycle or a chaotic attractor). When a small perturbation is applied

to the system, the dynamics converge toward the attractor atsome (recovery) rate. The

critical slowing down means that this recovery rate approaches zero as a parameter of the

system varies and the size of the basin of attraction shrinksto nil [78]. As a consequence,

in the pre-bifurcation regime, the recovery rates (from small perturbations) decrease as

the system approaches the bifurcation. These effects can beobserved quite far from the

bifurcation [77]. Hence, quantifying the effects of the critical slowing down is one method

which can be used as an indicator of nearby bifurcations.

Nearby bifurcations have been predicted in various complexsystems by monitoring

the recovery rates of the system fromsmall perturbations. Methods used have included

monitoring changes in the autocorrelation [79] or the variance [80] of the system response

to small perturbations (which are consequences of the critical slowing down [77]). These

techniques for forecasting bifurcations have been studiedfor various systems, such as

ecosystems [80–82], climate dynamics [83], cell signaling[84], and ocean dynamics [79].

Such studies are still far from being able to predict/forecast the most complicated bifurca-

tions when an accurate model of the system is not available. Also, in current techniques

there are often two implicit assumptions that the dynamics of the system takes place on

a very low dimensional manifold, and that the bifurcations are co-dimension one. Even

more importantly, when a physical system is available for testing, the level of perturbations

which can be applied to the system have to be very small. That is because the formulations

based on observations of critical slowing down have been derived in close proximity to the

attractor (by linearization after eliminating higher order terms).

In this paper, an alternate approach to characterizing the recovery rates of dynamical

systems is proposed. Specifically, the rate of change of the amplitude of the dynamics
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(including certain higher order terms) is quantified. This new characterization shows that

critical slowing down can also be observed when using much larger levels of perturba-

tion. By tracking the change of the recovery rate from large perturbations, it is possible

to predict both stable and unstable branches in a bifurcation diagram. Of course, when an

accurate numerical model is available, bifurcation branches can be computed using sev-

eral computational bifurcation tools, e.g. AUTO [85], DDE-BIFTOOL [86] and PDDE-

CONT [87]. Only a few recent studies consider detecting unstable periodic orbits in the

bifurcation diagram experimentally [88–90]. These approaches use controllers to stabilize

unstable orbits and track them while a parameter of the system is varied. Such approaches

are useful in detecting many types of bifurcations. However, controller-based approaches

have many requirements. In contrast, the proposed approachdoes not require a controller

and does not need the parameter to vary (or to enter the post-bifurcation region). Instead,

this approach predicts the bifurcation and the unstable branches simply by tracking the

recovery rate of the system dynamics. These advantages comeat the price of limiting

the class of bifurcations which can be tracked. Specifically, only Hopf and saddle-node

bifurcations can be handled. Nonetheless, the characterized recovery rates can be used to

predict both the occurrence and the type of bifurcations (i.e. supercritical or subcritical)

before they occur.

Numerical simulations and experimental results are provided to demonstrate the use of

our technique for forecasting bifurcations. Limit cycle oscillations of a simple mechanical

system are used in the experiments. To simulate bifurcations of limit cycle oscillations,

properly designed nonlinear feedback excitations are applied so that the desired types of

bifurcations take place in an otherwise linear system. Nonlinear feedback excitations have

been employed in structural health monitoring [42, 91] and sensing [92] as an active in-

terrogation approach. However, the feedback control, in this paper, is only used as a tool
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to simulate desired nonlinear dynamics. The proposed approach does not require any type

of control to be applied. As the time scale of the system used herein is very short (com-

pared to several systems used in current studies [77]), our experimental set-up provides

large amounts of data in a short time. Moreover, the results obtained using the proposed

approach suggest that predictions of bifurcations by critical slowing down can be suffi-

ciently accurate for applications to engineered systems which generally require high preci-

sion (such as sensing). Many of engineered systems experience the class of bifurcations of

interest here (subcritical/supercritical Hopf bifurcations and/or saddle-node bifurcations),

e.g. relief valves [93], shape memory oscillators [94], aeroelastic systems [95], machine

tools [96], and automotive components such as torque converter clutches [97].

4.2 Theory

This section presents a method to forecast bifurcations by using time series collected

only in the pre-bifurcation regime. The method is based on observation of how the system

recovers to its equilibrium state from perturbations. Sucha recovery of the oscillation

amplitude to equilibrium is shown in FIG. 4.1. Discussion focuses on forecasting co-

dimension one supercritical/subcritical Hopf bifurcations and saddle-node bifurcations.

Consider a nonlinear system with the perturbed dynamics characterized by an ampli-

tuder, and a fixed point or periodic dynamics characterized by an amplitude r̃. Consider

also that a perturbation with a certain levelr0 is applied initially to the system. When

the system has a stable behavior, it converges from the initial perturbationr0 back onto

the (stable) fixed point or the (stable) limit cycle of amplitude r̃ as shown in FIG. 4.1.

When the system has an unstable fixed point or an unstable limit cycle, the amplituder

diverges away from̃r. The time rate of change of the amplitude in either of these cases is
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considered to be of the form

ṙ = r [α(µ− µc)− p(r)] , (4.1)

whereα is a fixed parameter of the system,µ is a controlled/monitored parameter of the

system,µc is the critical value of the parameterµ where a bifurcation occurs, andp(r) is

a polynomial function ofr with p(0) = 0. Note thatp(r) is assumed to be independent

of the control parameterµ. This is an important assumption which delineates the rangeof

application of the proposed method. Hereα > 0, and the pre-bifurcation regime corre-

sponds toµ < µc. In the pre-bifurcation regime, the dynamics of the system has a fixed

point atr = 0. In the post-bifurcation regime, the dynamics has one fixed point atr = 0

and another at̃r, wherer̃ is given byp(r̃) = α(µ − µc). Also, note that, in general,α is

not known unless an accurate model for the system is available. Herein, we considerα an

unknown that has to be identified/detected.

The rate of change of the phaseθ of the system is not considered because we do

not focus on infinite period bifurcations or other similar bifurcations. The phase of the

system can be defined for any system exhibiting a limit cycle oscillation of periodT to

reveal the fact that the dynamics is periodic. Hence,θ varies by2π when time varies by

T . Only a generic phase definition is needed because the proposed approach uses only

the amplitude of the oscillations as input data (and the system response is assumed to be

periodic). Hence,θ andθ̇ do not significantly influence the analytic formulation.

The rate of amplitude variation at timet is defined as

λ(µ, r) =
d log r

dt
. (4.2)

Using Eq. (5.4) one obtains

λ(µ, r) =
1

r
ṙ = α(µ− µc)− p(r). (4.3)
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Figure 4.1:
The rate functionλ can be measured at each level of perturbation by measuring
r−, r andr+ at timest−∆t, t andt+∆t. Note that perturbations do not have
to be small. Only∆t needs to be small.

The rate of amplitude variationλ in Eq. (4.3) is a function ofµ (the controlled/measured

parameter) andr (the amplitude at timet), and is composed of two terms. The first term

α(µ−µc) is the distance from the current parameter valueµ to the critical valueµc scaled

by the fixed coefficientα. The second termp(r) is a polynomial which characterizes the

type of bifurcation.

Consider that measurements are collected at timest − ∆t, t and t + ∆t to obtain

three amplitudesr−, r andr+ as shown in FIG. 4.1. To determineλ, one can employ the

following approximation

λ(µ, r) =
d log r

dt
∼=

log r+ − log r−
2∆t

, (4.4)

which holds for small∆t. Note that the measured perturbationsr−, r andr+ do not have

to be infinitesimal as long as∆t is small.

Generally,λ can be exploited in either ther-λ space or theµ-λ space. First, consider

the dynamics of the system for a fixed parameterµ and a varying perturbation levelr. As
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shown in FIG. 4.2a, the dependence ofλ on r is a polynomial given by

λ(µ, r) = λ0 − p(r), (4.5)

whereλ0 = α(µ − µc) represents the rate of amplitude variation whenr tends to zero,

λ(µ, r = 0). Different polynomialsp(r) correspond to distinct types of bifurcations.

Therefore, the shape ofλ(µ, r) in the r-λ space can be used to determine the type of

bifurcation which takes place atµ = µc. Note that the bifurcation is forecasted, i.e. it is

identifiedbeforeit takes place (using onlyµ values which are less thanµc). This ability to

forecast is not found in other existing techniques [85–90].

In general, for a given parameter valueµ = µ̃, a system may have several coexisting

fixed points or limit cycles. Consider the amplituder̃i of one of those stable/unstable fixed

points or limit cycles. As shown in FIG. 4.2b, all points (µ̃, r̃i) on the bifurcation curve

satisfy the equation of motion and correspond to fixed pointsfor r. Hence,

ṙ(µ̃, r̃i) = r̃i [α(µ̃− µc)− p(r̃i)] = 0. (4.6)
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Now, recall the dependence ofλ on r expressed in Eq. (4.3) (and presented in FIG. 4.2a).

For all r̃i, the value ofλ(µ, r̃i) is the same, as we show here

λ(µ, r̃i) = α(µ− µc)− p(r̃i)

= α(µ− µ̃+ µ̃− µc)− p(r̃i). (4.7)

Using Eq. (4.6), one obtains

λ(µ, r̃i) = α(µ− µ̃) +
�
�
�
�
�
�
�
�
��:

0
α(µ̃− µc)− p(r̃i)

= α(µ− µ̃). (4.8)

Eq. (4.8) reveals the fact that the value ofλ at r̃i represents the distance (scaled byα) from

the currentµ to µ̃. Note that for eachi, λ(µ, r̃i) is a line in theµ-λ space, which has the

slope ofα and crosses theµ-axis (λ = 0) at µ̃. An example of such a line (defined by

Eq. (4.8)) is shown in FIG. 4.4. One can measureλ(µ, r̃i) for as few as two distinct values

of µ to obtain this line. This requirement is distinct from classical approaches whereµ has

to have many values which span both the pre-bifurcation and the post-bifurcation regimes.

Next, the fixed coefficientα can be estimated as it is the slope of the line (defined by

Eq. (4.8)). One can then measureλ (for a given value of̃r, and a given value ofµ) and

computeµ̃ as

µ̃ = µ−
1

α
λ(µ, r̃). (4.9)

Finally, the bifurcation diagram can be predicted by the setof points (̃µ, r̃).

Note thatλ is derived without eliminating higher order terms. Hence, its definition

can be used at any level of perturbation. Based on the values of λ at large amplitudes,

one may predict the distance toµc from the currentµ by estimatingλ0 = α(µ− µc) from

Eq. (4.5). In most cases, it is a challenge to observe the system dynamics (and estimate

λ) from very small perturbations because the measurements ofactual dynamics can be
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obscured by noise. Therefore, the estimated value ofλ0 is more accurate if obtained using

data collected for sufficiently large amplitudes.

The general algorithm for forecasting the bifurcation diagram using this approach is as

follows:

1. For a given value of the parameterµ = µk (with k = 1 · · ·M , whereM is chosen

by the user), a perturbation is applied to the system, and amplitude valuesrj (with

j = 1 · · ·N , where N is chosen by the user) are collected at various time instances

tjk.

2. Using Eq. (4.4), the rate of amplitude variationλjk = λ(µk, rj) is computed at time

tjk for all j = 1 · · ·N .

3. The slopeαj of the lineλ(µk, rj) vs.µk is computed for eachrj (j = 1 · · ·N). Note

that theseN values ofαj can be averaged overj to obtain an average value ofα for

improved noise rejection.

4. A value ofµ̃jk is obtained for eachµk (k = 1 · · ·M) and eachrj (j = 1 · · ·N) using

Eq. (4.9) (wherẽr has a valuẽrj of rj) and the slopeα obtained at step 4. Note that

theseM values ofµ̃jk can be averaged overk to obtain an average value forµ̃j for

improved noise rejection.

The bifurcation diagram is finally obtained as the plot ofr̃j vs. µ̃j for j = 1 · · ·N (where

r̃j = rj).

4.3 Results

In this section we demonstrate our approach by applying it first to a numerical model

and then to an experimental system.
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Figure 4.3:
Predictions based onλ are demonstrated using a numerical model for a super-
critical Hopf bifurcation.

4.3.1 Numerical results

Forward (supercritical) and backward (subcritical) Hopf bifurcations are considered.

The governing equations of motion for systems with such bifurcations are of the form

shown in Eq. (5.4). They are characterized by two different types of polynomialsp(r) as

follows

pf(r) = βr2, (4.10)

pb(r) = −βr2 + γr4. (4.11)

The values ofβ = 1 andγ = 1 are used to obtain numerical data. The values ofµc andα

from Eq. (5.4) are considered to beµc = 0 andα = 1. The results obtained forλ, and the

predictions made for both bifurcations are presented in FIG. 4.3 and FIG. 4.5.

For a supercritical Hopf bifurcation, values forλ were obtained in a range ofµ from

µmin = −1 to µmax = −0.5, with a given initial perturbation amplituder0 = 0.8. The

curve shown in FIG. 4.3a is the exact bifurcation diagram obtained by analytically solving

ṙ = 0 for r at everyµ between−1.2 and1. The points (̃µ, r̃) in FIG. 4.3a are predictions

obtained by the proposed approach using multiple curves ofλ collected for distinct values

of µ betweenµmin andµmax. Specifically, the values ofλ for a certain amplitudẽr on
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Each predicted point for̃r in FIG. 4.3a is estimated by line fitting the measure-
ments ofλ(µ, r̃) for variousµ. The slope of the line fitting all measurements
(for a givenr̃) is α.

the dotted line shown in FIG. 4.3b are projected onto theµ-λ space as shown in FIG. 4.4.

As discussed in Section II, this line has the slope ofα and crosses theµ-axis (λ=0) at

µ̃. All predicted points shown in FIG. 4.3a are obtained by the same approach under the

assumption thatα is unknown (and must be measured). Note that, onceα is identified,

measurements ofλ for a singleµ value are sufficient to obtain a prediction for the entire

bifurcation diagram in FIG. 4.3a.

For a subcritical Hopf bifurcation, the range considered for µ was fromµmin = −2

to µmax = −1, and the initial perturbation amplitude wasr0 = 1. The results shown

in FIG. 4.5 were obtained by exactly the same procedure as forthe supercritical Hopf

bifurcation (FIG. 4.3). However, the curves obtained are distinct because the polynomial

used to generate the (numerical) data is that given in Eq. (4.11) instead of Eq. (4.10).

Additional important results are observed in the subcritical case. For example, the new

approach can successfully predict the saddle-node bifurcation of cycles located at point S

in FIG. 4.5a. The predicted points approximate very well theexact location of the saddle-

node bifurcation. In addition, the large amplitude of the emerging limit cycle at point S is
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captured accurately.
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Figure 4.5:
Predictions based onλ are demonstrated using a numerical model for a sub-
critical Hopf bifurcation.

The predicted bifurcation diagrams obtained based onλmeasured in the pre-bifurcation

regime perfectly match the analytical diagrams for the numerical models of general Hopf

bifurcations considered. The predicted information includes the locations of the bifurca-

tion points, and the whole bifurcation diagram, including the unstable limit cycles. The

curves ofλ vs. r were obtained by tracking the time history of the system during its

recovery from the initial perturbations.

Several time history plots shown as inserts in FIG. 4.3a and FIG. 4.5a demonstrate that

it is not easy to discern specific bifurcation characteristics without proper analysis. Our

approach presents a clear characterization of the time histories both qualitatively (between

different types of bifurcations), and quantitatively (between different values ofµ for the

same bifurcation). Our technique is experimentally demonstrated and verified in the next

section for limit cycle bifurcations of a mechanical oscillatory system.

4.3.2 Experimental results

A clamped-free aluminum beam is used in the experiments. To induce supercritical

or subcritical Hopf bifurcations in the system dynamics, nonlinear feedback excitations

are applied to enhance the nonlinearity of the system [42]. Adiagram of the experimen-
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tal system is shown in FIG. 4.6. As shown in the figure, a piezo-sensor and a pair of

piezo-actuators are attached to the aluminum beam. The sensor output signal is condi-

tioned through a charge amplifier and is the input to a real-time processor. In the real-time

processor, the sensor output data is stored while the data isalso used to form a designed

nonlinear feedback excitation, which is then amplified and sent to the piezo-actuators on

the beam. Note that the feedback controller is not a requirement of the proposed approach

to forecast bifurcations, but is used only for creating a system which exhibits the desired

bifurcations. The proposed approach only uses the time series data from the sensor. The

controller actuation is used to provide an excitation whichrepeatedly induces large level

perturbations to the system. That is done for the sake of experimental validation and is not

needed when other external perturbations exist or can be easily applied. Also, note that

the large level perturbations applied do not have to be identical.

Piezo-Sensor

Nonlinear

Feedback

Piezo-Actuator

+

+

-

Real-time

processor

Host PC

Aluminum beam

Charge

F

S

Figure 4.6:
An aluminum beam is used for experimental tests. Nonlinear feedback is de-
signed and applied to generate supercritical or subcritical Hopf bifurcations.
Only one of the sensors on the beam is used in these experiments. From the
piezo-sensor output signals which is proportional to the amplitude of oscilla-
tion, nonlinear feedbackF is formed and applied to the base of the beam (as a
locally distributed bending) by a pair of piezo-actuators.
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Figure 4.7:
4000 values ofλ are obtained for distinctr values from a transient phase. The
process is repeated 16 times for eachµ value.

To induce desired supercritical or subcritical Hopf bifurcations, nonlinear feedback

is generated from the piezo-sensor output signals which is proportional to the oscillation

amplitude. The nonlinear feedback is applied to the beam (asa locally distributed bending)

by a pair of piezo-actuators attached on both (upper and lower) sides of the beam. The

nonlinear feedbackF can be expressed as a function of the sensor outputs as

F = µs+ βs3 + γs5, (4.12)

whereµ is the control parameter, andβ andγ are the nonlinear feedback gains, which are

fixed for each desired bifurcation. For creating a supercritical Hopf bifurcation, nonlinear

gain parameters are fixed asβ = −0.01 andγ = 0, with 20 dB of charge amplifier gain.

For creating a subcritical Hopf bifurcation and a saddle-node bifurcation, nonlinear gain

parameters are fixed asβ = 5 andγ = −0.05, with 10 dB of charge amplifier gain. These

parameters were chosen based on a few preliminary experimental tests.

Each experiment consists of two steps. The first step is to obtain the actual bifurcation

diagram by the classic method of parameter sweeping. This step is performed so that the

predictions obtained using our approach can be compared to the actual bifurcation dia-

gram. To obtain the actual bifurcation diagram, the linear feedback gain (the controllable
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parameterµ) is changed from pre-bifurcation values to post-bifurcation values in the pa-

rameter space. For subcritical bifurcations, a reverse sweep in the parameter is also applied

(to capture the jump phenomenon at the saddle-node bifurcation of cycles). After ignor-

ing transients, the amplitude of the limit cycle oscillations is obtained and plotted vs. its

corresponding parameter value to obtain a bifurcation diagram. The bifurcation diagram

obtained by this classic method is shown in FIG. 4.8 in form ofdashed lines. Note that the

lines in FIGs 4.8b and 4.8c which (at first glance) may look like an imperfect bifurcation

are an artifact of the plotting of the results. They are caused by the finite step size be-

tween each parameter value considered in the classical method. Lines (connecting actual

measured points) are used instead of points for better visibility because the results of our

approach are marked as circles (with error bars). Also, the jump phenomena presented

in FIGs 4.8d, 4.8e and 4.8f are caused by subcritical Hopf bifurcation and saddle-node

bifurcation. Note that the jump phenomena may also be observed for supercritical Hopf

bifurcations as a delay effect for systems with slowly varying parameters [109]. However,

in the experiment herein the applied nonlinear feedback is designed specifically to induce

a subcritical Hopf bifurcation, and the parameters of the system are maintained constant

long enough to reach steady-state for each parameter value.

The second and critical step is to predict the bifurcation location and shape using only

λ values obtained in thepre-bifurcation regime. To obtain the curve ofλ for a fixed

parameterµ, a perturbation is applied to the system. The perturbation is caused by a

harmonic excitation (with a high frequency and a certain amplitude) which is applied to the

system for a very short time, to provide a desired perturbation. After the perturbation, the

dynamics of the system in its transient regime (as the systemrecovers from its perturbed

state) are recorded. Specifically, the amplitude of the oscillation is measured during the

transient phase. In this case, recovery is complete when thetransients decay to zero. Note
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Figure 4.8:
Predictions for the bifurcation diagram obtained based onλ are demonstrated
for supercritical and subcritical Hopf bifurcations. The upper plots (a, b and
c) are for a supercritical Hopf bifurcation, and the lower plots (d, e and f)
are for a subcritical Hopf bifurcation. The dashed lines represent the actual
bifurcation diagram measured by applying actual parametervariations in the
post-bifurcation regime. Results show that predictions are more accurate when
they are based onλ values obtained at multipleµ values. Also, onceα is calcu-
lated, predictions are most accurate when they are based on measurements at a
value ofµ close to the actual bifurcation, i.e. forµ close toµc. The horizontal
bars represent standard deviation error bars computed for each predicted point
on the bifurcation diagram.

that the frequency of the short perturbations is chosen close to the resonant frequency of

the system. Other types of perturbations can be applied, however they may place more

stringent restrictions on the data acquisition (sampling rate and resolution). Although

interesting, the study of other perturbations is beyond thescope of this paper.

The resonant frequency of the system (close to the bifurcation) was measured exper-

imentally and found to be approximately 6.1 kHz for both supercritical and subcritical

Hopf bifurcations. The sampling rate of the data acquisition was approximately 200 kHz.

The measured dependence ofλ onr for supercritical and subcritical Hopf bifurcations

is shown in FIG. 4.7. For a given value ofµ, a time series of 4000 individualr values was
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obtained as the system decayed to the equilibrium (zero) state. Then the values ofλ were

obtained using Eq. (4.4) for thoser values. This process was repeated 16 times for eachµ

value. In obtainingλ values using Eq. (4.4), experimental noise can affect smallvalues of

r and lead to large errors inλ. Hence,r values below a pre-set minimum amplitude were

eliminated. This minimum amplitude depends on the data acquisition system used. For

the results herein, the value used was 50 mV. Note that our method is designed to provide

estimates for the values ofλ even when these values are small. This is accomplished by

taking advantage of data obtained from larger perturbations, and by using the curves ofλ

in ther-λ plane. These results are demonstrated in FIG. 4.7, where theamplitude of the

dynamicsr is proportional to the output voltage of the sensor.

For the supercritical Hopf bifurcation, values ofµ were chosen betweenµmin = 0.45

andµmax = 0.95. Similarly, for the subcritical bifurcation,µ values betweenµmin = 1

andµmax = 2 were used. 11 distinct values ofµ were selected for the experiments in

each of these ranges. In theµ-λ space, line fitting was conducted to predict the location of

each corresponding limit cycle amplitude (similar to what was done using numerical data

to obtain the results in FIG. 4.4). Also, the value ofα was estimated based on the slopes of

the lines in theµ-λ space. The value ofα obtained for the supercritical Hopf bifurcation is

αf = 195.82 (with a standard deviation of 1.56), and for the subcriticalHopf bifurcation

is αb = 66.81 (with a standard deviation of 2.93). As shown in FIG. 4.8, thepredictions

using Eq. (4.9) match the actual bifurcation diagrams very well.

Our results also show that a bifurcation can be predicted quite well even when mea-

surements obtained at a single value ofµ are used (onceα is obtained). Note that in all

measurements,µ is lower than the value where the system actually encountersthe bifur-

cation (atµc).

Figures 4.8b, 4.8c, 4.8e and 4.8f present the predictions obtained using measurements



79

at single values ofµ. Figures 4.8b and 4.8e show results obtained using a value ofµ which

is µmin, and is the farthest from the actual bifurcation (atµc). Figures 4.8c and 4.8f show

results obtained using a value ofµ which isµmax, and is the closest to the actual bifurcation

(atµc). As the parameterµ approaches its bifurcation valueµc, the predictions based onλ

are more accurate. Note, however, that the bifurcation is well predicted even when using

measurements collected atµmin. These measurements are quite far from the bifurcation

(half way between zero feedback and the actual bifurcation point). For the subcritical Hopf

bifurcation (FIGs. 4.8d, 4.8e and 4.8f), one can observe a small difference between the

actual and the predicted bifurcation points. However, these results are reliable, especially

considering that the values ofµ are chosen in a range well belowµc (where the saddle-node

emerges).

4.4 Discussion and Conclusions

A new method of characterizing the dynamics of a nonlinear system during its tran-

sient recovery to a stable limit cycle or a stable fixed point after perturbations (in the

pre-bifurcation regime) was presented. The proposed approach is designed for forecasting

bifurcations of fixed points or limit cycles. By keeping all higher order (nonlinear) infor-

mation in the formulation, the perturbation levels do not have to be small. Allowing for

large perturbations is important because it can be challenging to measure recovery from

small perturbations due to a loss of accuracy caused by noiseand/or a lack of resolution in

measurement. In most cases, operating with larger perturbations is a good way to resolve

such accuracy issues and obtain better predictions of the bifurcations without the need to

explore the post-bifurcation regime. Also, the recovery rates obtained using large per-

turbations enable the prediction of locations in parameterspace where the stable/unstable

limit cycles lie as well as the amplitudes of those limit cycles.
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Another important feature of the proposed method is its ability to accurately predict

saddle-node bifurcations and unstable limit cycles for thecase of subcritical Hopf bifur-

cations. There are several recent studies to experimentally follow unstable branches by

means of feedback control. However, those studies differ fundamentally from the ap-

proach in this paper. The proposed method predicts the unstable branches without fol-

lowing them, i.e. in the pre-bifurcation regime (where the system always recovers to its

equilibrium). From a practical standpoint, this is clearlythe safest way to investigate a

system. Furthermore, the use of feedback in this paper is only for the purpose of creating

a well known system which can be used for quantitative evaluation of the predictions our

method provides. In contrast to other experimental techniques [88–90], the feedback is

not needed (and not used) for forecasting the bifurcations or the unstable branches. Due to

its minimal requirements (i.e. time series data), the proposed method has strong potential

for application to other areas, such as biological systems or natural systems, where the im-

plementation of feedback control for the purpose of forecasting bifurcations or measuring

unstable branches may be difficult.

A clamped-free aluminum beam with a nonlinear feedback excitation was introduced

for experimental verification of the proposed method. The oscillatory system with nonlin-

ear feedback has several advantages for testing nonlinear techniques. First, desired types

of bifurcations can be induced easily in the system because the nonlinearity of the system

comes from the control feedback (which can be designed for each specific case of inter-

est). Second, the predicted shape of the bifurcation can be obtained very quickly because

(onceα is known) a single time history of the recovery from a large perturbation contains

all necessary information for the range of the corresponding amplitudes as well. This con-

trasts with classical techniques where the bifurcation parameter has to be varied and many

steady-state curves have to be measured to obtain the bifurcation diagram. In addition,
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the results using the proposed approach are very accurate when compared with results of

classical techniques.

In the experiments, the actuation (by the controller) was used to induce perturbations

repeatedly. Multiple perturbations were used for two reasons: (1) to enhance the accuracy

of the predictions, and (2) to develop a method to predict unstable branches, to be used

precisely when the response of the systemis available for multiple perturbations. Note

that, when multiple perturbations are available, they do not have to be the same (e.g., they

do not have to have a similar level). Some can be large and somesmall, or they can be

large and of different levels. In fact, natural (small or large) perturbations can be used.

The only requirement here is that the system recovers to its equilibrium state from these

perturbations. For example, the proposed method (using time series) can be applied to a

system which undergoes an impulse-type disturbance duringoperation (e.g., an aeroelastic

system encountering a gust during flight) which causes (large or small) perturbations after

which the system recovers to its regular (stable) operatingconditions.

Of course, the proposed approach has restrictions on its applicability. First, the dy-

namics are assumed to be effectively one dimensional and periodic, and the bifurcation

is assumed to be co-dimension one. Currently available techniques also consider limited

types of dynamics and co-dimension one bifurcations. Thesestudies (and ours) are still far

from being able to predict/forecast bifurcations for the most complex systems, especially

when an accurate model of the system of interest is not available. Second, if the system

does not experience large perturbations (either induced ornatural), then one cannot fully

take advantage of the proposed method. However, the proposed approach can still be used

(in a limited sense) by monitoring small perturbations (either induced or natural) to locate

the bifurcation point. Third, the perturbations are assumed to be of a magnitude which

does not make the system switch between different attractors. That is, the assumption
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is that the system reverts to its initial equilibrium position (or to its initial periodic limit

cycle oscillation) in time after the perturbation subsides. Fourth, the nonlinear terms are

assumed to be independent of the control parameter. These restrictions are necessary when

one needs to forecast the bifurcation (instead of detectingit by sweeping up and/or down

a system parameter).

The proposed technique enables the use of larger perturbation levels which broadens

its applicability as compared to existing techniques basedon the critical slowing down. In

addition to predicting where bifurcations occur, the proposed approach can be used to an-

ticipate the type of the bifurcations (supercritical or subcritical) and predict their branches

without exploring the post-bifurcation regime. Due to the dramatic change in the dynam-

ics at bifurcations, predicting subcritical and saddle-node bifurcations without placing the

system in the post-bifurcation regime provides great advantages in many applications.



CHAPTER V

Forecasting Bifurcation Morphing: Application to
Cantilever-based Sensing

5.1 Introduction

Since atomic force microscopes (AFM) have been introduced [1], various cantilever-

based sensing techniques have been proposed as tools in various fields. Specifically,

MEMS and NEMS resonant sensors have been studied and shown tohave remarkable

sensitivity [48–53]. In common resonant sensing techniques, changes in resonant frequen-

cies of a cantilever are monitored to detect local mass variations caused by the adsorption

or attachment of analytes of interest onto the sensor. Many studies have addressed the idea

of enhancing the sensitivity of such resonant sensors. The use of higher order resonance

modes, and dimensional reduction of the cantilever have been discussed for enhancing

sensitivity [54]. Recently, attogram (10−18 g) level mass sensing was demonstrated by

structural modifications of the resonant sensors, such as suspended micro-channel res-

onators [55], or integrated electronic displacement transducers [56].

Various studies of features of nonlinear systems have also been studied for application

to cantilever-based sensors, such as electrostatic nonlinear forcing [57], parametric reso-

nances [58, 59], and nonlinear modal interactions [60]. Studies of nonlinear approaches

are important because they suggest that higher sensitivitycan be achieved by just chang-
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ing the algorithm of sensing (for the same sensors which use linear techniques) instead of

applying dimensional or structural modifications.

Bifurcation morphing by nonlinear feedback excitation is anovel nonlinear approach

for damage detection and sensing [42,91]. This nonlinear approach is based on inducing a

bifurcation by nonlinear feedback applied to a linear structure. The change in the bifurca-

tion point can then be measured and tracked as the system parameters vary. That leads to

information about the morphing of the bifurcation boundaryin the parameter space. Re-

cently, it has been numerically demonstrated that the bifurcation morphing approach has

high sensitivity for cantilever-based sensors. Those results have been complemented by

a study of the effects of the time delay on the bifurcation morphing created by nonlinear

feedback excitation [110]. In practical applications, thetime delay is unavoidable due to

the delay caused by measuring the dynamics, creating the nonlinear feedback, and forming

the feedback loop. This unavoidable time delay may cause undesirable high sensitivity of

the bifurcation points to small variations in the time delay. Additional time delay in the

controller has been numerically shown to reduce that undesirable sensitivity and enhance

the robustness of the sensor.

While the bifurcation morphing approach has high sensitivity to parameter variations,

its use is hindered by the fact that detecting bifurcation points using the common technique

of sweeping parameters from pre-bifurcation to post-bifurcation regions (in the parame-

ter space) takes a long time and requires the system to be ableto operate safely in the

post-bifurcation regime. To characterize bifurcations quickly and maintain the system

in the safe pre-bifurcation regime during operation, the recent approach of forecasting

bifurcations developed by the authors [111] is applied to the sensor. Forecasting bifurca-

tions has been based on monitoring various system characteristics, such as noise-induced

spectra [71], virtual Hopf phenomena [72], skewness of probability distributions [73] or
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flickering in bistable regions before bifurcations [74,75]. Particularly, the critical slowing

down phenomenon [76, 78] has been studied as a tool for predicting bifurcations [77] (by

monitoring the recovery rate of the system from small perturbations). These techniques

for forecasting bifurcations have been discussed for a diversity of applications, including

ecosystems [80–82], climate systems [83], cell signaling [84], and ocean dynamics [79].

It has been demonstrated recently [111] that forecasting approaches can predict not only

the bifurcation point, but also the type of bifurcation by monitoring the rates at which the

system recovers from large perturbation levels. These techniques can also be applied to

the engineered systems which generally require higher accuracy [111].

In this chapter, an experimental investigation of a prototype of a cantilever-based sen-

sor using bifurcation morphing coupled with delayed nonlinear feedback excitation and

employing bifurcation forecasting is presented. Brief conceptual and theoretical aspects

of this work are introduced in Sec. 5.2. Experimental results are presented in Sec. 5.3

where the effects of the controlled time delay are explored in the context of mass sensing.

5.2 Background

5.2.1 Delayed nonlinear feedback excitations

The main idea of the bifurcation morphing approach is to apply nonlinear feedback

excitations to the system to actively destabilize its dynamics and create bifurcation points

in the parameter space [42]. The goal is to create bifurcation points which have high

sensitivity to small parameter variations in the system. Because these bifurcations are

created by controlled nonlinear feedback, desired types ofbifurcation can be induced by

specifically designed nonlinear feedback. For example, consider one of the most common

types of bifurcations, namely Hopf bifurcations. The nonlinear feedback excitationF
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Figure 5.1: A clamped-free aluminum beam with piezo actuators and sensors is used for
experiments. Piezo-sensors and a pair of piezo-actuators are attached to the
aluminum beam. Mass variations are applied to the tip of the beam. The
sensor output is sent to a real-time processor. The unavoidable time delayτ ∗

is generated during the process of storing data (sensor signal) and creating
the nonlinear feedback excitation (STEP1). The controlleradds the controlled
time delayτ (STEP2) before the nonlinear feedback is amplified and sent to
the piezo-actuators on the beam.

applied to create Hopf bifurcations can be expressed as

F (t) = µs(t) + βs(t)3 + γs(t)5, (5.1)

wheres is the output of the sensor used in the feedback loop, andµ is a linear feedback

gain (the control parameter), whileβ andγ are cubic and quintic nonlinear feedback gains.

For creating supercritical Hopf bifurcations,β is negative andγ is zero. For creating

subcritical Hopf bifurcations,β is positive andγ is negative.

Theoretically,F (t) depends only ons(t). In practical applications, however, there is

an unavoidable time delay generated in the controller. The expression of the nonlinear

feedback in Eq. (5.1) is thus expressed as

F (t) = µs(t− τ ∗) + βs(t− τ ∗)3 + γs(t− τ ∗)5, (5.2)

whereτ ∗ is the unavoidable time delay in the controller. This delay takes place during

STEP1, as shown in FIG. 5.1. Note that the time delays during signal transfers are negli-

gible.
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In the past, it has been shown numerically that the bifurcation points obtained by this

approach are sensitive to small variations in the time delayτ ∗, especially whenτ ∗ is very

short [110]. The sensitivity to fluctuations inτ ∗ is undesirable because the sensor may

lose robustness. To address this problem, an additional time delayτ is implemented as

a control parameter in STEP2, as shown in FIG. 5.1. Then, the nonlinear feedback in

Eq. (5.2) can be rewritten as

F (t) = µs(t− τtot) + βs(t− τtot)
3 + γs(t− τtot)

5, (5.3)

whereτtot is the total time delay,τtot = τ ∗+τ . In the past, it was shown that the bifurcation

point lost its sensitivity to variations in the time delay asτ increased. Specifically, asτ

increases, the bifurcation points converge to values whichare insensitive toτ but they are

sensitive to mass variations in the system [110]. Hence, thecantilever-based sensor based

on the bifurcation morphing approach can operate with enhanced robustness toτtot and

good sensitivity to mass variations for large enoughτ .

5.2.2 Forecasting bifurcations

Consider a codimension-one bifurcation where the change rate of the amplitude of the

dynamics of a system can be expressed as

ṙ = r [α(µ− µc)− p(r)] , (5.4)

whereα is a fixed parameter (which is generally unknown unless an accurate model of

the system is provided),µ is a (known) control parameter,µc is a critical value of the

control parameter (where a bifurcation occurs), andp(r) is a polynomial function ofr

with p(0) = 0 (and assumed to be independent of the control parameterµ). The system

has a fixed point atr = 0 in the pre-bifurcation regime. In the post-bifurcation regime,

there are additional fixed points̃r given byp(r̃) = α(µ − µc). Also, the change rate of
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amplitudeλ at timet is defined as

λ(µ, r) =
d log r

dt
=

1

r
ṙ = α(µ− µc)− p(r). (5.5)

Chapter IV provides details regarding the use ofλ to forecast bifurcations. In par-

ticular, Chapter IV numerically and experimentally shows that this method can forecast

supercritical and subcritical Hopf bifurcations and saddle-node bifurcations accurately.

Furthermore, when forecasting subcritical Hopf bifurcations and saddle-node bifurcations,

this approach successfully predicts the locations and amplitudes of the saddle-nodes, and

the unstable branches of the bifurcation diagram. This approach is safe as the system

operates only in the pre-bifurcation regime, and all required data is collected in the pre-

bifurcation regime. Furthermore, (onceα is identified) this approach can forecast the

bifurcation point and the bifurcation diagram very quicklyand accurately, because data

collected for a single perturbation given to the system (at asingleµ in the pre-bifurcation

regime) is sufficient for forecasting [111].

5.3 Results and Discussion

5.3.1 Experimental setup

A clamped-free aluminum beam with piezo actuators and sensors is used. As shown in

FIG. 5.1, a piezo-sensor and a pair of piezo-actuators are attached to the aluminum beam.

The sensor output is sent to a real-time processor. The sensor signal is input to the real-

time processor. This data is stored and also used to create a designed nonlinear feedback

excitation. Note that the unavoidable time delayτ ∗ is generated during the process of

storing data and creating the nonlinear feedback excitation (STEP1). The controller inserts

an additional time delayτ (STEP2) before the nonlinear feedback is amplified and sent to

the piezo-actuators on the beam.
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The dimensions of the aluminum beam and those of a single piezo actuator patch

are provided in Tab. 5.1. The total mass of the cantilever beam with the piezo actuators

attached to both sides of the beam is approximatelyM ≈ 34.5 g. To simulate mass

variations, small amounts of mass are added to the tip of the aluminum beam in increments

of approximatelym = 20 mg. Note thatm
M

is approximately6× 10−4.

Herein, only the supercritical Hopf bifurcation is considered with fixed nonlinear gains

of β = −0.01 andγ = 0 in Eq. (5.3). Note thatµ is the linear feedback gain in Eq. (5.3),

and hence it is the controlled parameter for the experiments. Also, note thatτ is increased

by the controller, andτ ∗ is the unavoidable time delay (unknown quantity). Finally,note

that the proposed sensor measures variations in the points of the bifurcation diagram̃µ(r̃),

instead of just the bifurcation pointµc. Here,r̃ represents the amplitude of the stable limit

cycle in the post-bifurcation regime corresponding to a value µ̃ of the linear gain. Thus,

µc = µ̃(r̃ = 0).

5.3.2 Additional time delay

To test the effects of the time delay on the system, an additional time delayτ was

added in the controller. In the experiments,τ was varied from0 ms to5 ms with a step

of 0.01 ms. At each value of the time delayτ , the bifurcation diagram was estimated.

For clarity, this estimation (which is not used for sensing)was done just by the classical

Table 5.1: Dimensions of the components of the sensor
Aluminum beam Length 280 mm

Width 27.5 mm
Thickness 1.4 mm
Density 2660 kg/m3

Piezo actuator Length 60 mm
Width 15 mm
Thickness 1 mm
Density 7800 kg/m3
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Figure 5.2: Asτ is increased, the fluctuation of the bifurcation points along theτ -axis is
restrained. The increased time delay enhances the robustness of the sensor by
reducing the undesirable high sensitivity to variations inthe time delay.

technique of sweeping parameters across the bifurcation point. Whenτ = 0 (i.e. τtot =

τ ∗), the bifurcation point was found to beµc ≈ 4.57. As shown in FIG. 5.2,µc changes

significantly asτ varies from 0 ms to 0.06 ms. These changes in the bifurcation point

within a narrow range ofτtot is undesirable because sensing cannot be robust to fluctuations

in τtot.

In FIG. 5.2, the fluctuations of the bifurcation pointµc due to the variation in the

time delay is gradually restrained asτ increases. For example, comparing the region of

τ = 0 ∼ 1 ms and the region ofτ = 4 ∼ 5 ms, one may note how the increased time delay

reduces the influence of the variation in the time delay. The experimental results shown in

FIG. 5.2 are consistent with the numerical results previously presented for a FEM model

of the cantilever beam with nonlinear feedback excitation [110].

To evaluate the sensitivity of the sensor, one can define a non-dimensional relative

sensitivity as

SP
q =

∆P
P
∆q

q

, (5.6)

whereP is the parameter used for sensing, andq is the system property of which vari-

ations are to be detected. In the experiments, the parameterP represents thẽµ values
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Figure 5.3:
While undesirable high sensitivity to variations in the time delay is reduced as
τ is increased, the relative sensitivity to mass variations is maintained at the
same order of magnitude.

in the bifurcation diagram̃µ(r̃), and the system propertyq is the mass of the systemM .

Hence, the relative sensitivity of interest isSµ̃
M . While the undesirable large fluctuation

of the bifurcation boundary in theτ -µc space (as shown in FIG. 5.2) is restrained asτ

increases, the relative sensitivity to mass variation has been shown computationally to be

maintained [110]. Herein, we observe experimentally the same behavior. Once signifi-

cantly large fluctuations (observed beforeτ ≈ 1 ms) are reduced, the relative sensitivity is

maintained at a level ofO(10) asτ varies. Sample cases are presented in FIG. 5.3 for mass

variations∆M of 0,m, 2m, and3m. Forτ = 1 ms (FIG. 5.3a), the relative sensitivity is

Sµ̃
M ≈ 9.1. Forτ = 4.95 ms (FIG. 5.3b), the relative sensitivity isSµ̃

M ≈ 11.9. The relative

sensitivities at other time delays have been observed to have similar magnitudes also.

The curve shown in FIG. 5.2 has local minima (which are smaller than 1) at time

delaysτc,i. The relative sensitivity of the bifurcations to mass variations is observed to

approach zero at these values of the time delay. Nonetheless, the proportionality of∆µ̃

to mass variations was experimentally measured at several time delaysτc,i, and that pro-

portionality could still be observed despite the significantly low sensitivity. As the relative

sensitivity becomes smaller, however, it is likely that sensing can be significantly affected
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Figure 5.4:
The relative sensitivity of the linear mode frequency (6216Hz) in similar level
with the frequency of the limit cycle (6026 Hz) isSωr

M ≈ 0.97 which is approx-
imately one order of magnitude smaller than the proposed sensor.

by small errors or noise. Interestingly, the intervals betweenτc,i andτc,i+1 are approxi-

mately constant,∆τc ≈ 0.16 ms. That is a value very close to the period of the limit cycle

of the system near the bifurcation point, which isT = 0.166 ms.

The reason why the sensitivity of the bifurcation points to∆τ is significantly low for

delays nearτc,i may be explained by the fact that the sensitivity of the bifurcation points to

small changes in the frequency (or period) of the limit cycleis very low. That is consistent

with analytical results for a simple two-degree-of-freedom spring-mass system subject to

nonlinear feedback excitations [110], where the bifurcation point is a function of the fre-

quency of the limit cycle which appears just after the bifurcation. The correlation between

the value of∆τc and the period of the limit cycle indicates that the loss of sensitivity of the

sensor may take place independent of the time delay, at a certain phase of the dynamics

of the system (and that phase is constant as the time delay varies). Note that it is diffi-

cult to estimate the exact phase which causes the loss of sensitivity becauseτtot cannot be

accurately identified asτ ∗ is unknown.
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Figure 5.5:
α is estimated in range ofµ values withµmin = 0.9 andµmax = 1. The
top figure shows the fitted curves inr-λ space based onλ values obtained
from experimental data at differentµ values. In the bottom figure, r (sensor
output [V]) is chosen at 0.55 [V] and the fitted line inµ-λ space is presented.
Identifiedα (based on the slopes of the fitted lines at various amplitudes) is
126.2 (with standard deviation of 3.5).

5.3.3 Cantilever-based sensing

The novel cantilever-based sensor based on forecasting bifurcation morphing was ex-

perimentally tested for detecting mass variations. The common sensing approach of mon-

itoring linear resonant frequency shifts was also tested using the same cantilever beam.

To compare these two approaches, a linear resonant frequency of ωr ≈ 6216 Hz was

monitored. This frequency was used because the frequency ofthe limit cycle near the

bifurcation point is near 6216 Hz, at approximately 6026 Hz.

Based on the frequency-amplitude plot in FIG. 5.4, the relative sensitivity of the cor-

responding linear frequency to mass variation isSωr

M ≈ 0.97. Note that this value is

approximately one order of magnitude smaller than the sensitivity obtained by monitor-

ing the points on the bifurcation diagram. One may compare the relative sensitivities for

different points on the bifurcation diagram̃µ and the linear mode frequencyωr. In doing

so, the level of accuracy of measuringµ̃ andωr should be considered also. In that con-

text one may note that obtaining the bifurcation diagram is straightforward and accurately
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done using bifurcation forecasting based directly on the time series data, while capturing

the resonant frequency can be challenging especially when alarge damping is present.

Furthermore, the forecasting approach enables very quick and accurate characterization of

the overall bifurcation diagram. Particularly, the forecasting approach can be employed in

its most accurate fashion when used for high sensitivity sensing. First, an accurate value

of α can be identified through repeated calibration tests in the range ofµ of interest (in

the pre-bifurcation region) as shown in FIG. 5.5. Second, a fixed value ofµ for sensor op-

eration can be accurately chosen (near the known bifurcation point). Third, various time

delays can be applied and tested for enhancing the performance of the sensor. Fourth, as

the forecasting approach takes advantages of the large amounts of data obtained from a

single recovery of the system, just adding a few repeated recovery cycles can greatly en-

hance the accuracy of the forecasted bifurcation diagram with little (experimental) effort.

As shown in FIG. 5.3, the horizontal error-bars for most of the predicted points of the

bifurcation diagram are very narrow. That indicates that accurate values are obtained by

the forecasting approach when a well established calibration process is used. Therefore,

the actual performance difference between the proposed sensing approach and the shifts

in linear mode frequency can be larger than that revealed by the comparison of the relative

sensitivities.

After calibration, the proposed cantilever-based sensor was tested for detecting mass

variations ofm, 2m and3m at τ = 4.95 ms. The proportionalitypi is defined as

pi =
∆µ̃i×m(r̃)

∆µ̃m(r̃)
, (5.7)

where the subscript indicates the level of mass variation. For ideal sensing and proportion-

ality, eachpi should have the integer value ofi. As shown in FIG. 5.6, the cantilever-based

sensor based on the proposed approach exhibits remarkable proportionality in the range of
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applied mass variations (whenr is chosen in a proper range).

5.4 Conclusions

The application of bifurcation morphing created by nonlinear feedback excitations has

been demonstrated for a cantilever-based sensor. Two noveltechniques have been imple-

mented to enhance the cantilever-based sensor.

First, short and unavoidable time delays in the controller can cause undesirable high

sensitivity of the bifurcation points to small fluctuationsin this time delay. Additional

time delay in the controller can reduce this undesirable sensitivity without significantly

affecting the high performance of sensing. However, upon studying the effects of addi-

tional time delay, periodic loss of sensitivity has been observed. At those time delays,

the bifurcation morphing has been observed to lose its sensitivity to both variations in the

time delay and in the mass. The periodicity of the loss of sensitivity was observed to be

correlated with the period of the limit cycle (in the post-bifurcation regime). That may be

caused by a certain delay-independent phase of the dynamicsof the system.

Second, detecting bifurcation points by sweeping parameters through the bifurcation

point takes a long time. The approach of forecasting bifurcations was applied and was
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shown to significantly reduce the time required to detect bifurcation points and measure

the overall bifurcation diagram. This forecasting approach has been experimentally shown

to be quick and accurate when applied to the cantilever-based sensor. Comparing sensi-

tivities, the bifurcation morphing approach has been observed to be about one order of

magnitude higher than that of the linear mode frequency shift. Furthermore, the bifurca-

tion diagrams obtained by the forecasting approach have been shown to have remarkable

accuracy (with very small errors), especially when the sensor system is precisely cali-

brated.

The experimental results of mass sensing highlight the high performance of the pro-

posed cantilever-based mass sensor. Nonetheless, this approach can be applied to sensing

various other parametric variations in a diversity of systems of interest.



CHAPTER VI

Conclusions

6.1 Contributions

The original contributions of this dissertation can be summarized as follows:

• In Chapter II, various issues regarding application of the SVF approach have been

discussed. To achieve the most important property of the SVFapproach, which is

the linearity of the SVFs for single parameter variations, an approach for filtering

sample points was introduced with a focus on the most important parameter of in-

terest. By filtering, one can generally ensure a satisfactory level of linearity for all

parameters to be reconstructed. After filtering, the re-selection process is performed

by investigating the SVFs for each single parameter variation. The possible signifi-

cant loss of sensitivity and the possible linear dependenceamong distinct parameters

due to filtering have been discussed. Thus, certain parameters had to be eliminated

from the reconstruction process. A correction factor has been introduced to resolve

the weak nonlinearity of the SVFs of certain parameter variations. The correction

factor has been calculated from test SVFs of known single parameter variations.

The parameter variations identified using the correction factor have been shown to

be very accurate. Using AFM as an example chaotic system for demonstration of the

new approaches, the major influence of the higher harmonics onto the tapping mode

97
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AFM dynamics has been discussed. For certain regimes, higher order modes have

been shown to predict a chaotic dynamics for the system although a single-mode

approximation predicts limit cycle oscillations.

• In Chapter III, new studies of the bifurcation morphing and nonlinear feedback ex-

citation have been presented. The primary topic was the timedelay. Time delay is

unavoidable in feedback control systems. This naturally embedded time delay pro-

duces undesirable high sensitivity of bifurcation morphing to small variations in the

time delay, and that makes it difficult to achieve high-sensitivity. As the time delay

is increased by the controller, the bifurcation boundary isobserved to converge onto

a small area in the parameter space. Furthermore, the convergence/stabilization of

the bifurcation boundary significantly reduces the sensitivity of the bifurcation mor-

phing to fluctuations in the time delay. As a consequence, theadditional time delay

enhances the bifurcation morphing method by reducing and stabilizing the stable

region of the dynamics in the parameter space.

• In Chapter IV, a method of characterizing the dynamics of a nonlinear system dur-

ing its transient recovery to a stable limit cycle or a stablefixed point after pertur-

bations (in the pre-bifurcation regime) was presented. Theproposed approach is

designed for forecasting bifurcations of fixed points or limit cycles. By keeping all

higher order (nonlinear) information in the formulation, the perturbation levels do

not have to be small. In most cases, operating with larger perturbations is a good

way to resolve accuracy issues for measuring small perturbations and to obtain bet-

ter predictions of the bifurcations. The proposed technique enables the use of larger

perturbations which broadens its applicability as compared to existing techniques

based on the critical slowing down. In addition to predicting where bifurcations
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occur, the proposed approach can be used to anticipate the type of the bifurcations

(supercritical or subcritical) and predict their brancheswithout exploring the post-

bifurcation regime. Due to the dramatic change in the dynamics at bifurcations,

predicting subcritical and saddle-node bifurcations without placing the system in

the post-bifurcation regime provides great advantages in many applications.

• In Chapter V, bifurcation morphing by nonlinear feedback excitation was applied

to cantilever-based sensors. The two novel techniques discussed in Chapter III

and Chapter IV were implemented to enhance the proposed cantilever-based sen-

sor. First, additional time delay in the controller was applied. A periodic loss of

sensitivity was observed. At those time delays, the bifurcation morphing has been

observed to lose its sensitivity to both variations of the time delay and the sensed

mass. The periodicity of the loss of sensitivity in synchronization with the period

of the limit cycle suggests that the low sensitivity occurs at a certain phase of the

dynamics of the system, and the phase is independent of the time delay. Second,

the approach of forecasting bifurcations was applied to significantly reduce the time

required to detect bifurcation points and bifurcation diagrams. The forecasting ap-

proach was experimentally shown to be quick and accurate in application to the

proposed cantilever-based sensing. Comparing the bifurcation morphing and the

linear mode frequency shift, the relative sensitivity of bifurcation morphing was

observed to be one order of magnitude higher. Furthermore, obtaining bifurcation

diagrams by the forecasting approach was shown to have remarkable accuracy with

very small errors, when it is specifically calibrated for a known sensor system. The

experimental results of mass sensing demonstrate the high performance of the pro-

posed cantilever-based sensor.
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6.2 Future Research

Below are some ideas for future research that may expand the topics presented in this

dissertation.

• Development of MEMS/NEMS cantilever-based sensors using the approach of

forecasting bifurcation morphing with delayed nonlinear feedback excitation

The prototype of the cantilever-based sensor demonstratedquick, robust and accu-

rate performance of sensing. Furthermore, the relative sensitivity of the proposed

sensor was observed to be one order of magnitude larger than that of the common

approach of measuring linear frequency shifts. Also, detecting bifurcation diagrams

can be more accurate than measuring the frequency of the resonant mode. These

experimental results suggest that the development of MEMS/NEMS sensing device

using the proposed approach could impact MEMS sensing significantly.

• Attractor and bifurcation morphing modes for various types of structures

Cantilever-beam structures have been considered in this work. Nonetheless, theo-

retically all of the proposed approaches are not limited to acertain type of structure.

One of the area of recommended future work is the applicationof the proposed

techniques to various types of other structures.

• Design of new nonlinear feedback excitation to induce different types of bifur-

cations for application to cantilever-based sensing

As bifurcations in the proposed approach are induced by specifically designed non-

linear feedback excitations, various types of bifurcations can be tested by re-designing

the feedback excitation. For example, subcritical bifurcations can be tested for

cantilever-based sensing. As the jump phenomena at a subcritical bifurcation point
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or at a saddle-node bifurcation point are more dramatic changes in the dynamics

than supercritical bifurcation, it is likely that they can be detected with higher sen-

sitivity. Nonetheless, the system is affected by small external disturbances also.

Hence, further studies are needed to make the sensor robust to undesirable external

disturbances.

• Development of the cantilever-based sensor using multiplepiezo-sensors for

two dimensional bifurcation boundary morphing to detect multiple simulta-

neous parameter variations

Two dimensional bifurcation boundary morphing was numerically discussed and

shown to have high sensitivity and ability to detect multiple simultaneous parameter

variations [42,110]. The cantilever-based sensor was developed for one dimensional

bifurcation morphing for detecting a single parameter variation in this dissertation.

The development and experimental test of a sensor using two or larger dimensional

bifurcation morphing would be the next step.

• Application of the forecasting approach to multidisciplinary areas of research

interests

In addition to the bifurcation point, the proposed approachof forecasting bifurca-

tions in this dissertation is capable of predicting exact amplitudes and locations of

the saddle-nodes and the stable/unstable branches of the bifurcation diagram. This

ability of characterizing bifurcations in the pre-bifurcation regime with easy appli-

cability (no controller needed) can have significant advantages in applications to a

diversity of systems which requires non-invasive evaluations. Those may include

biomedical applications, such as cardiac dynamics, asthmaor epileptic seizures. As

this approach is shown to have remarkable accuracy, those applications may also
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include engineered systems, such as aeroelastic systems encountering gusts during

flight.
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