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CHAPTER I

Introduction

Cluster randomized trials (CRTs), in which social units are selected as the units

of randomization, have been increasingly used in the past three decades to evaluate

the effects of intervention operated at a community level. Examples include hos-

pital, workplace, or community-based studies designed to improve the the health

care strategy for prevention of disease. Reasons for adopting CRTs are diverse, but

mainly include the administrative convenience of community allocation, a desire to

avoid treatment contamination as well as maximizing the impact of intervention.

The increasing popularity of cluster randomized trials has led to an extensive body of

methodology and a growing literature in the design and analysis stage of CRTs (Don-

ner and Klar, 2000; Murray et al., 2004; Donner et al., 2001; Klar and Donner, 2000;

Murray, 1998). This thesis is devoted to design and analysis of cluster randomized

trials. Regarding design, we propose a new randomization procedure, the balance

match weighted (BMW) design, with the general aim of reducing the mean squared

error (MSE) of the treatment effect estimator. Regarding analysis, we consider a Cox

model with a frailty for regression analysis of correlated failure time data raised from

CRTs and develop an approach based on nonparametric likelihood estimation.

Many design methods have been proposed in the literature for cluster randomiza-

tions such as the completely randomized design (Abdeljaber et al., 1991), matched-

1



pair design (Fisher Jr, 1995), stratified design (Graham et al., 1984), etc. On average,

randomization eliminates the source of bias in treatment assignment, and achieves bal-

ance of both known and unknown confounding factors between intervention groups.

In practice, however, investigators can only introduce a small amount of stratification

and cannot balance on all the important variables simultaneously. This limitation

arises especially when there are many confounding variables in relatively small stud-

ies. One common feature of CRTs is that they often involve a modest number of

clusters since cluster recruitment is expensive. Such is the case in the INSTINCT

trial designed to investigate the effectiveness of an education program in enhancing

the Tissue Plasminogen Activator (tPA) use in stroke patients. In Chapter II, we

introduce a new randomization design, the balance match weighted (BMW) design,

which applies the optimal matching with constraints technique to a prospective ran-

domized design and aims to minimize the mean squared error (MSE) of the treatment

effect estimator. The key innovation of the BMW design as opposed to other existing

randomized designs is that it reduces the chance imbalance in observed covariates by

utilizing repeated randomizations and matching on the estimated propensity score.

The method of propensity score matching has been widely used in observational

studies to control for bias (Rosenbaum and Rubin, 1984; Gu and Rosenbaum, 1993;

Ming and Rosenbaum, 2000; Rosenbaum, 2002; Hansen, 2004). A balancing score,

b(x), is a function of observed covariates x such that the conditional distribution of

x given b(x) is the same for the treated and control units. Propensity score, e(x),

defined as the conditional probability of being assigned to treatment group given

the observed covariates x, is the coarsest balancing score. Rosenbaum and Rubin

(1984), Theorem 1 proved that treatment assignment z and the observed covariates

x are conditionally independent given the propensity score, that is, x ⊥ z|e(x), which

implies that adjustment for the scalar propensity score is sufficient to remove bias due

to all observed covariates. Although the true propensity score is typically known from
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the randomization scheme in randomized experiments, matching on the estimated

score may still have some substantial advantages. Indeed, it has been shown in the

literature on observational studies, that matching based on an estimated propensity

score has advantage over the use of the true propensity score. This is a decided

advantage in observational studies since the true propensity score is typically not

known. It is also of help in randomized studies, and this is what the BMW design

exploits.

In Chapter II, we introduce the full matching with constrains technique and pro-

pose the BMW design which applies this technique. We then conduct a simulation

study to evaluate the performance of the proposed design under various confound-

ing scenarios and compare it with a completely randomized or matched-pair design.

We also compare the BMW design with a model-based approach adjusting for the

estimated propensity score and Robins-Mark-Newey E-estimation procedure in terms

of efficiency and robustness of the treatment effect estimator. Finally, we illustrate

these methods in proposing a design for the INSTINCT trial.

As is often the case in practice, when evaluating certain treatment programs in

randomized experiments or observational studies, a more complex framework appears

to be necessary. For example, a drug may be applied in differing dosage levels, a

physician may have more than two treatment options to evaluate or all the study

subjects may not be available at the onset of the study, instead, arrive sequentially.

Therefore, in Chapter III, we aim to extend the BMW design to two directions: first,

to clinical trials with more than two arms; and second, to clinical trials with staggered

entry. Bo and Rosenbaum (2004) developed an algorithm for the tripartite matching

problem, by transforming it to an equivalent optimal nonbipartite matching problem

for which good polynomial time algorithms exist. In their approach, three groups

are optimally matched into pairs yielding an incomplete block design with blocks of

size two. One potential drawback of this design is the loss of efficiency due to the
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insertion of the random blocks. We propose two new algorithms for matching in

blocks of three with three groups: the two-way tripartite matching with triples, given

a predefined reference group, and three-way tripartite matching with triples with an

optimally selected reference group, respectively. We adopt these three approaches

in the generalization of the BMW design to clinical trials with three or more arms

and conduct a simulation study in the three arms case to evaluate the performances.

The generalization of the BMW design to clinical trials with staggered entry is also

discussed and followed by simulation studies in Chapter III.

Dependencies among cluster members is typical of CRTs and must be considered

in the subsequent data analyses. Failure to adjust for this intra-cluster correlation

can result in biased covariate-effect estimates or, more usually, inaccurate estimates

of standard errors. Chapter IV deals with the regression analysis of correlated fail-

ure time data based on a Cox model with a frailty term. There is much literature

dealing with the identification and estimation of frailty models using both parametric

and semiparametric approaches. In these, parametric models have often been used

for the frailty distribution or the baseline hazard or both (McGilchrist and Aisbett,

1991; Ripatti and Palgrem, 2000; Breslow and Clayton, 1993; Clayton, 1978; Vaupel

et al., 1979; Nielsen et al., 1992; Therneau et al., 2003). However, the covariate-effect

estimates, and thus the inferences one would draw, are sensitive to the parametric

form assumed for the hazard and frailty (Heckman and Singer, 1984a; Trussell and

Richards, 1985; Nielsen et al., 1992). We consider a frailty model with both the frailty

distribution, G, and the cumulative baseline hazard, Λ0, left nonparametric and pro-

pose an approach based on nonparametric maximum likelihood estimation. We then

develop a three-step iterative algorithm and investigate its finite sample property for

estimating a regression parameter β by using a simulation study. Numerical analysis

results show that the proposed nonparametric approach works well for estimating β

under various scenarios.
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In V, we present conclusions and discuss some possible future work.
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CHAPTER II

Propensity Score Matching in Randomized

Clinical Trials

2.1 Introduction and motivating example

Cluster randomized trials have been widely used in the past three decades for the

evaluation of health care and educational strategies, in which intact social units are

selected as the units of randomization. On average, randomized treatment assign-

ment avoids bias, achieves balance of both known and unknown confounding factors

between intervention groups, and provides valid comparisons of competing interven-

tion strategies. There is much literature that discusses design methods for cluster

randomizations such as the completely randomized design (Abdeljaber et al. (1991)),

matched-pair design (Fisher Jr (1995)), stratified design (Graham et al. (1984)) and

minimization design (Pocock and Simon (1975)). However, investigators can only

introduce a small amount of stratification in practice, which does not ensure bal-

ance on all important variables, and post hoc adjustment for many confounders is

also problematic. These limitations are particularly important when there are many

confounding variables in a small study.

Tissue plasminogen activator (tPA) is a clot-busting drug, which has been found

to be an effective treatment for the prevention of post-stroke disability if administered
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within a three hour time window of the onset of an ischemic stroke (of Neurologi-

cal Disorders and rt PA Stroke Study Group (1995)). However, the use of tPA has

remained relatively low. A randomized clinical trial, INSTINCT trial, was designed

in order to investigate the effectiveness of an education program administered to hos-

pital emergency departments in enhancing tPA therapy for stroke patients. Historical

data were collected from 24 participating hospitals in Michigan regarding previous

stroke volume and demographic variables. Hospitals were the units of randomization

and those assigned to the treatment group received educational interventions designed

to promote appropriate tPA use, whereas the other hospitals served as controls. The

primary outcome is the frequency of appropriate tPA use in each hospital. Stroke

volume at baseline (low vs. high), population density (urban vs. rural), age and

gender mix are cluster-level factors thought to be strongly associated with outcome.

Among these, stroke volume measured as number of stroke discharges and population

density were classified as binary. Percentage of female (male) stroke patients who are

older than 65 is used as a continuous measure. It is possible to create balance on

stroke volume and population density through stratified randomization, however, it

is not feasible to balance on all covariates at the same time. As a result, direct esti-

mation of the treatment effect may be subject to bias due to possible imbalance on

confounding factors. To resolve this problem, this chapter describes and evaluates a

new randomization design based on propensity score matching.

The method of propensity score matching has been widely used in observational

studies to control for bias (Rosenbaum and Rubin (1984); Gu and Rosenbaum (1993);

Ming and Rosenbaum (2000); Rosenbaum (2002); Hansen (2004)). The propensity

score is defined as the conditional probability of a subject being assigned to the

treatment group given the observed covariates. Rosenbaum and Rubin (1984) showed

that exact matching of treated and control subjects on the propensity score will

balance all the observed covariates. In non-randomized experiments, the propensity
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score function is always unknown but the sample estimates of the propensity score

can be used. On the other hand, in a randomized clinical trial, the true propensity

score is often a known function from the randomization scheme. For example, in the

simplest randomized trial, subjects are assigned to treatment or control by the flip of

a fair coin and the propensity score is equal to one half for all the subjects and the two

treatment groups are perfectly matched on the true propensity score (Joffe (1999)).

However, especially in small studies, substantial chance imbalances may still exist

and yield some (conditional) bias in the direct treatment effect estimator. Although

methods based on the estimated propensity score have not been widely used in the

randomized studies, it could have some substantial advantages over the methods by

using the true scores under certain scenarios. Robins et al. (1992) has shown that

there are even theoretical advantages to using estimated propensity scores.

We introduce a new randomization design, the balance match weighted (BMW)

design, which applies the optimal full matching with constraints technique (Olsen

(1997)) to the given randomization with the general aim of reducing the mean squared

error of the treatment effect estimator. In this design, treated and control subjects

are matched into subsets based on their estimated propensity score and an overall

estimate is constructed using a weighted sum of the subset-specific estimates. In

contrast to the existing stratified design, which first stratifies and then randomizes

within strata, the BMW design first randomly assign the units to treatments and

then stratifies on the randomized sample. In an implementation of the design, this

randomization-stratification process is repeated M times in order to choose a ran-

domization that gives a good overall balance. In general, the BMW design has two

advantages. First, it reduces the chance imbalance between the treatment groups in

observed covariates through optimal matching, and hence decreases the (conditional)

bias in the resultant estimator. Second, it controls for the increase in variance due

to matching by using the full matching with constraints technique (Olsen, 1997), in
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which the choice of the constraint, k, adjusts for the trade-off between the potential

gain in bias reduction and possible loss in precision. We examine various strategies

for selecting M and k, seeking a good choice which yields good results with respect to

mean squared error. It is obvious that MSE performance also depends on the inherent

degree of confounding, so we compared the BMW design with the completely random-

ized design and matched-pair design under different confounding scenarios. If there

is no confounding, the three design methods perform equally well. However, if there

is considerable confounding, the BMW design can result in a substantial reduction in

the MSE of the treatment effect estimator.

The design we propose is appropriate for the situation where all units are available

for randomization at the onset, and can’t be applied to clinical trials with staggered

entry. Pocock and Simon (1975) proposed a sequential strategy, minimization design,

which makes the assignment decision one unit at a time, based solely on the covariate

information of previously assigned subjects. On the other hand, the minimization

design is not well suited for trials where all observational units are available for

randomization at the onset.

The rest of the chapter is organized as follows. Notation and models are presented

in Section 2. The BMW design is outlined in Section 3 and Section 4 gives results of a

simulation study comparing the performance of the BMW design with the completely

randomized design, a matched-pair design, the model-based approach by adjusting for

the estimated propensity score and the Robins-Mark-Newey E-estimation procedure.

Its performance under heterogeneous error is also investigated. Section 5 outlines a

case study and the chapter concludes with discussion in Section 6.

2.2 Methods

In this section, we present the notation and problem formulation as well as intro-

duce some optimal matching techniques employed in the proposed design.

9



2.2.1 Optimal matching

Consider a study with the aim of assessing the effect of treatment. Let N denote

the number of subjects available for the study. We assume that N is even and N/2

subjects are randomized to each of the treatment and control groups, but the method

we propose could allow imbalance in the randomized assignment. Thus, we suppose

that a randomization process divides the N subjects into a set T of N/2 subjects to

be treated and a set C of N/2 subjects to receive the control. We also assume that

a vector of r covariates, X = (X1, X2, ..., Xr)
T, is observed for each individual.

Similarity of covariates is measured through an estimated propensity score. Writ-

ing Z=1 for the treated subjects, and Z=0 for the control subjects, the (estimated)

propensity score distance between the treated unit i and control unit j is given by

di,j = |δ̂i − δ̂j| (2.1)

where δ̂i is the estimate of the true propensity score, δi = Pr(Z = 1 | Xi), and is

obtained from a model such as the logistic regression model

δi = Pr(Z = 1 | Xi; α) = exp (α1 +
r∑

j=2

αjXij)/{1 + exp (α1 +
r∑

j=2

αjXij)} (2.2)

In a randomized clinical trial, the true propensity score δi is typically determined by

the randomization scheme and known. We consider the estimated propensity score δ̂i

in defining the distances with the aim of producing a design that reduces the actual

observed imbalance between treated and control subjects. Matching assembles treated

and control units which are as similar as possible into the same stratum using the

overall estimated propensity score distance measure. Given T and C, we consider the

collection PC,T of all possible matchings, where a matching corresponds to a collection

of S strata comprised of matched subsets {(C1, T1), (C2, T2), ..., (CS, TS)}, in which,
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C1, C2, ..., CS is a partition of C, T1, T2, ..., TS is a partition of T and 1 ≤ S ≤ N/2.

As is often done (e.g. Rosenbaum (2002)), we measure the quality of a particular

matching as

∆ =
S∑

s=1

w(|Ts|, |Cs|) • Ts × Cs (2.3)

where

Ts × Cs =
∑

(i,j)∈Ts×Cs

|δ̂i − δ̂j|/|Ts × Cs|

is the average distance between the |Ts × Cs| possible pairs in the s-th strata, and

w(., .) is a weight function. Thus, ∆ is a weighted sum of average distances and an

optimal matching minimizes ∆ over PC,T .

A full matching is one in which each stratum is comprised of one treated (or con-

trol) subject matched to one or more control (or treated) subjects so that min(|Ts|, |Cs|) =

1, for s = 1, 2, ..., S. Rosenbaum (2002) showed that if the weight function in (2) is

neutral or favors small subclasses, then there is always a full matching that is op-

timal. Among the class of full matchings with the weight function w(|Ts|, |Cs|) =

|Ts|+ |Cs| − 1, equation (2.3) reduces to

∆ =
S∑

s=1

(|Ts|+ |Cs| − 1) • Ts × Cs =
S∑

s=1

∑

(i,j)∈Ts×Cs

|δ̂i − δ̂j|. (2.4)

In this chapter, we use this total distance measure to evaluate the quality of a match-

ing. One potential drawback of the optimal full matching is that some of its matched

subsets can be very unbalanced with many controls to one treatment or vice versa.

The imbalance among full matching subsets decreases the precision of the estimated

treatment effect. One remedy for this is to constrain the full matching so that

the ratio of the number of treated versus the number of controls in each stratum

is between a lower and upper bound. To accomplish this, we choose an integer
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k ∈ {1, 2, ..., N/2− 1} and consider the optimization problem

Minimize ∆ =
S∑

s=1

∑

(i,j)∈Ts×Cs

|δ̂i − δ̂j|. (2.5)

over the class of full matchings subject to k−1 ≤ |Ts|/|Cs| ≤ k. We refer to the

solution to this optimization problem as the optimal full matching with constraint k.

When k = 1, we obtain the best matched-pair design with one treated unit and one

control unit in each stratum. This assignment leads to a treatment effect estimator

with minimum variance in the linear model discussed in the next section, but can

result in relatively large bias. When k = N/2 − 1, there is no constraint on the

balance in the relative numbers of treated and control units in any matched subset,

the covariates are optimally balanced so the bias of treatment effect estimator tends,

in this case to be small, but the variance is larger. The BMW design we propose

searches for the optimal full matching with constraint k. The choice of k represents

a trade-off between bias and variance. In the next section, we examine the mean

squared error (MSE) as a measure of this trade-off with a class of linear models.

For a specific model in this class, we can choose k to generate a BMW design that

achieves minimum MSE. It is observed that the choice of k does not depend much on

the specific model.

2.2.2 Model

To appreciate the effect of treatment on response in a pooled sample and matched

sample, respectively, consider the following model: Let Yi, i = 1,2,...,N , represents

responses of the unit i, conditional on a given treatment assignment T , C and X,

Yi = α + βI(i ∈ T ) +
r∑

j=1

γjXij + εi; (2.6)
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where I(.) is the indicator function, β denotes the true treatment effect, γ1, γ2, ..., γr

are the confounding effects and ε = (ε1, ε2, ..., εN) is the vector of the measurement

errors with E[ε|T, C, X] = 0, Var[ε|T,C, X] = σ2I, σ2 < +∞ and I is the N × N

identity matrix.

2.2.2.1 Pooled sample

Under model (2.6), the common treatment effect estimator based on the unstrat-

ified pooled sample is β̂pool = yT − yC , which has conditional expectation

E[β̂pool|T, C, X] = β +
r∑

j=1

γj(XjT−XjC) (2.7)

where the subscripts C and T mean that the averages are computed over the control

and treatment groups, respectively. The mean squared error (conditional on T , C

and X) is

MSE(β̂pool|T, C, X) = {
r∑

j=1

γj(XjT −XjC)}2 + 4σ2/N (2.8)

2.2.2.2 Matched sample

Under model (2.6), estimating the treatment effect for the matched sample involves

the computation of a weighted sum. In the sth matched subset (Ts, Cs), the treatment

effect estimator is β̂strata,s = yTs
− yCs

, which has conditional expectation

E[β̂strata,s|T, C, X] = β +
r∑

j=1

γj(XjTs−XjCs) (2.9)

The overall estimate can be constructed using a weighted sum,

β̂strata =
S∑

s=1

wsβ̂strata,s (2.10)
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where
∑

s ws = 1, ws ≥ 0. It should be noted that this stratified estimator can be

modified to accommodate different weighting methods. Two common choices are

weighting in proportion to the number of subjects that each subset contains, (|Ts|+
|Cs|)/N (Cochran (1968)), or the inverse variance weighting, (1/|Ts|+1/|Cs|)−1/

S∑
t=1

(1/|Tt|+
1/|Ct|)−1. For purpose of this discussion, the former weighting method is considered,

but it can be easily modified to handle the latter. It follows that the MSE of the

stratified estimator (conditional on T , C and X) can be written as

MSE(β̂strata|T,C, X) = {
S∑

s=1

(|Ts|+ |Cs|)
N

r∑
j=1

γj(XjTs −XjCs)}2

+
S∑

s=1

(|Ts|+ |Cs|)2

N2
(

1

|Ts| +
1

|Cs|)σ
2

With no confounding effects or chance imbalance in covariates, the pooled estima-

tor is the unbiased estimate of the treatment effect with minimum variance. In the

presence of confounding, stratification reduces the bias but increases the variance.

We use the mean squared error to measure the trade-off between bias and variance.

2.3 The BMW design

In a randomized trial with fixed small sample size N and many confounding covari-

ates, it may be impossible to produce balance on all of the variables simultaneously.

In order to reduce the actual observed imbalance as well as increase precision of the

estimator, we propose the balance match weighted (BMW) design. The design with

specified parameter k and M is defined algorithmically as follows:

Step 1. Randomize half of the subjects to the treatment group, and half to control

to obtain sets T and C;

Step 2. Compute the estimated propensity scores and create the |T | × |C| matrix

of estimated propensity score distances;
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Step 3. Obtain the optimal full matching with constraint k and record the total

distance ∆k.

Step 4. Repeat Steps 1 to 3 M times; choose the randomized sample with min-

imum total distance ∆∗
k = min(∆1k, ∆2k, ..., ∆Mk). The choice of M is discussed

below.

It is clear that the choice of k represents a trade-off between bias and variance.

We use mean squared error (MSE) as a measure of the trade-off. The choice of k

(k ∈ (1, 2, ..., N/2 − 1)) which minimizes the MSE of the treatment effect estimator

depends on the confounding effect γ = (γ1, γ2, ..., γr). If γ were known and M is

fixed, it would be possible to compute the MSE for each k based on the BMW design

in Step 1 to 4 above. It would be possible then to select the k that minimizes the

mean squared error. In practice, of course, the true value of γ is unknown; therefore

in the next section we use a simulation study to evaluate the effects of k on reducing

the MSE under a variety of assumptions about the size of the confounding effects.

We find that k = 2 is a suitable choice under most of the confounding scenarios

considered.

Clearly, the larger M is, the better matching the BMW design attains. In the next

section, we explain how the MSE depends on M and find that most of the gain is

attained by relatively small M of 10 or so in the cases considered. So we recommend

value of M in this range. It should also be noted that, as M increases, the BMW

design becomes more deterministic given covariates in the experimental units.

The implementation of Step 3 which searches the optimal full matching with

constraint k (Olsen, 1997) is conducted using the Optmodel Procedure in SAS (Version

9.1.3.2). A similar program Optmatch in R has also been developed (Hansen, 2004).

There are alternative ways to adjust for the covariate imbalance resulting from

randomization. Since small sample sizes do not allow for control of all variables by

model-based method, one possible approach, suggested by an Associate Editor, is to
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adjust the estimated propensity score in a regression model such as:

Yi = α + βI(i ∈ T ) + γδ̂i + εi. (2.11)

Let β̂MB denote the ordinary least squares estimate of β from (12). Our simulations

and investigations suggest that the model-based approach seems to work well if the

model for the propensity score is appropriately specified, where, by appropriately

specified, we mean that the regression model for the propensity score includes the

same regression parameters and is of the same form as the true model for the outcome

variable Y . For example, if the true model is Yi = α+βI(i ∈ T )+γ1Xi+γ2X
2
i +εi and

we specify logit(δi) = logit(Pr(Z = 1 | Xi; α)) = α1 + α2Xi + α3X
2
i , then regression

adjustment using δ̂i will tend to work well. In fact, if the confounding effects are

large, β̂MB tends to be somewhat more efficient than the estimator obtained from

the BMW approach. On the other hand, the BMW approach is more robust if the

propensity score model is inappropriately specified as, for example, if the same true

model of Y holds and we specify logit(δi) = logit(Pr(Z = 1 | Xi; α)) = α1 + α2Xi.

This is examined further in the simulations of Section 4.

Robins and Newey (1992) proposed another procedure based on the propensity

score in observational studies. Their approach is designed to provide a consistent

estimator, β̃E, when the model for propensity score δ̂i is correctly specified. This

estimator is

β̃E =
n∑

i=1

Yi(Zi − δ̂i)
/ n∑

i=1

Zi(Zi − δ̂i). (2.12)

At the suggestion of a reviewer, we also evaluate this approach in the simulations of

the next section.
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2.4 Simulation Study

In order to assess the performance of the BMW design, we first carried out a

simulation study to compare it with a completely randomized design and a matched-

pair design. In doing so, we considered a wide variety of settings and, for each setting,

estimated the mean squared error based on 1000 replications.

2.4.1 Structure of the simulation

For each of N subjects, we generated a set of r covariates X1, X2, ..., Xr, where the

covariates were drawn independently from various distributions as described below.

Given a randomization of subjects to the two treatment groups, the responses were

generated conditional on the treatment assignment (Zi = 0 or 1) and the covariates

(Xij), where Pr(Zi = 1 | Xij) = 0.5. Specifically, the response was obtained from:

Yi = βZi +
r∑

j=1

γjXij + εi (2.13)

where εi
i.i.d∼ N (0, 1) and i = 1, 2, ..., N . In the simulations, we considered the follow-

ing:

• The true treatment effect was taken to be β = 0.7

• The true confounding effects were γj = γ, j = 1, ..., r where γ = 0.5, 1.0, 1.5.

Note that the results we obtain do not depend on the choice of β. When the

covariates follows symmetric distributions, the results do not depend on the

signs of the components of γ either.

• For the first three settings, we considered r = 4 covariates selected from the

following distributions: (i)X1, X2, X3, X4
i.i.d∼ Bernoulli(0.5); (ii)X1, X2

i.i.d∼
Bernoulli(0.5); X3, X4

i.i.d∼ N(0, 0.25); (iii)X1, X2
i.i.d∼ Bernoulli(0.5); X3, X4

i.i.d∼
Bernoulli(0.66).
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• For the fourth case, we considered r = 8 covariates:

X1, X2, X3, X4, X5, X6, X7, X8
i.i.d∼ Bernoulli(0.5)

• We consider sample sizes N = 30, 60.

The completely randomized design assigns half of the units at random to each of

the two treatment groups. For this design, the treatment effect estimator is β̂pooled =

Y T − Y C and the corresponding mean squared error (conditional on T , C and X) is

given in (2.8). We also consider a matched-pair design in which each unit is matched

(so much as possible) to another unit based on the first covariate X1. One unit in

each pair is then randomly assigned to treatment and one to control. The BMW

design, as described in the preceding section, creates an optimally matched sample

for each constraint k, where k =1,2,...,N/2−1, and for each choice of M , this leads to

the weighted treatment effect estimator β̂strata in (2.10) along with its mean squared

error (2.11). We further consider β̂MB, from the model-based approach by adjusting

for the estimated propensity score (2.11) and the Robins-Mark-Newey E estimator β̃E

(2.12). Finally, we examine the possible effects of homoscedastic error on the BMW

design by allowing the error variance to depend on the first covariate X1.

2.4.2 Results

The average mean squared errors based on 1000 replications are summarized in ta-

ble 2.1. From Cochran (1968), the true unconditional MSE of β̂pool is 4σ2
y/N , where σ2

y

refers to the overall variability in outcome Y . In this, one part,
∑

j γ2
j V ar(XjT −XjC),

is due to variability in the observed covariates X1, X2, ..., Xr and the other to the

conditional variations of Y given X1, X2, ..., Xr. Formally, the unconditional MSE is
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(from (2.8))

MSE(β̂pool) = E[{
K∑

k=1

γk(XkT −XkC)}2 +
4

N
σ2]

=
K∑

k=1

γ2
kV ar(XkT −XkC) +

4

N
σ2

=
4σ2

y

N
(2.14)

With pre-randomization matching or post-randomization stratification on covariates,

the average MSE values are also obtained in the simulation. A similar formula to

(2.14) can be obtained for the matched pairs design, but formulas for the BMW

design are complicated. For the BMW design, the average MSE for each constraint

k = (1, 2, ..., N/2−1) were examined in the simulations, but only those for k = 1, 2, 3

are displayed since the MSE changes little when k increases over three. The percent

reduction in MSE is 100×(MSE−MSE∗
BMW )/MSE, where MSE∗

BMW corresponds

to the minimal value of MSE for each k in the BMW design, and MSE refers to the

MSE value for the design to which BMW is being compared (e.g. the completely

randomized design or the matched-pair design).

It is interesting to examine how the MSE of the treatment effect estimator is

affected by various parameter settings. Overall, the BMW design shows significant

reductions in MSE as compared to both the completely randomized and matched-pair

designs.

2.4.2.1 Confounding effects γj

Table 2.1 reveals that as the confounding effects, measured by
∑
j

γj, increase,

the average mean squared errors generally increase. However, the MSE in the BMW

design increases much more slowly than the MSE in the completely randomized or

matched-pair design. This suggests that the BMW design becomes much more effec-
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tive in reducing the mean squared error when confounding effects increase. Specifi-

cally, as we raise
r∑

j=1

γj from 2.0 to 6.0 for Bernoulli distributed covariates (Table 2.1),

the MSE reduction of the BMW design with k = 2 compared to the matched pair

design varies dramatically from 5.96% to 53.77% for M = 5, from 7.50% to 54.59%

for M = 10, and from 9.36% to 56.10% for M = 20. An even larger reduction in MSE

arises when comparing the BMW design with the completely randomized design.

2.4.2.2 The Choice of the Constraint k

We now examine the MSE as a function of k. When the model contains four

covariates of various forms (Table 2.1) and there is relatively little confounding such

as
r∑

j=1

γj = 2.0, then the MSEs corresponding to k = 1 are slightly smaller than those

corresponding to k = 2. As
r∑

j=1

γj increases, however, a greater reduction in MSE due

to constraint k = 2 becomes apparent. Intuitively, for a small sample with strong

confounding effects, bias reduction is more important than variance reduction, so the

larger value of k (k = 2) is more efficient. However, when the number of covariates is

r = 8, the constraint k = 2 minimizes the MSE for all confounding effects considered.

2.4.2.3 Number of Replication M

The MSE is obviously a decreasing function of M for given γ and k. However,

when it comes to percent reduction in MSE using the BMW design as compared to

the completely randomized design or the matched-pair design, there is an interesting

interplay between the number of replications, M , and the confounding effect
∑
j

γj.

The results suggest that if there is little confounding (
r∑

j=1

γj = 2.0) and the covariates

are independently Bernoulli distributed (Table 2.1), the percent reduction in MSE of

the BMW design versus the matched-pair design increases from 7.96% to 10.29% to

13.46% for M from 5 to 10 to 20, with k = 1. If there is relatively more confounding
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(
r∑

j=1

γj = 6.0), the percent reduction in MSE increases more modestly from 53.77%

to 54.59% to 56.10% with M , while using matching with constraints k = 2. Similar

trends are seen in comparing the BMW design with the completely randomized design

or using different covariate distributions. We conclude that, when confounding effect

are relatively strong, the BMW design even with relatively small M is very effective

in reducing MSE. A good compromise value of M is M = 10 for the cases considered.

2.4.2.4 Covariate Settings

There are four covariate settings examined in the simulation studies. The results

suggest that, in situations where existing designs often fail in producing balance

across covariates, the BMW design provides a useful approach. Gains in efficiency are

substantial when the covariates are Bernoulli variables with important, but somewhat

more modest gains, when the covariates include continuous variables. For given γ, the

gains due to the BMW design are similar for symmetric and asymmetric Bernoulli

distributions for the covariates. Finally, when the number of Bernoulli covariates

increases from four to eight, the BMW design achieves a larger reduction in MSE.

2.4.2.5 Sample Size N

Sample size has an impact on the performance of the BMW design, and as sample

size becomes very large, we would expect the relative gains to decrease as randomiza-

tion itself guarantees substantial balance among the covariate values. Our simulation

results reveal, however, that when the sample size increases from 30 to 60, the percent

reduction in MSE from the BMW design decreases only very little. This suggests a

possible value for this approach even in larger studies. Computational aspects are

easily accommodated for the larger sample sizes; for example, the processing time for

the simulations with N = 60 increases by about 40% over those for N = 30.

It is also of interest to compare the BMW design with the model-based approach
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Table 2.1: Percent reductions in the MSE of treatment effect estimator for the
BMW design compared to a completely randomized design (CR) and matched-pair
design (MP ). Sample size N=30 subjects. Number of replications=1000.

MSE MSE Percent Reduction(%) MSE MSE Percent Reduction(%)

γ
4∑

j=1
γj M ( CR ) (BMW vs. CR Design) ( MP ) (BMW vs. MP Design)

k = 1 k = 2 k = 3 k = 1 k = 2 k = 3

X1, X2, X3, X4
i.i.d∼ Bernoulli(0.5)

5 12.21 10.30 6.87 7.96 5.96 2.37
(0.5,0.5,0.5,0.5) 2 10 0.166 14.43 11.77 7.14 0.158 10.29 7.50 2.64

20 17.45 13.54 8.81 13.46 9.36 4.40

5 35.61 43.58 39.67 24.57 33.90 29.33
(1.0,1.0,1.0,1.0) 4 10 0.280 40.37 44.45 41.74 0.239 30.15 34.92 31.75

20 50.39 48.66 46.21 41.87 39.86 36.99

5 45.39 61.58 57.94 34.29 53.77 49.39
(1.5,1.5,1.5,1.5) 6 10 0.450 52.19 62.26 59.02 0.374 42.47 54.59 50.69

20 58.43 63.52 60.64 49.97 56.10 52.64

X1, X2
i.i.d∼ Bernoulli(0.5); X3, X4

i.i.d∼ N(0, 0.25)

5 8.77 5.67 1.09 4.45 1.21 -3.59
(0.5,0.5,0.5,0.5) 2 10 0.155 9.46 5.85 1.66 0.148 5.17 1.40 -2.99

20 12.17 7.74 3.52 8.01 3.38 -1.05

5 24.37 30.79 27.29 13.20 20.58 16.56
(1.0,1.0,1.0,1.0) 4 10 0.218 28.89 32.40 29.18 0.190 18.39 22.42 18.73

20 32.85 33.09 30.13 22.94 23.22 19.82

5 35.91 50.61 47.45 19.56 38.01 34.04
(1.5,1.5,1.5,1.5) 6 10 0.316 42.98 52.08 48.45 0.252 28.43 39.85 35.29

20 48.35 51.58 48.30 35.17 39.22 35.10

X1, X2
i.i.d∼ Bernoulli(0.5); X3, X4

i.i.d∼ Bernoulli(0.66)

5 12.11 12.08 7.31 8.03 8.00 3.01
(0.5,0.5,0.5,0.5) 2 10 0.165 14.93 12.99 8.78 0.158 10.98 8.96 4.55

20 16.13 12.69 8.72 12.24 8.64 4.48

5 32.21 40.76 36.77 20.97 30.94 26.29
(1.0,1.0,1.0,1.0) 4 10 0.267 37.92 43.13 39.39 0.229 27.63 33.71 29.34

20 41.88 44.14 41.22 32.25 34.88 31.48

5 50.98 61.68 59.36 40.15 53.20 50.37
(1.5,1.5,1.5,1.5) 6 10 0.430 50.63 59.12 55.57 0.352 42.75 52.60 48.48

20 55.05 59.33 56.08 47.87 52.84 49.07

X1, X2, X3, X4, X5, X6, X7, X8
i.i.d∼ Bernoulli(0.5)

5 17.35 23.93 18.68 10.06 17.21 11.49
(0.5,0.5,0.5,0.5, 4 10 0.204 18.63 24.30 19.63 0.187 11.44 17.62 12.53
0.5,0.5,0.5,0.5) 20 22.65 25.22 19.42 15.82 18.62 12.30

5 28.74 52.41 52.21 23.39 48.83 48.62
(1.0,1.0,1.0,1.0, 8 10 0.390 35.80 56.12 53.11 0.363 30.97 52.82 49.58
1.0,1.0,1.0,1.0) 20 43.23 57.60 54.22 38.96 54.41 50.78

5 35.07 66.86 68.47 29.12 63.83 65.58
(1.5,1.5,1.5,1.5, 12 10 0.725 46.71 71.55 69.76 0.664 41.83 68.94 66.99
1.5,1.5,1.5,1.5) 20 52.71 73.14 70.29 48.38 70.68 67.57
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adjusting for the estimated propensity score and Robins-Mark-Newey E-estimation

procedure in terms of efficiency and robustness of the treatment effect estimator.

Therefore, we evaluate the MSE property of the three approaches under two scenarios,

one where the propensity score model is appropriately specified and one where it is

not.

2.4.2.6 Propensity score appropriately specified

Under this scenario, we specify the true model and propensity score model as

follows:

Yi = α + βI(i ∈ T ) +
4∑

j=1

γjXj,i + εi. (2.15)

logit(δi) = logit{Pr(Z = 1 | Xi; α)} = α0 +
4∑

j=1

αjXj,i (2.16)

From the results summarized in Table 2.2, we see that the MSE obtained by the

model-based approach remains relatively constant as the confounding effects increase,

provided the terms in the propensity score model mimic that in the true model for

Y . If there is relatively little confounding (
r∑

j=1

γj < 6.0), the MSEs in the BMW

design are slightly smaller than those from the model-based approach. As
r∑

j=1

γj

increases, however, a somewhat greater reduction in MSE is obtained through the

model-based approach. Both the BMW design and the model-based estimate perform

much better than the E-estimation procedure in the context of these small randomized

experiments.

2.4.2.7 Propensity score inappropriately specified

In practice, the true model for outcome Y is unknown, and due to the small sample

size, it is difficult to determine what model is best; consequently adjustment for many

potential confounders may not work well. The simulation studies in Table 2.2 suggest
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that when the propensity score model does not mimic the correct regression terms in

the true model, the BMW design provides a more robust approach than the model

based approach. For illustration purpose, we looked at a true model and propensity

score model as follows:

Yi = α + βI(i ∈ T ) + γ1Xi + γ2X
2
i + εi. (2.17)

logit(δi) = logit{Pr(Z = 1 | Xi; α)} = α1 + α2Xi, (2.18)

where Xi
i.i.d∼ Normal(0, 1). As the confounding effects γj increases from 0.5 to 1.5,

the percent reduction in MSE of the BMW design compared to the model-based

approach increases from 14.75% to 41.88%, for M = 10. Again, the E-estimation

procedure does not perform well in this context. This suggests that the BMW design

is more robust than the model-based approach when the propensity score model is

inappropriately specified, as would often be the situation in practice.

2.4.2.8 Heteroscedastic errors

In the clustered randomized trials with few but relatively large clusters, the

hemoscedasticity error assumption is unlikely to hold. To investigate the effects of

this, we allowed the error distribution of the outcome to vary by the first covariate X1

in our simulation studies. In particular, in the model (2.6), we specified εi
i.i.d∼ N (0, 1)

if X1 = 1 and εi
i.i.d∼ N (0, 0.25) if X1 = 0, where X1, X2

i.i.d∼ Bernoulli(0.5) and

X3, X4
i.i.d∼ N(0, 0.25). The results in Table 2.3 suggest that the relaxation of the

hemoscedasticity error assumption has little impact on the performance of the BMW

design. The case study in the next section is a case where such heteroscedasticity

may be present.
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Table 2.2: Percent reductions in the MSE of treatment effect estimator for the
BMW design compared to the model-based adjustment approach adjusting for the
estimated propensity score (MB) and E estimation procedure (E-est), where the
propensity score model is appropriately and inappropriately specified, respectively.
Number of replications=1000.

MSE MSE Percent Reduction(%) MSE MSE Percent Reduction(%)
γ M ( MB ) (BMW vs. MB) (E − est) (BMW vs. E − est)

k = 1 k = 2 k = 3 k = 1 k = 2 k = 3

where propensity score inappropriately specified (17) (18)

X
i.i.d∼ Normal(0, 0.25)

(0.5, 0.5) 10 0.185 0.65 14.75 12.25 0.334 45.06 52.85 51.47
(1.0, 1.0) 10 0.365 -0.15 30.03 32.31 0.964 62.10 73.52 74.39
(1.5, 1.5) 10 0.665 5.80 41.88 46.12 2.013 68.90 80.81 82.21

where propensity score appropriately specified (15) (16)

X1, X2, X3, X4
i.i.d∼ Bernoulli(0.5)

(0.5,0.5,0.5,0.5) 10 0.165 15.01 15.74 6.79 0.211 33.41 33.98 26.97
(1.0,1.0,1.0,1.0) 10 0.166 -0.87 6.02 1.44 0.528 68.38 70.54 69.10
(1.5,1.5,1.5,1.5) 10 0.166 -29.84 -2.49 -11.31 0.971 77.85 82.52 81.01

X1, X2
i.i.d∼ Bernoulli(0.5); X3, X4

i.i.d∼ Bernoulli(0.66)

(0.5,0.5,0.5,0.5) 10 0.152 7.19 5.08 0.48 0.247 42.97 41.68 38.85
(1.0,1.0,1.0,1.0) 10 0.152 -8.99 0.16 -6.41 0.492 66.32 69.15 67.12
(1.5,1.5,1.5,1.5) 10 0.153 -32.00 -9.29 -18.78 0.916 77.99 81.78 80.19

X1, X2
i.i.d∼ Bernoulli(0.5); X3, X4

i.i.d∼ N(0, 0.25)

(0.5,0.5,0.5,0.5) 10 0.148 5.41 1.64 -2.74 0.203 30.71 27.95 24.74
(1.0,1.0,1.0,1.0) 10 0.148 -4.52 0.64 -4.09 0.387 59.89 61.88 60.06
(1.5,1.5,1.5,1.5) 10 0.148 -21.56 -2.15 -9.91 0.689 73.82 78.00 76.33
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2.5 Planning an Educational Study for tPA Usage in Stroke

In this section, we consider the use of the BMW design in planning an educational

study to increase tPA therapy use for stroke patients as described in the Introduction.

As noted there, four covariates were measured on participating institutions, and it

was impossible to simultaneously obtain a balance in a matched-pair design. The

simulation study in Section 4 suggests that design parameter k = 2 and the number

of replication M = 10 give results that are close to optimum over a broad class of

covariate distributions and confounding effects. We therefore choose these parameters

in proposing a design for the tPA study.

We randomly assigned the 24 hospitals to two treatment groups, and estimated the

sample-based propensity score for each hospital. The hospitals were then optimally

matched into subsets with k = 2 which gave a minimum total distance of 2.5887.

We then randomized the hospitals an additional 9 times obtaining distance measures:

2.05, 2.50, 0.20, 1.42, 0.49, 3.00, 1.14, 0.72 and 1.48. The fourth randomization

produced the smallest distance. The corresponding BMW design is presented in Table

2.4, where there were 9 matched subsets with treated hospital 1 matched to control

6, treated hospital 2 and 3 jointly matched to control 8, and so on. For comparison,

the data were also randomized by using a matched-pair design, where the twenty-four

hospitals were matched into twelve pairs based on the two binary covariates, rural

versus urban population density and low versus high stroke volume. One hospital in

each pair was then randomized to treatment and one to control. Figure 1 illustrates

treatment to control group imbalance in the two continuous covariates, under the

BMW and the matched-pair design.

When γ is known, we can determine the constraint k that minimizes the mean

squared error when using the BMW design. Preliminary data provided estimates of

the regression parameters in a logit model for the proportion of stroke cases receiving

tPA as -0.63 (stroke volume), 0.02 (population density), 4.33 (percent female older
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Table 2.4: Optimal Matched sample produced by the BMW design with k = 2 and
M = 10 for the case study. X1: percent of females greater than 65 years old among all
females in the census tract (%); X2: percent of males greater than 65 years old among
all males in the census tract (%); X3: stroke volume (low vs. high); X4: population

density (urban vs. rural). The estimated propensity score (δ̂) was shown for each
subject and the total propensity score distance ∆ = 0.202 for the stratum.

Treatment Group Control Group

Strata ID(δ̂) X1 X2 X3 X4 ID(δ̂) X1 X2 X3 X4

1 1 (0.33) 0.15 0.13 0 0 6 (0.35) 0.19 0.07 0 0

2 2 (0.38) 0.17 0.11 1 0 8 (0.35) 0.22 0.14 0 0
11 (0.40) 0.22 0.14 1 0

3 3 (0.63) 0.13 0.06 1 1 9 (0.63) 0.14 0.06 1 1
19 (0.67) 0.25 0.15 1 1

4 4 (0.58) 0.12 0.06 0 1 12 (0.60) 0.07 0.06 1 1

5 14 (0.32) 0.13 0.07 0 0 13 (0.32) 0.13 0.09 0 0
15 (0.31) 0.10 0.06 0 0

6 17 (0.41) 0.24 0.12 1 0 10 (0.41) 0.26 0.18 1 0
22 (0.43) 0.30 0.17 1 0

7 20 (0.60) 0.08 0.06 1 1 16 (0.61) 0.10 0.07 1 1
18 (0.61) 0.09 0.05 1 1

8 21 (0.60) 0.18 0.14 0 1 5 (0.61) 0.19 0.13 0 1

9 24 (0.62) 0.23 0.16 0 1 7 (0.62) 0.24 0.19 0 1
23 (0.62) 0.11 0.07 1 1
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Figure 2.1: Covariate Imbalances from the matched-pair design (matching on the
categorical covariates: Population density and stroke volume) and the BMW design.
The imbalance value in covariate X for unit i was computed as Imbalance(Xi) =∑
j∈Ts

Xj/|Ts| −
∑

k∈Cs

Xk/|Cs| = XTs − XCs where s is the stratum that unit i belongs

to.
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than 65) and -1.23 (percent male older than 65). Since there are 24 hospitals, k

can take values from 1 to 11. For k=1, M = 10 randomizations gave a minimum

distance of 0.2936. We then repeated the above process with the same randomized

samples but with constraints k=2, 3, ..., 11 and for each k, searched for the optimal

sample with minimal distance. Third, based on the approximate value of γ above,

we computed the MSE from (2.11) as 0.1076, 0.1045 and 0.1114 for the optimal

sample with constraint k = 1, 2, 3. This suggests that pair matching and matching

with constraint k = 2 achieve approximately the same level of optimality in terms

of minimizing MSE. Compared with the matched-pair design described above, the

BMW design reduced the MSE of the treatment effect estimator by 42%.

2.6 Discussion

The BMW design is, in essence, applying the optimal full matching with con-

straints technique to randomization in order to achieve overall balance between treat-

ment groups and control the variance of the treatment comparison and so yield good

MSE properties. One of the virtues of this design is that it will not only reduce the

chance imbalance in observed covariates but also preserve the advantage of traditional

randomized designs in balancing the unobserved covariates on average. Although only

partial balance on the observed covariates is achieved by the BMW design, it is sub-

stantially better than the balance obtained by random assignment of treatments.

When there is considerable confounding in small studies, this improvement in bal-

ance can result in a substantial decrease of mean squared error in the treatment effect

estimator.

The BMW design can be revised to allow the user to select other criteria besides

MSE to compromise between bias and variance. If variance of the estimator is not

a concern, one can modify this design to achieve optimal balance and so reduce

conditional bias (i.e. set k = N/2 − 1). On the other hand, if the objective is
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to minimize variance, optimal pair matching with constraint k=1 is the best full

matching choice.

We recommend use of a super-population model for analysis, and this is the basis

of the simulation comparisons that we have made. It is worth noting, however, that

the BMW design with a practically reasonable choice of M (e.g. M = 10, 20 or 100),

can also form the basis of a randomization test. Suppose, for example, that a sample

has been collected using the BMW design with given k and M and the value of the

test statistic (e.g. t statistic) has been computed. We now repeat the BMW design

with the same k and M a large number B of times and each time compute the test

statistic based on the fixed outcomes observed. This would lead to a randomization

test and confidence intervals following standard methods. Typically, the underlying

reference set of this test is reasonably large, for example, say N = 30, we will end

up with
(
30
15

)
= 155117520 possible designs and this number is fairly large even for

M = 100.

The model-based approach of adjusting for the estimated propensity score and

the Robins-Mark-Newey E-estimation procedure could be considered as alternatives

to the BMW design. Our simulation studies suggest that, when the propensity score

model is appropriately specified, the BMW design is more efficient than the model-

based approach when the confounding effects are relatively small; the model based

approach, however, becomes more efficient than the BMW design when the confound-

ing effects increase. On the other hand, when the propensity score model is inappro-

priately specified, the BMW design achieves substantial gain over the model-based

approach. In the context considered in this chapter, the E-estimation procedure is

the least efficient and robust.

In practice, investigators may ask which covariates should be adjusted for in

matching. This decision is difficult to make before randomization or the outcomes

become available. In some instances, investigators may know with certainty which co-
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variates will affect the outcomes measured later based on their knowledge or scientific

consensus. However, on other circumstances, the prior information is unavailable. We

carried out a number of simulations to evaluate the MSE performance of the BMW

design under the scenario that there is one true confounder out of the four potential

confounding variables used in the propensity score model. Let Yi, i = 1,2,...,N , rep-

resent responses of the unit i, conditional on a given treatment assignment T , C and

X,

Yi = α + βI(i ∈ T ) + γ1Xi1 + εi; (2.19)

and

δi = Pr(Z = 1 | Xi; α) = exp (α1 +
4∑

j=1

αjXij)/{1 + exp (α1 +
4∑

j=1

αjXij)} (2.20)

The simulations results summarized in Table 2.5 reveal that the BMW design re-

mains effective in reducing the MSE of the treatment effects estimators even though

it matches on the propensity scores estimated based on only one true confounding

variable out of four potential ones.

Table 2.5: Percent reductions in the MSE of treatment effect estimator for the
BMW design compared to a completely randomized design (CR) when the BMW
design adjusts for one true confounding variable and three false ones. Sample size
N=30 subjects. Number of replications=1000.

MSE MSE Percent Reduction(%)

γ
4∑

j=1
γj M ( CR ) (BMW vs. CR Design)

k = 1 k = 2 k = 3

X1, X2, X3, X4
i.i.d∼ Bernoulli(0.5)

0.5 0.5 10 0.146 12.05 5.88 -0.84
1.0 1.0 10 0.173 20.44 13.30 8.85
1.5 1.5 10 0.219 32.45 35.20 29.43
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Greevy et al. (2004) proposed another multivariate matching design based on

Mahalanobis distance. This approach searches for the optimal multivariate non-

bipartite matching followed by randomization within pairs. We also investigated this

in a simulation study presented in Table 2.6. As the confounding effects increase, or

the number of covariates increase, the BMW design becomes much more effective in

reducing MSE compared to Greevy’s design. This may be because the Mahalanobis

distance is inferior to propensity scores when there are many covariates.

In general terms, the BMW design appears to provide a viable approach in the

context of small studies where adjustment for randomization imbalance may be im-

portant. Furthermore, the simplicity of this matching-based design allows researchers

to perform simple stratified analyses that adjust for imbalance in the randomization,

which is appealing.

Finally, simulation shows that the BMW design can substantially reduce the MSE

of the treatment effect estimate, as compared to the existing randomized designs in

linear models. These investigations could be extended to other regression models, such

as the class of general linear models. It should also be noted that the BMW design can

be generalized to clinical trials with more than two treatment arms. Baseline category

logit model can be used to estimate the probability of a subject being assigned to

each treatment arm, and Euclidean distance can be used to measure the quality of a

matching.
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Table 2.6: Percent reductions in the MSE of treatment effect estimator for the BMW
design compared to multivariate non-bipartite matching design (NB). Number of
replications=1000.

MSE MSE Percent Reduction(%)

γ
8∑

j=1
γj M (NB Design) (BMW vs. NB Design)

k = 1 k = 2 k = 3

X1, X2, X3, X4
i.i.d∼ Bernoulli(0.5)

5 -0.07 -2.27 -6.11
(0.5,0.5,0.5,0.5) 2 10 0.146 2.47 -0.55 -5.90

20 5.91 1.44 -3.91

5 2.42 14.49 8.53
(1.0,1.0,1.0,1.0) 4 10 0.185 9.62 15.79 11.68

20 24.78 22.18 18.44

5 1.77 30.92 24.36
(1.5,1.5,1.5,1.5) 6 10 0.250 14.01 32.12 26.28

20 25.24 34.40 29.20

X1, X2, X3, X4, X5, X6, X7, X8
i.i.d∼ Bernoulli(0.5)

5 -8.15 0.51 -6.35
(0.5,0.5,0.5,0.5, 4 10 0.156 -6.41 0.96 -5.13
0.5,0.5,0.5,0.5) 20 -1.15 2.18 -5.39

5 -25.19 16.39 16.07
(1.0,1.0,1.0,1.0, 8 10 0.222 -12.76 22.92 17.65
1.0,1.0,1.0,1.0) 20 0.26 25.53 19.59

5 -39.10 29.01 32.47
(1.5,1.5,1.5,1.5, 12 10 0.338 -14.16 39.06 35.22
1.5,1.5,1.5,1.5) 20 -1.31 42.46 36.37
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CHAPTER III

More on Propensity Score Matching in

Randomized Clinical Trials

Cluster randomization trials with relatively few clusters have been widely used

in recent years for evaluation of health-care strategies. The balance match weighted

(BMW) design that was introduced in Chapter II applies the optimal full matching

with constraints technique to a prospective randomized design, and aims to minimize

the mean squared error (MSE) of the treatment effect estimator. A simulation study

shows that, under various confounding scenarios, the BMW design often has superior

performance over the completely randomized design, the matched-pair design, the

model based approach adjusting for the estimated propensity score, the Robins-Mark-

Newey E-estimation procedure and the Greevy et al. (2004) optimal multivariate

matched design before randomization, in terms of the MSE reduction of treatment

effect estimator. In this chapter, we aim to extend the BMW design to two directions:

clinical trials with more than two arms and clinical trials with staggered entry. In

addition, we investigate the effects of further increasing M on the MSE performance

of the two-arm BMW design.
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3.1 The BMW design on trials with three or more arms

The last decade has seen a broad surge of interest in using the method of propensity

score matching to estimate the average treatment effect based on observational data.

In most observational studies, a treatment group is matched with a single control

group. Although costly or difficult, some investigators use a second control group in

an effort to detect the hidden biases in the unobserved covariates (Seltser and Sartwell,

1965; Weston and Mansinghka, 1971; Roghmann and Sodeur, 1972; Zabin et al.,

1989; Chang et al., 1997; Wells et al., 1997; Bo and Rosenbaum, 2004). As argued by

Campbell (2009), although matching can adjust the differences in observed covariates,

bias may still exist due to some unobserved covariates and if that is the case, the two

control groups may differ from each other substantially on the unobserved covariate.

The use of the second control group, if carefully selected, would help reduce possible

hidden bias and strengthen the evidence that the observed effects are caused by the

treatment.

Although the use of two control groups may not be relevant in randomized exper-

iments, a more complex framework also appears to be useful when evaluating certain

treatment programs in randomized clinical trials. For example, a drug may be ap-

plied at different dosage levels or a physician may have more than two treatment

options to evaluate. In this cases, the BMW propensity score matching method,

which only involves two matching groups, appears to be inadequate and extensions

become necessary.

The problem of matching with three groups has received some attention in the

area of graph theory and observational studies in Epidemiology. It has been shown

that the problem of finding an optimal tripartite matching is a NP (nondeterminis-

tic polynomial time) complete problem. The most notable characteristic of an NP

complete problem is that the time required to solve the problem using any currently

available algorithm increases very quickly as the size of the problem grows, and in
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many instances, it is not possible to determine the optimal solution with costly com-

putational facilities. For example, consider a small study which contains three arms

of m subjects in each arm, the number of comparisons required in search for the

optimal matched triples is 36 when m = 3, 576 when m = 4, 14400 when m = 5,

518400 when m = 6, and 1.316819e13 when m gets to 10. This has implications for

propensity based matching and an approach such as BMW since the corresponding

optimization is NP hard.

In order to circumvent this problem, we can work with some ad hoc approaches

which may not lead to the optimal tripartite matching, but to the solutions close to

the optimal. Bo and Rosenbaum (2004) propose an algorithm to match three groups

into incomplete blocks with disjoint pairs, and develop a search algorithm based on

the method of finding the optimal nonbipartite matching. In their approach, three

groups are optimally matched into pairs and an incomplete block of size two is formed.

One potential drawback of the incomplete block design is that, when comparing

treatment A and B, for example, only those pairs that receive treatments A and B

are included in the direct comparison. The corresponding treatment effects estimator

is yA − yB. This leads to a loss of efficiency which becomes even more apparent in

small studies. We can reduce the efficiency loss by including the rest of the pairs in

the comparison, and propose an estimator as 2
3
(yA − yB) + 1

3
[(yA − yC) + (yC − yB)].

But these estimators are still considerably less efficient compared to those obtained

from matching involving triples or blocks of size three. In this section, we propose

two new algorithms of matching with three groups: the two-way tripartite matching

and the three-way tripartite matching. We suggest the first approach when there is

a clear predefined reference group, a control group, to which the other two arms are

compared and suggest the second approach when all three groups are to be compared

simultaneously. In these designs, three groups are matched into triples. Although the

balance achieved by using our proposed matching algorithms may not be optimal,
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it would be close to the optimal, and certainly can be substantially better than the

balance obtained by random assignment of treatments. We investigate the use of

these three approaches in the generalization of the BMW design and use a simulation

study to evaluate the performance of the design under various confounding scenarios.

The rest of the section is organized as follows. Notation, the three matching

algorithms (incomplete block of size two, two-way and three-way tripartite matching

algorithms) and the analysis models are presented in section 3.1.1. The BMW design

on clinical trials with three arms based on each of these three matching algorithms is

outlined in section 3.1.3 and section 3.1.4 gives results of a simulation study comparing

the performance of the BMW design based on different matching algorithms as well

as with the completely randomized design. This section concludes with discussion in

section 3.1.5.

3.1.1 Methods

In this subsection, we present the notation and problem formulation as well as

introduce the three matching algorithms, incomplete block with disjoint pairs (Bo

and Rosenbaum, 2004), tripartite matching given predefined reference group and

with reference group optimally selected, respectively.

Consider a study with the aim of assessing the effects of three different treatments,

A, B and C. Let N denote the number of subjects available for the study. We

assume that N is a multiple of 6 and N/3 subjects are randomized to each of the

treatment groups. Thus, we suppose that a randomization process divides the N

subjects into a set A of N/3 subjects to be treated with A, a set B of N/3 subjects

to receive treatment B and a set C of the remaining N/3 subjects for treatment C,

where A = {ηA
1 , ..., ηA

N/3},B = {ηB
1 , ..., ηB

N/3}, C = {ηC
1 , ..., ηC

N/3}. We also assume

that a vector of r covariates, X = (X1, X2, ..., Xr) with X1 = 1, is observed for each

individual.
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Similarity of covariates for the given randomization is measured through an es-

timated probability of being assigned to each group. Writing Z = 1, 2, 3 for the

subjects who received treatment A,B,C, respectively, the (estimated) Euclidean dis-

tance between the subject i in group A and subject j in group B is given by,

δ{(ηA
i , ηB

j )} =
√

(δ̂A
1,i − δ̂B

1,j)
2 + (δ̂A

2,i − δ̂B
2,j)

2 + (δ̂A
3,i − δ̂B

3,j)
2 (3.1)

where δ̂
G

i = (δ̂G
1,i, δ̂

G
2,i, δ̂

G
3,i) with G = (A,B, C) is the estimated probability of subject

i in group G being assigned to the treatment group A,B, C, respectively, which can

be obtained from a model such as the baseline category model

δt,i = Pr(Z = t | Xi; αt) = exp{αtX
T
i }/(1 + exp{α1X

T
i }+ exp{α2X

T
i }) (3.2)

where t = 1, 2 and α1 = (α11, ..., α1r) and α2 = (α21, ..., α2r) are regression coefficients

and α3 ≡ 0 since in this parameterization the third group is regarded as the reference.

According to various questions of interest, there are three approaches proposed

for the matching problem with three groups.

3.1.1.1 Incomplete block design with disjoint pairs

If one is interested in comparing the treatment effect A with B, A with C and B

with C, and the three comparisons are equally important, then Bo and Rosenbaum

(2004) argue that the comparisons of three groups not be done in matched triples, but

rather as an incomplete block design with matched pairs; thus they propose blocks of

size two with one third of the blocks assigned at random to each of the three treatment

comparisons. Given sets A,B, C which contains the subjects to be treated by A,B, C,

respectively, we consider the collection PA,B,C of all possible matchings with size (p12,

p13, p23), where a matching of size (p12, p13, p23) corresponds to a collection of p12

pairs of the form (ηA
i , ηB

j ), p13 pairs of the form (ηA
i , ηC

k ) and p23 pairs of the form
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(ηB
j , ηC

k ), where all the pairs are disjoint and p12, p13, p23 are specified constants. Let

ω ∈ M be one pair of a particular matching M ∈ PA,B,C, we measure the quality of

M as

∆M =
∑
ω∈M

δ(ω) (3.3)

Thus ∆M is the total distance within pairs and an optimal tripartite matching mini-

mizes ∆M over allM∈ PA,B,C. If there exists such a matching P of size (p12, p13, p23),

such that ∆(P ) < ∞ then the optimal matching problem is feasible; otherwise, it is

infeasible. In our application of a randomized experiment, p12 = p13 = p23 = N/6.

The optimal tripartite matching problem can be transformed to an equivalent

nonbipartite matching problem and these two problems were shown to have the same

optimal solutions (Bo and Rosenbaum, 2004). Given a single set Θ = A⋃B⋃ C =

(ηA
1 , ..., ηA

N/3, η
B
1 , ..., ηB

N/3, η
C
1 , ...ηC

N/3), and let Φ denote the collection of all possible

pair matchings within Θ, where a matching corresponds to N/2 matched pairs. The

distance can be defined as follows:

δ{(ηm
i , ηn

j )} =





√
(δ̂m

1,i − δ̂n
1,j)

2 + (δ̂m
2,i − δ̂n

2,j)
2 + (δ̂m

3,i − δ̂n
3,j)

2 if m 6= n;

+∞ if m = n.

Where m,n ∈ {A,B, C}. Let ξ ∈ MΘ be one pair formed in a matching MΘ ∈ Φ,

then the total distance of MΘ can be written as

∆MΘ
=

∑

ξ∈MΘ

δ(ξ) (3.4)

The optimal nonbipartite matching problem is to minimize ∆MΘ
over Φ. A nonbipar-

tite matching P is called feasible, if ∆P < ∞. Bo and Rosenbaum (2004) (Claim 1 )

proved that P is an optimal nonbipartite matching with ∆(P ) < +∞ if and only if

P is also an optimal, feasible tripartite matching into incomplete blocks as described

above. Figure 3.1 illustrates how three groups of size 4 each can be matched into in-

40



complete block design of disjoint pairs through the transformation of a nonbipartite

matching.

Figure 3.1: The Transformation from a Nonbipartite Matching to an Incomplete
Block Design of Size Two.

3.1.1.2 Three-way Tripartite Matching With Triples

We propose an alternative approach of matching three groups when the compar-

isons between A v.s. B, A v.s. C and B v.s. C are equally important. Given sets

A,B, C which contain the subjects to be treated by A,B, C, respectively, we consider
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the collection MA,B of all possible matchings with size m12, MA,C of matchings with

size m13, and MB,C of matchings with size m23, where a matching of size m12, m13,

m23 corresponds to a collection of m12 pairs of the form (ηA
i , ηB

j ), m13 pairs of the

form (ηA
i , ηC

k ) and m23 pairs of the form (ηB
j , ηC

k ), respectively. The pairs of form

(ηA
i , ηB

j ) and form (ηA
i , ηC

k ) share the common subjects in group A, similarly for the

matched pairs between other groups. The size m12, m13, m23 is fixed and we consider

m12 = m13 = m23 = N/3. Figure 3.2 illustrates an example of tripartite matching

with three groups of size 4 each and m12 = m13 = m23 = 4.

Figure 3.2: Tripartite Matching of triples for three groups of size four each, where
m12 = m13 = m23 = 4.

Let ω ∈ MA,B be one pair of a particular matching MA,B ∈ MA,B, we measure

the quality of MA,B as

∆MA,B =
∑

ω∈MA,B

δ(ω) (3.5)

An optimal pair matching corresponds to the minimum distance measure ∆∗
MA,B =
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min(∆MA,B) over MA,B with size m12. Similarly, define ∆MA,C and ∆MB,C as follows

∆MA,C =
∑

ω∈MA,C

δ(ω) (3.6)

and

∆MB,C =
∑

ω∈MB,C

δ(ω) (3.7)

And the optimal pair matched samples which minimize the distance ∆MA,C and ∆MB,C

give the minimum distances ∆∗
MA,C and ∆∗

MB,C , respectively.

Once the treatment group A is optimally matched to B, and B to C, the cor-

responding members of A and C are also paired through their individual matchings

with B. Let M+
A,C represent this implied matching. It follows that the minimum

total distance measure given group B as the reference group is

∆∗
MB = ∆∗

MA,B + ∆∗
MB,C +

∑

ω∈M+
A,C

δ(ω) (3.8)

Similarly, the minimum distance measure with groups A and C as the reference groups

are,

∆∗
MA = ∆∗

MA,C + ∆∗
MA,B +

∑

ω∈M+
B,C

δ(ω) (3.9)

∆∗
MC = ∆∗

MB,C + ∆∗
MA,C +

∑

ω∈M+
A,B

δ(ω) (3.10)

The reference group associated with the smallest total distance ∆∗
MA,B,C = min(

∆∗
MA , ∆∗

MB , ∆
∗
MC) is called the optimal reference group. The two optimal pair matched

samples, with that reference group as their common group, minimize the sum of three

pairwise distances. This is the solution for the three-way tripartite matching design.
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3.1.1.3 Two-way Tripartite Matching With Triples

As sometimes the case in practice, investigators may have more than two treat-

ment options to compare against a common control. Given the reference group, the

matching mechanism can focus on adjusting for the covariate differences between

each treatment group and the control rather than the comparison between the two

treatment groups themselves.

Given the same sets A,B, C which contain the subjects to be treated by A,B, C,

respectively, we assume that the treatment group A is the reference group. The

optimal pair matching which minimizes the distance measure ∆MA,B over MA,B with

size m12 gives the smallest distance measure between group A and B as ∆∗
MA,B .

Similarly, we can obtain the optimal matched sample corresponding to the minimum

distance measure between group A and C as ∆∗
MA,C .

The combination of the two optimal pair matched samples leads to the optimal

solution to the two-way tripartite matching design given the predefined reference

group A, and the corresponding total distance measure

∆∗
A = ∆∗

MA,B + ∆∗
MA,C (3.11)

Worthy of noting, the distance between the corresponding members of B and C,
∑

ω∈M+
B,C

δ(ω), is not included in 3.11 since the adjustment of the covariate imbalance

between two treatment groups B and C is not of the primary interest given the

predefined reference group A.

3.1.2 Model

To appreciate the effect of treatment on response in a pooled sample and matched

sample, respectively, consider the following model: Let Yi, i = 1,2,...,N , represent
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responses of the unit i, conditional on a given treatment assignment A, B, C and X,

Yi = α + β1I(i ∈ A) + β2I(i ∈ B) +
r∑

j=1

γjXij + εi; (3.12)

where I(.) is the indicator function, β1, β2 denote the true treatment effect A ver-

sus C, B versus C, respectively. γ1, γ2, ..., γr are the confounding effects and ε =

(ε1, ε2, ..., εN) is the vector of the measurement errors with E[ε|A,B, C, X] = 0,

Var[ε|A,B, C, X] = σ2I, σ2 < +∞ and I is the N ×N identity matrix.

1. Pooled Sample. Under model (3.12), the common treatment effect estimators

based on the unstratified pooled sample obtained from the completely ran-

domized design is β̂1,pool = yA − yC, β̂2,pool = yB − yC and β̂3,pool = yA − yB,

respectively, which has conditional expectation

E[β̂i,pool|T1, T2, X] = βi +
r∑

j=1

γj(XjT1−XjT2) (3.13)

where i = 1, 2, 3 and T1, T2 ∈ {A,B, C}. If i = 1, then T1 = A, T2 = C, and

so on. The mean squared error for β̂i,pool where i = 1, 2 (conditional on A,B, C
and X) is

MSE(β̂i,pool|T1, T2, X) = {
r∑

j=1

γj(XjT1 −XjT2)}2 + 6σ2/N (3.14)

2. Matched Sample. Under model (3.12), estimating the treatment effect for the

matched sample involves computation of the average of the within-pair dif-

ferences. For example, the incomplete block design (ICB) with disjoint pairs

results in p13 = N/6 pairs of A-treated subjects matched to C-treated pa-

tients, p23 = N/6 pairs of B-treated subjects matched to C-treated patients and

p12 = N/6 pairs of A-treated subjects matched to B-treated patients, respec-
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tively. The corresponding treatment effect estimator of βICB
1 comparing treat-

ment A v.s. C is β̂ICB
1 = 2

3

N/6∑
i=1

{yi,A − yi,C}/(N/6) + 1
3
[
N/6∑
i=1

{yi,A − yi,B}/(N/6)−
N/6∑
i=1

{yi,B−yi,C}/(N/6)] = 2
3
(yTA−yTC)+

1
3
[(yTA−yTB)−(yTB−yTC)], where TA, TB

and TC refer to the set of N/6 subjects treated by A, B and C, respectively.

β̂ICB
1 has conditional expectation

E[β̂ICB
1 |TA, TB, TC, X] = β +

2

3

N/6∑
i=1

{
r∑

j=1

γj(XjTi,A −XjTi,C)}/(N/6)

+
1

3
[(

N/6∑
i=1

{
r∑

j=1

γj(XjTi,A −XjTi,B)}/(N/6))

−(

N/6∑
i=1

{
r∑

j=1

γj(XjTi,B −XjTi,C)}/(N/6))]

The mean squared error for β̂1,AC (conditional on TA, TB, TC and X) is

MSE(β̂ICB
1 |TA, TB, TC, X) = {2

3

N/6∑
i=1

{
r∑

j=1

γj(XjTi,A −XjTi,C)}/(N/6)

+
1

3
[(

N/6∑
i=1

{
r∑

j=1

γj(XjTi,A −XjTi,B)}/(N/6))

−(

N/6∑
i=1

{
r∑

j=1

γj(XjTi,B −XjTi,C)}/(N/6))]}2 + 8σ2/N

The treatment effect estimators of βICB
2 , βICB

3 comparing treatment B v.s. C

and A v.s. B can be defined in the similar manner.

On the other hand, the optimal tripartite matching design (TM) with triples

leads to m13 = N/3 pairs of A-treated subjects matched to C-treated patients,

m23 = N/3 pairs of B-treated subjects matched to C-treated patients and

m12 = N/3 pairs of A-treated subjects matched to B-treated patients. The

treatment effect estimators comparing A v.s. C from the two-way and three-
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way designs are β2TM
1 and β3TM

1 , respectively, where β̂2TM
1 = β̂3TM

1 =
N/3∑
i=1

{yi,A−
yi,C}/(N/3) = ySA − ySC , and SA, SC refers to the set of N/3 subjects treated

by A and C. This estimator has the mean squared error

MSE(β̂kTM
1 |SA, SC, X) = [

N/3∑
i=1

{
r∑

j=1

γj(XjSi,A −XjSi,C)}/(N/3)]2 + 6σ2/N

(3.15)

where k = 2, 3. The conditional bias and MSE for estimators of treatment

effects βkTM
2 and βkTM

3 comparing A v.s. B, B v.s. C can be defined similarly.

3.1.3 The BMW design on trials with three arms

In this section, we propose three balance match weighted (BMW) designs for

clinical trials with three arms. These designs with specified parameter M are defined

algorithmically as follows:

Step 1. Randomize 1/3, 1/3 and 1/3 of the subjects to the treatment group A,B
and C, respectively;

Step 2. Compute the estimated probability of being assigned to each treatment

group using the baseline category model (3.2) or other multinomial models and create

the |N | × |N | matrix of estimated Euclidean distances;

Step 3. Obtain the optimal matched samples based on a tripartite matching

algorithm, (i) incomplete block design with disjoint pairs, (ii) two-way tripartite

matching design or (iii) three-way tripartite matching design as described in section

3.1.1, and record the minimum total distance ∆ for the given randomization.

Step 4. Repeat Steps 1 to 3 M times; choose the randomized sample with mini-

mum total distance ∆∗ = min(∆1, ∆2, ..., ∆M).
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3.1.4 Simulation Results

In order to assess the performance of the generalized BMW design based on each

of these three matching algorithms, we carried out a simulation study to compare each

of them with a completely randomized design and the results are presented below. In

doing so, we considered a wide variety of settings and, for each setting, estimated the

mean squared error based on 1000 replications.

3.1.4.1 Structure of the simulation

For each of N subjects, we generated a set of r covariates X1, X2, ..., Xr, where the

covariates were drawn independently from various distributions as described below.

Given a randomization of subjects to the two treatment groups, the responses were

generated conditional on the treatment assignment Zi ∈ {1, 2, 3} and the covariates

(Xij), where Pr(Zi = 1 | Xij) = Pr(Zi = 2 | Xij) = 1/3. Specifically, the response

was obtained from:

Yi = β1I(Zi = 1) + β2I(Zi = 2) +
r∑

j=1

γjXij + εi (3.16)

where εi
i.i.d∼ N (0, 1) and i = 1, 2, ..., N . In the simulations, we considered the follow-

ing:

• The true treatment effect was taken to be β1 = β2 = 0.5

• The true confounding effects were γj = γ, j = 1, ..., r where γ = 0.5, 1.0, 1.5.

Note that the results we obtain do not depend on the choice of β. When the

covariates follow symmetric distributions, the results do not depend on the signs

of the components of γ either.

• For the first three settings, we considered r = 4 covariates selected from the

following distributions: (i)X1, X2, X3, X4
i.i.d∼ Bernoulli(0.5); (ii)X1, X2

i.i.d∼
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Bernoulli(0.5); X3, X4
i.i.d∼ N(0, 1);

• We consider sample sizes N = 60 or 36.

3.1.4.2 Results

Table 3.1 presents the MSE performance of the generalized BMW design based on

three tripartite matching algorithms under various confounding scenarios. Since the

reduction in bias achieved by the BMW design with incomplete block method and

three-way tripartite matching algorithm is symmetrically balanced in all treatment

effects estimators, we only show the percent reduction in MSE in one treatment effects

estimator for those methods.

In general, the three-arm BMW designs provide important gains in efficiency by

reducing the MSE in all three treatment effects estimators simultaneously. This is

especially for the design based on the two-way and three-way tripartite matching

methods we proposed.

The BMW design based on the incomplete block method or the three-way tripar-

tite matching algorithm could both be applied to situations when the three pairwise

comparisons are equally important to investigators. However, the proposed three-

way tripartite matching algorithm is substantially more effective in reducing MSE

compared to the incomplete block design. This is especially the case when the con-

founding effects are not too strong (e.g. γ = 0.5 or 1.0). Specifically, when the

common confounding effects γ = 0.5, the estimated treatment effect, β̂AC , from the

BMW design using the incomplete block method is only 89.7% efficient compared to

that from the completely randomized design. Adding random blocks to the sample,

as suggested by Bo and Rosenbaum (2004), leads to a loss of efficiency and this lim-

itation arises especially when the confounding effects are not too strong, thus, the

control in variance increase is more important than the bias reduction. On the other

hand, our proposed three-way tripartite matching algorithm utilizes all the subjects
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assigned to each treatment group in the direct comparisons, which minimizes the

efficiency loss and reduces the bias by optimally matching the subjects into pairs.

Although the balance achieved through optimally matched pairs may not be as good

as the optimally matched triples, it is close to the optimum and substantially better

than the random assignment of treatments. For example, the BMW design based on

the proposed three-way tripartite matching algorithm leads to a reduction in MSE by

12.63% when γ = 0.5, and this reduction increases to 41.44% as γ increases to 1.5.

When the control group is predefined by the investigators, we proposed the two-

way tripartite matching algorithm to primarily reduce the covariate imbalance be-

tween each treatment group and the common control. Simulation results suggest

that the BMW design based on the two-way matching algorithm is very effective in

reducing MSE of the treatment effects estimator compared to the completely random-

ized design. For example, if group A is set as control, the BMW design can minimize

the MSE of β̂AC and β̂AB by more than 44.79% and 43.16%, respectively, compared to

the completely randomized design, when γ = 1.5. The covariate imbalance between

group B and C is also reduced through the individual matching of B and C to the

common control A.

The simulation studies also evaluate the effects of sample size N on the perfor-

mance of these BMW designs. Table 3.1 and 3.2 present the percent MSE reduction

given sample size as 60 and 36, respectively. This results reveal that the perfor-

mance of the BMW design based on the incomplete block design of disjoint pairs

decreases when the sample size reduces, however, the designs using our proposed

two-way and three-way tripartite matching designs of triples remain approximately

unchanged when sample size varies. Therefore, the efficiency gain in MSE due to the

two-way and three-way tripartite matching algorithms becomes even more apparent

when sample size becomes smaller.

Finally, the effects are more apparent when the covariates include continuous
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variables with larger variances but becomes somewhat less when the covariates are

all Bernoulli variables.

3.1.5 Conclusions and Discussions

Traditional designs in cluster randomized trials have generally studied the effect

of one variable at a time, because it is statistically easier to manipulate. However,

in many instances, there may exist two or more factors, and it is impractical or

insufficient to analyze each variable individually. The 2 × 2 factorial design, and of

course factorial designs more generally, have been extremely useful in the area of

social, medical and agricultural research. This design can highlight the relationships

between variables and evaluate the effects of multiple variables simultaneously. In

the 2× 2 factorial design, there are two factors with each on two levels. The number

of different treatment groups is therefore 2× 2 = 4.

The generalized 3-arms BMW design proposed in this chapter can be further

extended to optimize the MSE of the resultant treatment effects estimators in the 4-

arms or larger trials. Specifically, we can apply the two-way quadripartite matching

algorithm, an generalization of the two-way tripartite matching method, when there

is a clear predefined reference group; or extend the three-way tripartite matching to

four-way quadripartite matching algorithm when these four groups are to be compared

simultaneously. An optimal reference group can be found among the four groups.

As for the extension of the incomplete blocks of disjoint pairs, however, Bo and

Rosenbaum (2004) noted that the nonbipartite algorithm does not extend to four or

more treatments and suggest instead using the best pair matching that includes all

observations from each group. As a result, our proposed tripartite matching algorithm

with triples appears to be more useful in the extensions to four or more groups.

It is clear that the proposed two-way and three-way tripartite matching algorithms

can not only be used in the randomized experiments, in an effort to reduce the chance
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imbalance in observed covariates between treatment groups, but also be applied to

observational studies with two control groups as were the context that motivated the

incomplete block design of Bo and Rosenbaum (2004). One limitation arises when

there are unequal number of observations between the three groups. We suggest, in

that case, either to select a subset of observations so that each treatment group would

has equal size, then search for the optimal two-way tripartite matching, or form a

matching close to optimal by including all observations. This is an interesting and

important problem that deserves further study.

The proposed BMW designs based on the propensity score matching have one

disadvantage. It may not perform well in the studies with very small sample size (e.g.

group size is less than 10) but relatively large number of confounding variables (e.g.

4 or more). In that case, the model used to estimate the propensity scores may not

work well due to the complete separation of cases and controls by covariates. One

may use some ad hoc method such as reducing the number of independent variables

in the model to estimate the propensity score when that occurs. Further studies on

proposing some appropriate ad hoc methods will also be conducted.

3.2 The BMW design on trials with staggered entry

One limitation of the BMW design discussed so far is that it requires that all units

are available for randomization at the onset of the study. So the next generalization

of the BMW design is to extend it to clinical trials with staggered entry. Traditional

methods of restricted randomization includes covariate adjustment, ”permuted block

design” and ”permuted block design with strata”. However, each of these has draw-

backs in terms of minimizing the covariance imbalance for several prognostic factors

simultaneously in sequential treatment assignment, and the limitation is most serious

for small studies.

The disadvantage of covariate adjustment method is that the number of variables
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which can be treated in this manner is limited, and in small studies, it is not always

clear what covariate model is appropriate. If an incorrect model is chosen, covariate

adjustment can result in biased estimation of the true overall treatment effect. The

”permuted block design” first forms patients in blocks of fixed, equal size, bN , where

b is the number of treatments and N denotes the number of new patients in each

treatment arm, as they enter the trial and a random permutation of treatments is

determined for each block. This method can ensure equal number of treatments are

achieved in every block of patients but Efron (1971) points out a big limitation of

this design. Within each block, after bN − 1 treatments have been assigned and last

one is predetermined. This limitation may cause considerable bias especially when

bN is small in unblinded single center studies. Another method of achieving bal-

ance with respect to prognostic factors is the ”permuted block design within strata”.

This approach divides each factor into several levels and each patient is assigned to a

stratum according to his/her particular combination of factor levels. Treatments are

then assigned at random and typically with balance within each stratum. The major

difficulty in this approach is the number of strata (i.e. the number of combination

of factor levels) can be very large if the number of prognostic factors increases. In

an extreme case, the number of strata can be as large as the number of patients ac-

crued, then some strata will have no patients or only one patient and this constrained

randomization becomes equivalent to complete randomization.

Pocock and Simon (1975) proposed the minimization design, which is a sequential

strategy by making the assignment decision one unit at a time, based solely on the

covariate information of previously assigned subjects. This procedure requires that

the prognostic factors are categorical variables, or categorized into categories. For

each new patient, we calculate the total covariate imbalance, based on the covariate

information of previously assigned subjects, for each possible treatment assignment

of this new patient, and choose the one which minimizes the total imbalance. The
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computation of the total imbalance for all possible treatment assignments becomes

very intensive when the number of prognostic variables increases.

The BMW design can be generalized to account for sequential treatment assign-

ment. Suppose in a randomized trial with two arms, a new block of patients with

size N1 arrives and there are N2 patients already randomized to treatments. We then

randomize the N1 patients M times and retain the assignment for those N2 patients.

For each randomized sample, compute the estimated propensity score and search for

the optimal full matching with constraints based on all patients. The randomization

which leads to the minimal total distance in propensity score would determine the

treatment assignment for the N1 new patients. One potential limitation of this ap-

proach proposed is that the block size N1 may need to be reasonably large to get

good properties. We carry out a simulation study to evaluate the MSE performance

of the proposed approach.

For each of N subjects, we generated a set of r covariates X1, X2, ..., Xr, where

the covariates were drawn independently from the distributions as described below.

Given a randomization of subjects to the two treatment groups, the responses were

generated conditional on the treatment assignment (Zi = 0 or 1) and the covariates

(Xij) (where Pr(Zi = 1 | Xij) = 0.5). Specifically, the response was obtained from:

Yi = βZi +
r∑

j=1

γjXij + εi (3.17)

where εi
i.i.d∼ N (0, 1) and i = 1, 2, ..., N . In the simulations, we considered the follow-

ing:

• The true treatment effect was taken to be β = 0.7

• The true confounding effects were γj = γ, j = 1, ..., r where γ = 0.5, 1.0, 1.5.

• For the covariate setting, we considered r = 4 covariates selected from the
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following distribution: (ii)X1, X2
i.i.d∼ Bernoulli(0.5); X3, X4

i.i.d∼ N(0, 0.25);

• We consider sample sizes N = 36.

There are three scenarios of staggered entry under investigation, first, all 36 pa-

tients are available at study onset; second, the patients arrive in two blocks of size 18

each; third, all these patients arrive at three different times of size 12 each. The BMW

design, as described in the preceding section, is applied repeatedly each time when the

new block of subjects enter the study. The completely randomized design assigns half

of the units at random to each of the two treatment groups and the assignment takes

place independently whenever the new patients enter the study. For this design, the

treatment effect estimator is β̂pooled = Y T − Y C and the corresponding mean squared

error (conditional on T , C and X) is given in (2.8). We also consider a permuted

block design within strata in which subjects were first divided into blocks based on the

first two binary covariates X1 and X2. All the patients in the same strata share the

common covariate values for the first two covariates, and the treatment assignments

are performed separately for each stratum.

Simulation results in table 3.3 suggest that the generalized BMW design is effective

in reducing the MSE of the treatment effect estimator in clinical trials with staggered

entry, compared to the completely randomized design and permuted block design

within strata. The improvement in MSE becomes more apparent as the confounding

effects become stronger. It appears that the percent of MSE reduction may increase

slightly as the number of blocks with staggered entry increases. For example, the

percent reduction in MSE is generally higher when patients arrive sequentially in

three groups of 12 each, compared to the case that subjects are all available at the

study onset. When patients arrive in three blocks, the BMW design are repeatedly

performed three times and each time with the number of replication M . Under the

scenario of no staggered entry, however, the BMW design is only applied once at the

study onset with the same M . As discussed in Chapter II, increasing the number

57



of replication M in BMW design can produce greater reduction in MSE. Further

investigations find that if we increase M in the scenarios with staggered entry, the

difference in MSE reduction among the three scenarios considered disappears.

3.3 The BMW design with a large M

In Chapter II, we introduced the two-arm BMW design with a prespecified pa-

rameter k and M . Clearly, the choices of parameter k and M have an important

impact on the MSE performance of the BMW design. Specifically, the value of k

represents a trade-off between bias reduction and precision loss, whereas, the value of

M controls the level of balance that the BMW design can attain. Through simulation

studies, we found that k = 2 and M = 10 or so (out of the candidates values of 5,

10 and 20) are usually suitable choices under most of the confounding scenarios con-

sidered. In Chapter II, we recommended a full matching with constraint k = 2 with

the number of replication of M = 10 for implementing the BMW design in practice.

However, further investigation revealed that, as M increases, the advantage of k = 1

(pair matching) becomes more apparent in optimizing the MSE of treatment effects

estimator as compared to other choices of k. For example, when M is as small as 5 or

10, k = 2 appears to be optimal with the confounding effect γ = 1.0 or 1.5; however,

as M increases to 20 or even 100, k = 1 becomes as effective as or even more effective

than k = 2 in terms of reducing the MSE (Table 3.4). These results suggest that in

practice, the BMW design with a large number of replications of M = 100 or more

would give some gains in efficiency and that pair matching would then be the optimal

choice.
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Table 3.4: Percent reductions in the MSE of treatment effect estimator for the
BMW design with M = 100 compared to a completely randomized design (CR)
and matched-pair design (MP ). Sample size N=30 subjects. Number of replica-
tions=1000.

MSE MSE Percent Reduction(%) MSE MSE Percent Reduction(%)
γ M ( CR ) (BMW vs. CR Design) ( MP ) (BMW vs. MP Design)

k = 1 k = 2 k = 3 k = 1 k = 2 k = 3

X1, X2, X3, X4
i.i.d∼ Bernoulli(0.5)

5 12.21 10.30 6.87 7.96 5.96 2.37
(0.5,0.5,0.5,0.5) 10 0.166 14.43 11.77 7.14 0.158 10.29 7.50 2.64

20 17.45 13.54 8.81 13.46 9.36 4.40
100 17.49 13.18 10.62 13.95 9.46 6.78

5 35.61 43.58 39.67 24.57 33.90 29.33
(1.0,1.0,1.0,1.0) 10 0.280 40.37 44.45 41.74 0.239 30.15 34.92 31.75

20 50.39 48.66 46.21 41.87 39.86 36.99
100 52.05 50.44 47.96 43.82 41.93 39.04

5 45.39 61.58 57.94 34.29 53.77 49.39
(1.5,1.5,1.5,1.5) 10 0.450 52.19 62.26 59.02 0.374 42.47 54.59 50.69

20 58.43 63.52 60.64 49.97 56.10 52.64
100 64.07 64.66 62.38 56.77 57.47 54.73
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CHAPTER IV

A Non-parametric maximum likelihood estimation

approach to frailty model

4.1 Introduction and motivating example

Survival data are sometimes clustered into groups. Observations sampled from

the same group often share certain unmeasured characteristics and as a result tend to

be correlated. Failure to adjust for this intra-class correlation may bias the covariate-

effect estimates or lead to inaccurate estimates of standard errors. In addition, the

lack of independence is not just a nuisance that must be taken into account in the

analysis, since quantifying the heterogeneity may itself be of interest. Medical exam-

ples of clustered survival data include studies of the time to occurrence of a genetic

disease among siblings, the onset of visual loss in left and right eyes, and the failure

times of individuals within center in a multi-center study. Such failure times are of-

ten subject to right censoring. The presence of censoring and intra-class dependence

poses serious challenges in the regression analysis of clustered failure time data. Note

that such data also arise in the context of cluster randomized trials.

There are two major modeling approaches for analysis of clustered or multivariate

failure time data: conditional models (Vaupel et al., 1979; Clayton, 1978; Clayton

and Cuzick, 1985; Cai et al., 2002) and marginal models (Zeng et al., 2008). The
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former provides a flexible way for directly modeling the relationship and dependence

structure between correlated failure times, whereas the latter focuses on covariate

effects on individual failure times and does not attempt to model the dependence

structure of related failure times. In this article, we develop a conditional approach

through a frailty model.

A Cox proportional hazards model in which a multiplicative frailty factor is in-

cluded to account for intra-cluster correlation has often been considered in the lit-

erature. In this context, there is a substantial literature dealing with the identifi-

cation and estimation of frailty models using both parametric and semiparametric

approaches. In such approaches, parametric models have often been used for the

frailty distribution or the baseline hazard, or both. For example, some authors have

worked with a parametric baseline hazard (e.g. piecewise constant) and nonparamet-

ric frailty distribution (Heckman and Singer, 1984a; Trussell and Richards, 1985; Guo,

1992) as well as many other parametric options such as gamma, Gaussian, log-normal

or stable law (McGilchrist and Aisbett, 1991; Ripatti and Palgrem, 2000; Breslow and

Clayton, 1993; Clayton, 1978; Vaupel et al., 1979; Nielsen et al., 1992). On the other

hand, Therneau et al. (2003) assumed a parametric model for the frailty distribution

while estimating the baseline hazard nonparametrically, and obtained a solution via

a penalized regression. It is obvious that the covariate-effect estimates and, thus, the

inferences one would draw, could be sensitive to the parametric form assumed for

the hazard and frailty. Furthermore, the parametric assumption on frailty certainly

induces a restrictive form of dependence.

Heckman and Singer (1984a) studied the sensitivity of parameter estimates to the

choice of distribution for the unobservable heterogeneity while assuming a piecewise

constant distribution for the baseline hazard, and recommended a nonparametric

approach for frailty distribution estimation. Further, Trussell and Richards (1985)

found that, even with a nonparametric representation of heterogeneity, results can still
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be sensitive to choice of a model for the baseline hazard. Without very refined theory

upon which to support hazard and mixing distribution specifications, the results

suggest that one should seek a strategy that is somewhat agnostic of Trussell and

Richards (1985) regarding both the hazard and the mixing frailty distribution. Nielsen

et al. (1992) also commented that “It has been shown in the regression context that

the model with arbitrary frailty distribution with finite mean is identifiable, so one

could in principle allow both the frailty distribution and the underlying hazard to

vary freely”. However, there is little literature dealing with the identification and

estimation of frailty models using a purely nonparametric approach. Heckman and

Singer (1984c) and Heckman and Singer (1984b) established the identifiability of the

hazard function and the mixing distribution pairs by introducing minimal moment

restrictions on the mixing distributions and allowing the hazards to be represented

by Box-Cox transformations. On one hand, such an approach provides a model

specification approach that makes fewer assumptions about the hazards than most

previous analysis. But on the other hand, constraints are imposed on the mixing

distributions, as opposed to simply allowing them to have arbitrary structure.

Our approach to these models is through nonparametric maximum likelihood. In

particular, we consider a frailty model with both the frailty distribution, G, and the

cumulative baseline hazard, Λ0, left nonparametric. We propose an approach based

on nonparametric maximum likelihood estimation. For implementation, a three-step

iterative algorithm is developed. First, assuming initial estimates for Λ0(·) and β, we

use a fast converging algorithm, such as the Intra-simplex Direction Method (ISDM)

of Lesperance and Kalbfleisch (1992), or the Constrained Newton Method with mul-

tiple support points inclusion (CNM) of Wang (2007) to estimate the frailty distribu-

tion G. Second, for frailty G and β as given, Λ0 is estimated using a variation of the

Breslow (1972) cumulative baseline hazard estimator. At the third step, the regres-

sion parameter, β, is estimated given the current estimate of the frailty distribution
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and baseline hazard. Different from the parametric or semiparametric approaches

proposed previously, our “purely” nonparametric approach relaxes any distributional

assumption on the baseline hazard and frailty distribution, allowing both of them to

vary freely. Therefore, it has potential advantages of flexibility and robustness.

The rest of the chapter is organized as follows. Section 4.2 describes the ba-

sic multiplicative frailty model and introduces nonparametric specifications of the

distribution of the unobserved random effect. Section 4.3.1 shows how the frailty

distribution can be estimated using ISDM or CNM. Section 4.3.2 deals with estimat-

ing the baseline hazard function by using a variation on Breslow’s hazard estimator.

Section 4.4 describes the three-step iterative algorithm and Section 4.5 introduces a

competing semiparametric method proposed by Therneau et al. (2003). In section

4.6, some simulation studies are also given to investigate the performance of our pro-

posed algorithm and to compare it with the Therneau et al. (2003) method in terms

of efficiency and robustness. Section 4.8 discusses some potential extension of future

work.

4.2 Model

Consider a survival study that involves N right-censored failure time data clus-

tered into M small groups. Let Tij denote the failure time of interest from subject

j in cluster i with the associated treatment assignment Zij, where i = 1, 2, ..., M ,

j = 1, 2, ..., ni. We also assume that subjects in the same cluster share common

treatment assignment, i.e. Zij = Zi, as the treatment assignment in the clustered

randomized trials where the cluster is the unit of randomization. We assume that

each cluster has a cluster-specific latent variable Ui, where U1, ..., UM are indepen-

dently and identically distributed from an underlying frailty distribution G, and that

given Ui, the survival times Tij, j = 1, 2, ..., ni, are identically and mutually indepen-

dently distributed. Also let Cij denote the censoring time and δij = I(Tij ≤ Cij).
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Given Ui = ui, the conditional hazard function λ(tij) satisfies the multiplicative frailty

model

λ(tij) = λ0(tij)uie
Ziβ (4.1)

where λ0(t), t > 0 denotes an arbitrary baseline hazard, and β represents the treat-

ment effect estimator. We impose the restriction Λ0(1) = 1 for identifiability. The

restriction of E(G) = 1 is a nice alternative.

The model 4.1 is often referred to as the proportional hazards frailty model and

has been extensively used for regression analysis of clustered right-censored failure

time data with parametric models for G and λ0(·). (Clayton and Cuzick, 1985; Lee

et al., 1992; Cai and Prentice, 1997; Hougaard, 2000). It is easy to see that if the

variance of the Ui reduces to zero, model 4.1 becomes the regular proportional hazards

model (Cox, 1972; Kalbfleisch and Prentice, 2002). In a cluster randomized trial, Zij

is reduced to Zi since the subjects in the same cluster share the common treatment

assignment. In this article, we assume that given Zi, the frailty follows a completely

unknown distribution G(·) and Tij is independent of Cij given (Ui, Zi). The marginal

likelihood function is proportional to

L(β; G(u), Λ0(t)) =
M∏
i=1

∫

u

ni∏
j=1

λ0(tij)
δijuδijeδijZiβe−uΛ0(tij)e

Ziβ

dG(u)

=
M∏
i=1

∫

u

fi(yi; β, Λ0, u) dG(u) (4.2)

where yi = (tij, δij) and fi(·) is being implicitly defined. In the next section, we

consider maximizing likelihood 4.2 with respect to β, G and Λ0.
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4.3 Methods

In this section, we introduce the methods used to derive the NPMLE of the frailty

distribution as well as the baseline hazard estimator.

4.3.1 Estimation of Frailty Distribution

We consider estimating the distribution of the unobserved random frailty effects

through nonparametric maximum likelihood. As has been shown (Heckman and

Singer, 1984a; Laird, 1978; Lindsay, 1983), the nonparametric approach leads to a

nonparametric maximum likelihood estimator (NPMLE), Ĝ, that is discrete with

mass π̂1, ..., π̂J on a fixed number J of support points, û1, ..., ûJ , respectively. The

support set can contain no more points than the number of distinct values in the

sample.

There are several methods in the literature for computing the nonparametric MLE

of a mixture distribution G, for example, the expectation-maximization (EM) algo-

rithm (Laird, 1978), the vertex direction method (VDM) (Fedorov, 1972), the vertex

exchange method (VEM) (Bohning, 1985), the semi-infinite programming method

(SIP) (Susko et al., 1998) and the quadratic method (Atwood, 1976). All these meth-

ods have the disadvantage of slow convergence.

The problem of convergence, however, can now be solved efficiently due to the

availability of two fast algorithms. Lesperance and Kalbfleisch (1992) modified the

VDM and proposed the Intra-simplex Direction Method (ISDM); Wang (2007) ex-

tended ISDM using Atwood’s method and developed the constrained Newton method

with multiple support points inclusion (CNM). Both methods dramatically improved

the efficiency and shared somewhat similar spirit: first, they are both based on the

directional derivative; second, they both consider all local maxima of the directional

derivative in each iteration step instead of just one as in the previous methods.
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4.3.1.1 The Geometry of Mixture Likelihoods

Lindsay (1983) provided a geometric interpretation of mixture likelihood which

enables a clear description of the algorithms such as ISDM and CNM used in com-

puting the NPMLE of a mixture distribution G, We summarize it in this section.

We will analyze the likelihood 4.2 but with β and Λ0(·) suppressed. We let

Li(G) =

∫

u

fi(yi; u)dG(u) (4.3)

and consider LG = (L1(G), ..., LM(G)) as a point in Rm. The log-likelihood 4.2 can

be written as

l(G) =
M∑
i=1

log {Li(G)} =
M∑
i=1

log





∫

u

fi(yi; u)dG(u)



 (4.4)

If G = δθ, where δθ places mass one on a specific θ ∈ Ω, then the likelihood vector

Lθ = (L1(δθ), ..., LM(δθ)) = (f1(yi; θ), ..., fM(yi; θ)) is also called the atomic likelihood

vector. Let Γ = {Lθ : θ ∈ Ω} represent the set of all possible atomic likelihood

vectors. Note that Γ traces out a trajectory in Rm. The convex hull of Γ, which is

the set of all convex combinations of Γ, is written as conv(Γ)={LG : G ∈ G, G has

finite support}. Any point in conv(Γ) corresponds to the likelihood attainable under

a mixture model for one or more distributions G ∈ G. Figure 4.1a provides a simple

example to illustrate the quantities introduced above.

The nonparametric maximization problem can be formulated as: find Ĝ such that

LĜ ∈ conv(Γ) maximizes the log-likelihood l(G) =
M∑
i=1

logLi(G). If Γ is compact,

then there exists an unique optimal vector L(Ĝ) on the boundary of conv(Γ). As

shown in Figure 4.1b, the likelihood contours L1 ∗ L2 = c, where the constant c =

e(−2), .., e(−5), indicates that the likelihood increases as it moves further from the

origin, the unique maximum point LĜ is attained on the boundary of conv(Γ). In
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Figure 4.1: The Geometry of Mixture Likelihoods. The heavy blue curve: Γ, the
2-dimensional solid figure: conv(Γ) and the red dashed curves: likelihood contours
(b) for two normal observations. Γ = [φ(1− θ), φ(4− θ) : θ ∈ R], where φ(·) is the
standard normal probability density function. The log-likelihood function log(L1) +
log(L2), where (L1, L2) ∈ R2. In (a): For any point LG(L1, L2) ∈ conv(Γ), then
L1 =

∫
u
φ(1 − u)dG(u) and L2 =

∫
u
φ(4 − u)dG(u) for some distribution G and LG

can be attained by the convex combination of atomic points Lθ1 and Lθ2 , or Lθ3 and
Lθ4 , etc.
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this example, the corresponding mixing distribution Ĝ can be written as an unique

convex combination of two support points Lθ̂1 and Lθ̂2 with equal masses. Typically,

the optimal mixing distribution would be unique although in some cases, it could

be multiple maxims. Caratheodorey’s theorem guarantees that the optimal mixture

distribution Ĝ associated with L(Ĝ) has M or fewer support points (Lindsay, 1983).

Directional derivative can be used to characterize the optimal vector LĜ ∈ conv(Γ)

and the corresponding NPMLE of the mixing distribution Ĝ. Consider two mixture

distributions, G1(u) and G2(u), u ∈ Ω. The directional derivative of the likelihood

from the point LG1 towards LG2 is defined as

D(LG2 ; LG1) = lim
ε↓0

l{(1− ε)G1 + εG2} − l(G1)

ε

=
M∑
i=1

[
Li(G1)

Li(G2)
− 1] (4.5)

If G2 = δθ, then we write g(θ; LG1) = D(LG2 ; LG1) and refer to g(θ; G1) as the gradient

function from LG1 to the points Lθ on Γ. (Figure 4.2).

The famous General Equivalence Theorem in Lindsay (1983) guarantees that the

NPMLE Ĝ can be characterized by the gradient function:

Theorem 1.

• A. The measure Ĝ that maximizes l(G) can be equivalently characterized by

three conditions: (1) Ĝ maximizes l(G); (2) Ĝ minimizes supθ∈Ω g(θ, G); (3)

supθ∈Ω g(θ, Ĝ) = 0.

• B. The support of Ĝ is contained in the set of θ for which g(θ, Ĝ) = 0.

Furthermore, the following result also holds and provides an ideal stopping criterion.

sup
θ
{g(θ; G)} ≥ l(Ĝ)− l(G) (4.6)
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Figure 4.2: Directional Derivative of the example in Figure 4.1.

4.3.1.2 Intra-simplex Direction Method (ISDM)

The ISDM method expanded the support points set by adding all new local

maxima of the gradient function with non-negative directional derivative and re-

distributing the mass among them. One beneficial feature of ISDM is that it does

not require that one keeps track of the accumulated support points set, but only the

current likelihood point LG = (L1(G), ..., LM(G)). The MLE Ĝ is found at the final

iteration.

Algorithm ISDM: Set s=0. From an initial estimate G0, obtain L0 = (L1(G0), ..., LM(G0))

where we assume li(G0) > −∞, i = 1, 2, ..., M .

• Step 1: Expand the support points sets:

Denote by Ls = (L1(Gs), ..., LM(Gs)) the current point in conv(Γ). Compute

all local maxima θ∗s1, ..., θ∗sps
of g(θ; Ls) ≥ 0, θ ∈ Ω. If maxj{g(θ∗sj; Ls)} = 0,

stop.
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• Step 2: Find the optimal weights to determine the new likelihood points

Compute ε∗s0, ..., ε∗sps
, to maximize the log-likelihood

K(ε0, ε1, ..., εps) =
M∑
i=1

log{ε0Lsi +

ps∑
j=1

εjLi(θ
∗
sj)} (4.7)

subject to
ps∑

j=0

εsj = 1 and εsj ≥ 0 where Li(θ) = fi(yi; θ) = Li(δθ).

• Step 3: Obtain the new point: Set Ls+1 = ε∗s0Ls +
ps∑

j=1

ε∗sjL(θ∗sj). Set s = s + 1

and go to Step 1.

After the final step, we obtain L̂ = (L̂1, ..., L̂M), the likelihood point corresponding

to the NPMLE Ĝ. If Ĝ is also of interest, then we can find the support points, û, of

Ĝ as the local maxima obtained at the final iteration, and the appropriate weights π̂

by an extra run of Step 2 with ε0 = 0.

The key innovation of the ISDM method is that the choice of direction at each

iteration is determined by maximizing the likelihood within a probability simplex,

which is chosen to approximate the important part of the convex hull of Γ. It is

this innovation that contributes a substantial improvement in efficiency over previous

methods. ISDM is guaranteed to converge monotonically to the NPMLE Ĝ if Γ is

compact (Theorem 2 in Lesperance and Kalbfleisch (1992)).

4.3.1.3 CNM

The CNM method parallels with ISDM, except in the following ways: First, it

requires that one keep track of the set of support points, instead of only the likelihood

point, L, at each iteration step. Second, the set of support points is expanded by

adding all the local maxima of the gradient function rather than only those with non-

negative direction derivative, and on the other hand, contracted by discarding those

“bad” points with zero weights after the weights are updated. Third, at each stage,
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the optimal weights are obtained by solving a quadratic programming subproblem

via a linear regression formulation.

Suppose that G has mass points at u = (u1, ..., uJ) with masses π = (π1, ..., πJ)

so that

G(u) =
J∑

j=1

πjI(u ≥ uj) =
J∑

j=1

πjδuj
(4.8)

Then, again with Λ0(·) and β suppressed, the log-likelihood becomes

l(π,u) =
M∑
i=1

li(π,u) =
M∑
i=1

log

{
J∑

j=1

πjfi(yi; uj)

}
(4.9)

Given the support points, u, the updating of π utilizes a second-order Taylor series

expansion of the log-likelihood function in the neighborhood of π. Denote

si(π,u) =
∂li(π,u)

∂π
=




fi(yi; u1)
J∑

j=1

πjfi(yi; uj)

, ...,
fi(yi; uJ)

J∑
j=1

πjfi(yi; uj)


 (4.10)

where i = 1, ..., M and define the J×M matrix S = S(π,u) = (s1(π,u)T , ..., sM(π,u)T ).

The gradient and Hessian function l = l(π,u) are

∇l = S1T (4.11)

∇2l = −SST (4.12)

where 1 = (1, ..., 1). It follows that l(π,u) − l(π′,u) can be approximated by the

second order Taylor Series expansion:

l(π,u)− l(π′,u) ∼= −1ST (π′ − π)T +
1

2
(π′ − π)SST (π′ − π)T (4.13)
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Q(π′|π,u) ≡ −1ST (π′ − π)T +
1

2
(π′ − π)SST (π′ − π)T

=
1

2
||ST (π′ − π)T − 1T ||2 − J

2

=
1

2
||ST π′T − 2T ||2 − J

2
(4.14)

where 2 = (2, ..., 2) and || · || refers to the L2-norm. With known support points u,

π′ can then be obtained by solving the least square linear regression problem:

Minimize ||ST π′T − 2T ||2 (4.15)

s.t. π′T1 = 1 , π′ ≥ 0.

Algorithm CNM: Set s=0. From an initial estimate G0 with finite support and

l(G0) > −∞, repeat the following steps.

• Step 1: Denote by Gs =
J∑

j=1

πsjδθsj
the current mixing distribution, where

J∑
j=1

πsj = 1 and θsj ∈ Ω, where j = 1, ..., J . Compute all local maxima θ∗s1, ...,

θ∗sps
of g(θ; Gs), θ ∈ Ω. If maxj{g(θ∗sj; Gs)} = 0, stop.

• Step 2: Set θ+
s = (θT

s , θ∗s1, ..., θ
∗
sps

) and π+
s = (πT

s , 0, ..., 0). Find π−s+1, the con-

strained solution of minimizing Q(π′|π+
s , θ+

s ) (4.15). Define G−
s+1 that consists

of π−s+1 and θ+
s .

• Step 3: Use step-halving or optimization to find εs ∈ [0, 1], respectively, to

increase or maximize l(Gs + ε(G−
s+1 −Gs)).

• Step 4: Set Gs+1 = Gs + εs(G
−
s+1 −Gs) to update π−s+1.

• Step 5: Discard all support points with zero entries in π−s+1, which gives θs+1

and πs+1 of Gs+1. Set s=s+1 and go to Step 1.

Theorem 1 in Wang (2007) provides the convergence proof which guarantees the

CNM method to converge to a nonparametric MLE.
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4.3.2 Estimation of baseline hazard function

We now turn our attention to the estimation of λ(t) in (4.2) when β and G(·)
are known. Since Ĝ is a step function, we consider a discrete G as in (4.8). For

nonparametric estimation of the baseline hazard λ(t), we developed a variant of the

Breslow (1972) cumulative baseline hazard estimator. Breslow (1972) proposed a

non-parametric estimator for the cumulative baseline hazard function in univariate

survival analysis, by treating the λ0(t) as piecewise constant between distinct uncen-

sored failure times. Following his idea, we proposed our estimator of Λ0(t) for the

multivariate case. For a sample which contains M clusters, we rank all the failure

times to N distinct times, t(1), ..., t(N), where 0 ≡ t(0) < t(1) < ... < t(N) and the cor-

responding multiplicities are ∆0 ≡ 0, ∆1, ..., ∆N , then assume a constant hazard λl

between failure time t(l−1) and t(l), where l = 1, ..., N . Note that ∆1 = ... = ∆N = 1

corresponds to the case of no ties. The likelihood in model (4.2) therefore becomes

L(β; G(u), λ0(t)) =
M∏
i=1

[

ni∏
j=1

λ0(tij)
δij(eZiβ)δij ][

J∑
j=1

πju
di
j e

−ujeZiβ
ni∑

j=1
Λ0(tij)

]

=
M∏
i=1

[(
N∏

l=1

λl
∆li)(eZiβ)di ][

J∑
j=1

πju
di
j Aij]

= (
N∏

l=1

λ∆l
l )

M∏
i=1

ediZiβ[
J∑

j=1

πju
di
j Aij] (4.16)

where

Aij = e
−ujeZiβ{

N∑
l=1

mliλl}

and ∆li =
ni∑

j=1

δijI(tij = t(l)), which is the number of failures which occurred at failure

time t(l) from cluster i; di represents the total number of failures in cluster i; and

mli =
ni∑

j=1

(min{tij, t(l)} − t(l−1))I(tij ≥ t(l−1)), i.e., the sum of at risk (censoring or

failure) times of the subjects from cluster i in the interval (t(l−1), t(l)). The likelihood

L(β, G(·),λ0(·)) thus becomes the function of β, u,π and λ = (λ1, ..., λN).
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Suppose the estimates of G and β are known, the cumulative baseline hazard can

be estimated by maximizing the log-likelihood function (4.16) directly subject to the

constraint Λ0(1) = 1 which is specified for identifiability. This is equivalent to solving

the constrained optimization problem

Maximize
N∑

l=1

ln λ∆l
l +

M∑
i=1

[diZiβ + ln(
J∑

j=1

πju
di
j Aij)] (4.17)

s.t.
L1∑
l=1

λl(t(l) − t(l−1)) + λL1+1(1− t(L1)) = 1

where L1 = max{l : t(l) ≤ 1}.
There are many algorithms for solving the optimization problem subject to con-

straints. Our implementation uses a combination of Lagrange Multiplier method and

a fixed point algorithm. Given the estimate of G and β, our numerical approach to

solve (4.17) for λ converges quickly and can be summarized as below.

Algorithm LM-FP: Set s = 0. Choose an initial estimate λ
(0)
l , where l = 1, ..., N ,

repeat the following steps.

• Step 1. Update λ
(s+1)
l based on the formulas

λ
(s+1)
l =

∆l

hl(λ
(s))− γ(t(l) − t(l−1))

, l = 1, ..., L1 (4.18)

λ
(s+1)
l =

∆l

hl(λ
(s))− γ(1− t(l))

, l = L1 + 1 (4.19)

λ
(s+1)
l =

∆l

hl(λ
(s))

, l = L1 + 2, ..., N (4.20)

where

hl(λ) =
M∑
i=1

J∑
j=1

πju
di+1
j mlie

ZiβAij

J∑
j=1

πju
di
j Aij
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and γ can be obtained by solving

L1∑

l=1

∆l(t(l) − t(l−1))

hl(λ)− γ(t(l) − t(l−1))
+

∆L1+1(1− t(L1))

h(L1+1)(λ)− γ(1− t(L1))
= 1

where γ < min{ hl(λ)
(t(l)−t(l−1))

,
hL1+1(λ)

(1−t(L1))
, l = 1, ..., L1 + 1}.

• Step 2. If
N∑

l=1

| λ(s+1)
l −λ

(s)
l |≤ ε for prespecified ε, then stop; otherwise, go back

to Step 1.

4.4 Algorithm

To maximize the likelihood function with respect to β, G(u, π) and λ, we represent

a three-step iterative algorithm below that iterates between the estimation of frailty

distribution G, baseline hazard λ and the estimation of β while, at each step, fixing

others.

In general, the three-step algorithm can be summarized as follows:

• Step 0. Set k = 0. Choose initial estimates of G, λ and β as G(0), λ(0) and

β(0), respectively. Typically, we can set G(0) = δ1, λ(0) = (1, ..., 1)T such that

Λ(0)(1) = 1, and β(0) = 0. Repeat the following steps.

• Step 1. Update G(k+1) by using Algorithm ISDM or Algorithm CNM, based on

the estimates of λ(k), β(k) and G(k).

• Step 2. Update λ(k+1) from Algorithm LM-FP, given the current estimates of

λ(k), β(k) and G(k+1) .

• Step 3. Update β(k+1) by optimizing the logarithm of likelihood function 4.16

directly, conditional on the updated estimates λ(k+1) and G(k+1). Repeat Step

1 to Step 3 until the estimates of β converges, i.e. |β(k+1) − β(k)| ≤ ε for

prespecified ε.
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The estimate of β obtained at the final step is the NPMLE of β, β̂n. In the

algorithm above, the updating of parameter β involves maximization of a non-linear

function. We adopted function optim() in R in our implementation.

It is worthy noting that the computation of local maximum of the gradient function

in Algorithm ISDM or Algorithm CNM is based on a combined Newton and

bisection method. Newton’s method requires that the derivative of the function be

calculated directly. If the initial value is outside the region of convergence, Newton’s

method may fail to converge. For this reason, we used a combined Newton and

bisection method to avoid the scenario when an iterate is generated that lies outside

the interval.

Algorithm Newton-Bisection: Set s=0. Consider the function g′(θ; Gs) =

∂g(θ; Gs)/∂θ, and set an initial interval a(0) = a and b(0) = b with g′(a; Gs) ≥ 0 and

g′(b; Gs) ≤ 0. Let the initial estimate θ(0) = (a + b)/2, repeat the following steps.

• Step 1. If g′(a(s); Gs) × g′(θ(s); Gs) > 0 then set a(s+1) = θ(s); otherwise, if

g′(b(s); Gs)× g′(θ(s); Gs) > 0 then set b(s+1) = θ(s).

• Step 2. Let θ
(s+1)
∗ = θ(s)− g′(θ(s); Gs)/g

′′(θ(s); Gs); if θ
(s+1)
∗ ∈ [a(s+1), b(s+1)] then

let θ(s+1) = θ
(s+1)
∗ ; otherwise, let θ(s+1) = (a(s+1) + b(s+1))/2.

• Step 3. Repeat Step 1 and Step 2 until the estimates of θ converges, i.e.

|θ(s+1) − θ(s)| ≤ 1× e−6.

According to our experience, the three-step algorithm we proposed above generally

converges to the global maximum NPMLE. However, this is not guaranteed and the

proof of the convergence does not seem to be easy. In fact, the mixing distribution Ĝ

found by using ISDM or CNM methods at Step 1 is proved to be the global maximum

NPMLE given λ and β. However, finding the baseline hazard λ and β in Step 2 and 3

by maximizing the log-likelihood function may not be convex optimization problems.

It should be noted, however, that even if all these algorithms were convex optimization
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problems, the combination of the three algorithms is not guaranteed to be a convex

optimization problem, nor can we assure that this algorithm would be guaranteed to

converge to the overall MLE. In practice, we suggest that users try different starting

points to check for convergence to the same estimates.

One can obtain the confidence interval for β by approximating the likelihood ratio

distribution with the χ2 distribution with one degree of freedom. Cox and Hinkley

(1979), for instance, consider interval estimation such as likelihood ratio based confi-

dence interval for single and multiple parameters, and the case of a single parameter

of interest with several nuisance parameters in the parametric model. Murphy et al.

(1997), Murphy and van der Vaart (2000) and Van der Vaart (1996) show that re-

sults associated with the profile likelihood can be extended to certain semiparametric

problems. These problems would include inferences in semiparametric models where

only G or only Λ0 was nonparametric. Our situation is an extension of this. So

we state a hypothesized result that we expect to hold in the doubly nonparametric

model. Specifically, define the profile loglikelihood function of β as

pl(β) = l(β, (Λ̂0,β, Ĝβ)) (4.21)

and treat both Λ0 and G as the nuisance parameters. Consider the hypothesis H0 :

β = β0. The likelihood ratio criterion to test H0 is then

λ(β0) = L(β0, (Λ̂0,β0 , Ĝβ0))/L(β̂, (Λ̂0,β̂, Ĝβ̂)) (4.22)

If the semiparametric results carry over to this case, we would expect that −2logλ(β0)

has an asymptotic χ2 distribution with one degree of freedom. Hence, the P-value

is obtained as Pr{χ2
(1) ≥ −2logλ(β0)}. The 100(1 − α)% confidence set for β̂ can

be obtained by inverting this test. In this case, we obtain {β : −2logλ(β) ≤ χ2
(1),α}.

This yields an interval and the upper and lower confidence bounds for β̂ can be given
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by points βL and βU on the profile likelihood curve for β for which −2logλ(βL) =

−2logλ(βU) = χ2
(1),α.

In practice, there exist a number of numerical techniques which allow βL and βU

to be determined in a simple one-dimensional search (Gill et al., 1981; Richard, 1988).

In our case, we adopt a bisection method to search for the upper and lower confidence

limits of the ML estimate of β.

4.5 Comparison

Therneau et al. (2003) considered a semiparametric approach and obtained the

solution via penalized models. In their approach, they assumed a parametric dis-

tribution (e.g. Gamma, Gaussian) with unit mean and unknown variance θ for the

frailty parameter. For any fixed θ, the frailty term is treated as an additional re-

gression coefficient in the usual Cox partial log-likelihood function, but the values of

the frailty was restricted by a penalty function that depends on θ. Typically, θ was

chosen to control the amount of restrictions that ”shrink” the frailty towards zero.

Consider an alternative version of the hazard (4.1),

λ(tij) = λ0(tij)uie
Ziβ = λ0(tij)e

Ziβ+wi (4.23)

where wi = exp(ui). The estimation is done by maximizing a penalized log partial

likelihood function

PPL(β,w, θ) = PL(β, w)− g(w; θ) (4.24)

where PL(β, w) is the usual log partial likelihood

PL(β,w) =
M∑
i=1

∞∫

0

[Yi(t)(Ziβ + wi)− log{
∑

k

Yk(t)e
Zkβ+wk}]dNi(t) (4.25)

and g is the penalty function. For gramma frailties, Therneau et al. (2003) showed
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that, with penalty function g(w; θ) = −1/θ
M∑
i=1

[wi − exp(wi)], the solution to the

penalized partial likelihood model coincides with the solution obtained from the EM

algorithm for any fixed value of θ. For Gaussian frailties with variance θ, the penalty

function was suggested as g(w; θ) = −
M∑
i=1

w2
i /(2θ).

Therneau et al. (2003) provided a fitting algorithm based on an inner and outer

loop. For any fixed θ, the Newton-Raphson algorithm was used to fit the penalized

likelihood by solving the score function ∂PPL/∂β = 0 and ∂PPL/∂w = 0. The

outer loop evaluated θ by maximizing the profile likelihood of β. The baseline hazard

was identified by using the Breslow estimator after β, θ and w were estimated. In the

next section, we compare our proposed approach with this semiparametric method in

terms of efficiency and robustness.

4.6 Simulation Study

Simulations were conducted to evaluate the properties of our proposed nonpara-

metric method in finite samples and to evaluate the asymptotic approximation. In

addition, we compare our approach with the semiparametric method of Therneau

et al. (2003) with the focus on estimation of β. One single binary covariate, Z, was

generated taking values 1 or 0 with probability 0.5. Subjects in the same cluster were

assumed to receive a common treatment assignment. The censoring time was taken to

follow a continuous uniform distribution on [0,5] or [4,9]. Given the frailty U and the

covariate Z, a subject’s event time was generated from an exponential distribution

with rate UeZβ. Thus Λ0(t) = t.

Simulation settings varied with respect to number of clusters (M = 30, 60, 120),

cluster size (n = 3, 15), magnitude of the treatment effects (β0 = 0, 0.7, 1.0) and the

frailty distribution. We examined two different models for the true underlying frailty

distributions. First, U followed a gamma distribution with unit mean and variance
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0.11, so that the frailty distribution was correctly specified in the semiparametric

model. Second, U followed a beta distribution Beta(0.5, 0.5) with mean 0.5 and

variance 0.125; this distribution for the frailty corresponded to a substantial misspec-

ification in the semiparametric model where the frailty was taken to be Gaussian. For

each setting, we compared the performances of our proposed nonparametric method

and semi-parametric approach by Therneau et al. (2003) with respect to bias, mean

squared error (MSE) and empirical coverage of 95% confidence intervals. When we

applied the semiparametric method, we chose the ”corrected AIC” method to select

a solution for θ, the variance of the frailty distribution as suggested by Verweij and

Van Houwelingen (1994) and Hurvich et al. (1998).

4.6.1 Frailty distribution correctly specified in the semiparametric method

Table 4.1 presents the results from the nonparametric and semiparametric ap-

proach when the frailty follows a Gamma(9, 9) distribution with mean 1 and vari-

ance θ = 1/9. In this setting, the frailty distribution is correctly specified in the

semiparametric method. The goal is to examine the relative efficiency loss of the

nonparametric approach when the parametric assumption holds in the semiparamet-

ric model. The simulation study is based on 1000 simulated samples. It can be seen

that the nonparametric approach generally performs well compared with the semi-

parametric method. There is virtually no evidence of bias in the estimation of β

from the nonparametric approach in any of the cases considered. However, the esti-

mation of β from the semiparametric approach seems to have some bias towards the

null. As expected, the empirical standard errors for the estimates from the nonpara-

metric approach are relatively larger than those from the semiparametric method,

which leads to a slight efficiency loss, ranging from 10% to 29%. However, the loss

in efficiency decreases as the number of clusters increases, suggesting that the non-

parametric approach becomes as efficient as the semiparametric methods when the
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number of clusters is large. The converge probabilities are close to the nominal level

from both approaches. It is worthy noting that increasing the number of clusters or

cluster size generally reduces the mean squared error of treatment effect estimates,

but the coverage performance of the nonparametric approach seems to depend more

on the number of clusters rather than cluster size, while the semiparametric method

seems to perform better given larger cluster size. For example, the nonparametric

method seems to perform equally well with respect to the coverage probability in a

sample of 360 subjects with M = 120 and n = 3 and one of 900 subjects with M = 60

and n = 15.

4.6.2 Frailty distribution misspecified in the semiparametric method

Table 4.2 summarizes the results from the nonparametric and semiparametric ap-

proaches, respectively, when U follows a Beta(0.5, 0.5) distribution. In this setting,

the frailty distribution is misspecified as Gaussian in the semiparametric model. We

aim to access the robustness performance of the two methods when the parametric

assumption for U is violated. There is substantial bias in the estimation of β in the

semiparametric approach towards the null, and the bias grows larger as |β| increases.

In contrast, the nonparametric approach remains approximately unbiased for all the

cases considered. It can be seen that the nonparametric estimate is generally more

efficient as compared to the semiparametric estimate for β 6= 0 and the efficiency

gain becomes more apparent as β grows from zero and sample size increases. For

example, when β = 1.0 and M = 120, the semiparametric estimate is only 67.8%

efficient relative to the nonparametric estimate. There is an interesting contrast be-

tween the two methods in terms of coverage probability. If the sample size is small

(M = 30, n = 3), both approaches cover the true parameter almost equally well (95%

C.I. ≈ 89%). However, as the number of clusters increases, the nonparametric ap-

proach demonstrates a substantial improvement in the coverage probability, whereas
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the performance of the semiparametric method deteriorates given β 6= 0. These re-

sults suggest that the nonparametric framework would need relative large number of

clusters to capture the shape of the frailty distribution. As we expect, the proposed

nonparametric approach appears to be more robust than the semiparametric method

under the misspecification of the frailty distribution.

4.7 Application

In this section, we consider the use of the proposed nonparametric model to the

INSTINCT study. As introduced in Chapter II, the INSTINCT study is a cluster

randomized trial, designed to investigate the effectiveness of an educational interven-

tion administered to 24 Michigan hospitals in enhancing tPA therapy use in stroke

patients. Previous analysis revealed that there was a marginally significant difference

between the intervention and control sites with respect to the proportion of stroke

patients that were treated with tPA therapy. This was the primary purpose of the

INSTINCT study. Stroke is a time sensitive disease and the acute stroke treatment

should be accomplished as quickly as possible. The current target for initiation of

tPA treatment is within 60 minutes of hospital arrival. One secondary hypothesis of

the INSTINCT trial was that the educational intervention would improve door to

treatment times (DTT). In this section, we fit the proposed nonparametric model to

evaluate this secondary hypothesis. The semiparametric model proposed by Therneau

et al. (2003) was also applied for comparison.

A total of 557 stroke patients who received tPA treatment during the INSTINCT

trial were included in this analysis; 54% were treated in the 12 treatment hospitals.

No observation was censored or dropped out the study. The outcome of interest was

door to treatment time in hours. DTT per patient ranged from 0.13 hours to 13.42

hours with an median of 1.33 hours. The covariate considered was the education

intervention operated on the hospital level. Patients were clustered in hospitals and
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the intra-cluster correlation were taken into account by the frailty term.

In the application of the nonparametric approach, we tried a number of initial

values for G(0) = δ1, δ0.5 or δ1.5, which are the points on the Γ curve, and obtained an

initial estimates of the cumulative baseline hazard Λ∗(0) by fitting the Cox propor-

tional hazard model and ignoring the correlation. We then let Λ(0) = Λ∗(0)/Λ∗(1).

Thus, Λ(0) satisfied the constraint Λ(0)(1) = 1. An alternative choice for Λ(0) was the

observed distinct time to treatment. We also tried several different starting values for

β(0) = −0.5, −0.1, −0.05, 0, 0.1, 0.5, respectively, for the nonparametric approach and

plotted the profile likelihood (Figure 4.3). With the starting values β(0) at −0.05, 0,

0.1 and 0.5 and any of the starting points considered for G(0) or Λ(0), the nonparamet-

ric algorithm converged to the global maximum β̂=0.04 as shown in Figure (4.3)(a).

However, if we started at β(0) = −0.5, −0.1 and various initial values for G(0) or Λ(0),

this algorithm led to a local maximum of −0.08. We obtained 95% confidence set for

β̂ by inverting the likelihood ratio test. As shown in Figure 4.3(b), the upper and

lower confidence bounds for β̂ can be given by points βL = −0.41 and βU = 0.29 on

the profile likelihood curve for β for which −2logλ(βL) = −2logλ(βU) = 3.84. Ac-

cording to this result, the hazard ratio between the predicted hazard rate for a patient

who was treated in the intervention hospital and that for one admitted in the control

hospital was e0.04 = 1.04, although the effects of intervention was not significant.

In contrast, the semiparametric model with a specified Gamma frailty of Therneau

et al. (2003) gave an estimate of β at -0.08 with a 95% confidence interval of (-2.22,

2.05). This result indicated that the semiparametric approach converged to the local

maximum and the interval estimation based on the curvature of the local maximum

led to a fairly wide estimate of the confidence set. Trying different starting values may

solve this problem. However, the frailty routine in R that implements the Therneau

et al. (2003) approach sets the default starting value and does not allow users to

change the default. We also carried out a naive analysis by fitting a Cox proportional
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Figure 4.3: The Profile Likelihoods.

hazard model which ignores the correlation, and obtained β̂ = −0.234 with a P-value

as 0.006. Without taking into account the intra-cluster correlation, the naive analysis

appears to lead to incorrect parameter estimates and inference.

4.8 Discussion and Future Work

In this section, we have considered a Cox frailty model for clustered survival data

with both the frailty distribution, G, and cumulative baseline hazard, Λ0, left non-

parametric. We propose an approach based on nonparametric maximum likelihood

estimation. The key improvement of our proposed method is that the distributional

assumptions on both frailty and baseline hazard are completely dropped. Therefore,

our approach should be robust and applicable to whatever distribution holds for the

frailty or baseline hazard. This is the main advantage of the analysis compared to
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other approaches, in which, parametric models are used for the frailty distribution or

the baseline hazard or both.

The relaxation of the parametric assumptions may result in efficiency loss com-

pared to other parametric or semiparametric approaches when the corresponding

assumptions hold. Simulation studies suggest that, at least under the situations

considered, the relative efficiency loss of our proposed approach is relatively small

when compared to the popular semiparametric approach proposed by Therneau et al.

(2003). As the number of clusters increases (e.g. M = 120 and n = 3), the nonpara-

metric approach becomes almost as efficient as the semiparametric method (Efficiency

Loss = 9.6%). On the other hand, simulation studies also confirm the robustness ad-

vantage of the nonparametric approach. When the frailty distribution is misspecified

in the semiparametric model, the nonparametric approach appears to be more effi-

cient and avoid bias as compared to the semiparametric approach for the estimation

of β when β is not near zero. In addition, the nonparametric approach, with a moder-

ate number of clusters (e.g. M = 60, 120), demonstrates higher coverage probability

compared to the semiparametric approach. The gain in efficiency and coverage proba-

bility becomes more apparent as the treatment effect grows from zero and the sample

size increases.

Another virtue of the proposed method is its computational efficiency. The step

of finding the NPMLE LĜ plays an important role in the three-step algorithm. There

are several existing methods in the literature which also involve the computation

of a frailty distribution nonparametrically by using the EM algorithm, the vertex

direction method, etc. As is often the case, however, those algorithms are slow to

converge and the corresponding methods are much more computationally expensive

than our proposed method based on ISDM or CNM for the estimation of NPMLE

LĜ. Although both ISDM and CNM methods are very efficient, there are still areas

to further improve the computational efficiency. One advantage of ISDM is that
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it does not require that one keeps track of the accumulated set of support points,

but only the current likelihood point LG = (L1(G), ..., LM(G)). CNM includes a nice

approach to update the weights of support points accurately at each step but requires

that one keeps track of the set of support points at each iteration. Therefore, a new

algorithm based on ISDM and CNM method, which avoids the book keeping of the

set of support points in each step but adopts a variation to the approach in CNM for

updating the weights, will be proposed in the future work.

We have assumed nonparametric forms of the frailty U and cumulative baseline

hazard Λ0. The asymptotic properties are therefore difficult to verify fully. Murphy

and van der Vaart (2000) provide the asymptotic properties of the semiparametric

profile likelihood for a shared gamma frailty model, and their results are conjectured

to extend to our more general approach. The simulation studies in the previous

section suggest that they do. We can also consider the particular semiparametric

model by assuming a piecewise constant distribution for the baseline hazard and

leaving the frailty distribution, G, completely unspecified. Murphy and van der Vaart

(2000) results would apply to this case. By increasing the number of components

in the piecewise constant formulation, we can approach to the fully nonparametric

model, and again these considerations suggest that the asymptotic results should

extend to the nonparametric case. A detailed proof of the asymptotic results in the

nonparametric case is a matter for future work. Simulation studies indicate, however,

the proposed estimators are empirically unbiased with coverage probability close to

the nominal level and should be valid in many practical settings as expected.

The proposed method assumes common treatment assignment within cluster and

can be applied to data with this characteristic. This approach can be extended to

handle data where the covariates as treatments vary among subjects within cluster.

As suggested by Neuhaus and Kalbfleisch (1998), when the between- and within-

cluster covariate effects are different, models that assume that these effects are the
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same would be misleading.

Finally, for identifiability, we place a constraint on the baseline hazard such that

Λ0(1) = 1. There is an alternative option which is to restrict the mean of frailty

distribution by requiring E(G) = 1. The latter restriction would require the use of

a constrained ISDM algorithm as developed by Susko (1996) in finding NPMLE of

LĜ. The proposed algorithm can be modified to accommodate the constraint on the

frailty distribution.
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CHAPTER V

Conclusions and Future Work

5.1 Conclusions

In this dissertation we have studied the design and analysis of cluster randomized

trials (CRTs). Regarding design, we proposed a new randomization procedure, with

the general aim of reducing the mean squared error of the treatment effect estimator.

The key innovation of this design is that it reduces the chance imbalance in observed

covariates remained after randomization by matching on the estimated propensity

score and choosing the best of several randomizations. Regarding analysis, we studied

the nonparametric regression for correlated failure time data as often arise in a CRT.

We extended the Cox proportional hazards model with a frailty term to allow for

flexible structure for both frailty and hazard and developed an approach based on

the nonparametric maximum likelihood estimation. Therefore, the main advantage

of this approach is its robustness to the misspecification of distributional assumption

on either the frailty or baseline hazard or both.

In Chapter II, we proposed the BMW design which, in essence, applied the op-

timal full matching with constraints technique to randomization in order to achieve

overall balance between treatment groups and control the variance of the treatment

comparison, and so yield good MSE properties. In such studies, there are typically

rather few participating units and often several variables that describe the properties
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of these units. It is then important to attempt to balance across these factors and

one approach to this is through the use of matched pairs or other blocks defined

by a subset of the covariates. The BMW design involved considering several (M)

randomizations of the participating units into the two treatment groups. With each

randomization, the technique of optimal full matching with constraint k was used

in order to identify the best blocking for that randomization. The distance measure

for the matching was based on estimated propensity scores, as has been proposed

in observational studies. We then chose the randomization and corresponding full

matching that led to the smallest total distance. The parameters M and k were ex-

amined and recommendations made. A simulation study showed that, under various

confounding scenarios, the BMW design had good properties and can yield substan-

tial reductions in the MSE of the estimates of the treatment effect as compared to

various designs and analysis methods that have been proposed in the literature. The

design was also seen to be robust against heterogeneous error. We illustrated these

methods in proposing a design for the INSTINCT trial.

In Chapter III, we extended the BMW design to clinical trials with more than

two arms or with staggered entry. First, We investigated the use of the three tripar-

tite matching algorithms, incomplete block with disjoint pairs (Bo and Rosenbaum,

2004), two-way and three-way tripartite matching with triples, in the generalization

of the BMW design to clinical trials with three arms and used a simulation study

to compare the performance of the design under various confounding scenarios. The

numerical analysis suggested that in general, the three-arms BMW designs led to

important gains in efficiency by reducing the MSE in all three treatment effect esti-

mators simultaneously, especially for the design based on the two-way and three-way

tripartite matching methods we proposed. It is worthy noting that, the BMW design

based on the incomplete block with disjoint pairs had the drawback of efficiency loss

especially when the confounding effects were not too strong (e.g. γ = 0.5 or 1.0).
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The addition of random blocks to the data led to a loss of efficiency which became

even more apparent in small studies. On the other hand, our proposed tripartite

matching algorithms with triples minimized the efficiency loss, hence, appeared to

be substantially more effective in reducing the MSE. In an effort of extending the

BMW design to accommodate the staggered entry, we found that the generalized

design was effective in reducing MSE of the treatment effect estimator compared to

the completely randomized design and permuted block design within strata through

simulation studies.

Once data are collected, then there is a problem of analysis. One most notable

characteristic of the data raised from CRTs is the dependencies among cluster mem-

bers. Chapter IV considers the nonparametric regression analysis of correlated failure

time data based on a Cox model with a frailty term. As discussed in the literature,

Heckman and Singer (1984a) found that the parameter estimates are sensitive to

the choice of distribution for the unobservable heterogeneity while assuming a piece-

wise constant distribution for the baseline hazard, and Trussell and Richards (1985)

further discovered that even with a nonparametric representation of heterogeneity,

results can still be sensitive to choice of a model for the baseline hazard. Therefore,

in this chapter, we extended a frailty model by allowing both the frailty distribu-

tion, G, and the cumulative baseline hazard, Λ0, left nonparametric and proposed an

approach based on nonparametric maximum likelihood estimation.

For implementation, we developed a three-step iterative algorithm. First, esti-

mate the frailty distribution G nonparametrically based on Algorithm ISDM or

Algorithm CNM, given the current estimates of Λ0 and β; second, update Λ0 non-

parametrically by using the Algorithm LM-FP and the current estimates of G,

β. Finally, compute β by optimizing the logarithm of likelihood function directly,

conditional on the updated estimates λ and G.

To evaluate the finite sample property of the proposed iterative algorithm, we
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carried out a simulation study by comparing it with the semiparametric approach by

Therneau et al. (2003). The results showed that our proposed fully nonparametric

approach provided important gains in robustness by resulting in reasonable small loss

in efficiency compared to the semiparametric approach. Specifically, the point esti-

mator from our approach was unbiased, meanwhile, the estimator for the confidence

interval based on the converted likelihood ratio test worked well and the empirical

coverage probabilities of the 95% confidence intervals were quite close to the nominal

value given moderate number of clusters, say 60 or more.

5.2 Futurework

5.2.1 Randomization Test based on the BMW design

The proposed BMW design appears to be very effective in reducing the MSE of

the treatment effects estimator. However, one might ask how to use this design to do

a randomization test. We argued that the BMW design with a practically reasonable

choice of M , can also form the basis of a randomization test.

To illustrate the basic idea of the test based on the BMW design, suppose, for

example, that a study sample of size N has been collected using the BMW design

with given k and M which contains two groups A and B whose sample group means

of the observed outcomes are x̄A and x̄B, respectively. Without loss of generality,

we assume that the two groups have the same size of N/2 each. And that we aim

to test, the null hypothesis H0 : u1 = u2, where u1 and u2 refer to the true mean

of the two groups. The test proceeds as follows. First, the sample test statistic is

calculated as the difference in means between the two samples, tobs = x̄A− x̄B. Next,

the BMW design with the same k and M is repeated for a large number of B times

and each time, the test statistic based on the fixed outcomes observed is computed.

The set of these calculated test statistics is the exact reference distribution of possible
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differences under the null hypothesis that group label does not matter. The one-sided

(two-sided) p-value of the test is calculated as the proportion of the reference set where

the (absolute) difference in means is greater than or equal to tobs.

To construct the approximate 95% confidence interval based on the BMW design,

the approach can be illustrated as follows. The lower confidence limit for tobs is

obtained by finding the value of CL such that if we subtract the value of CL from each

member of group A, then the randomization test described above based on the BMW

design using the adjusted data gives a new value of tLobs = x̄A−CL− x̄B corresponding

to the upper 2.5% point of the new randomization distribution. Likewise, the upper

limit of the 95% confidence interval is obtaining by finding the value of CU that if

we add the value to group A and repeat the randomization test in the same manner,

the new tUobs = x̄A + CU − x̄B corresponds to the lower 2.5% point of the adjusted

randomization distribution. In this process, the BMW design is involved in obtaining

the reference distribution based on the adjusted data.

For a practical value of M (e.g. M = 10, 20 or 100), this would typically yield

a reasonably large reference set as the basis of the test. For example, say N = 20,

then we will end up with
(
20
10

)
= 184756 possible designs. Even M is as large as 100,

it is still very small compared to the number of randomizations possible and so the

reference set would still be quite large. An illustrative example will be given in the

future.

5.2.2 ISDM-CNM

One advantage of ISDM is that it does not require that one keeps track of the

accumulated set of support points, but only the current likelihood point LG =

(L1(G), ..., LM(G)). CNM includes a nice approach to update the weights of sup-

port points at each step, by solving a quadratic programming subproblem via a least

square linear regression formulation. This method can find exact zero weights and
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compute small positive masses accurately. However, CNM requires that one keeps

track of the set of support points at each iteration. Therefore, a new algorithm based

on ISDM and CNM method, which avoids the book keeping of the set of support

points in each step but adopts a variation to the approach in CNM for updating the

weights, can be proposed. More specifically, for the sth iteration, in the step 2 of

Algorithm ISDM, we need solve the constrained optimization problem

Maximize K(ε0, ε1, ..., εps) =
M∑
i=1

log{ε0Lsi +

ps∑
j=1

εjLi(θ
∗
sj)} (5.1)

s.t.
ps∑

j=0

εsj = 1 and εsj ≥ 0

with respect to ε = (ε0, ..., εps). We can solve this via a linear regression formulation

in a similar manner as CNM. Denote

Ki(ε) = log{ε0Lsi +

ps∑
j=1

εjLi(θ
∗
sj)}

vi(ε) =
∂Ki(ε)

∂ε
=

(
Lsi, Li(θ

∗
s1), ..., Li(θ

∗
sps

)
)
/(ε0Lsi +

ps∑
j=1

εjLi(θ
∗
sj)) (5.2)

where i = 1, ..., M and define the (ps+1)×M matrix V = V(ε) = (v1(ε)
T , ...,vM(ε)T ).

The gradient and Hessian function K = K(ε) are

∇K = V1T (5.3)

∇2K = −VVT (5.4)

where 1 = (1, ..., 1). It follows that K(ε)−K(ε′) can be approximated by the second

order Taylor Series expansion:

K(ε)−K(ε′) ∼= −1VT (ε′ − ε)T +
1

2
(ε′ − ε)VVT (ε′ − ε)T (5.5)
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Q(ε′|ε) ≡ −1VT (ε′ − ε)T +
1

2
(ε′ − ε)VVT (ε′ − ε)T

=
1

2
||VT (ε′ − ε)T − 1T ||2 − (ps + 1)

2

=
1

2
||VT ε′T − 2T ||2 − (ps + 1)

2
(5.6)

where 2 = (2, ..., 2) and || · || refers to the L2-norm. ε′ can then be obtained by solving

the least square linear regression problem:

Maximize ||VT ε′T − 2T ||2 (5.7)

s.t. ε′T1 = 1 , ε′ ≥ 0

A new algorithm based on ISDM and CNM can be summarized as below:

Algorithm ISDM-CNM: Set s=0. From an initial estimate G0, obtain

L0 = (L1(G0), ..., LM(G0)) where we assume li(G0) > −∞, i = 1, 2, ...,M .

• Step 1: Expand the support points sets:

Denote by Ls = (L1(Gs), ..., LM(Gs)) the current point in conv(Γ). Compute

all local maxima θ∗s1, ..., θ∗sps
of g(θ; Ls) ≥ 0, θ ∈ Ω. If maxj{g(θ∗sj; Ls)} = 0,

stop.

• Step 2: Set ε+
s = (1, 0, ..., 0). Find ε−s+1, the constrained solution of minimizing

Q(ε′|ε+
s ) (5.7). Define L−s+1 the new likelihood point.

• Step 3: Use step halving or optimization to find η∗s ∈ [0, 1], respectively, to

increase or maximize log{Ls + η∗s(L
−
s+1 − Ls)}.

• Step 4: Set Ls+1 = Ls + η∗s(L
−
s+1 − Ls) to find the likelihood point for the next

step. Set s = s + 1 and go back to Step 1.

This new algorithm would accommodate desirable features of both methods and

should further improve the efficiency.
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5.2.3 Asymptotic Properties

There exists a growing literature dealing with the asymptotic properties of a semi-

parametric maximum likelihood estimator on frailty models. Nielsen et al. (1992) pro-

poses an EM algorithm to estimate the cumulative baseline hazard with an assumed

shared-gamma frailty distribution. The consistency and the asymptotic distribution

of the estimates for this model have been rigorously studied by Murphy (1994, 1995)

for the case with no covariates, and by Parner (1998) for the case with covariates.

However, statistical inference based on the non-standard asymptotic properties of the

NPMLE remains an interesting and challenging problem.

Murphy and van der Vaart (2000) study the asymptotic properties of the semi-

parametric profile likelihood for a frailty model. In this model, the unobserved frailty

G follows a gamma distribution with unit mean and variance σ and the cumulative

baseline hazard Λ0 is left completely unspecified. β are regression parameters. So

the unknown parameters ϕ contains the parameters of interest θ = (β, σ) and the

nuisance parameter Λ0. The profile likelihood for θ can be written as

pl(θ) = l(θ, Λ̂0,θ) (5.8)

where Λ̂0,θ is the maximizer of l(θ, Λ0) for given θ. Under regularity conditions,

Murphy and Van Der Vaart prove that the curvature of the profile likelihood at the

MLE, θ̂, of θ provides consistent estimate of the asymptotic variance of θ̂.

Murphy and van der Vaart’s results can be conjectured to generalize to a number

of results for our approach. First, we can consider the semiparametric model by

assuming a piecewise constant distribution for the baseline hazard and leaving frailty

distribution, G, completely unspecified. That is, Λ0(t) =
K∑

k=1

λkI(τk−1 < t ≤ τk),

where 0 ≡ τ1 < ... < τK < t(N) are pre-determined cutoff points of sub-periods

and λ = (λ1, ..., λK) are constant hazard during each sub-period. Let θ = (β, λ) be
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the parameters of interest and G, the nuisance parameter. We consider the profile

likelihood

pl(θ) = l(θ, Ĝθ) (5.9)

and denote the maximizer of (5.9) as θ̂s = (β̂s, λ̂s). Van der Vaart (1996) gave the

asymptotic properties of the exponential frailty model where the mixing distribution

G is completely unspecified. These arguments should also apply to the piecewise

constant model outlined above.

The nonparametric approach considered in Chapter IV is obtained by further re-

laxing the restriction on Λ0(·) from the semiparametric model above. We can focus on

the parameter of interests, β, and consider both Λ0 and G as the nuisance parameters.

The profile likelihood for β becomes

pl(β) = l(β, (Λ̂0,β, Ĝβ)) (5.10)

and the NPMLE β̂n can be obtained by maximizing (5.10). We expect that the

estimate of the asymptotic variance for the NPMLE β̂n would be obtained from the

Hessian matrix of the profile likelihood (5.10) at β̂n. We also expect the asymptotic

variance for the NPMLE β̂n will be close to that for β̂s (5.9) when the number of sub-

periods , K, defined in the piecewise constant distribution of Λ0 in (5.9) becomes very

large and the width of each sub-period in which τk−1 < t ≤ τk, gets very small (Efron,

1977; Oakes, 1977). In fact, our nonparametric approach adopted to estimate Λ0, by

assuming a jump function with jumps at the observed event times can be regarded

as the most refined piecewise constant distribution with varying cutoff points.

There is a very large class of substantial mathematical problems associated with

understanding the asymptotics of the fully nonparametric frailty model. We have

concentrated above on issues related to estimating β, there are problems also related

to understanding the asymptotics of the estimates of Λ0 and G. Future work will be
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devoted to this area.
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