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CHAPTER 1 

INTRODUCTION 

 

1.1  Bottom-up Proteomics 

 The critical role of mass spectrometry (MS) in the field of proteomics has been 

firmly established. MS is a powerful tool to analyze gas phase ionized analytes based on 

their mass-to-charge (m/z) ratio. Proteomics involves studies which deal with large-scale 

profiling of protein expression levels, post-translational modification (PTM) levels and 

protein-protein interactions in a variety of complex biological systems. The marriage 

between MS and proteomics has made proteomics possible and widely broadened the 

application of MS-based techniques, leading to a continuous development of 

instrumentation to address the major challenges in proteomics. This includes such issues 

as the high degree of complexity of samples, and the masking of low abundance proteins. 

It is estimated that approximately 30,000 genes code for up to 30 times as many protein 

products with a concentration range varying by 10-12 orders of magnitude. The low 

abundance proteins which often exert important functions have lower signals due to ion 

suppression by high abundance proteins. Moreover, the interface between MS and 

proteomics has enabled the use of MS to solve important biological questions[1].  

There are two major branches of MS-based proteomics strategies: top-down and 

bottom-up[2]. Top-down proteomics is defined as the analysis of intact proteins by MS  
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while bottom-up is defined as the analysis of enzymatic digested proteins, often times 

tryptic peptides. These two approaches are complementary to each other and face the 

same degree of challenges. The strength of top-down lies in the direct detection of intact 

proteins so that the native primary structural information (such as PTMs, isoforms) is 

preserved. This method suffers from much less efficient ionization of large molecule as 

compared to peptides as well as the difficulty of sample handling and separation due to 

solubility issues. In the case of bottom-up proteomics, the well defined cleavage sites 

targeted by trypsin facilitate the bottom-up method dealing with peptides which are easier 

to solubilize and which can be separated with high-resolution HPLC and have improved 

ionization efficiency enabling the use of a wide range of mass spectrometers. The 

drawback of bottom-up proteomics is that the aforementioned native information is lost.  

Bottom-up proteomics has become the method of choice in my thesis projects 

mainly because: 1) It is the best approach suited to the electrospray ionization (ESI)-ion 

trap mass spectrometer (Thermo LTQ, which has a superior sensitivity over other mass 

spectrometers) as compared to top-down; 2) PTM profiling is still possible by using an 

affinity chromatography method prior to MS; 3) Database and search engines are well 

developed to analyze bottom-up MS data.   

To be noted, all the identification and quantification mentioned in this dissertation 

are performed at the peptide level.  

 

1.2 Quantitative Strategies 

In addition to the identification of proteins present within a system at a given time 

or under a particular perturbation condition, the quantification of protein expression 
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levels or PTM levels is increasingly required because it can be viewed as a function of 

cellular state to infer molecular mechanisms. In particular, differential proteomic 

profiling which compares paired or multiple samples with biological relevance has 

become a principle strategy to identify biomarkers or to study the altered underlying 

signaling events.  

 

1.2.1 Overview  

Generally, the quantitative strategies for bottom-up proteomic research can be 

categorized into three groups: stable isotope labeling, label-free and multiple reaction 

monitoring (MRM). 

 

1.2.1.1 Stable Isotope Labeling  

The stable isotope labeling method is facilitated by the similar chemical and 

physical properties of the natural compounds and their isotope labeled counterparts 

except for the m/z. The quantification is performed by incorporating the isotope labeled 

molecules into MS analysis as internal standards or relative references[3]. A number of 

approaches have been developed under this category including Isotope-Coded Affinity 

Tag (ICAT)[4], Isobaric Tags for Relative and Absolute Quantification (iTRAQ)[5], 

Stable Isotope Labeling by Amino Acids in Cell Culture (SILAC)[6]. These methods 

have enabled simultaneous identification and quantification in complex samples. 

However, these approaches have potential drawbacks which limit the desired high 

through-put fashion of MS analysis such as: 1) increased analysis time from more 

complicated sample preparation procedures and data processing steps; 2) higher cost of 
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required reagents; 3) incomplete labeling; 4) limited number of samples to be compared; 

5) limited quantification dynamic range; 6) particular instrument requirements. The last 

one is especially critical in my thesis projects. It is the major factor limiting the use of 

these isotope labeled methods. The LTQ mass spectrometer, a major instrument used in 

the projects, is not compatible with most of the isotope labeling methods due to its “low 

mass cut-off” feature, meaning that the reporter ions used for quantifications at the MS2 

level have poor signals under the commonly employed collision associated dissociation 

(CID) mode. The only alternative is to operate the LTQ under pulsed-Q-dissociation 

(PQD) mode, however, it is a tedious procedure and it has also already raised a question 

of quantification accuracy among the science community.     

 

1.2.1.2 Label-free 

The label-free method has become the preferred method of choice for 

quantification of global protein expressions due to the aforementioned concerns. By 

definition, label-free represents a strategy which avoids the isotope labeling step. There 

are two categories of label-free based measurements: peak area (or ion intensity) and 

spectral counting. These two methods are mostly used for relative quantification purpose. 

Peak area describes a method that measures the quantity of analytes based on the 

integrated peak area from the extracted ion chromatogram (EIC). The principle is that the 

detected ion signal is positively proportional to the analyte concentration by ESI within a 

certain range when coupling with liquid chromatography (LC).  A typical data processing 

procedure of this kind of measurement includes peak detection (a particular peptide peak 

is distinguished from the noise background and neighboring peaks) and peak matching 
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(LC-MS) retention time is adjusted and the isotopic peaks are resolved for each peptide). 

It is obvious that this type of label-free method has some practical constraints. First, the 

LC-MS must be highly reproducible. Any drifts in retention time and m/z will 

significantly complicate the peak alignment process. Although a few computational 

algorithms have been developed to automatically perform the adjustments, the 

requirement of small experimental variations still holds. Second, the MS instruments 

used must be high- resolution; otherwise it creates a large obstacle for the peak detection 

process because of the ambiguity of distinguishing overlapping peaks by using low-

resolution instruments. In addition, profile data containing the information regarding peak 

shapes rather than centroid data (peak lists) are acquired which further raises the bar for 

compatible computers with large storage capacity and high central processing units.      

The other label-free method spectral counting represents a much simpler and 

straight-forward measurement strategy. Spectral counts are defined as the number of MS2 

spectra assigned to one protein. Thus, it measures how many times the MS2 events are 

performed for one peptide selected in the MS1 stage and then sums up the number of 

MS2 events for each peptide belonging to one protein. This is based on the observation 

that there is a typically positive correlation between protein abundance and the number of 

its proteolytic peptides and vice versa[7]. Another more detailed study has shown that 

relative protein abundance is mostly correlated with spectral counts when compared to 

other factors such as sequence coverage and peptide number[8]. Interestingly, it was 

found that spectral counting and peak area exhibited strong correlation when EIC with 

high signal to noise (S/N) were used in the comparison. In addition, spectral counting is 

more reproducible and has a larger dynamic range[9]. It has been reported that spectral 
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counting expands the dynamic range, allowing for the detection of abundance differences 

up to 60:1, whereas the ratio is 20:1 in SILAC experiments[10]. Thus, spectral counting 

has gained increasing popularity.  

Another advantage of spectral counting over peak area lies in the zero software 

requirements, whereas peak area needs very sophisticated computational algorithms to 

handle the LC-MS data for feature detection and peak alignment. Spectral count 

information is embed in the MS/MS spectra searched results. Only several lines of codes 

are needed to parse out the spectral counts. Moreover, spectral counts are obtained from 

centroid data which means this method is suited to low resolution (unit mass)   mass 

spectrometers such as the LTQ.  

Therefore, the spectral counting based label-free method has been employed as 

the major quantitative tool in my thesis projects for a rapid screening to obtain a global 

view of the altered protein expression patterns in differential proteomic studies.     

 

1.2.1.3 Multiple Reaction Monitoring  

Selected Ion Monitoring (SIM) is a scan mode in ion-trap or triple quadrupole 

mass spectrometers with enhanced sensitivity and specificity since only a particular ion is 

selected to be analyzed at a given time. Multiple Reaction Monitoring (MRM) is another 

scan mode with even greater specificity and it is achieved by selecting a specific 

transition meaning that only a particular pair of parent ion and product ion is monitored at 

a given time[11]. Basically, any triple quadrupole type mass spectrometers is capable of 

performing such analysis including hybrid instruments such as the Q-TOF and Q-TRAP. 

MRM has been a principle tool for quantifying small molecules for decades[11]. The 
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application of MRM in measuring the protein quantity based on the selected proteolytic 

peptides has just emerged in recent years and has undergone an increasing expansion. 

MRM represents the most accurate MS-based quantification strategy to date. This is 

because: 1) sensitivity is greatly increased since a dwell time is allocated for monitoring 

each MRM only; 2) specificity is also largely enhanced due to the monitoring of 

precursor ion and product ion simultaneously; 3) quantification accuracy is also 

optimized by either spiking a known amount of isotope labeled analog as the internal 

standard for absolute quantification or generating an external calibration curve by non-

isotope labeled synthetically identical targeted peptide.  

 Because of the unique advantages of MRM, it is a preferred strategy in target 

verification. Conventionally, Enzyme-linked Immunosorbent Assay (ELISA) and 

Western Blot are the major validation methods. However, these techniques are not truly 

quantitative and the time to develop a new ELISA assay is a lengthy process. Nowadays, 

there has been a trend to develop a scheduled MRM (performing hundreds of MRM 

assays within a single LC run) as a complementary/alternative method for verification 

purpose. This is particularly advantageous since it could benefit from a combination of 

key advantages:  high throughput, multiplex and accurate quantification.     

 Therefore, in addition to the traditional Western Blot method, MRM has been 

utilized as an alternative to confirm the fold changes detected by the spectral counting 

based label-free method in the global discovery phase. 

 

1.2.2 Computational Challenges Associated with Spectral Counting  

The peak area method has a requirement of special software to deal with the  LC 
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MS data whereas spectral counting does not need any special software because of the 

ease of implementation[3]. However, there are still several challenges which are 

elaborated as follows. 

 

1.2.2.1  Experimental Variance 

Experimental variations are inevitable even when the same sample is analyzed in  

replicates by sequential LC-MS runs under exactly the same conditions. This is largely 

due to the random sampling nature of the data-dependent acquisition mechanism 

employed by the LTQ. Also, variations can be introduced in any sample handing step and 

by uncontrolled factors such as inherent instrumental drift. Thus, it is necessary to 

perform data normalization in the first place to minimize such variations. The 

normalization methods can be categorized as: 1) global normalization; 2) use of a 

housekeeping protein as a control; 3) spiking an internal standard as a control; 4) 

normalized spectral abundance factor (NSAF).    

 Global normalization is the simplest and most widely used approach which is also 

shared by the analysis of microarray data. The spectral counting data for each LC-MS run 

can be normalized against the total spectral counts[12], the mean, the median or to match 

the percentiles of each run to account for the variations. The abundance of housekeeping 

proteins such as Actin can also be used as a correction factor.  The use of an internal 

standard such as spiking BSA into each sample is also facilitated to correct for the run-to-

run variation[13]. Another normalization strategy called NSAF[14] is a more 

sophisticated method tailored to handle spectral counts, addressing the concern that 

proteins with longer length normally generate more tryptic peptides and have potentially 
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more spectral counts. Although a variety of normalization methods are proposed, there is 

no universally recognized standard and the choice is rather empirical.     

 

1.2.2.2 Assignment Ambiguity 

Errors in the assignment of peptides to their corresponding protein directly 

propagate into protein abundance index using a spectral counting-based method. This 

occurs during the protein identification process where it is difficult to resolve proteins 

belonging to peptides which map to multiple protein sequences. Although methods have 

been developed to calculate the likelihood of MS2 peptide assignments[15], currently 

there is a lack of robust models to resolve such ambiguities of assembling peptides back 

to the protein[16]. Thus, this problem has a direct impact on the accuracy of the spectral 

counting method due to its dependence on the quality and quantity of MS2 spectra 

identifications.  

 

1.2.2.3 Data Discontinuity 

Another major challenge for spectral counting is that low abundant ions which are 

not selected for MS2 fragmentation will receive a spectral count equal to zero, termed 

“data discontinuity” or the “missing data” problem. Basically this is because of the 

random sampling nature of the LTQ where the selection of precursor masses for MS/MS 

analysis is skewed toward peptides of high abundance and the identification of low 

abundant peptides is a more random event, thus it is less reproducible[16]. This is 

illustrated in Figure-1. For example, the data-dependent acquisition is programmed to 

select the five most abundant ions at a given time. Setting up a dynamic exclusion 
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window can compensate for this problem, but there is still a chance that the sixth ion is 

never selected for MS2 fragmentation during the entire LC-MS run. The chance is further 

increased as the abundance of this ion is decreased. In contrast, the peak area method 

does not have this problem because the sixth ion is still detected as long as it is above the 

S/N threshold. This phenomenon is attributed to the different fundamental quantification 

mechanism that spectral counting measures at the MS2 level where random sampling of 

low to medium abundance proteins occurs, whereas peak area measures at the MS1 level.    

This random sampling problem of low to medium abundance proteins can be 

alleviated by repeating multiple replicate runs. Another way to correct for the missing 

data problem is by employing a computational strategy where data transformation is 

involved. Specifically, it is performed by using a correction factor to replace the missing 

value (spectral count = 0). Old et al[17] reported such a transformation strategy using a 

log2 scale quantity for each protein: 

                                           N= log2[(n+f)/(t-n+f)]                                                (Eq.1) 

 

Figure 1.1: Illustration of the data discontinuity problem in spectral counting 
method caused by the data-dependent mechanism. The sixth most abundant ion is not 
selected for MS2 event so that it is assigned with a spectral count equal to zero, whereas 
this ion is still assigned with a certain value in peak area method as long as it is above the 
S/N threshold level. 
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where n is the raw or normalized spectral count value; t is the total number of spectra 

over all proteins in each dataset; and f is a correction factor. Several procedures for 

setting the constant term f have been proposed. A new approach having similar principles 

is devised and elaborated in Chapter3. 

 

1.2.2.4 Differential Expression 

Comparing spectral counting data from different stages or different sample groups 

is a critical step in statistical analysis. It is the most important data processing step as it 

answers the essential question in differential proteomic studies: which molecules are truly 

altered on their protein expression levels? To increase the confidence for determining if a 

molecule is significantly differentially expressed, different statistical tests have been 

employed and evaluated in various scenarios. The Student’s t-test has been found to be 

the best performer when three or more replicates are available, while the Fisher’s exact 

test, G-test and AC test are more suitable when the number of replicates is less than 

three[18].  

However, determining which statistical test to choose is never a simple question 

due to the complexity of the spectral counting-based MS data. The task in reality is 

extraordinarily challenging. First, it remains uncertain which distribution fits best to the 

MS data. The assumption of t-test is actually violated as most MS data points are not 

normally distributed. This can be simply tested by plotting the sample quintiles against 

the theoretical quintiles (Normal Q-Q plot) along with quite a few statistical tests. 

Therefore, other distribution models have been explored, specifically Poisson 

distribution[19] and Beta-Binomial distribution[20] have been proposed to model the 
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spectral counting data by other groups. Second, the prerequisites of many data analysis 

tools are that individual molecules are statistically independent. However, proteins are 

biological building blocks and are inherently correlated. Currently, few studies[21] have 

been reported to tackle this problem. Computational models which can adequately 

address this critical dependency issue still remain to be established. Third, the 

multivariate models have not been explored explicitly, especially in the case of seeking 

for a robust handling of hierarchical data structure. Figure-2 illustrates such a structure 

where there are two sample groups with two levels of replicates/variances. The 

shortcoming of the commonly employed tests such as the t-test is that it does not take into 

account within- and between- sample variations together.  

 

Figure 1.2: A typical hierarchical data structure. CSC represents a control group 
and GSI represents a treatment group. Each group has three biological replicates depicted 
in circles and each biological replicate has three technical replicates depicted in squares.   
 

 Therefore, the generalized linear mixed effect model (GLMM)[22] which 

alleviates the above three issues to some degree is a better strategy to test the significance 

of differential protein abundances. Specifically, the between-group difference is modeled 

as fixed effect and the within-group difference is modeled as random effect using the 

restricted maximum likelihood (REML)[23] procedure to estimate the parameters. The 

use of this model is described in Chapter4.      
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1.3 Dissertation Outline 

  This dissertation consists of four chapters elaborating four different but 

interconnected bottom-up proteomic projects. Chapter2 describes a comparative 

proteomic profiling study of two closely related ovarian cell lines. A two-dimensional 

separation by coupling cIEF and reversed phase LC (RPLC) is utilized together with the 

LTQ mass spectrometer. Pathway analysis is performed to infer altered signaling events. 

This first project has paved the way for the following projects which are concentrated on 

applying the principal of the established methodology to study cancer stem cells (CSCs). 

CSCs are termed by their unique properties and are suggested as novel and potentially 

revolutionized therapeutic targets. Specifically, Chapter3 is an extension of Chapter2 by 

further exploring and optimizing the cIEF technique to address the technical difficulty of 

extremely small sample quantity in the study of pancreatic CSCs. The data discontinuity 

problem is also addressed by utilizing a transformation strategy. Chapter4 describes the 

investigation of proteomic research in Glioblastoma Multiforme (GBM) CSCs upon 

Gamma Secretase Inhibitor (GSI) treatment in order to obtain a better understanding of 

drug impact. Instead of profiling the protein expressions at a global view, altered 

glycosylation levels between the GBM CSC group and the drug treatment group are 

interrogated by coupling an affinity chromatography method prior to MS analysis. The 

differential expression by pairwise t-test and GLMM are both discussed. Chapter5 

discusses a more comprehensive bottom-up proteomic study compared to the previous 

three projects. A complete pipeline consisting of global discovery by label-free 

quantification, candidate prioritization and target verification by MRM is described. The 

biological setting is similar to Chapter4. However, the question is addressed from a dose-
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dependent point of view. Also, biological implications are discussed by mapping 

important proteins into relevant signaling pathways to infer the altered signaling events 

upon drug treatment.  
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CHAPTER 2 

COMPARATIVE PROTEOMIC STUDIES OF OVARIAN CANCER CELLS 

2.1 Abstract 

            The proteomic profiles from two distinct ovarian endometrioid tumor-derived cell 

lines, (MDAH-2774 and TOV-112D) each with different morphological characteristics 

and genetic mutations, have been studied. Characterization of the differential global 

protein expression between these two cell lines has important implications for the 

understanding of the pathogenesis of ovarian endometrioid carcinoma. In this 

comparative proteomic study, extensive fractionation of peptides generated from whole-

cell trypsin digestion was achieved by coupling cIEF in the first-dimensional separation 

with capillary LC (RP-HPLC) in the second dimensional separation. Online analysis was 

performed using tandem mass spectra acquired by a linear ion trap mass spectrometer 

from triplicate runs. A total of 1749 and 1955 proteins with protein probability above 

0.95 were identified from MDAH-2774 and TOV-112D after filtering through Peptide 

Prophet/Protein Prophet software. Differentially expressed proteins were further 

investigated by ingenuity pathway analysis (IPA) to reveal the association with important 

biological functions. Canonical pathway analysis using IPA demonstrates that important 

signaling pathways are highly associated with one of these two cell lines versus the other, 

such as the PI3K/AKT pathway, which is found to be significantly predominant in 

MDAH-2774 but not in TOV-112D. Also, protein network analysis using IPA highlights 
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p53 as a central hub relating to other proteins from the connectivity map. These results 

illustrate the utility of high throughput proteomics methods using large-scale proteome 

profiling combined with bioinformatics tools to identify differential signaling pathways, 

thus contributing to the understanding of mechanisms of deregulation in neoplastic cells. 

2.2 Introduction 

            Ovarian cancer is the fifth leading cause of cancer-related death in the Western 

world and causes more deaths of women in the United States than any other 

gynecological malignancy [1]. The five-year survival rate can be as high as 90% with 

early detection; however, early detection of ovarian cancer is rare and known markers 

have limited utility for general population screening. The most common form of 

ovarian cancer is epithelial ovarian cancer, which can be further divided into four major 

histological subtypes: serous, clear cell, mucinous and endometrioid [2]. Ovarian 

endometrioid adenocarcinoma (OEA) represents approximately 20% of common 

epithelial tumors. 

 In the present comparative study, we have employed two closely related OEA cell 

lines, MDAH-2774 and TOV-112D[3,4]. Both of these two cell lines were derived from 

female Caucasian patients with OEA. In particular, the TOV-112D cell line originates 

from an aggressive ovarian endometrioid tumor (stage 3, grade 3). The growth 

characteristics and tumorigenic potential of this cell line parallels the clinical behavior of 

aggressive OEAs. Categorization of the tumor grade/stage of MDAH-2774 is not 

available. Differential global gene expression analyses have been performed, and 

different genetic defects have been previously detected between these two cell lines, 

possibly leading to different levels of deregulation of important signaling pathways[5]. It 
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has been shown that both the MDAH-2774 and TOV-112D cell lines have elevated 

constitutive Wnt signaling deregulation. A missense AXIN1 sequence alteration was 

identified in MDAH-2774 and mutant beta-catenin was identified in TOV-112D. A 

mutated K-ras gene, involved in the PI3K/AKT signaling pathway, was detected in 

MDAH-2774 but not in TOV-112D. Both the MDAH-2774 and the TOV-112D OEA cell 

lines have a mutant p53 gene[6]. 

 Protein expression and gene expression data, while being mutually exclusive, are 

complimentary to each other. A lack of direct correlation between protein expression and 

gene expression has been reported [7]. Protein over/under expression is expected to relate 

to deregulated tumor cell behavior more directly than would gene expression. The 

proteomic profiles of these two cell lines have been generated in previous work using 

different methods. In one study, Rotofor IEF and nonporous (NPS) reversed phase 

separation was coupled with ESI-TOF-MS and MALDI-TOF-MS to analyze the 

proteome of MDAH-2774 via intact protein fractionation [8]. In a second study, 2D-

PAGE coupled to MALDI-TOF-MS and SDS-PAGE coupled to LC-MS/MS were both 

used to obtain protein profiles from TOV-112D [9]. Alternatively, a shotgun [10] 

proteomics strategy of a whole cell digest can be used to compare the global proteome 

profile of MDAH-2774 and TOV-112D (both qualitatively and quantitatively) in order to 

analyze protein expression differences in neoplastic dedifferentiation. Within, we have 

utilized capillary isoelectric focusing (cIEF) to separate peptides based on pH[11-12], 

followed by capillary reversed phase separation with on-line nanoESI-ion trap mass 

spectrometer analysis. This method is capable of identifying large numbers of proteins 
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over an extended pH range where 1749 and 1955 proteins from triplicate runs of MDAH-

2774 and TOV-112D, respectively, have been identified in this work.  

 Quantitation is always an important issue in pathway analysis using either 

isotopic labeling or label free methods. Label-free quantitation has gained increasing 

popularity in recent years and has been successfully applied in large quantitative studies 

[13-14] due to the development of computational and statistical methods and advances in 

LC-MS/MS systems. Extraction of peptide ion intensities and spectral counting (defined 

as the number of MS/MS spectra identified per protein) are two widely adopted methods 

for performing comparative quantitative analysis of LC-MS proteomics experiments. It 

has been shown that spectral counting is highly reproducible and is sensitive to protein 

abundance changes[15]. Further, in controlled experiments it was found that the 

correlation of protein abundance with spectral count is superior to that of protein 

sequence coverage or peptide count[14]. Thus, we have utilized spectral counting to 

measure protein abundance. The ratio of the spectral count of the same protein represents 

the relative expression level between two samples. Spectral sampling can enable protein 

ratios larger than ~2-fold to be determined with high confidence. 

 The large number of identified proteins between these two cell lines provides a 

means for qualitative and quantitative bioinformatics pathway analysis. Differentially 

expressed proteins can be further investigated to reveal the associated biological 

pathways using bioinformatic tools such as Ingenuity Pathway Analysis (IPA). The IPA 

program uses a knowledge base derived from the literature containing information on 

interactions between genes, proteins and other biological molecules. After uploading 

differentially expressed protein lists to the IPA server, IPA uses these focused proteins to 
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extract connectivity networks which relate candidate proteins to each other based on their 

interactions and generates global canonical pathways which are shown to be significantly 

associated with these candidates[16]. As illustrated in Figure 2.1, we have used a strategy 

of shotgun proteomics with subsequent bioinformatics analysis to study pathways in the 

TOV-112D and MDAH-2774 cell lines in order to understand the different interactions in 

these two OEA cell lines. 

 

2.3 Materials and Methods 

2.3.1 Sample preparation 

 MDAH-2774 and TOV-112D cells were gently washed 3 times with PBS (pH 7.4) 

by repetitive pipetting, followed each time by centrifugation at 1,500×g for 5min at 4 C. 

The cell pellets were resuspended with 1 ml lysis-denaturing buffer (7.5M urea, 2.5M 

thiourea, 12.5 v/v glycerol, 62.5M Tris-HCl, 2.5%(w/v) n-octylglucoside (n-OG) and 1% 

v/v protease inhibitor cocktail). All chemicals were purchased from Sigma (St. Louis, 

MO) unless otherwise noted. The lysates were vortexed and then centrifuged at 35,000×g 

for 1hr at 4 C. The supernatant was collected and dialyzed against 50 mM ammonia 

bicarbonate overnight using Slide-A-Lyzer dialysis cassettes with a 3,500 Da molecular 

cutoff from Pierce (Rockford, IL). The proteins were quantified with the micro-BCA 

assay kit from Pierce (Rockford, IL), and then lyophilized to 100 μl using a SpeedVac 

concentrator (Labconco, Kansas City, MO) operating at 45 C. 

2.3.2 Trypsin Digestion 

 5mM dithiothreitol (DTT) was added and the mixture was incubated at 60 C for 

30min. After cooling, 5mM iodoacetamide (IAA) was added and the mixture was placed 
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in the dark at room temperature for 30 min in order to carboxamidomethylate the 

Cysteine residues. Then, 1:50 w/v L-1-tosylamido-2-phenylethyl chloromethylketone 

(TPCK) modified sequencing-grade porcine trypsin from Promega (Madison, WI) was 

added.  Following vortexing, the mixture was incubated overnight at 37oC in a water bath 

with agitation, followed by addition of 2% formic acid (FA) to terminate the reaction. 

2.3.3 First dimension separation: cIEF 

 Peptides were sequentially resolved based on their different isoelectric points (pI) 

and hydrophobicity. cIEF was performed on a Beckman CE instrument with sample 

collection as shown in Figure 2.2. A 70cm cIEF (100um i.d. 365um i.d.) capillary was 

coated with hydropropyl cellulose for eliminating electroosmotic flow and absorption of 

peptides onto the capillary wall.  The capillary was initially filled with sample gel buffer 

containing 2% ampholyte 3-10 and 1μg tryptic peptides. Sodium hydroxide solution at 

pH 10.8 and 0.1M phosphate acid solution were employed as catholyte and anolyte, 

respectively. One end of the capillary was emerged in the anolyte, while the other end 

was kept in coaxial metal tubing with a sheath flow composed of catholyte eluting flush 

with the exit of the capillary. The flow rate was controlled by a syringe pump at 2 μl/min, 

and was adjusted to ensure that a proper droplet formed at the exit to carry the peptides 

fractionated into individual wells in the sample plate. Isoelectric focusing was performed 

at 21kV (300V/cm) over the entire capillary. The current decreased continuously as the 

peptides were focused and the process was considered complete after the current no 

longer changed. The focused bands of peptides were sequentially mobilized slowly under 

pressure towards the cathode and delivered as droplets with catholyte sheath flow into 

individual wells on a sample plate, where the fractions were collected with a modified 
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Beckman HPLC sample collector. Each cIEF separation runs approximately 90 min. 

One-third of the run time is spent in focusing the peptides in the capillary while the 

remaining time is used to deposit the off-line fractions.  

2.3.4 Second dimensional separation: nanoRPLC+nanoESI-MS/MS 

 When cIEF separation was completed, each pI fraction of tryptic-digested sample 

was injected via Paradigm autosampler (Michrom Biosciences, Auburn, CA) and loaded 

onto a desalting Nano trap (150μm×50mm) (Michrom) connected to a nano RP 

column(C18AQ, 5μm 200A 0.1×150mm) (Michrom) by a Paradigm AS1 micropump 

(Michrom). The mobile phase A and B were composed of 0.3% FA in water and 0.3% 

FA in acetonitrile (ACN), respectively. Peptides were first desalted and enriched starting 

at 100%A with a flow rate of 50 μl/min for 5 min. Sample was subsequently separated by 

a Nano RP column with a flow rate of 0.3 μl/min after splitting. The linear gradient for 

separation was as follows: from 3% ACN to 12% ACN in 5 min, from 12% ACN to 40% 

ACN in 30 min, from 40% ACN to 80% ACN in 15 min and finally decreased from 80% 

ACN to 3% ACN in 10 min. The resolved peptides were then introduced into a 

ThermoFinnigan LTQ mass spectrometer (Thermo Electron Corp., San Jose, CA) 

equipped with a nanospray ion source (Thermo). The LTQ was operated in data-

dependent mode in which one cycle of experiments consisting of one full MS scan was 

followed by 5 pairs of zoom scans and MS/MS scans with dynamic exclusion set to 30 

sec. The capillary temperature was set at 175 C, spray voltage was 2.8kV, capillary 

voltage was 30V and the normalized collision energy was 35% for the fragmentation. 

2.3.5 Database Search and Protein Identification 
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 MS/MS spectra were then searched against the human UniProt FASTA database 

(updated in Dec.2007) by TurboSEQUEST provided by Bioworks ver3.1 SR1 

(ThermoFinnigan). The search was performed using the following parameters: (1) 

Enzyme: trypsin; (2) one missed cleavage allowed; (3) peptide ion mass tolerance: 1.5Da; 

(4) fragment ion mass tolerance: 1.0 Da; (5) mass tolerance for precursor ions 1.4Da; (6) 

peptide charges +1, +2, +3; (7) possible modifications: 15.99 Da shift for oxidized Met 

residues; 79.97 Da for phosphorylated Ser, Thr, Tyr residues respectively; 58.1 Da shift 

for carboxymethylated Cys residues. The identified peptides were subsequently processed 

through Peptide Prophet and Protein Prophet incorporated in the Trans Proteomic 

Pipeline (TPP)[17]. In TPP, the search results were first validated by Peptide Prophet, 

which converts various SEQUEST parameters to a discriminant score and uses Bayesian 

statistics to compute the probability that each identified peptide is correct. Protein 

Prophet reads in peptides and assigned probabilities to compute the probabilities of 

proteins that are present in the original sample 

(http://proteinprophet.sourceforge.net/prot-software.html). In this study, we use a protein 

probability score of ≥0.95 as the threshold for protein identification, to ensure that the 

minimized overall error rate is below 0.05.  

2.3.6 Label-free Quantitation and Normalization 

 After processing the Sequest data through TPP, the spectral counts were parsed 

out of TPP protXML files using a perl script(see Figure 2.1b). Three datasets of identified 

proteins with 0.95 protein probability and their associated spectral count have been 

generated for each sample. We divided the data into two groups. Qualitative data consists 

of proteins that are only identified in one of these two cell lines, whereas quantitative data 
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consists of proteins that are identified in both of these two cell lines with their expression 

values. In the first group one cannot compare the same protein expression level between 

two cell lines. In the second group the relative protein abundance fold change of the same 

protein can be calculated by the ratio of their spectral count in two samples as explained 

later in this work. The data was processed in two different ways. For the qualitative 

analysis, only the qualitative data was used (i.e. only different protein names from two 

samples were included). We also performed a quantitative analysis in which we 

combined the qualitative data and quantitative data by replacing any missing value with 

zero. For example, protein “A” is only detected in MDAH-2774 with its assigned spectral 

count. In order to make the comparison of the differential expression of this protein 

plausible, we assume protein “A” is also present in TOV-112D but at a very low level 

which is not detectable and assign a spectral count of zero to protein “A” in TOV-112D.      

 Subsequent normalization was used to reduce technical bias when acquiring 

spectral count data from different runs across the two different cell lines. The bias may 

come from instrument error or the inherent random sampling nature of the LTQ. In order 

to normalize the data, we first calculated the ratio of the total spectral count of 3 runs 

between MDAH-2774 and TOV-112D and then multiplied the spectral count of each 

protein in the numerator by this ratio. Statistical significance levels of the pair-wise 

comparison were then adjusted for multiple testing using the false discovery rate (FDR), 

q-value method. Differentially expressed genes used to learn network structure were 

declared at a FDR q-value threshold of 0.3. The FDR q-values were calculated using the 

R package[18].  

2.3.7 Ingenuity Pathway Analysis 
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 To infer global network functions between all differentially expressed proteins 

from MDAH-2774 and TOV-112D, we conducted two types of analysis using Ingenuity 

Pathway Analysis software (IPA). For the qualitative analysis, we uploaded into the IPA 

database two sets of proteins with corresponding primary accession number which were 

only identified from one of these two cell lines. Out of 652 and 838 proteins uploaded 

from MDAH-2774 and TOV-112D, the IPA software identified 515 and 665 “focus 

genes” that were eligible for generating connectivity networks and 443 and 582 “focus 

genes” that were eligible for generating biological functions/disease and associated 

pathways.   

 In order to gain further insight into the dynamic changes of the cell states between 

these two cell lines at the molecular level, we performed a quantitative analysis by 

incorporating quantitative data in addition to qualitative data. In this analysis, we 

uploaded a list of 828 differentially expressed proteins with fold change larger than 2 

based on normalized spectral count data. The relevant proteins with their fold change, qv-

value and corresponding primary accession number were uploaded as an Excel 

spreadsheet file. 609 proteins were eligible for generating networks and 532 proteins 

were used to retrieve functions/pathways after applying a threshold of qv-value of <0.3. 

 The significance values for analyses of network and pathway generation were 

calculated using the right-tailed Fisher’s Exact Test by comparing the number of proteins 

that participate in a given function or pathway relative to the total number of occurrences 

of these proteins in all functional/pathway annotations stored in the Ingenuity Pathway 

Knowledge Base (IPKB). 

2.3.8 Western Blot Analysis 
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 MDAH-2774 and TOV-112D cell lines were lysed in lysis buffer as described 

above. 100 μg of total protein from each of the cell lysates was separated by 10% SDS-

PAGE in parallel. The resolved proteins were transferred to PVDF membranes 

(Immobilon-P, Millipore) by conventional procedures using a TE70 semi-dry transfer 

unit (Amersham Biosciences, Princeton, NJ). Beta-actin protein expression levels were 

used as an internal control to ensure equal loading between lanes. After transfer, 

membranes were incubated with a blocking buffer consisting of PBS and 0.1% Tween 20 

containing 5% nonfat dry milk overnight. The membranes were incubated for 1 h at room 

temperature with primary antibodies against UCHL1 (rabbit polyclonal antibody, 

Biogenesis, NH), SFN (mouse monoclonal antibody; Abcam, Cambridge, MA), MARKS 

(mouse monoclonal antibody, (Abcam) and beta-actin (mouse monoclonal antibody, 

(Sigma, St. Louis, MO)) for 1hr at 1:5000 dilution in Tris-buffered saline. Membranes 

were simultaneously incubated with the mouse anti-beta actin antibody and either the 

rabbit anti-UCHL1 antibody, the mouse anti-SFN antibody or the mouse anti-MARKS 

antibody. After three washes with washing buffer (PBS containing 0.1% Tween 20), the 

membranes were incubated with the appropriate secondary antibody (highly cross 

absorbed HRP-conjugated goat anti mouse and/or highly cross absorbed HRP-conjugated 

goat anti rabbit; Abcam) for 1hr at 1:2000 dilution.  Immunodetection was accomplished 

by enhanced chemiluminescence (Amersham Biosciences) followed by autoradiography 

on Hyperfilm MP (Amersham Biosciences). 

2.4 Results and Discussion 

2.4.1 cIEF Performance 
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 20ug of whole cell lysate was extracted from MDAH-2774 and TOV-112D 

followed by trypsin digestion. Each aliquot of tryptic peptides (~5ug) was then loaded to 

cIEF separation. About 40 fractions were collected per run and each fraction was further 

subjected to the second dimensional separation coupled with nanoESI-ion trap. We have 

repeated this process three times for each cell line sample. 

 The theoretical pI value for each identified peptide within each fraction was 

calculated after database searching. The pI distribution plot from the second run of 

MDAH-2774 is shown in Figure 2.3. As expected, the pI trend follows a non-perfect 

linear velocity. Peptides with pI in the region 3.5 to 8 tend to show improved separation 

performance compared to basic peptides with pI from 8 to 10. Peptides with pI above 10 

or below 3 are not expected to be resolved as they fall outside the pH range of the 

ampholytes (pH 3-10) used in these experiments. Overall, cIEF exhibits high separation 

resolution with little overlap of the same peptides identified between adjacent fractions.  

 An important issue here is the use of offline collection of cIEF fractions coupled 

to nano-RPLC. With the use of on-line cIEF coupled to nano-RPLC one can directly load 

each fraction to a nano RP-column by sacrificing the separation resolution due to the 

transfer of cIEF fractions to the 2nd dimension from the increased back pressure and dead 

volume.  In the offline collection method, the sheath-flow eluting from the coaxial tubing 

was adjusted flush with the exit of the capillary in order to eliminate back pressure and 

dead volume as shown in Figure 2.2. Compared to the online integration of cIEF/nano-

RPLC, the offline collection mode does not degrade the cIEF separation, significantly 

reducing the mixing of separated peptides during the transfer process. This is also central 

for precise quantification by spectral counting in this work. 
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2.4.2 Proteomic Profiling 

2.4.2.1 Number of proteins identified 

 MS/MS spectra were searched against the UniProt database using SEQUEST 

software and search results were then validated using the Peptide Prophet program. 

Peptide Prophet provides an empirical statistical model that estimates the accuracy of 

peptide identifications made by SEQUEST. For each tandem mass spectrum, Peptide 

Prophet determines the probability that the spectrum is correctly assigned to a peptide 

based upon its SEQUEST scores. A second program, Protein Prophet was subsequently 

used to group peptides by their corresponding proteins to compute probabilities that those 

proteins were present in the original sample. A stringent cutoff of 0.95 was used to filter 

all the SEQUEST results based on Protein Prophet’s estimate of error rate. For each cell 

line, we have repeated the same experimental procedure and combined the results from 

all three runs instead of selecting only the overlapping proteins. This is done since some 

proteins can only be identified in a single run of a sample due to the random sampling 

nature of tandem MS. The Venn diagram in Figure 2.4a summarizes the intersection of 

proteins identified from all three runs of MDAH-2774. In the first run of MDAH-2774, 

656 distinct proteins were identified from 25 fractions. 1181 and 1095 distinct proteins 

were identified in the second run and the third run of MDAH-2774, respectively, when 

we increased the fractionation number to approximately 40. The total number of proteins 

from the combined list is 1749 for MDAH-2774 and 1955 for TOV-112D with an overlap 

of 1092 as shown in Figure 2.4b.  

2.4.2.2 Cellular Localization 
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 Each identified protein was assigned a cellular localization based on information 

from the Swiss-Prot, Entrez Gene, and Genome Ontology (GO) databases. Figure 2.5 

shows the cellular distribution of 1749 identified proteins from MDAH-2774 and 1092 

identified proteins from TOV-112D. The majority are cytoplasmic and nuclear proteins 

for both of these two cell lines. Membrane proteins only occupy 6% of each total 

proteome, which is not surprising since the protein extraction method used in this study is 

not optimized for hydrophobic proteins. 

2.4.3 Label-free Quantitation 

Detecting protein quantity and the changes in this quantity between various stages or 

different samples is central to understanding the molecular process of the cell. We used 

the spectral count as the measurement of relative protein abundance because it has been 

shown to accurately reflect relative protein abundance with a linear correlation of over 

two orders of magnitude of dynamic range [15]. Spectral count was assigned to each 

identified protein followed by normalization and log transformation. The signal 

distribution in Figure 2.6a shows that the ratio of protein expression level between 

MDAH-2774 and TOV-112D follows a symmetric distribution. These two cell lines have 

approximately an equal number of proteins that are up-regulated or down-regulated when 

compared to each other. Only proteins with fold change larger than 2 between MDAH-

2774 and TOV-112D, which is equal to 1 in log2 scale, are shown in Figure 2.6a and 

were used for further comparative analysis. About two thirds of the identified proteins 

fall into the column with fold change range between 2 to 4. The rest of proteins fall into a 

fold change from 4 to 32, with a few exceptions over 2 orders of magnitude. The 
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distribution of q-values for all proteins regardless of the expression fold change is also 

plotted in Figure 2.6b.   

Pearson Correlation Analyses have also been applied to assess the reproducibility and 

quality of the quantitative data. The first run of MDAH termed MDAH1 and the first run 

of TOV termed TOV1 are slightly experimentally different than the rest of runs in terms 

of the number of fractionations in the cIEF separation step. It would therefore make more 

sense to evaluate the reproducibility between (MDAH2 and MDAH3), (TOV2 and 

TOV3), which results in a moderate to high Pearson Correlation Coefficient of 0.75 and 

0.85. Pearson Correlation Analyses have also been applied to any of the two runs from 

two distinct cell line samples. Results are summarized in Table 2.1.  

Table 2.2 lists the top10 most abundant proteins in MDAH-2774 and in TOV-112D 

and the top10 most differentially expressed proteins based on the ratio of their spectral 

count from MDAH-2774 over TOV-112D. From the quantitation list, we observed that 

the most abundant proteins from both of these two cell lines are proteins related to 

structural elements like vimentin, actin and tubulin, as well as chaperone proteins and 

members of the heat shock protein family. Proteins that are most differentially expressed 

between these two cell lines cover a wide range of molecular functions and associations 

with different diseases. For example, collagen3 alpha1 is a structural constituent of 

intracellular matrix.  Tubulin beta4 is the major constituent of the microtubules. They 

have both been shown to be associated with epithelial ovarian cancer. Stratifin, a protein 

kinase C inhibitor, is involved in regulation of progression through the cell cycle and has 

been shown to be associated with breast cancer and prostate cancer. Eukaryotic 

translation elongation factor 1 alpha 2 has been shown to be associated with breast cancer. 
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Myristoylated alanine-rich protein kinase C substrate has been shown to be associated 

with endometriosis.  

Other differentially expressed proteins that are not shown in this table also have 

important implications on the mechanisms of ovarian endometrioid adenocarcinoma 

(OEA). For example, beta-catenin (CTNNB1), a critical component of the Wnt signaling 

pathway, was found to be over-expressed 4.2-fold in TOV-112D as compared to MDAH-

2774 based on our spectral count data. This compares favorably with previously reported 

data by Wu et al. in which CTNNB1 was expressed 4.4-fold in TOV-112D over MDAH-

2774 from the CTNNB1/TCF transcription reporter assay [5]. Although CTNNB1/TCF 

transcriptional activity in MDAH-2774 is modest compared with TOV-112D, it is known 

to be present at elevated levels in both these two cell lines compared to other ovarian cell 

lines leading to constitutive activation of the Wnt signaling pathway. Notably, the 

CTNNB1 missense mutation was detected in TOV-112D by PCR sequencing [5]. It has a 

mutation in its NH2-terminal regulatory domain, thereby rendering the mutant protein 

resistant to degradation thus resulting in a higher CTNNB1 level in TOV-112D than in 

MDAH-2774.  

 The most significant drawback of spectral counting is that it is more likely to be 

influenced by the acquisition program of the mass spectrometer compared to other label 

free comparative quantitation methods such as peptide ion intensity-based quantification. 

High abundance peptides can mask low abundant peptides if the data dependent MS/MS 

acquisition exclusion list is too small. If the exclusion list is too large, the spectral count 

can become rapidly saturated, resulting in reduced sensitivity. We have optimized the 
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conditions in this case by extensive fractionation and setting the exclusion list time to 30 

sec.  

2.4.4 Comparison with Previously Reported Proteins 

 The proteome of both MDAH-2774 and TOV-112D cell lines have been 

previously analyzed by different methods. In the first study, a 2D all liquid phase 

(Rotofor IEF nonporous silica (NPS) RP-HPLC) separation method was used combined 

with ESI-TOF-MS and MALDI-MS/MS to compare the proteome profile of cultured 

ovarian cancer cell lines[8]. In this study, 161 unique proteins from MDAH-2774 were 

identified from five fractions with pH range from 5.8 to 8.3 by using PMF and peptide 

sequencing analysis after applying a 0.95 probability from the Mascot Search Engine. 

Around 70% of the proteins identified in the first study were also observed in the current 

study, including some important cancer-associated proteins such as the Oncoprotein 

18/stathmin, ezrin and p53 protein. Oncoprotein 18/stathmin, a conserved cytosolic 

phosphoprotein that regulates microtubule dynamics, was identified in two of the three 

runs of the MDAH-2774 cell line. It was previously reported that over-expression of 

OP18 is associated with a variety of human cancers, including breast cancer and lung 

cancer[19,20]. Ezrin is a member of the ezrin/radixin /moesin family of membrane-axin 

cross-linking proteins that also transduces signals from growth factors. Previous studies 

have shown frequent ezrin over-expression in ovarian carcinomas, particularly in 

metastatic lesions[21]. Mutant P53 is also known to be over-expressed in MDAH-

2774[22].  

 In another publication [9], the proteome profiling of TOV-112D has been 

examined by two complementary proteomic approaches, two-dimensional gel 
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electrophoresis (2D PAGE) protein separation coupled to MALDI-TOF/MS and SDS-

PAGE coupled to LC-MS/MS. 172 proteins were identified from 2D PAGE and a total of 

589 proteins were identified from SDS-PAGE LC-MS/MS after applying a 0.9 

probability cutoff by Protein Prophet, of which 436 proteins are also found in the current 

study. Relatively high expression of stress proteins like HSP90 and HSP71 were 

observed when compared to other proteins in both studies, as well as in numerous 

malignant tumors [23]. Two forms of aldehyde dehydrogenase1 which have previously 

been shown to be over-expressed in aggressive EOC versus non-aggressive EOC or 

normal ovarian surface epithelia cells at the RNA level were also observed in both 

studies[24]. Proteins that have been previously proposed as biomarkers or targets for 

diagnostic studies of invasive ovarian cancer because of their over-expression in invasive 

carcinomas as compared with benign tumors have been identified in previous studies[25] 

including FK506-binding protein 4 and several reported differentially expressed proteins 

such as proliferating cell nuclear antigen (PCNA); leukemia-associated phosphoprotein 

(stathmin); glutathione S-transferase π (GST π); triose-phosphate isomerase (TPI) and 

tumor metastatic process-associated protein (Nm23), which have been the subject of 

extensive investigation in ovarian cancer. In addition, Cytokeratin 18 and Cytokeratin 8 

reported as biomarkers by Alaiya et al. [26]were also identified in our study, but not in 

the work of reference [9].  

 Overall, more than 70% of the proteins identified in previous work [8,9] were also 

found in our study when comparing our proteomic profiling results to previously reported 

data. Coupling of off-line cIEF with online nano-RPLC and nano-ESI-LTQ in our study 
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has enabled a more comprehensive proteomic profiling of differentially expressed 

proteins between MDAH-2774 and TOV-112D.  

2.4.5 Ingenuity Pathway Analysis 

2.4.5.1 Qualitative Analysis 

 The 15 most variant canonical signaling pathways between these two cell lines 

were generated by IPA and are shown in Figure 2.7 with a threshold p-value<0.1 

indicated. The length of the bar only indicates that the differentially expressed proteins 

are related to this pathway, but is by no means indicative of the pathway being either up-

regulated or down-regulated. It is possible that the overall activity of a pathway is up-

regulated or down-regulated, but it is not sufficient to draw a conclusion of the direction 

of change based on the data forming network alone. It is shown that MDAH-2774 and 

TOV-112D have different levels of association with different signaling pathways. For 

example, PI3K/AKT signaling was found to be more significant in MDAH-2774 than in 

TOV-112D from this figure. Previous studies have shown that frequent activation and 

over-expression of PI3K are associated with ovarian carcinoma[27]. Specifically, 

amplification of the catalytic subunit alpha of PI3K (PIK3CA) is detected in most ovarian 

cancer cell lines and primary tumors, as well as the somatic mutations in the gene 

encoding the p85α regulatory subunit of PI3K (PIK3R1) which leads to constitutive 

activation of PI3K. PIK3R1 was identified from MDAH-2774 but not in TOV-112D in 

this study, implying that PI3K/Akt signaling up-regulation is potentially more activated 

in MDAH-2774 than TOV-112D.  

 It has also been shown that estrogen signaling was found to have a stronger 

connection with TOV-112D than MDAH-2774 from our IPA analysis. The estrogen 
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receptor (ER) was found to be over-expressed in most ovarian cancers and anti-estrogen 

drugs have been used to inhibit the growth of ER positive epithelia ovarian cancer cells, 

implying a strong connection between ER signaling and the tumor, but little is known 

about the detailed mechanism[28]. The stronger connection with ER signaling in TOV-

112D is probably due to the activation of K-ras which has been detected in TOV-112D 

but not in MDAH-2774 according to our analysis. K-ras is known to be present as the 

wild type in TOV-112D and mutated in MDAH-2774. Active K-ras can activate the ER 

through Erk-mediated ER phosphorylation and enhance the steady level of ER. Therefore, 

ER signaling may turn out to be more pronounced in TOV-112D than MDAH-2774. Also, 

VEGF and chemokine signaling, which are both related to metastasis, were both shown 

to be more significant in TOV-112D than MDAH-2774. Other pathways such as insulin-

like growth factor-1 (IGF-1) signaling, ERK/MAPK signaling, integrin signaling, cAMP-

mediated signaling have all been previously reported to be involved in ovarian cancer[28].  

 

2.4.5.2 Quantitative Analysis 

 In order to gain further insight into the dynamic changes of the cell state between 

these two cell lines at the molecular level, we have also sought to examine the 

differentially expressed components of these pathways in depth. For example, the 

detailed signaling cascade of PI3K/AKT is depicted in Figure 2.8. By incorporating the 

normalized spectral count results, we have been able to calculate the relative expression 

level of identified proteins under this pathway in addition to detecting their presence or 

absence.  
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 The major network, which is comprised of 34 identified differentially expressed 

proteins and two imported from IPKB, is displayed in Figure 2.9 with a p-value of <10-49. 

The major functions extracted from this network are related to cancer, reproductive 

system disease, and skeletal and muscular disease. P53 is the hub of this network, 

implying that the differential expression level of P53 in these two cell lines is one of the 

major driving forces for their differentiation in tumor growth.     

 Pathway analyses of the qualitative data and the quantitative data partially 

coincide with each other by using IPA. Qualitative data represents a group of proteins 

with enriched difference between MDAH-2774 and TOV-112D, as they are only 

detectable in either of these two cell lines. Quantitative data consists of proteins that are 

detected in both of these two cell lines with a fold change larger than two in addition to 

those detected in only one of these two cell lines. Analysis based on qualitative data alone 

is simple to handle, meanwhile it is biased as it excludes the information containing 

dynamic change in protein abundance whereas quantitative analysis is more 

comprehensive. The combination of qualitative data and quantitative data is based on the 

assumption that the spectral count of the protein detected in only one sample is assigned 

to 0 in the other one. However, we have observed a decrease of sensitivity induced by 

replacing any missing values with zero. After multiple testing corrections, fold-changes 

of some proteins between MDAH and TOV are decreased and the q-values are increased, 

which suggests global signal suppression by this replacement method. One of the 

explanations could be these missing values are not truly zero, simply because we can not 

detect them by the current technique. This is especially the case for low abundance 

peptides which could be masked by their co-eluting high abundance peptides. In the 
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future, target proteomics method (e.g. multiple reaction monitoring methods) will be 

adopted to verify important proteins. 

2.4.6 Western Blot Validation 

 It is becoming increasingly important to validate the proteome profiling results 

using alternative technologies. In this study, we used one-dimensional western blot 

analyses to confirm some of the differential expression results inferred by spectral 

counting. Three proteins were selected from Table 2.1: UCHL1, Stratifin and MARKS. 

As can be seen from Figure 2.10, the intensities from these three proteins correlate well 

with the spectral counting results shown in the left panel. 

 

2.5 Conclusions 

 Proteomic profiles from two ovarian endometrioid derived cell lines with different 

genetic mutations have been studied using a shotgun proteomic approach. This involved 

whole lysate digestion by trypsin with extensive fractionation in the first dimension using 

cIEF based upon a pH-based separation followed by capillary RP-HPLC. On-line 

analysis was performed using tandem mass spectrometry acquired by a linear ion trap 

mass spectrometer. A large number of proteins were identified after filtering through the 

Peptide Prophet/Protein Prophet Trans Proteomic pipeline. Differentially expressed 

proteins were quantitated using label free methods and studied by Ingenuity Pathway 

Analysis (IPA) to reveal the association with important biological functions. It was 

shown that some important signaling pathways may be highly associated with one of the 

two cell lines. The PI3K/AKT pathway was found to be significantly predominant in 

MDAH-2774 but not in TOV-112D. The p53 pathway is shown by network analysis to 
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be important in both cell lines but the network in MDAH-2774 is a more compact one 

centered on p53 while the network for TOV-112D is more scattered and composed of 

small networks with ATM, Jnk and GLI1 in the center. The fact that p53 is an important 

hub of this network implies that this pathway is a major driving force for differentiation 

and growth. Other pathways such as estrogen signaling were found to have a stronger 

connection to TOV-112D than MDAH-2774 and activation of K-ras has been detected in 

TOV-112D but not in MDAH-2774. Thus, the method described can define the important 

pathways involved in cancer development and how it may differ between samples. This 

strategy may be important for biomarker discovery and may lead to development of 

candidates for drug treatment of disease. 
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Table 2.1: Top10 Expression molecules and top10 differentially expression molecules. 
The expression values for top10 expression proteins in MDAH-2774 and TOV-112D are 
normalized mean spectral counts across different runs and are shown in log2 scale. The 
expression values for top10 differentially expressed proteins are normalized spectral 
count ratio in log2 scale. Q-value indicates the significance of difference from multiple 
test correction. 
 
 

 Protein  
Accession  
Number 

Gene  
Name  

Exp.Valu
e 
(log) 

qv-value Description 

 
 
 
 
 
Top10 
Expression  
Molecules in 
MDAH-2774 

P60709 ACTB 8.1  actin, beta 

P08670 VIM 8.04  vimentin 

P38646 HSPA9 7.86  heat shock 70kDaprotein9 (mortalin)    

P68032 ACTC1 7.84  actin,alpha, cardiac muscle1 

P11142 HSPA8 7.75  heat shock 70kDa protein8  

P62736 ACTA2 7.74  actin, alpha2, smooth muscle,  

P10809 HSPD1 7.67  heat shock 60KDa protein1 (chaperonin) 

P043350 TUBB4 7.44  tublin, beta4 

P11021 HSPA5 7.43  heat shock 70KDa protein5  (glucose-regulated 
protein,78kD) 

P68104 EEF1A1 7.39  eukaryotic translation 
elongation factor 1 alpha 1) 

 
 
 
 
 
Top10 
Expression 
Molecules in 

T  TOV-112D 

P08670 VIM 10.67  vimentin 

P07737 PFN1 8.52  profilin1 

P15531 NME1 8.3  non-metastatic cells 1 

P60709 ACTB 8.2  actin, beta 

P22392 NME2 8.15  non-metastatic cells 2 

P11142 HSPA8 8.03  heat shock 70kDa protein8  

P68104 EEF1A1 7.9  eukaryotic translation 
elongation factor 1 alpha 1) 

P04083 ANXA1 7.81  annexin A1 

P02461 COL3A1 7.78  collagen, type3, alpha1 

P61978 HNRPK 7.65  heterogeneous nulear ribonucleoproteinK                  
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Table 2.2: Molecules in the top1 network of MDAH-2774 and TOV-112D 

Analysis Molecules in the network Score Top Functions 

MDAH-
2774 

BANF1,CIRH1A,Ck2,CKAP2 (includes EG:26586),CSNK2A2, 
CXXC1,DNA-directedRNApolymerase,F11R,FAM3C,GNL3, 
HIST1H1C,HIST1H1D,MTDH,PDRG1,PLXNB2,POLR1C,POLR2B, 
POLR3F,POLR3G,PRIM2,RBBP5,S100A16,SAE1,SARS,SUB1, 
TCOF1 (includesEG:6949),TEP1,TMED7,Top2,TP53, 
TUBB4,UBE1L2,UBE2I,UBTF,UPP1 

-49 

Cell Cycle,
Cellular 
Assembly 
And 
organization, 
DNA 
Replication, 
Recombination 
and Repair

TOV-
112D 

14-3-3,AOF2,ATM,BNC1,Calcineurin protein(s),
CD72,CDC25A,CTBP1,DCTN1,DCX,GATA5(includesEG:140628), 
GLI1,GLI2,GMFG,GSTM2,H2AFX,HDAC4,HMGA2,Jnk,KRT15, 
MAP3K3,MAP3K5,MRE11A,NEK2,PKD1,PTHR1,REM1,RFC2, 
RFC4,RFC5,RFXANK,RPA1,SKI,TP53BP1,ZEB2

-45 Cancer, Cell 
Cycle, DNA 
Replication, 
Recombination 
and Repair  
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Figure 2.1a: Experimental Flowchart 
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Figure 2.1b: Data Processing Strategy 

 
 

 
 
 
 
 
 
 
 
 
 
 

 
 
 

 

Database Searching: SEQUEST 

TPP Filtering: 95% of protein probability 

parsing out spectral  
count from TPP 

Combining and normalizing  
three replicates for each cell line

 
 

Calculating the ratio for each protein:  
Spectral count of proteinA in MDAH 
Spectral count of proteinA in TOV 

Adjusting the significance level  
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>2-fold change and qv<0.3 Quantitative Pathway Analysis 

Qualitative Pathway Analysis  
by IPA and GengoMetacore 
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Figure 2.2 cIEF-autocollection instrument layout 
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Figure 2.3: Theoretical pI distribution plot of the second run of MDAH-2774. 
Fraction number shown in the X-axis is plotted against the average of peptides pI 
value within each fraction shown in the Y-axis. 
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Figure 2.4: Venn diagram of the number of proteins identified from: all three runs of 
MDAH-2774-2774(2.4a); MDAH-2774-2774 and TOV-112D-112D (2.4b) with a 
minimum protein probability of 0.95 as given by ProteinProphetTM. 
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Figure 2.5: Cellular Distribution of identified proteins from MDAH-2774 and 
TOV-112D 
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Figure 2.6: Distribution of the protein abundance ratio between MDAH-2774 and 
TOV-112D on log2 scale. 828 differentially expressed proteins with fold changes 
larger than 2 based on normalized spectral count data were used to generate this 
histogram. Horizontal axis shows the ratio of the relative abundance between 
filtered proteins from MDAH and TOV on log2 scale. Vertical axis shows the 
number of proteins within each column.  
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Figure 2.7: Comparison of canonical signaling pathways between MDAH-2774 
and TOV-112D. Only the 14 most different pathways are shown in the Figure, as 
ranked by the significance in MDAH-2774. The vertical line indicates a threshold 
of p<0.1. 

 

Threshold: p<0.1 
T

hreshold: p<0.1 
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Figure 2.8: Signaling cascade of PI3K/AKT pathway. Green nodes represent 
over-expression in MDAH-2774 and red nodes represent over-expression in 
TOV-112D. Plain nodes are imported from IPKB. This figure has been manually 
modified from integrative analysis by adding some proteins which were identified 
from only one cell line but did not meet the threshold of integrative analysis.  
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Figure 2.9: Top connectivity network from integrative analysis. Red and green 
nodes represent proteins that are identified to be over-expressed in MDAH-2774 
and TOV-112D respectively. Darker color indicates larger fold-change. The 
detailed description of these molecules and their relative expression values can be 
found from supplemental material.  
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Figure 2.10: Western Results of UCHL1(a), Stratifin(1433-sigma)(b) and MARKS(c). 
Expression values are normalized spectral count ratio in log2 scale. Positive value 
indicates over-expression in MDAH-2774 and negative value indicates over-expression 
in TOV-112D. Band shown on 37KD is Beta-actin which was used as a control. 
 

Figure 2.10a: Western Results of UCHL1 

  

 

Figure 2.10b: Western Results of Stratifin 

                 

 

Figure 2.10c: Western Results of MARKS 

                   

 
 

Protein 
Accession  
Number 

Gene Name 
 

Exp.Value(log) 
 

qv-value 
 

P09936 UCHL1 -6.77 0 

Protein 
Accession  
Number 

Gene Name 
 

Exp.Value(log) 
 

qv-value 
 

P31947 SFN 6.56 0 

Protein 
Accession  
Number 

Gene Name 
 

Exp.Value(log) 
 

qv-value 
 

P29966 MARKS -5.24 0.01 

TOV MDA
43KD 

25KD 

43KD 

TOV MDAH 

75KD 

MDAH TOV 
43KD 

25KD 
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CHAPTER 3 

QUANTITATIVE PROTEOMIC PROFILING STUDIES OF PANCREATIC 

CANCER STEM CELLS 

3.1 Abstract 

Analyzing subpopulations of tumor cells in tissue is a challenging subject in proteomic 

studies. Pancreatic cancer stem cells (CSCs) are such a group of cells that only constitute 

0.2-0.8% of the total tumor cells but have been found to be the origin of pancreatic cancer 

carcinogenesis and metastasis. Global proteome profiling of pancreatic CSCs from 

xenograft tumors in mice is a promising way to unveil the molecular machinery 

underlying the signaling pathways. However, the extremely low availability of pancreatic 

tissue CSCs (around 10,000 cells per xenograft tumor or patient sample) has limited the 

utilization of currently standard proteomic approaches which do not work effectively 

with such a small amount of material. Herein, we describe the profiling of the proteome 

of pancreatic CSCs using a capillary scale shotgun technique by coupling offline 

capillary isoelectric focusing(cIEF) with nano reversed phase liquid 

chromatography(RPLC) followed by spectral counting peptide quantification. A whole 

cell lysate from 10,000 cells which corresponds to ~1ug protein material is equally 

divided for three repeated cIEF separations where around 300ng peptide material is used 

in each run.  In comparison with a non-tumorigenic tumor cell sample, among 1159 

distinct proteins identified with FDR less than 0.2%, 169 differentially expressed proteins 

are identified after multiple testing corrections where 24% of the proteins are upregulated 



54 
 

in the CSCs group. Ingenuity Pathway analysis of these differential expression signatures 

further suggests significant involvement of signaling pathways related to apoptosis, cell 

proliferation, inflammation and metastasis. 

3.2 Introduction 

            Pancreatic cancer has the worst prognosis of any major malignancy and is 

currently ranked the fourth leading cause of cancer-related mortality with a five-year 

survival rate less than 5%. Delayed diagnosis, relative chemotherapy and radiation 

resistance and an intrinsic biological aggressiveness all contribute to the abysmal 

prognosis[1]. Attempts to better understand the molecular characteristics of pancreatic 

adenocarcinoma have focused on studying the gene and protein expression profiling of 

pancreatic cancer compared to either normal pancreas or pancreatitis. However, these 

studies have not accounted for the heterogeneity of the tumor cells, in particular, the 

existence of a small set of distinct cells termed cancer stem cells which are responsible 

for tumor initiation and propagation.  

 Cancer stem cells have been identified in pancreatic cancer and several other 

tumor types including colon, prostate, and brain. In Li et al [2], a subpopulation of 

pancreatic tumor cells with cell surface markers CD44+CD24+ESA+ was isolated and 

functional studies were conducted to verify that this subpopulation possessed the ability 

of self-renewal and producing differentiated progeny. New strategies addressing this 

disease with a paradigm shift in the mechanism of the therapeutic resistance and 

recurrence of pancreatic tumor can be developed with an improved understanding of the 

cellular signaling pathways in CSCs at the protein level. The xenograft model of primary 

human pancreatic cancer represents a significant advance for the study of pancreatic 
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cancer. Animal models using cancer cell lines often do not recapitulate human diseases 

accurately, where the biological characteristics and histology of tumor-derived human 

pancreatic cancer tissue are preserved in the xenograft. 

 The major obstacle to the study of global proteome expression profiling of the 

CSCs is the extremely small number of cancer stem cells available per study per tumor 

sample. Due to the unique features of pancreatic tissue and low percentage of pancreatic 

cancer stem cells (0.2% to 0.8%), from a single human tumor xenografted in a mouse, we 

can typically obtain 10k antibody labeled cancer stem cells using flow cytometry, which 

corresponds to around 1ug of total protein. Current publications of proteomic studies 

using capillary scale shotgun approaches are based on the analysis of entire tissue 

sections or cell lines instead of a subpopulation of primary human cells[3]. The amount 

of material consumed in a proteomic study using shotgun approaches such as MudPIT or 

offline 2D-LC/MS/MS is higher than 20ug[4-6]. Some studies targeting a certain 

subpopulation of cells have restricted the analysis to one dimensional separation before 

mass spectrometry[7, 8] to avoid the sample loss in a 2nd dimension of separation, though 

limiting the ability of identifying proteins present in lower abundance. 

 In the present study, we employed a PPS facilitated lysis procedure combined 

with a high resolution two-dimensional separation to accommodate the small sample size 

of this study. After cell lysis, protein extracts were digested and equally divided into three 

aliquots. Each aliquot of around 300ng total material was then introduced into a two-

dimensional separation by cIEF and nano-RPLC followed by tandem mass spectrometry 

analysis to identify the proteins present. A label-free protein quantification using spectral 

counts was employed to measure the protein fold changes between the CSCs group and 
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the bulk tumor group. Ultimately, the signature proteins detected by the method were 

then uploaded to Ingenuity Pathway Analysis (IPA) for functional analysis to identify 

signaling pathways and protein-protein interaction networks that were significant in 

CSCs compared to bulk tumor cells. 

 

3.3 Materials and Methods 

3.3.1 Starting Material Preparation 

a. Primary tumor specimen implantation.  
 
 Samples of human pancreatic adenocarcinomas were obtained within 30 min 

following surgical resection according to Institutional Review Board–approved 

guidelines. Tumors were suspended in sterile RPMI 1640 and mechanically dissociated 

using scissors and then minced with a sterile scalpel blade over ice to yield two 2–mm 

pieces. The tumor pieces were washed with serum-free PBS before implantation. Eight-

week-old male NOD/SCID mice were anesthetized using an i.p. injection of 100 mg/kg 

ketamine and 5 mg/kg xylazine. A 5-mm incision was then made in the skin overlying the 

mid-abdomen, and three pieces of tumor were implanted subcutaneously. The skin 

incision was closed with absorbable suture. The mice were monitored weekly for tumor 

growth for 16 weeks.  

b. Preparation of single-cell suspensions of tumor cells.  
 
 Before digestion with collagenase, low passage primary human pancreatic 

xenograft tumors from multiple mice were cut up into small pieces with scissors and then 

minced completely using sterile scalpel blades. To obtain single-cell suspensions, the 

resultant minced tumor pieces were mixed with ultrapure collagenase IV (Worthington 
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Biochemicals, Freehold, NJ) in medium 199 (200 units of collagenase per ml) and 

allowed to incubate at 37 C for 1.5 to 2 hrs for enzymatic dissociation. The specimens 

were further mechanically dissociated every 15 to 20 min by pipetting with a 10-ml 

pipette. At the end of the incubation, cells were filtered through a 40-Am nylon mesh and 

washed with HBSS/20% fetal bovine serum (FBS) and then washed twice with HBSS.  

c. Flow cytometry. 

  Dissociated cells were counted and transferred to a 5-mL tube, washed twice with 

HBSS containing 2% heat-inactivated FBS, and resuspended in HBSS with 2% FBS at a 

concentration of 106 per 100 ul. Sandoglobin solution (1 mg/ml) was then added to the 

sample at a dilution of 1:20 and the sample was incubated on ice for 20 min. The sample 

was then washed twice with HBSS/2% FBS and resuspended in HBSS/2% FBS. 

Antibodies were added and incubated for 20 min on ice, and the sample was washed 

twice with HBSS/2% FBS. When needed, a secondary antibody was added by 

resuspending the cells in HBSS/2%FBS followed by a 20-min incubation. After another 

washing, cells were resuspended in HBSS/2% FBS containing 4,6-diamidino-2-

phenylindole (DAPI; 1 Ag/mL final concentration). The antibodies used were anti-CD44 

allophycocyanin, anti-CD24 (phycoerythrin), and anti-H2K (PharMingen, Franklin Lakes, 

NJ) as well as anti–ESA-FITC (Biomeda, Foster City, CA), each at a dilution of 1:40. In 

all experiments using human xenograft tissue, infiltrating mouse cells were eliminated by 

discarding H2K (mouse histocompatibility class I) cells during flow cytometry. Dead 

cells were eliminated by using the viability dye DAPI. Flow cytometry was done using a 

FACSAria (BD Immunocytometry Systems, Franklin Lakes, NJ). Side scatter and 



58 
 

forward scatter profiles were used to eliminate cell doublets. Cells were reanalyzed for 

purity, which typically was >97%. 

d. Material 

 10k Pancreatic cancer stem cells and 100k bulk tumor cells were obtained from 

mice xenografts after sorting by flow cytometry and gently washed three times with cold 

PBS(pH 7.4) by repetitive pipetting, followed each time by centrifugation at 1000g for 

5min at 4°C. In the third time of washing, excessive PBS was gently sucked off with 

extra caution when cell pellets were observed at the bottom of the tube. 

3.3.2 Cell lysis and Trypsin digestion 

 PPS (Protein Discovery, Knoxville, TN) powder was dissolved in 50 mM 

Ammonia Bicarbonate and was added to each tube at a final concentration of 0.2%(m/v).  

Around a 100 ul cell suspension was then vortexed and incubated at 60°C for 10min, 

followed by sonication in an ice-water bath for 2 hrs. An aliquot of 5 mM DTT was 

added and the mixture was incubated at 60°C for 30min. After cooling, 15 mM 

iodoacetamide was added and the mixture was placed in the dark at room temperature for 

30 min in order to allow the carboxymethylation reaction of cysteine residues. 50 mM 

ammonia bicarbonate was then added at a dilution ratio of 1:5 and 1:50(w/v) L-1-

tosylamido-2-phenyletyl chloromethylketone modified sequencing-grade porcine trypsin 

(Promega, Madison, WI) was added. The mixture was incubated at 37°C in a water bath 

with agitation. Formic acid (FA) was then added to make a final concentration of 2% to 

stop the proteolysis. Following termination, the acidified mixture was placed in a 37°C 

water bath again for 4 hrs to facilitate the hydrolysis and allow the cleavage of PPS. The 

acidified tryptic peptide mixture was then desalted by a peptide micro-trap (Michrom, 
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Auburn, CA) and eluted with 98% acetonitrile (ACN) and 0.3% FA, followed by 

spinning to dryness using a SpeedVac concentrator (Labconco, Kansas City) and stored 

in the -80°C freezer for future use. All chemicals were purchased from Sigma unless 

mentioned otherwise.  

3.3.3 First Dimensional Separation: cIEF 

 A Beckman CE instrument was modified for cIEF with fraction collection. A 80 

cm cIEF (100 mm id, 365 mm od) capillary was coated as previously described[10]. 

Lyophilized peptides were first reconstituted in gel buffer containing 2% ampholyte (pH 

3-10) and were injected hydrodynamically to fill the capillary.  Peptide focusing was 

performed by applying 21kv voltage to the two ends of the capillary using 0.1M 

phosphoric acid and 1mM sodium hydroxide as the anolyte and catholyte, 

respectively.  The cathodic end of the capillary was kept in a stainless steel coaxial device. 

As the current reached its plateau, the focusing was complete and the focused peptides 

were mobilized under pressure and eluted into a 96-well auto-sampler plate by a 2uL/min 

flow of catholyte solution delivered by a syringe pump. The auto-sampler plate was 

moved from well to well automatically every 2 minutes by a Beckman fraction collector.  

3.3.4 Second dimensional separation: nanoRPLC+nanoESI-MS/MS 

 When cIEF separation was completed, all cIEF runs with each containing  ~30 pI 

fractions were injected in randomized order via Paradigm auto-sampler (Michrom 

Biosciences, Auburn, CA) and loaded onto a desalting nano-trap (300 x 50mm) 

(Michrom) connected to a nano-RP column  (C18AQ, 5µm 200A, 100 x 150 

mm)(Michrom) by a Paradigm AS1 micro-pump (Michrom). The mobile phases A and B 

were composed of 0.3% FA in water and 0.3% FA in ACN, respectively. Peptides were 
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first desalted and enriched starting at 100%A with a flow rate of 50 µl/min for 5 min. The 

sample was subsequently separated by a nano-RP column with a flow rate of 0.3 µl/min 

after splitting. The linear gradient for separation was as follows: from 3% ACN to 12% 

ACN in 5 min, from 12% ACN to 40% ACN in 30min, from 40% ACN to 80% ACN in 

15 min and finally decreased from 80% ACN to 3% ACN in 10min. The resolved 

peptides were then introduced into a ThermoFinnigan linear ion trap mass spectrometer 

(LTQ) (Thermo Electron, San Jose, CA) equipped with a nano-spray ion source (Thermo 

Electron). The LTQ was operated in data dependent mode in which one cycle of 

experiments consisting of one full MS scan was followed by five pairs of zoom scans and 

MS/MS scans with dynamic exclusion set to 30 s. The capillary temperature was set at 

175°C, spray voltage was 2.8 kV, capillary voltage was 30 V and the normalized 

collision energy was 35% for the fragmentation.  

3.3.5 Database Search and Protein Identification 

 MS/MS spectra were then searched against the human UniProt FASTA database 

by TurboSEQUEST provided by Bioworks ver3.1 SR1 (Thermo-Finnigan). The 

following modification was allowed in the search: 15.99 Da shift for oxidized Met 

residues; 58.1 Da shift for carboxymethylated Cys residues. The identified peptides were 

subsequently processed through PeptideProphet and ProteinProphet incorporated in the 

trans-proteomic pipeline (TPP: http://proteinprophet.sourceforge.net/prot-software.html) 

where each protein was assigned with a probability indicating the significance level of 

the protein appearing in the original sample. In this study, we used a protein probability 

score of 0.99 as the threshold for protein identification and the FDR is below 0.2%. 
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3.3.6 Label-free Protein Quantitation and Data Transformation 

 Spectral counts were parsed out of TPP xml files after processing the SEQUEST 

data and used as a surrogate measure of protein abundance in our analysis. Global 

normalization was used to reduce technical bias when acquiring spectral count data from 

different runs between and across samples. The bias may come from instrument error or 

the inherent random sampling nature of the LTQ. Three replicated datasets for the CSCs 

group and four replicated datasets for the tumor group (denoted as CSC1, CSC2, CSC3 

and tumor1, tumor2, tumor3, tumor4), containing proteins with 99% confidence or above, 

together with their spectral counts, were generated.  The data were consolidated to form a 

matrix with seven columns; missing values were replaced with zero. To eliminate the 

discontinuity observed in simple count ratios when a protein shows spectral count 0, raw 

data were transformed according to Old et al[10], as originally proposed by Beissbarth et 

al[25] for serial analysis of gene expression (SAGE).  The transformation uses the log2 

scale quantity 

                                                 N= log2[(n+f)/(t-n+f)]                                                (Eq.1) 

for each protein, where n is the raw (globally normalized) spectral count value; t is the 

total number of spectra over all proteins in each dataset; and f is a correction factor. 

Larger values of f shrink the results for low spectral count proteins toward zero, thereby 

eliminating the discontinuity at zero and down weighting the results with greatest 

measurement error (i.e. the proteins with low spectral counts).  Several procedures for 

setting the constant term f have been proposed; we devised a new approach that is 

suitable for experiments with technical replicates.  We considered the following criterion:  

                                           R(f) = Σ cor(between replicates)                                      (Eq.2) 
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Correction factor f is defined to be the value that maximizes the correlation given in (Eq. 

2).  This maximizing effect yielded the value f=3. A schematic view of this 

computational process is depicted in Figure 3.1(b).   

            After transformation, statistical significance levels between the CSCs group and 

the tumor group were then determined by student's t-test followed by multiple testing 

adjustment using FDR test. Differentially expressed proteins used for subsequent 

pathway analysis were declared at the level of q-value < 0.1. This FDR test was 

performed using R-package (http://cran.r-project.org/web/packages/fdrtool/index.html). 

Fold change (FC) is computed from transformed data using the mean of spectral counts 

from all replicates within a group: FC = (mean CSCs group) – (mean tumor group), 

where a positive sign indicates over expression in the CSCs group and a negative sign 

indicates over expression in the tumor group. 

3.3.7 Ingenuity Pathway Analysis (IPA) 

 To obtain detailed molecular information and infer significant signaling pathways 

from our global profiling results, differentially expressed proteins from the CSCs group 

and tumor group were uploaded to IPA. The uploaded Excel spreadsheet file contains the 

relevant proteins with their fold change, q-value and corresponding primary accession 

number. The significance values for canonical pathways were calculated using the right-

tailed Fisher’s Exact Test by comparing the number of proteins that participate in a given 

function or pathway relative to the total number of occurrences of these proteins in all 

functional/pathway annotations stored in the ingenuity pathway knowledge base (IPKB). 

 

3.4 Results and Discussion 
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3.4.1 Evaluation of cIEF+RPLC platform 

 Capillary isoelectric focusing is a powerful 1st dimensional separation for 

protein/peptides because of its high resolution and orthogonal separation mechanism 

versus RP-HPLC. This pI based separation provides an optimal resolution of 0.01 pH unit, 

which indicates a peak capacity of 700 in a pH range from 3 to 10, while strong cation 

exchange only has a peak capacity of around 50. SCX also presents undesired retention 

of peptides with strong interaction with the chromatographic resin and results in poor 

sample recovery rate. In contrast, cIEF is performed in an open capillary which is usually 

neutrally coated to prevent electroosmotic flow (EOF) and absorption of samples. Thus 

cIEF usually provides a sample recovery rate of higher than 90% which is critical in 

analyzing the extremely small amount of sample in our pancreatic CSCs study.  

 The quality of the cIEF separation in terms of the resolution and reproducibility is 

essential to the accuracy of the comparative proteomic study. The theoretical pI value for 

each identified peptide within each fraction was calculated after database searching. The 

pI distribution plot from the first replicate of the CSCs group is shown in Figure 3.2(a). 

As expected, the pIs of the fractions decrease from 10 to 4 following a linear trend except 

the first 7 fractions where only a few proteins were identified. Peptides beyond the pH 

range of the ampholytes (pH 3–10) used in these experiments were not expected to be 

resolved. Overall, cIEF exhibited high separation resolution where more than 70% of the 

peptides were identified in no more than a single fraction. In addition, the off line 

collection method has the advantage of maintaining the separated peptide bands, whereas 

on line collection directly coupled to RPLC reduces the workload at the cost of 

sacrificing separation resolution and increased sample loss. The number of peptides 
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identified from the four replicate runs of the same tryptic digest from the tumor sample is 

plotted against their pI values shown in Figure 3.2(b). The distribution of the peptides 

demonstrates excellent technical reproducibility of the experiment.  

 Reproducibility is also accessed by pairwise comparison of two selected replicates 

(CSCs replicate run 1 and 2, Tumor replicate run 1 and 2) using the Pearson correlation 

coefficient. No transformation was performed at this point. Common proteins identified 

in both replicate runs were used to calculate the correlation values (R) which are 0.87 

with 95% confidence level between [0.84, 0.9] for CSC1 vs CSC2 shown in Figure 3.2(c) 

and 0.91 for tumor1 vs tumor2 shown in Figure 3.2(d) with 95% confidence level 

between [0.89, 0.93] shown in Figure 3.2(d).  

3.4.2 Spectral Counting Results and Transformation 

 Detecting relative protein quantity change between various disease classes or 

different samples is central to understanding the molecular processes of the cell. 

Currently there are two widely used but fundamentally different label-free protein 

quantification strategies: spectral counting and peak-area measurement. The latter method 

requires aligning the retention time of the chromatogram peaks to accurately locate the 

same peptide and is preferred in experiments where peptides are subject to only one-

dimensional separation before being analyzed by mass spectrometry for its accuracy, 

while the peak-area method is difficult to use with approaches containing two-

dimensional separations where the same peptide might appear in more than one 

LC/MS/MS run. Spectral counting is relatively easy to apply to two-dimensional 

separation data. We have previously reported a study using spectral counting to analyze 
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the protein expression levels in two ovarian cancer cell line samples and spectral 

counting results of selected proteins were all consistent with western blot experiments[9].  

 Different types of computational algorithms regarding the processing strategies of 

spectral counting data have been proposed by a number of groups[10-12]. Boris et al.[11] 

proposed a NSAF method to normalize and transform spectral count data based on 

protein length whereas Old et al.[10] adopted a transformation method to avoid the 

discontinuity problem which was originally used for serial analysis of gene expression. In 

the present study, spectral counts were assigned to each identified protein followed by 

global normalization by adjusting the mean of each dataset to be equal. After 

consolidating all 7 datasets into a matrix and replacing missing values with zero, we 

proceeded to identify the correction parameter f that produces the most meaningful 

abundance measurements for our experimental data.  The transformation (Eq. 1) that we 

applied has the effect of shrinking the expression scores for low spectral count proteins 

toward zero, compensating for their relatively greater uncertainty.  By maximizing R(f) 

(Eq. 2), the data was transformed in such a way that low-abundance proteins were 

appropriately, but not excessively down weighted in the analysis. The approach to 

defining f by maximizing R(f) is based on the fact that technical replicates from the same 

biological sample should be intrinsically the same. The correction factor was calculated 

to be 3 and then the whole dataset was transformed accordingly. This is similar to Old’s 

method[10] that f is adjusted according to higher correlation between expected and 

observed. The fitted transformation, shown in Figure 3.3, indicated that above 300 

expression units on the original scale, the measured data were sufficiently reliable to be 

used without adjustment; between 100 and 300 expression units on the original scale the 
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data were substantially shrunk toward zero, but still contributed to the analysis; and 

below 100 units, the data were shrunk to the degree that they have little influence in the 

analysis.  

 An important issue with any data transformation scheme that uses the class labels 

or clinical outcome information is the possibility that it may induce artifactual 

correlations between protein abundance and outcomes.   The transformation function (Eq. 

1) was monotonic, meaning that if the spectral counts of protein A were larger than those 

of protein B, this relationship would continue to hold after the transformation is applied.  

A monotonic transformation is limited in its ability to induce spurious correlations.  To 

further explore whether the transformation induced spurious correlations, we conducted a 

simulation study. We simulated spectral counts for 1000 proteins measured in two groups 

of samples, each with three replicates.  All 6,000 data values were simulated 

independently from a standard exponential distribution. We applied the procedure 

described above for a range of f values from 0 to 100, and considered the number of Z-

statistics (comparing the two groups of three samples for a given protein) that exceeded 

various thresholds (2, 2.5, and 3).  We did not observe any inflation in the number of 

significant associations for f>0 compared to f=0. Furthermore, we observed in our 

experimental data that the results were not very sensitive to the specific value of f, as 

long as it was not too close to zero. Figure 3.4(a) shows the clustering results after 

transforming by f =3. The CSCs group and the tumor group are well separated without 

introducing artificial interference.   

3.4.3 Protein Profiling Results 
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 Accepted protein identifications were obtained after applying a cutoff protein 

probability of 0.99 by TPP which ensures the FDR is below 0.2%. In addition to this 

bayes approach based FDR  method, we also tested the identification confidence by 

applying a target decoy database search on one of the tumor datasets. A 0.9 protein 

probability filter resulted in a FDR of 1.4% and a 0.99 protein probability filter further 

decreased the decoy hits to zero. A total of 763 and 1031 distinct proteins were identified 

from three CSCs replicates and four tumor replicates, respectively.  

 Each identified protein was assigned a cellular location based on information 

from IPKB. Figure 3.5(a) and Figure 3.5(b) show the cellular distribution of 763 and 

1031 identified proteins from the CSCs group and the tumor group, respectively.  The 

cellular distribution is consistent for both of these two groups:  the majorities are 

cytoplasmic and nuclear proteins; plasma membrane proteins occupy 10% of each total 

proteome, suggesting PPS has the ability to extract hydrophobic proteins. Multiple 

correcting testing (FDR) was then performed to capture the differentially expressed 

molecules and 161 out of 1159 proteins were identified by using a threshold of q-value < 

0.1. 24% of these differentially expressed proteins show up-regulation in the CSCs group 

and a few of them are related to the key signaling pathways of CSCs. For example, inter-

alpha trypsin inhibitor H3 (ITIH3) was identified in all 3 runs of the CSCs group with 

two unique peptides and an average spectral count larger than 10, while it was only 

identified in one of the tumor runs with low spectral counts. This protein associated with 

inflammatory response in local tissue[13]was previously reported to be one of the 

downstream target genes of Sonic Hedgehog (Shh), which plays a key role in signaling 

pathways that directly activate the genes involved in the self-renewal and apoptosis-
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inhibition functions of CSCs[14] . The over-expression of ITIH3 is consistent with 

previous finding of the up-regulated Shh at the mRNA level in pancreatic CSCs[2]. In 

contrast, a mitochondrial apoptosis-inducing factor (AIFM1) was down-regulated in the 

CSCs group. This protein was identified in all 4 runs of the tumor group with 5 unique 

peptides, whereas it was only identified in one of the CSCs runs. The decreased protein 

level detected in the stem cell group from our study agrees with previous reports that 

inactivation of AIFM1 renders embryonic stem cells resistant to cell death [15].  Beside 

these significantly differentially expressed proteins, some important low-abundant 

proteins were also detected although they were not found to be significantly different 

based on the FDR test. For example, NF-κβ was identified in one of the CSCs runs with 

two unique peptides but not in any of the tumor runs, as well as c-MET and CXCL5. 

Their absence in the tumor group is mainly due to their low abundance level which was 

below the detection limit, however their relative over expression in the CSCs group 

agrees with previous findings [16-20] that the elevated expressions of these proteins are 

related to the properties of CSCs.   

3.4.4 Signaling Pathway and Connectivity Network Analysis 

 A list of 169 differentially expressed proteins was uploaded into IPA for 

functional annotation and pathway analysis. The most variant and relevant canonical 

signaling pathways enriched with differentially expressed molecules between the CSCs 

group and the tumor group were generated by IPA and are ranked by significance shown 

in Figure 3.6 with a threshold of p-value < 0.1. The length of the bars indicate the 

significance of the signaling pathways to which the differentially expressed proteins are 

related. 
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 These enriched pathways can be grouped into four main categories related to the 

characteristics of cancer stem cells: resistance to apoptosis, dysregulation of cell 

proliferation, association with inflammation and metastasis. The top pathway, 

Mitochondrial Dysfunction, is related to both  apoptosis and tumorigenesis[21, 22] and a 

recent report has linked mitochondrial dysfunction to ovarian cancer stem cells[23]. 

Pathways mapped to cellular growth, proliferation and development by IKGB include 

ILK Signaling, RhoA Signaling and Integrin Signaling. CXCR4 signaling and Acute 

Phase Response signaling pathways categorized under cellular immune/inflammatory 

response are also shown to be significantly involved. The connection between 

inflammation and tumorigenesis has been recognized in many pathologic conditions 

including pancreatic cancer where some clues are suggesting that inflammation might 

induce an accelerated process of mutagenesis and mutation accumulation[1, 24]. VEGF 

signaling associated with angiogenesis is also shown to be significant.  

 To further infer the functional relevance between these differentially expressed 

molecules, we have constructed connectivity networks by IPA. The top network which 

has the highest score of 54 (p-value < 1x10-54 from Fisher Exact Test) consists of 27 

signature proteins shown in Figure 3.7. Interestingly, NF-κβ is imported as the central 

node to generate this interaction network by IPA, suggesting a potential involvement of 

this transcription factor although this molecule is not in the experimental signature 

protein list. 

3.5 Concluding Remarks 

 This work represents the first proteome profiling study on pancreatic cancer stem 

cells from xenograted tumors in mice. We overcome the difficulty of analyzing the 
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extremely small number of cancer stem cells from the xenografted tumor by using an 

ultrasensitive sample preparation procedure and cIEF as the 1st dimensional separation 

before LC/MS/MS to minimize sample loss and obtain high resolution of peptides. A 

modified transformation algorithm was also devised to handle spectral counting data with 

technical replicates in order to weight proteins with a large range of spectral counts 

appropriately in the subsequent statistical analysis. 169 proteins have been captured as 

differentially expressed signatures between the CSCs group and the bulk tumor group. 

Pathway analysis and network modeling by IPA has further revealed significantly 

involved signaling cascades relevant to the characteristics of CSCs.  

 It will be important to validate proteome profiling results using alternative 

technologies such as the Western blotting or RT-PCR. However, currently, no other 

techniques work effectively with less than 1ug of protein material. To compensate for the 

lack of validation, we increased the confidence level of protein identifications by 

adopting a more stringent threshold. We set the cutoff to a protein probability score of 

0.99 which has a FDR less than 0.2% compared to the commonly used score of 0.9 which 

gives FDR less than 1%. Moreover, multiple testing corrections are employed to control 

false positives induced by performing significance tests on a large number of proteins. 

Thus, differentially expressed proteins identified in this way are more likely to be true 

positives.  
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Figure 3.1(a): Experimental flow chart 
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Figure 3.1(b): Data Processing Strategy. Upper left matrix is the consolidated dataset. 
Lower left flowchart is the correction factor searching scheme and transformation 
algorithm.  
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Figure 3.2(a): Theoretical pI distribution plot of the first run of CSC group. Fraction 
number shown in the X-axis is plotted against the average of peptides’ pI value within 
each fraction shown in the Y-axis. 
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Figure 3.2(b): Distribution of number of identified peptides from each run of tumor group 
across pI range between 3.5 to 10. X-axis shows their pI value and Y-axis shows the 
number of identified peptides. Different tumor replicate runs are represented by different 
colors.  
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Figure 3.2(c): Pearson correlation plot of all proteins detected with single or more 
spectral counts in the first and the second run of CSC group. 
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Figure 3.2(d): Pearson correlation plot of all proteins detected with single or more 
spectral counts in the first and second replicate of tumor group. 
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Figure 3.3: Monotonic plot of original data Vs transformed data. Different color and 
different shapes represent csc1, csc2, csc3, tumor1, tumor2, tumor3, tumor4, respectively. 
Y-axis represent original data and X-axis represent transformed data on log2 scale.   
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Figure 3.4: Clustering results of the CSC group and tumor group after transforming by 
f=3. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 



80 
 

 
Figure 3.5(a): Cellular Distribution of identified proteins from pooled CSC group. 

 
 
 
 
Figure 3.5(b): Cellular Distribution of identified proteins from pooled tumor group. 
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Figure 3.6: Canonical signaling pathways enriched with differentially expressed proteins 
ranked by significance. A threshold p-value < 0.1 is applied. 
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Figure 3.7: The top1 connectivity network constructed by IPA. This network only 
consists of differentially expressed proteins from experimental data. Red and green 
circles indicate overexpression and underexpression in the CSC group versus the bulk 
tumor group, respectively.  
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CHAPTER 4 

DIFFERENTIAL PROFILING STUDIES OF N-LINKED GLYCOPROTEINS IN 

GLIOBLASTOMA CANCER STEM CELLS UPON TREATMENT WITH 

GAMMA-SECRETASE INHIBITOR 

4.1 Abstract 

We have recently demonstrated that Notch pathway blockade by gamma-secretase 

inhibitor (GSI) depletes cancer stem cells (CSCs) in Glioblastoma Mutiforme (GBM) 

through reduced proliferation and induced apoptosis. However, the detailed mechanism 

by which the manipulation of Notch signal induces alterations on post-translational 

modifications such as glycosylation has not been investigated. Herein, we present a 

differential profiling work to detect the change of glycosylation pattern upon drug 

treatment in GBM CSCs. Rapid screening of differential cell surface glycan structures 

has been performed by lectin microarray on live cells followed by the detection of N-

linked glycoproteins from cell lysates using multi-lectin chromatography and label-free 

quantitative mass spectrometry analysis. A total of 51 and 52 glycoproteins were 

identified in the CSC and GSI-treated groups, respectively, filtered by a combination of 

decoy database searching and Trans-Proteomic Pipeline(TPP) processing. Although no 

significant changes were detected from the lectin microarray experiment, 7 differentially 

expressed glycoproteins with high confidence were captured after the multi-lectin column 

including key enzymes involved in glycan processing. Functional annotations of the 
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altered glycoproteins suggest a phenotype transformation of CSCs toward a less 

tumorigenic form upon GSI treatment. 

4.2 Introduction 

           The existence of cancer stem cells(CSCs) including in human brain tumors and the 

implications of promising new therapies that target this small subset of cells have been 

recently proposed[1-5,8,9]. Notch signaling has been demonstrated as one of the most 

important molecular mechanisms responsible for CSC properties and we and others have 

shown that knockdown of this pathway by gamma-secretase inhibitor (GSI) results in 

attenuated propagation potential of CSCs in GBM[6-9], which is the most aggressive 

class of brain tumors. However, little is known about the effect on the alteration of 

glycosylation upon the blockade of Notch signals. Glycoproteins play a critical role in 

cell-cell recognition events and glycosylation changes have been related to malignant 

transformation and tumor propagation. Besides the extensively studied role of 

phosphorylation cascade in Notch signaling, carbohydrate modification has also been 

shown as an essential regulation mechanism such as the modulation role of O-fucose 

glycans in Notch receptor function [10-12] and the tight correlation between N-

glycosylation and stabilization of Nicastrin which is a component of the gamma-secretase 

complex[13]. Therefore, it is important to study the changes of glycosylation patterns 

upon Notch pathway blockade by GSI in GBM in order to better understand the effects of 

drug treatment.   

 For the identification of glycoproteins, it is desirable to perform an enrichment 

step prior to downstream liquid chromatography(LC) coupled mass spectrometry(MS) 

analysis. The isolation of glycoprotein/glycopeptides is mainly implemented by 
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hydrazide chemistry[14, 15] or affinity capture based on the recognition of different 

lectins to particular sugar moieties[16] or the combination of both[17]. Lectin-based 

affinity enrichment on the protein level facilitates potentially multiple glycosylation sites 

so as to strengthen the relatively weak non-covalent bindings. In addition to the use of a 

single lectin to capture a particular form of glycan structure, multi-lectin chromatography 

using lectins with broad specificities has been applied to analyze glycomes in different 

biological samples[18-21]. In our work, we have utilized three agarose bound lectins: 

Concanavalin A(ConA), Wheat Germ Agglutinin(WGA) and Sambucus  Ambucus 

Nigra(SNA)  to produce a broad enrichment of N-linked glycoproteins simultaneously. 

Another technology for rapid screening of differential glycan structures lies in the 

development of the lectin microarray, where a large number of lectins are immobilized on 

a slide to profile the glycoproteins from cell lysates[22] or to obtain cell surface glycan 

signatures from live cells[23]. Our group has previously demonstrated the feasibility of 

coupling lectin microarrays for profiling live cells with LC-MS to identify cell surface 

glycoprotein markers[24]. 

 In the present study, we have employed different strategies to target cell surface 

glycoproteins and intracellular membrane glycoproteins separately. The profiling of 

differential cell surface glycan structures has been performed by a fluorescent-assisted 

lectin microarray with a panel of 16 lectins. A larger scale profiling of N-linked 

glycoproteins from the soluble fraction of cell lysates has been performed by coupling 

multi-lectin chromatography with a label-free quantitative MS method.  A selective list of 

differentially expressed glycoproteins has been validated by western blotting assays. The 
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functional relevance of the altered glycosylation patterns has also been inferred and 

discussed to interpret the biological implications of our findings. 

 

4.3 Materials and Methods 

4.3.1 Cell Culture and Treatment 

 GBM neurosphere cultures were maintained in Neurocult medium (Stem Cell 

Technologies, Vancouver, BC, Canada, http://www.stemcell.com) supplemented with 

epidermal growth factor (10 ng/ml) and fibroblast growth factor (10 ng/ml) as previously 

described[7, 25]. Treatment studies were performed by growing cells in Neurocult 

medium overnight and replacing the next morning with medium containing γ-secretase 

inhibitor(Compound E, EMD Chemicals, Gibbstown) dissolved in dimethyl sulfoxide 

(DMSO) at 1µM.  

4.3.2 Lectin Microarray 

 Sixteen lectins were utilized for the detection of differential cell surface glycan 

structures as previously described[24]. Briefly, each lectin was printed in three replicates 

on a SuperAmine slide (Arrayit, Sunnyvale, CA) using a piezoelectric noncontact printer 

(Nano plotter; GeSiM, GmbH, Germany) and blocked with 1% BSA in PBS (pH7.4) for 

1 hr. Fresh GBM CSCs and GSI treated cells were labeled with 10μM CFSE cell-tracing 

dye (Invitrogen, Carlsbad, CA) and incubated with lectin slides at room temperature for 

40min in darkness. After being washed with PBS for 5min, the slides were air-dried and 

scanned with a microarray scanner (Genepix 4000A; Axon). Genepix 6.0 was used to 

analyze the images.  

4.3.3 Protein Extraction 
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 Cell pellets were resuspended in 1mL of lysis buffer (1% octyl-β-D-

glucopyranoside, 150 mM NaCl and 1% protease inhibitor mixture (Sigma-Aldrich) in 20 

mM Tris-HCl, pH7.4) and homogenized with 60 strokes in a Dounce glass homogenizer 

with a tight-fitting pestle on ice. The cell lysate was the centrifuged at 40,000g for 30 min 

at 4 °C. Protein concentration from the supernatant was determined by Micro BCA™ 

Protein Assay Kit (Pierce/Thermo Scientific, Rockford).  

4.3.4 Multi-lectin Affinity Chromatography 

 A single Pierce disposable column was gravity-packed with 1.5mL of agarose-

bound ConA, WGA and SNA at 1:1:1 (v/v/v) for individual samples from each biological 

replicate. The column was first equilibrated with 10 volume of binding buffer (20 mM 

Tris-HCl, pH7.4, 150 mM NaCl, 1 mM MgCl2, 1mM CaCl2, and 1 mM MnCl2). Cell 

lysates containing 1mg proteins was diluted four times with binding buffer and passed 

through the column twice. The column was then washed with 4 volume of binding buffer 

and eluted with 4 volume of elution buffer (0.2M methyl-a-D-mannopyronoside, 0.2M N-

acetyl-glucosamine, 0.2M D-lactose and 0.5M NaCl  in 20mM Tris pH 7.4). The Eluent 

was buffer exchanged with 50mM Ammonia Bicarbonate and concentrated by Microcon 

YM-10 centrifugal filter devices (10k MWCO) at a final volume of 200µl.  

4.3.5 Online nano-RPLC and LTQ Mass Spectrometry  

 Trypsin digestion was performed by the same protocol described in our previous 

study[26] prior to online-RPLC (Paradigm MG4 micropump system, Michrom 

Biosciences Inc., Auburn, CA) connected to a LTQ mass spectrometer (Thermo Finnigan, 

San Jose, CA). Tryptic digests were reconstituted in 100µl of 5% ACN and 0.3%FA and 

introduced into a RPLC nano column (3μm x 200 Å, 0.1 mm × 150 mm, C18 AQ 
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particles, Michrom) after a desalting nano trap (300 × 50 mm) (Michrom) with each 

injection of 20µl. A 2hr linear gradient with 150min from 5 to 40% ACN, 15min from 5% 

to 80% ACN and another 15min for equilibrium to 5% ACN was used. The remaining 

LTQ parameters are the same as previously described[27].   

4.3.6 Database Searching and Data Processing 

 MS/MS spectra were searched against Uniprot database using SEUQEST embedded 

in Proteome Discoverer(version 1.1.0.263). Searching parameters were specified as 

follows: (1) Fixed modification: carbamidomethylation of Cys residue with a mass shift 

of 58.1Da; (2) variable modification: oxidation of Met residue with a mass shift of 

15.99Da; (3) two missed cleavage sites were allowed; (4) peptide ion mass tolerance: 1.4 

Da; (5) fragment ion mass tolerance: 1.0 Da; (6) peptide charges +1, +2, and +3. 

Searching results were further uploaded to Scaffold(V.2.0) as msf format. Dual filtering 

criteria for protein identification were employed by combining FDR test from target-

decoy database search with a cutoff p-value less than 0.05 and protein/peptide confidence 

above 95% probability with a minimum of two unique peptides per protein from TPP 

built in Scaffold. To be noted, employing either target-decoy database searching or TPP 

alone to filter protein identifications is commonly accepted. Thus, a combination of these 

two validation strategies represents a more stringent filtering criterion and further 

increases the identification confidence. Glycoproteins were then confirmed by searching 

against the post-translational modification annotation in Uniprot database. Spectral 

counts were parsed out and normalized by a global normalization method.   

4.3.7 Western Blot 
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 Western Blot was performed essentially as previously described[26]. Briefly, 20 

μg of total proteins from each sample were separated by 4-20% SDS-PAGE and then 

transferred to PVDF membranes (Bio-Rad, CA). After being blocked for 2 h, the 

membranes were incubated with antibodies including mouse monoclonal anti-BGAL, 

mouse polyclonal anti-P4HA1, rabbit polyclonal anti-GANAB, mouse monoclonal anti-

beta Actin (Abcam, Cambridge, CA), anti-CATD (BD Transduction Laboratories, 

Lexington, KY) and anti-THY1 (Abnova, Taibei, China) overnight. After washing three 

times, the membranes were incubated with HRP conjugated goat anti-rabbit or anti-

mouse IgG (H+L) for 1 hr. The blots were visualized with DAB stain (Vector Laboratory, 

WI). 

 

4.4 Results and Discussion 

4.4.1 Detection of Surface Glycoproteins by Lectin Microarray  

 To probe differential cell surface glycan structures, a panel of 16 lectins covering 

a wide range of binding specificities to different sugar moieties were printed on the slides 

and incubated with fluorescent labeled live cells from the CSCs or GSI-treated group. 

However, no significant intensity changes were detected as a function of the differential 

expression of cell surface glycans between these two groups. This indicates the total 

amount of cell surface glycoproteins is not altered after GSI treatment from a macro level 

point of view, although individual changes may be masked.    

4.4.2 Profiling of Intracellular Glycoproteins by Multi-lectin Chromatography 

 The aforementioned negative results suggest a need of differential glycoprotein 

profiling on a larger scale. Thus, three widely used lectins (ConA, WGA and SNA) with 
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binding specificities towards α-linked mannose, N-acetylglucosamine and sialic acid 

were combined to enrich intracellular glycoproteins from the CSCs or GSI-treated group 

to maximize the coverage. As shown in Figure 4.1, each batch of CSCs or GSI-treated 

sample were processed in the same way via multi-lectin chromatography and analyzed by 

LC-MS/MS in triplicates. The whole cell lysates were adjusted to the same amount (1mg) 

for each biological replicate of each sample prior to lectin enrichment and 10% of the 

eluent was introduced to the LC-MS/MS for each technical replicate. The dual filtering 

criteria generated 51 and 52 glycoprotein identifications for the CSC group and the GSI-

treated group after database searching. A highly stringent filtering strategy was employed 

in this study to obtain the most confident identifications. The number of glycoprotein 

identifications for the CSC group was increased to 88 when the threshold was lowered to 

a FDR < 0.01 by decoy database searching alone. This result is comparable to a similar 

study in our group where 73 glycoproteins were identified by using a different 

combination of lectins (ConA, WGA and PNA) for the  group at FDR < 0.01 by decoy 

database searching[28]. 47 glycoproteins were shared in common and the remainder of 

the unique identifications may be due to the different glycan-binding specificity of the 

different lectin (SNA vs PNA) used in each study.  

Student’s t-test was then used to capture the differentially expressed glycoproteins 

for each pair with a threshold p-value < 0.05. The differential expression of a protein is 

accepted when it has a p-value less than 0.05 at least one time out of the three pairs of 

comparisons and the direction of the changes should be consistent. This results in a total 

of 27 differentially expressed glycoproteins after GSI treatment as listed in Table 4.1. 

Seven glycoproteins were considered to be highly confident as they have p-values <0.05 
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from two pairs of comparisons: beta-galactosidase (BGAL), Calumenin(CALU), 

Deoxyribonuclease-2-alpha(DNS2A), Neural alpha-glucosidase AB(GANAB), Hypoxia 

up-regulated protein1(HYOU1), Prolyl 4-hydroxylase subunit alpha-1(P4HA1) and 

Serotransferrin(TRFE).    

 To compare the enrichment efficiency, a fraction of the whole cell lysates from 

the third batch was processed in the same manner excluding the step of multi-lectin 

chromatography and it was analyzed by LC-MS/MS in triplicates with each injection of 

~1µg. Figure 4.2 illustrates a comparison of the spectral counts assigned to each highly 

confident glycoprotein before and after multi-lectin chromatography (Note: DNS2A is 

not detected from batch 3). The averaged spectral counts for each glycoprotein are 

significantly increased up to 17 fold after the enrichment. Protein Disulfide-isomerase 

(PDIA) shown in the bottom of this graph is not a glycoprotein, however, binding of 

P4HA1 and PDIA has been previously reported[29]. Thus, the increase of PDIA after 

enrichment is expected as a consequence of protein-protein interaction.   

4.4.3 Verification of Differential Expression by Western Blot 

 Five of the differentially expressed glycoproteins were selected for verification by 

Western Blot: GANAB, BGAL, P4HA1, CATD and THY1. The fold changes and 

biological functions are shown in Table 4.2. The expression levels of the first four 

proteins are down-regulated after GSI treatment, whereas THY1 exhibits increased 

expression. The intensities of the bands are not quantitative results to compare the 

expression levels across different proteins. However, the lowest intensity detected for 

THY1 correlates well with the label-free MS results where this protein is assigned with 

the least spectral counts compared to others.   
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4.4.4 Protein-Protein Interaction Network  

 The functional relevance of the differentially expressed glycoproteins was 

searched against the STRING database which enables public access to retrieve protein-

protein interactions[30]. Nine glycoproteins are functionally linked to each other with 

medium to high confidence as displayed in Figure 4.3. They are grouped according to 

their sub-cellular localizations and the thickness of an edge positively correlates with the 

level of association. The links between CTSD, GLB1, CTSA, HEXA and HEXB are of 

high confidence possibly due to their co-localization in the lysosome compartment. The 

strongest association is assigned between GLB1 and CTSA which have been 

demonstrated to interact to form the lysosomal multienzyme complex[31].  

 

4.5 Discussion  

4.5.1 Multi-lectin Affinity Strategy 

In addition to N-linked glycosylated proteins, non-glycoproteins were also 

detected by mass spectrometry analysis after glycoprotein enrichment. The identifications 

of non-glycosylated proteins are mainly due to non-specific bindings to the multi-lectin 

column resulting from protein-protein interactions. 1% octyl-β-D-glucopyranoside was 

used in our lysis procedure where this non-ionic detergent has been demonstrated to be 

effective in releasing a wide range of membrane proteins and is compatible with 

downstream MS analysis[32]. The detergent is considered to be a mild surfactant which 

may not disrupt strong direct bindings between proteins. Moreover, the detergent 

concentration in the sample is diluted before loading onto the multi-lectin column to 

enable the non-covalent binding and the elution buffer used subsequently is under 
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physiological condition with pH 7.4 which further preserves the formation of the 

endogenous protein complex. Thus, the detection of non-glycosylated proteins can be 

explained as a result of co-precipitation in the enrichment step. For example, Ribophorin 

1 is a glycoprotein detected with reduced expression level after treatment. A non-

glycosylated protein Ubiqilin 4 is also detected with reduced level possibly due to its 

demonstrated binding to Ribophorin 1[33]. The elution of a larger protein complex 

resulting from co-precipitation occurs in the case where the glycoprotein P4HA1 is the 

primary target. P4HA1 binds to PDIA exhibiting direct interaction with 1433G[34] which 

further binds to three other proteins. Future improvements on optimization of the lysis 

buffer or washing step condition by carefully increasing the detergent strength will be 

beneficial to reduce the number of off-target identifications. Also, the identification of 

glycoproteins is based on the information from the Uniprot database as the mass accuracy 

of the LTQ mass spectrometer is not sufficient to distinguish a 1Da mass unit shift from 

PNGaseF cleavage, which is commonly used to identify the glycosylation site by high 

resolution mass spectrometers. The incorporation of isotope labeling by inducing a larger 

mass shift that can be recognized by the LTQ mass spectrometer will be helpful to 

discover novel glycosylation sites in future studies.  

4.5.2 Important Differentially Expressed Glycoproteins 

Five differentially expressed glycoproteins have been validated by Western blot. 

GANAB is the α-subunit of an important ER resident enzyme Glucosidase II which 

sequentially cleaves inner α-1,3-linked glucose residues from N-linked oligosaccharides 

on nascent glycoproteins[35] and it has been previously reported to be purified by 

ConA[36]. The decreased expression after GSI treatment may suggest altered glycan 
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processing effects on the maturation of glycoproteins. BGAL is an essential enzyme that 

catalyzes the hydrolysis of β-galactosides into monosaccharides. A previous report shows 

it can be purified from either a ConA or WGA lectin column[37]. The potential role in 

GBM CSCs remains unknown.  

P4HA1 is another key enzyme in collagen synthesis which catalyzes the 

formation of 4-hydroxyproline and it exhibits binding to ConA[38]. Decreased P4HA1 

expression has been observed after knocking down its transcriptional regulator Hypoxia-

induced-factor 1-alpha(H1F-1α) in GBM CSCs[39]. In addition, the translocation of 

H1F-1α to bind Notch ICD and the convergence required to maintain stem cell properties 

have been proposed[40]. Therefore, the similar down-regulated pattern of P4HA1 after 

GSI treatment may be due to the blockade of Notch and the reduced level of Notch ICD.  

CATD which is an essential lysosomal aspartyl endopeptidase is also detected to 

be down-regulated after treatment. It has been reported that the N-linked oligosaccharide 

chains consists of a cluster of mannose 6-sulfate residues[41] enabling the purification of 

this protein by ConA[42]. Over-expression of CATD stimulates breast cancer 

tumorigenicity and metastasis[43]. It has been reported to play an essential role at 

multiple breast cancer progression steps by promoting cell proliferation and angiogenesis 

via inhibition of tumor apoptosis[44]. Therefore, the reduced level of CATD after 

treatment may suggest a transformation of the phenotype towards a less tumorigenic form. 

This hypothesis is also in line with the detection of increased THY1(also known as CD90) 

after treatment which points to the same inference. THY1 is a heavily N-glycosylated cell 

surface antigen with ConA binding sites[45]. Previous studies proposed that THY1 is a 

putative tumor suppressor gene in ovarian cancer[46, 47] and nasopharyngeal 
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carcinoma[48]. The protein expression level was found to be exclusively in the non-

tumorigenic models as compared to their tumorigenic counterparts [46-48]. However, the 

correlation between the expression level of THY1 and the degree of tumorigenicity 

remains controversial. For example, higher expression of THY1 at the mRNA level is 

found in CD133+ GBM cells compared to CD133- cells[49]; THY1 positive cells sorted 

from hepatocellular carcinoma cell lines exhibit tumorigenecity rather than their 

counterparts. In our previous studies, the protein expression level of THY1 is found to be 

higher in GBM CSCs than normal cells[24] and no difference is observed when 

compared to the differentiated GBM cells[28]. Therefore, the correlation between THY1 

and tumorigenicity may vary depending on the particular type of cancer, the degree of 

tumor grade and the specific perturbation treatment. Moreover, it is unknown that if the 

correlation relies on the total protein level of THY1, the glycosylation level of THY1, or 

even a specific glycoform level of THY1. Future investigations focusing on such detailed 

characterizations will help us clarify the uncertainty of the impact on tumorigenicity 

mediated by THY1.    

In addition to the above glycoproteins which have been validated by western blot, 

another down-regulated glycoprotein PGCB(Brevican) detected in our study after 

treatment appears to be particularly interesting. PGCB is a brain specific proteoglycan 

with one of the isoforms oversialylated[50] and the interaction with SNA may strengthen 

its binding to the multi-lectin column. The critical role of PGCB in promoting GBM 

dispersion has been demonstrated in a manner that over-expression of this glycoprotein 

increases tumor invasion whereas knockdown inhibits it[51, 52], which further supports 
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our hypothesis that a phenotype transformation towards a less tumorigenic form occurs 

upon drug treatment.    

4.5.3 Exploration of GLMM  

GLMM is an extension to the generalized linear model where random effects are 

incorporated in addition to fixed effects in the linear predictors. The strength of such 

mixed-effects models lies in their capability of providing a powerful and flexible analysis 

of correlated observations from a nested experimental design. In the present study, the 

dependency results from the splitting the same source into two parts: with (the CSC 

group) and without treatment (the GSI group). Thus, classical statistical testing which 

assumes independency may not be suited.  Another advantage is that two levels of 

variations (between- and within-group) are taken care of simultaneously by the predictors. 

Therefore, the use of such mixed-effects models makes it possible to analyze the 

variability of hierarchical data structure from biological experiments. The application of 

GLMM to analyze the differential expression of glycoprotein data is explored here.  

The matrix form of GLMM is expressed as follows: 

                                      Yi = Xiβ + Zibi + εi                                                                             Eq.1  

where Y denotes the spectral counts and is assumed to follow Poisson distribution; X 

denotes the fixed effect/group effect indicating the between-group variations; Z denotes 

the random effects indicating the within-group variations; ε denotes the error residues. A 

larger dataset than previously described in section 4.3 is tested. Specifically, each group 

has 3 biological replicates and each biological replicate has 3, 5 and 7 technical replicates, 

respectively. Thus, a total of 15 observations are collected for each protein. The spectral 

count for each protein is modeled as a linear regression of the fixed effect and the random 
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effect. The model is fitted by maximizing the REML function. The fixed effect and 

random effect are then assessed by testing the significance of their corresponding 

coefficients. This process is implemented by the R-programming package (lme4 library) 

with the built-in function (glmer). Proteins with p-values less than 0.05 for the 

coefficients of fixed effect (β) are considered to have significantly differential expression 

levels. The output shows one of the glycoprotein GANAB which has been confirmed by 

the western blot experiments as aforementioned is differentially expressed with the p-

value of 0.002.   

 

4.6 Conclusion 

In this work, we investigate the alteration of glycosylation pattern upon treatment 

of GSI in GBM CSCs. We have utilized a combination of lectin microarray and muti-

lectin chromatography coupled RPLC-MS analysis to target cell surface glycoproteins 

and glycoproteins from cell lysates, respectively. While no significant changes have been 

detected from microarray screening, several differentially expressed intracellular 

membrane proteins and plasma membrane proteins were captured by the multi-lectin 

enrichment approach. The finding of down-regulation of GANAB and BGAL may 

suggest an altered glycan processing while reduced level of CATD and increased 

expression of THY1 may imply attenuated proliferation and elevated apoptosis upon GSI 

treatment. Future improvements may involve the optimization of detergent condition and 

incorporation of isotope labeling to increase the percentage of glycoprotein 

identifications, as well as the optimization of GLMM model. Overall, our study provides 
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information regarding the influence of GSI treatment on glycosylation in GBM CSCs 

which may lead to an improved understanding of drug mechanism.   
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Figure 4.1: Experimental work-flow 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



103 
 

Table 4.1: Differentially expressed glycoproteins. Three pairs of student’s t-test are 
performed on the three biological replicates with a total of 9 technical replicates for each 
sample. P-values less than 0.05 for each pair of comparison are accepted and highlighted 
in green (down-regulation) and red (up-regulation). N/A indicates p-values larger than 
0.05.  
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Figure 4.2: Comparison of protein expression level before (red bars) and after enrichment 
(blue bars).  The horizontal axis represents spectral counts for each protein.   
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Table 4.2: Summary of the selected proteins for Western Blot. Direction of Arrows 
indicates up or down-regulation after GSI treatment. The ratio is calculated by averaging 
the fold changes from three pairs of comparisons.  
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Figure 4.3: Protein-Protein interaction network generated by STRING. Each node 
represents a protein and each edge represents an interaction in between. A thicker line 
indicates stronger association.  
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CHAPTER 5 

DOSE-DEPENDENT PROTEOMIC ANALYSIS OF GLIOBLASTOMA CANCER 

STEM CELLS UPON TREATMENT WITH GAMMA-SECRETASE INHIBITOR 

 

5.1 Abstract 

Notch Signaling has been demonstrated to have a central role in Glioblastoma 

(GBM) Cancer Stem Cells (CSCs) and we have demonstrated recently that Notch 

pathway blockade by γ-secretase inhibitor (GSI) depletes GBM CSCs and prevents tumor 

propagation both in vitro and in vivo. In order to understand the proteome alterations 

involved in this transformation, a dose-dependent quantitative mass spectrometry (MS) 

based proteomic study has been performed based on global proteome profiling and a 

target verification phase where both Immunoassay and a Multiple Reaction Monitoring 

(MRM) assay are employed. The selection of putative protein candidates for confirmation 

poses a challenge due to the large number of identifications from the discovery phase. A 

multilevel filtering strategy together with literature mining is adopted to transmit the most 

confident candidates along the pipeline. Our results indicate that treating GBM CSCs 

with GSI induces a phenotype transformation towards non-tumorigenic cells with 

decreased proliferation and increased differentiation, as well as elevated apoptosis. 

Suppressed glucose metabolism and attenuated NFR2-mediated oxidative stress response 

are also suggested from our data, possibly due to their crosstalk with Notch Signaling. 
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Overall, this quantitative proteomic based dose-dependent work complements our current 

understanding of the altered signaling events occurring upon the treatment of GSI in 

GBM CSCs. 

 

5.2 Introduction 

      Glioblastoma multiforme(GBM) is the most aggressive class of brain tumors and 

80% of patients with GBM survive only for 1-2 years after diagnosis[1]. The emerging 

evidence for the involvement of brain cancer stem cells in the initiation and propagation 

of brain tumors, particularly GBM, allows for the identification of more effective 

therapeutic targets[2]. Several groups have identified brain tumor CSCs using cell surface 

markers such as CD133 and CD15 [3-5], although currently there is no universally 

accepted collection of CSLC markers for isolation of a pure population of GBM stem 

cell-like cells[6]. GBM neurosphere cultures are often utilized as an alternative to provide 

an advanced model for investigating GBM CSCs[7]. 

The importance of Notch signaling in cancer has been firmly established and it is 

one of the most intensively studied  therapeutic targets in CSCs. Increasing evidence has 

implicated its central role in GBM[7-10] based on its participation in regulation of self-

renewal and cell fate determination in normal stem cells[11]. Therefore, the investigation 

of the  molecular mechanism upon blocking at multiple stages of the Notch signaling 

cascade become essential where inhibition via γ-secretase inhibitors (GSIs) are the most 

utilized[6]. We have demonstrated in our previous study that Notch pathway blockade by 

GSI targets brain tumor CSCs through decreased proliferation and induced differentiation 

and apoptosis [7, 9,12].  
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The conventional biomarker discovery pipeline usually begins with a global 

unbiased screening stage which is typically MS-based. A quantitative MS proteomic 

approach has been demonstrated to be a powerful tool in the study of stem cells utilizing 

either stable isotope labeling methods or label free methods [13,15-16,21]. To gain 

further insight into the effects GSI exerts on Notch signaling and other potential 

pathways involved in GBM CSCs, we have employed a spectral counting-based label 

free quantitative proteomic approach to perform a large scale screening in global 

discovery phase. This initial profiling provides us comprehensive information about the 

proteome alterations which then requires verification after candidate prioritization via a 

multilevel filtering strategy. Also, the biomarker discovery pipeline usually involves a 

secondary targeted quantitative stage which traditionally relies on antibody-based 

protocols such as ELISA to follow up the proteomics or genomic profiling studies [17]. C

 Currently there has been a trend toward the development of targeted MS as a 

methodology for confirmation based on the use of MRM [18, 19]. The concept of 

monitoring specific peptides from proteins of interest as an accurate quantification 

strategy is well established, because MRM offers superior sensitivity and selectivity for 

the targeted analytes and the precision is further increased by facilitating the 

chromatographic retention time as another identifier. Due to the complementarity of 

Immnoassay and MRM, we have explored a combination of these two assays to verify 

selected high-priority protein candidates. Moreover, literature mining was performed 

together with Ingenuity Pathway Analysis (IPA) to relate our findings to previous 

publications in order to broaden our current knowledge about the underlying molecular 

mechanisms regarding alterations occurring upon GSI treatment in GBM CSCs. A 
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putative altered signaling network is generated to summarize our findings reflecting those 

in light of previous publications and those newly mined from our data.      

 

5.3 Materials and Methods 

5.3.1 Cell Culture and Treatments 

GBM neurosphere cultures were maintained in Neurocult medium (Stem Cell 

Technologies, Vancouver, BC, Canada, http://www.stemcell.com) supplemented with 

epidermal growth factor (10 ng/ml) and fibroblast growth factor (10 ng/ml) as previously 

described[7, 20]. For treatment studies, cells were plated and allowed to grow overnight 

in Neurocult medium; Neurocult was then replaced the next morning with medium 

containing γ-secretase inhibitor([11-endo]-N-(5,6,7,8,9,10-hexahydro-6,9-

methanobenzo[a][8]annulen-11-yl)-thiophene-2-sulfonamide, referred to as “GSI” )[9] 

dissolved in dimethyl sulfoxide (DMSO) at the concentrations of 0, 2, 10, 50µM. We 

have shown previously that GSI can block Notch signaling pathway at Hes1 protein 

expression level starting at 2µM level[7,9]. 

5.3.2 Cell lysis and Trypsin digestion 

  Cells were harvested on day three and washed twice with PBS (0.01 M phosphate, 

0.15 M NaCl, pH 7.4) to remove culture medium. The extraction of whole cell lysates 

follows the procedure as previously described[21]. Basically cell pellets were 

resuspended in PPS (Protein Discovery, Knoxville, TN) powder dissolved in 50 mM 

Ammonia Bicarbonate at a final concentration of 0.2%(m/v) together with 1% protease 

inhibitor cocktail. Protein concentration was determined by Micro BCA™ Protein Assay 

Kit (Pierce/Thermo Scientific, Rockford). Trypsin digestion, cleavage of PPS and 
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purification of peptides were performed sequentially and also follow the same 

protocol[21]. Peptides were lyophilized to powder and stored in a -80 °C freezer for 

future use. All chemicals were purchased from Sigma unless mentioned otherwise. 

5.3.3 Reversed Phase Liquid Chromatography and ESI-Ion Trap  

Peptides were reconstituted in a solution of 5% ACN with 0.1% formic acid at a 

final concentration of 100ng/µl. Reversed phase Liquid Chromatography were performed 

by a Paradigm MG4 micropump system (Michrom Biosciences Inc., Auburn, CA) 

connected to LTQ mass spectrometer (Thermo Finnigan, San Jose, CA). Total tryptic 

digests of each sample (control and 3 treatments) were directly introduced into a RPLC 

nano column (3μm x 200 Å, 0.1 mm × 150 mm, C18 AQ particles, Michrom) after a 

desalting nano trap (300 × 50 mm) (Michrom). A 3hr linear gradient with 150min from 5 

to 40% ACN, 15min from 5% to 80% ACN and another 15min for equilibrium to 5% 

ACN was used. The other LTQ parameters  are the same as previously described[21]. 

Each sample was analyzed in triplicate with each injection of 1µg material. 

5.3.4 Database Searching and Multilevle Filtering 

MS/MS spectra were searched against Uniprot database by SEQUEST search 

engine incorporated in Proteome Discoverer (version 1.1.0.263). Searching parameters 

were specified as follows: (1) Fixed modification: carbamidomethylation of Cys residue 

with a mass shift of 57.02Da; (2) variable modification: oxidation of Met residue with a 

mass shift of 15.99Da; (3) two missed cleavage sites were allowed; (4) peptide ion mass 

tolerance: 1.4 Da; (5) fragment ion mass tolerance: 1.0 Da; (6) peptide charges +1, +2, 

and +3. Searching results were further uploaded to Scaffold as msf format (the default 

output format from Proteome Discoverer). Then a multilevel filtering strategy consisting 



112 
 

of four checkpoints is adopted to capture the most confident identifications and 

differentially expressed proteins. Checkpoint-1 is based on the FDR test from target-

decoy database search with a cutoff p-value less than 0.05; Checkpoint-2 is according to 

the Trans-Proteomic Pipeline (TPP)[22] built in Scaffold. The criteria include protein and 

peptide probabilities above 95% and a minimum of two unique peptides identified for 

each protein; Checkpoint-3 is tested by first generating three lists of differentially 

expressed proteins by applying the student t-test for 0 vs 2µM, 0 vs 10µM and 0 vs 50µM 

with a threshold p-value less than 0.05 and then retaining proteins that are present in all 

three lists; Checkpoint-4 is a further filtering based on literature mining to retain proteins 

that have been previously reported to play important roles in furthering CSLC properties 

and/or Tumorigenesis. 

5.3.5 Western Blot 

 Western Blot was performed essentially as previously described[1]. Briefly, 20 μg 

of total proteins from each sample were separated by 4-20% SDS-PAGE and then 

transferred to PVDF membranes (Bio-Rad, CA). After being blocked for 2 h, the 

membranes were incubated with antibodies including polyclonal anti-APC5, polyclonal 

anti-GFAP, monoclonal anti-ENGO, monoclonal anti-PCNA, polyclonal anti-SODC and 

monoclonal anti-Actin (Abcam, Cambridge, CA) overnight. After washing three times, 

the membranes were incubated with peroxidase conjugated goat anti-rabbit or anti-mouse 

IgG (H+L) for 1 h. The blots were visualized with DAB stain (Vector Laboratory, WI). 

5.3.6 MRM Assays 

For the protein of interest, the selection criteria of proteolytic signature peptides 

include: (1) being identified from the LTQ analysis with high confidence; (2) a unique 
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signature of the target protein; (2) a length of 8-20 amino acids; (3) no missed cleavage 

sites; (4) no post translational modifications. The MRM assay was performed with an  

Agilent 6410 triple quadrupole MS system equipped with an Agilent 1200 LC (Agilent 

Technologies, New Castle, DE)  in positive ion mode. Synthetic peptides were first 

reconstituted in 50% methanol. Flow injection analysis (FIA) was used to optimize the 

fragmentor voltage and collision energy determined by the intensity of precursor ions and 

product ions, respectively. The two most abundant transitions from each peptide were 

chosen to obtain the best signal-to-noise ratio in MRM mode. C-18 column from Agilent 

with 1.8µm particle size and 4.6 x 50mm dimension was used for the HPLC separation. . 

The mobile phase is 0.1% formic acid (Solvent A) and 0.1% formic acid in acetonitrile 

(Solvent B). The linear gradient was 2 to 20% acetonitrile for 1.5 minutes and 20 to 95% 

acetonitrile for 5 minutes with a flow rate of 0.6ml/min. The desolvation gas temperature 

is 350 C and the capillary voltage is 4000V. The nebulizer pressure is 45 psi and the 

desolvation gas flow rate is 11 l/min.  

For the generation of standard curves, 5, 10, 20, 40, 80, 120, 200 fmol/µl of a 

mixture of synthetic targeted peptides were injected and analyzed in triplicate. For the 

monitoring of sample response, five dose (0, 0.4, 2, 10, 50µM) points were interrogated 

with a total sample protein injection of 5µg and 10µg analyzed in duplicates. Data 

analysis was carried out by Agilent Mass Hunter Quantitative Analysis Software.  

5.3.7 Ingenuity Pathway Analysis (IPA) 

 The three lists of differentially expressed proteins generated after checkpoint-3 

were uploaded to IPA together with their fold changes as three different observations. 

Pathway analysis was then performed to infer the significantly altered pathways 
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associated with GSI treatments.  The significance values for analysis of pathway 

generation were calculated using the right-tailed Fisher’s Exact Test. 

 

5.4 Results and Discussion 

5.4.1 Protein Identifications and Differential Expressions 

  A one-dimensional separation strategy was adopted in place of a two-dimensional 

approach used in our previous studies[14,21] by reducing the particle size of the 

nanoRPLC column from 5µm to 3µm and prolonging the gradient time from 1hr to 3hrs 

to avoid  protein losses while also saving  instrument time. A total of 1127, 929, 854 and 

638 proteins were identified for each sample respectively after filtering by a threshold of 

FDR < 0.05. In order to improve the confidence of protein identifications, a multilevel 

filtering strategy is employed as shown in Figure 5.1. A total of 1707 proteins combining 

all replicate runs across different samples were identified after checkpoint-1 and a 

fraction of 672 proteins were retained after checkpoint-2. Next, three lists of differentially 

expressed proteins were generated for each pair (0 vs 2µM, 0 vs 10µM and 0 vs 50µM) 

by a cut-off p-value < 0.05, resulting in 117, 187 and 213 differentially expressed 

proteins respectively. Checkpoint-3 which requires the presence in all three differential 

expression lists further narrows down the number of putative candidates to 36.   

5.4.2 Evaluation of Label-free Quantification 

  Reproducibility is an essential factor to evaluate the accuracy of a label-free based 

quantification approach. It is interrogated from two aspects in this study: variation of the 

number of protein identifications across three technical replicates and the correlation of 

spectral counts between any two technical replicates within the same sample. First, the 
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number of total identifications passing checkpoint-1 in each replicate run is similar to 

each other with a coefficient of variance (CV) of 3%, 1%, 3% and 8% for each of the 

control and 2, 10, 50µM treatment samples, respectively. Second, high Pearson 

correlation coefficients are found by comparing any two replicates within the same 

sample. For example, the coefficient is calculated to be  0.977 between [0.973, 0.982] at 

95% confidence level based on the spectral counts assigned to each identified protein 

between the first and the second technical replicate run of the control sample. This 

correlation matrix was also used to generate the clustering graph shown in Figure 5.2. 

The four different biological entities are clearly separated with their technical replicates 

grouped under the same branch. Also, the three treatment groups are more closely 

associated compared to the control group where 2µM and 10µM dose treatments tend to 

be more closely related compared to the 50µM treatment.  

5.4.3 Selection of Putative Protein Candidates 

 The list of 36 protein candidates were further screened through literature mining 

to link their biological roles pertaining to CSCs properties and/or dysregulated events in 

tumor. A total of 15 high-priority putative candidates were selected as listed in Table 5.1 

and are categorized by different functions: Proliferation, Differentiation, Apoptosis, 

Tumor Invasion, Oxidative Response and Glycolysis. Four proteins (PCNA, NEST, 

DREB, SODC) from different functional categories in this table were selected for 

validations by either western blot or MRM assays. Three proteins out of this table were 

also selected because of their association to these investigated functions:  Gamma-

Enolase(ENOG) (alternatively : neuron-specific enolase (NSE)) for “Proliferation”; Glial 
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fibrillary Acidic Protein (GFAP) for Differentiation; Anaphase promoting complex5 

(APC5) for Apoptosis.  

5.4.4 Validation through Western Blot 

 The fold changes of five proteins were validated by western blot experiments for 

two dose treatments (2µM and 10µM) of an independent control sample. Figure 5.3 

illustrates a consistent dose-dependent pattern detected between the spectral counting 

method and western blot experiments. PCNA is commonly used as a cell proliferation 

index and a good candidate for prognosis of tumor and cancer development[23]. The 

decreased expression pattern of PCNA detected in GBM CSCs in our study agrees with a 

previous report that disruption of Notch signaling by GSI in tracheal epithelial cells 

reduces PCNA expression[24] and our previous study showing Notch pathway inhibition 

by GSI reduces CSLC proliferation[7,9].  ENOG has been used as a neuron stem cell 

marker[63]. A previous study of different subgroups of GBM tumor-initiating cells shows 

70% of ENOG positive cells have developed tumors using a mice xenograft model[25] 

and the expression of ENOG are only detected in high-grade GBMs[26]. Our finding of 

down-regulated expression of ENOG may imply that GBM CSCs exhibit a reduced 

tumor grade as the drug dose increases.  

GFAP was chosen to verify the impact of GSI on the differentiation of GMB 

CSCs.  It has been previously detected in ~78% differentiated brain tumor CSCs and 

exhibits lack of immunoreactivity in undifferentiated CSCs[27]. Our result of up-

regulated GFAP expression indicates the treatment of GSI drives GBM CSCs towards a 

more differentiated state and the differentiation degree is positively correlated with the 

drug dosage. For the verification of altered apoptotic activity upon GSI treatment, 
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Anaphase-Promoting Complex, Subunit 5 (APC5) which is a subunit of the multiprotein 

complex that controls mitotic progression[28] was tested here. It is hypothesized that the 

abnormal regulation of APC may be involved in malignant transformation through 

chromosome instability[29] and the inhibition may lead to cell death[30]. Thus, our 

observation of reduced expression level of APC5 may be an indication of cell cycle 

failure in GBM CSCs after treatment with GSI which in turn promotes cell death. SODC 

is an important anti-oxidant enzyme which protects cells from free radical attack and it 

has been demonstrated to play a critical role in “Reactive Oxygen Species” (ROS) 

defense and is associated with chemoresistance and malignancy grade in astrocytic brain 

tumors[31]. Thus, the reduced expression level of SODC detected in our experiments 

may imply that the GSI treatment may render GBM CSCs more vulnerable to apoptosis 

by attenuating their cell defense system. Overall, the western blot results of these five 

proteins suggest three areas of impact on GBM CSCs upon GSI treatment: reduced 

proliferative potential, increased differentiation, and enhanced apoptotic activity. All of 

these could be viewed as a decrease of stem cell properties, leading to a phenotype 

change.  

5.4.5 Validation through MRM 

In addition to immunoassay, MRM is also employed as another orthogonal 

verification strategy to validate the turnover of two important candidates in this study. 

NESTIN has been identified as a neural stem cell marker and a GBM CSLC marker[9, 27, 

32]. We and others have demonstrated previously that NESTIN expression is enhanced 

by Notch signaling in medulloblastoma[9] and GBM[33] and is inhibited by GSI in a 

dose-dependent fashion[7] in GBM CSCs. These findings were obtained by 
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immunostaining related approaches. Herein, a MS-based method was used to confirm the 

impact of the drug on NESTIN expression in GBM CSCs. Another protein candidate 

chosen for MRM is Developmentally-regulated Brain Protein (DREB/Drebrin) which 

functions in cell migration, extension of neuronal processes via binding to F-actin and 

regulates neuronal actin dynamics and plasticity[34, 35]. A new role of Drebrin has just 

been recently uncovered that this protein exerts as an important modulator of the 

chemokine receptor CXCR4 and the knockdown of Drebrin impairs CXCR4 function[36]. 

The linearity of the targeted response was evaluated by synthetic peptides. Two 

peptides from NESTIN and one peptide from Drebrin were chosen according to the 

peptide selection criteria described in the experimental section. For each targeted peptide, 

the two most intense and stable MS/MS fragment ions were selected for the generation of 

two transitions as listed in Table 5.2. Figure 5.4 shows an extracted MRM ion 

chromatogram for all six transitions. Although Drebrin peptide (precursor ion m/z: 717.1) 

and NESTIN peptide (precursor ion m/z: 691.6) were eluted with a slight retention time 

difference of 0.84 second, the response from the mass analysis shows good linearity in 

the standard curve with an average of R2 = 0.958 and R2 = 0.968 from two transitions for 

each peptide, respectively, ranging from 10fmol/µl to 200fmol/µl. The other NESTIN 

peptide (precursor ion m/z: 631.5) exhibits superior linearity with an average of R2 = 

0.996 when monitored within the same concentration range. A narrower range of 

standard curve was further generated for an improved quantification after the 

examination of sample response.  

The synthetic peptides used as external calibration standards in our MRM 

experiments were not isotope- labeled and hence they were not spiked into the sample to 
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avoid interference from identical response, where the main focus of this study is to 

investigate the change of protein expression as a function of drug dosage. Thus, absolute 

quantification is not needed and it is sufficient to use external calibration curves to 

calculate the relative response of sample analytes. Also, the overall goal is to verify if the 

fold change results obtained from the MRM method correlate with those from label free 

method. In the latter case, spectral counts are used as surrogate measurements and 

essentially they represent a relative quantification as well. Therefore, the results obtained 

from our MRM assays with external calibrations provide adequate information 

comparable to the label-free results after converting the response from each dosage into a 

ratio over the control.  

The extracted MRM responses from 10µg total injections have generally higher 

signal-to-noise ratio than 5µg total injections. This is especially true at 10µM and 50µM 

dose points where the amount of targeted peptides is approaching the lowest limit of 

detection. The dose-dependent results from label free data and the MRM data are shown 

in Figure 5.5. Basically, the trends of the fold change detected from these two methods 

are similar to each other: both NESTIN and Drebrin exhibit reduced expression level as a 

function of increased GSI dosage. The correlation between these two methods is superior 

for NESTIN. The expression level is reduced by ~1.5 to 2.5 fold when increasing the 

dose from 0.4µM to 10µM, while no difference can be observed between 10µM to 50µM 

from both label free and MRM results. This is also in line with our previous report that a 

reduced mRNA NESTIN expression is detected from ~1.5 to 4 fold after treating GBM 

CSCs with GSI at 2, 10 and 50µM[7]. The overall dose-dependent pattern for Drebrin 

between these two methods correlates as well, although the reduced fold changes 
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detected from MRM data indicates a ~1.5 to 2-fold change whereas the label free data 

indicates a ~2.5 to 7.5-fold change. The correlation for NESTIN is better than Drebrin as 

shown in the lower panel of Figure 5.5. Generally, in the low spectral counts range (<10), 

label free data tend to over-estimate the differential expression due to the lowest limit of 

detection cutoff. For example, Drebrin is assigned a mean spectral count value of 1 at 

10µM and 50µM, indicating it has already reached the lowest cutoff. As a comparison, 

the mean of the lowest spectral counts for NESTIN is 18 and the CV is also lower than 

that of Drebrin. Both of them indicate that the measurement for NESTIN is more accurate 

when using the same label free quantification method. In addition, the small difference 

detected for the fold changes of Drebrin between label free and the MRM method largely 

lies in the limitation of data-dependent acquisition strategy employed by the LTQ. 

5.4.6 Altered Signaling Events upon GSI Treatment 

Based on the knowledge obtained from a combination of literature mining and 

data mining, candidate proteins listed in Table 5.1 and three proteins out of this table that 

have been verified (APC5, GFAP and ENOG) were integrated to construct a putative 

altered signaling network after treating GBM CSCs with GSI, as depicted in Figure 5.6. 

In addition, another three proteins were also imported: Thioredoxin (THIO/Trx), T-

complex protein 1 subunit eta (TCPH/CCT7) and Hexokinase-1(HKX1). The first two 

proteins successfully passed checkpoint-2 with a p-value less than 0.05 in 0 vs 10µM and 

0 vs 50µM treatments although they are not differentially expressed after 2µM treatment. 

The third protein passed checkpoint-1 but did not pass checkpoint-2 and it shows 

decreased expression upon 10 and 50µM treatment. The correlation between these 

proteins and their targeted functions are listed in Table 5.3.   
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The majority of altered signaling events depicted in this figure are mediated 

through the Notch signaling cascade. Upon blockade of the Notch pathway, proliferation 

of CSCs is selectively reduced[7] which is supported by our finding of decreased 

expression level of four key proteins: NESTIN, ENOG, PCNA and PA2G4. Also, 

differentiation is induced[7] which can be indicated by the elevated expression levels of 

two marker proteins for differentiated neural cells: GFAP and TBB3. Previous studies in 

Multiple myeloma report that activation of Notch signaling inhibits apoptosis while 

inhibition of Notch induces apoptosis [37, 38]. We also have demonstrated that Notch 

inhibition by GSI induces apoptosis in medulloblastoma and GBM[7,9,12]. Our results 

are in line with this where the blockade of Notch activates apoptosis in GBM CSCs. This 

is supported by the detection of a reduced expression level of APC5, PDIA1 VDAC1, 

TCPB and 1433 proteins, all of which have been reported to be negatively correlated with 

apoptosis [30, 39-46]. In addition, decreased tumor invasion capability is inferred and 

supported by the detection of reduced expression of DREB and MYH9 which are 

identified to be positively correlated with metastasis[36, 47, 48]. 

Another signaling cascade we speculate to be down-regulated is NFR2-mediated 

Oxidative Response which contributes to cellular protection against oxidative insults and 

chemical carcinogens[49]. The decreased expression levels of its downstream 

transcriptional gene products, such as anti-oxidant proteins, SODC and THIO and a 

molecular chaperone protein, TCPH, imply that this cellular defense system against 

“ROS” has been attenuated[31, 50-52]. As aforementioned, treating GBM CSCs with 

GSI tends to abrogate the stem cell properties[7]. Taking these together, it is reasonable 

to infer that the decreased oxidative defense capability is also correlated with a phenotype 
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transformation from CSCs towards non-tumorigenic cells. This hypothesis is in light of 

the recent significant discoveries that subsets of CSCs in some tumors contain an 

enhanced defense system compared to non-tumorigenic progeny suggested by lower 

“ROS” levels[53, 54]. However, it is uncertain at this point that the down-regulation of 

NFR2-mediated oxidative response is attributed to the direct impact from the impaired γ-

secretase activity or via its newly proposed crosstalk mechanism with Notch 

signaling[55]. 

In addition, the glucose metabolism pathway Glycolysis is also suggested to be 

down-regulated. Most cancer cells rely on anaerobic metabolism even with plenty of 

oxygen other than mitochondrial oxidative phosphorylation for normal differentiated 

cells  and the glycolytic rate is increased to compensate for the less efficient production 

of ATP,  a phenomenon referred to as the “Warburg effect”[56]. The expression of two 

out of three rate-limiting key enzymes in Glycolysis: KPYM and HKX1, were found to 

be decreased from our label free quantitative data, which may imply a decrease of 

glycolytic rate after blockade of Notch signaling. This inference regarding the 

relationship between Notch pathway and Glycolysis could be supported by previous 

investigations showing that Notch signals promote glucose metabolism mediated by the 

PI3K/AKT pathway[57] and our previous finding showing that Notch pathway blockade 

by GSI reduces AKT phoshorylation in medulloblastoma and GBM[7,9,12]. Another 

study of Pre-T cells has also shown that the withdrawal of Notch signaling reduced AKT 

phosphorylation and decreased glycolytic rate[58]. Moreover, the PI3K/AKT pathway 

has been shown to stimulate aerobic glycolysis in cancer cells[59] and directly enhance 

glucose capture by HKX1[60]. Therefore, we hypothesize that the blockade of Notch 
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Pathway upon GSI treatment decreases PI3K/AKT signaling which further suppresses 

Glycolysis. Another explanation to the hypothetical decreased glucose metabolism is that 

GSI treatment may induce a mechanistic switch back to aerobic metabolism so that the 

accelerated production of pyruvate is not needed; hence the glucose metabolism is down-

regulated.  There is no available evidence indicating that the impaired γ-secretase activity 

has a direct impact on the suppression of Glycolysis.  

Another interesting link between NFR2 oxidative response and Glycolysis is the 

level of “ROS”. The generation of “ROS” has been postulated to be increased as the 

glycolytic rate is reduced[60] and also as the oxidative defense decreased in non-

tumorigenic cells compared to CSCs[54]. We have discussed above our inferences that 

the treatment of GSI drives a transformation towards non-tumorigenic cells, suppresses 

the cell defense capability and down-regulates aerobic glycolysis. Thus, it is also 

reasonable to infer that the level of “ROS” is increased after the treatment in GBM CSCs, 

although it is uncertain about the alteration mechanism of mitochondrial oxidative 

phosphorylation which is the major cellular source of “ROS” production.  

5.4.7 Ingenuity Pathway Analysis 

To gain additional insight from our data, an alternative data mining tool was 

utilized to construct significantly affected canonical pathways upon GSI treatment by 

IPA. Glycolysis, NFR2-mediated Oxidative Stress Response and PI3K/AKT signaling 

are captured as the most significant canonical pathways which provide another piece of 

evidence to support our hypothesis from a bioinformatics perspective. Other important 

signaling pathways are also shown including VEGF signaling, Cell Cycle and Hypoxia 

Signaling etc. This may be attributed to the demonstrated crosstalk between Notch 
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signaling and these pathways[61-62] or GSI may also have direct impact on these 

pathways. One needs to be careful about the interpretation of the level of the significance 

between the treatments. The length of the bar indicates a level of association that is by no 

means indicative of either up or down regulation. Also, most of the pathways appear to 

be increasingly significant in the third treatment (50µM GSI). This may be because more 

proteins are   differentially expressed between the treatment and the control as the dosage 

increases. Thus, the increased number of imported proteins may affect the outcome of the 

statistic algorithm (Fisher’s Exact T-test) adopted by IPA for the calculation of 

significance by inducing a smaller p-value. 

 

5.5 Conclusion 

 In summary, this work adopts a label free quantitative global proteomic approach 

together with Immunoassay and MRM assays to conduct a dose-dependent investigation 

on the proteome alterations upon the treatment of GSI in GBM CSCs. It demonstrates a 

work-flow from global discovery, candidate prioritization to verification phase which 

could be applied to other studies as well.  By coupling our results with previous literature 

reports from us and others, a putative signaling network consisting of 21 candidate 

proteins with 7 being verified is generated to reflect our inference of the underlying 

molecular alterations upon GSI treatment.  The downstream effects resulting from the 

blockade of Notch signaling are suggested to include a reduced proliferative potential, an 

increased differentiation and an elevated apoptotic activity, leading to a phenotype 

transformation towards non-tumorigenic cells. Novel involvement of the down-regulated 

NFR2-mediated oxidative stress response and Glycolysis are implied as a consequence of 
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GSI treatment, possible due to their crosstalk to Notch signaling. These findings 

regarding the alterations occurred on the proteome level and the signaling/metabolic 

pathway level provide enriched information that could broaden our current knowledge 

about drug mechanism, contributing to the identification of novel drug targets to develop 

better therapies for treating this dismal disease.  
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Figure 5.1: Overall Workflow 
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Figure 5.2: Cluster Analysis based on the correlation matrix. Pearson correlation 
coefficients are shown between technical replicates within the same group. 
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Table 5.1: List of high-priority protein candidates after multilevel filtering. P-value 
shown here is the averaged from the three pairs student t-tests.  
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Figure 5.3: The upper panel shows the spectral counts detected for each protein across 
replicate runs within each sample. The lower panel shows the corresponding western blot 
results. The direction of arrow indicates either up or down-regulated expression.    
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Table 5.2: Summary of the target peptides information and the transitions monitored in 
MRM. 
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Figure 5.4: Extracted chromatogram for all six monitored transitions corresponding to 
three targeted peptides. Bold box represents two transitions belonging to the same peptide. 
The last two peptides are eluted with a slight retention time difference of 0.84 second.  
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Figure 5.5: Summary of the comparison between the fold change results obtained from 
label free quantification by LTQ and MRM quantification by QqQ. The y-axis in the 
upper bar chart represents a ratio of fold changes by dividing the response from each 
treatment by control. The response of control is normalized to “1”.   The lower panel 
provides the mean and CV of the spectral counts information for Nestin and Drebrin in 
each sample. “Spectral Counts” is abbreviated as “Sp”.     
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Table 5.3: Correlation between the proteins used for constructing the altered signaling 
network and their targeted functions. “+” indicates positive association and “-” indicates 
negative association, which are learned from previous literature publications as listed in 
the “Reference” column.   
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Figure 5.6: Putative Altered Signaling Events occurring upon treatment of GSI. From our 
current understanding: GBM CSCs signals Notch pathway leading to a constitutive 
activation. Sequentially, Notch signaling activates the proliferation and maintenance of 
the undifferentiated CSCs, while suppressing apoptosis and differentiation. Treating 
GBM CSCs with GSI impairs Notch signaling and therefore reverses the above effects, 
which is suggested from our results and previous publications. In addition, NFR2-
mediated oxidative response and Glycolysis are also suggested to be down-regulated 
from our results possibly due to their crosstalk with Notch signaling. 
Solid line/arrow indicates a conclusion that is drawn based on our results and/or from 
previous publications with higher confidence. Dashed line/arrow indicates our hypothesis. 
The direction of an arrow placed in each node represents up/down-regulation of this 
protein or signaling pathway, while the arrow used to link adjacent nodes represents 
activation and the blunt end represents inhibition. Blue arrow/line indicates the native 
state of GBM CSCs while yellow arrow/line indicates the alterations occurring upon GSI 
treatment. Black arrow indicates the up/down-regulation detected in this study while red 
arrow indicates the ones that have been further validated by orthogonal approaches in our 
experiment.   
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CHAPTER 6 

CONCLUSIONS  

 

This dissertation presents the application of quantitative bottom-up MS 

techniques to analyze biological samples. Differential expression on the protein levels 

and PTM levels is a critical indication of altered cellular status, which serves as the 

fundamental motivation for all the thesis projects discussed in the previous chapters. 

Drawing a correct conclusion regarding a true differential expression requires the synergy 

from multiple modules: sample preparation, 1D or 2D separation, MS detection and 

statistical analysis. 

 Quantitative MS analysis has been firmly established as a powerful tool in the 

field of differential proteomics. However it also poses several critical challenges. The 2D 

separation workflow by coupling cIEF with RPLC prior to MS analysis discussed in 

Chapter2 represents an effort to reduce sample complexity while minimizing the sample 

usage. The application and optimization of such workflow to analyze clinically important 

and extremely limited sample (Pancreatic CSCs) is further discussed in Chapter3. A data 

transformation strategy aiming at resolving the data discontinuity problem embedded in 

spectral counting-based label free quantitative method is also proposed to gap the bridge 

in calculating fold changes. Chapter4 switches the focus to a more targeted part of 

proteomics: the alteration of glycosylation levels in GBM CSCs upon drug treatment. 

The use of affinity chromatography to enrich the under-represented PTMs is an essential 
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step to reduce sample complexity and purify the fraction of interests. Both lectin 

microarray and lectin column strategies are employed for this purpose. Student’s  t-test is 

the most straightforward statistical analysis to test the significance of differential 

expression, although it suffers from the limited power to handle nested and hierarchical 

data structure. Thus, GLMM is explored to model the spectral counting data and the 

significance is tested from the group effect. There is a certain amount of agreement 

between t-test and GLMM with one of the important differentially expressed 

glycoproteins being validated by western blot. Unlike the first 3 chapters which address 

the technical and/or computational challenges at a particular stage, Chapter5 illustrates a 

more comprehensive dose-dependent proteomic study that covers a typical biomarker 

discovery pipeline: global discovery, candidate prioritization and target verification. In 

addition to the use of western blot as a verification tool, MRM is also employed and the 

correlation between the label-free and MRM-based quantification results has been 

demonstrated.  Furthermore, biological implications are inferred by data/literature mining. 

The hypothesis regarding the altered signaling events upon drug treatment in GBM CSCs 

is proposed, demonstrating the use of quantitative MS techniques to answer essential 

biological questions.  

 Overall, quantitative MS techniques are powerful tools to analyze proteome wide 

differential expressions between paired or multiple biological samples. Future work to 

ultimately resolve the central challenge caused by high sample complexity may involve 

further improvements on: 1) separation methods for intact proteins prior to enzymatic 

digestion; 2) characterization strategies to elucidate detailed structural changes in PTMs; 

3) alternative validation tools to perform large scale verifications for global discovery 
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results; 3) computational models to better fit the complicated MS data and increase the 

inference accuracy of true differential expressions.              
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