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to launch the reduced weight probe particles in (c). The weight of
each new particle is w/N , where w is the total walker weight not
yet absorbed onto the cluster sites. Those sites that are still under-
sampled are marked grey. In (d), bubbles surround those sites as
more particles are released and stick to the cluster sites and bubbles,
adding their weight to the cluster sites. The particles that stick
to the bubbles are again used to release, even lighter weight probe
particles in (e). With all sites well-sampled during the probe step
(e), the final particles are released and give the remaining weight to
the cluster sites. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130
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8.4 Applying FFS to a difficult landscape. FFS is used to measure the
transition time between A and B with five barriers. Along the first
two barriers both the top and bottom paths are well sampled. Be-
tween λ1 and λ2 the top path has a change in energy of 3 and the
bottom path has a change in energy of 2, i.e., the top path is steeper.
Because the bottom path is easier to cross, it ends up being the only
path sampled. The resulting estimate of transition time would be
T ∼ e5/(kBT ). Direct sampling would have resulted in trajectories
going primarily over the top path, as it has the lower energy barrier
and the resulting transition time would be lower, T ∼ e4/(kBT ). The
steepness of the top path “fools” FFS into not sampling it, even
though it has the smaller barrier. The inaccuracy in T in this exam-
ple can be arbitrarily large as the relative error grows like e1/(kBT ). . 135
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CHAPTER I

Introduction

1.1 Rare Events

An event that occurs infrequently is called a “rare event.” Some rare events can be

of significant interest. Monte Carlo sampling can accurately determine expectation

values and rates of typical events in systems. In contrast, efficiently measuring rare

events requires special techniques because many rare events occur so infrequently,

e.g., every 10−30 events, that they are effectively impossible to observe during normal

simulations. The development and effective use of these techniques is the topic of

this thesis.

Interestingly, rare events are seen in many contexts: queue overflow in queuing

theory [8], bio-chemical switching [9], extinction of diseases [10], or populations [11],

slow chemical reactions [12], first-order phase transitions [13], and journeys deep into

labyrinths [14]. In this thesis, many of the systems listed above are studied.

The next three chapters describe techniques for measuring extremely rare ex-

cursions into random fractals. These rare events are critical for determining the

harmonic measure, see section 1.4. The chapter following these discusses properties

of critical Q-state Potts model clusters [15]. The two chapters after that cover the

development of techniques to measure the average time between rare transitions.
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These techniques are used to measure the disease extinction time of the susceptible-

infectious-susceptible (SIS) model [16], the switching time of the bistable Maier-Stein

model [4], and the poisoning time of the Ziff-Gulari-Barshad (ZGB) model of het-

erogeneous catalysis[17].

1.2 Rare Event Techniques

When rare events are studied one or more of several properties are measured: the

phase space density of extremely low density states, the probability of ever reaching

a rarely visited state in a system with absorbing states, the probability of reaching a

rare state before a certain amount of time has lapsed, and the average time it takes

to perform a rare transition. The vast majority of rare event techniques are focused

on the last property, the average time it takes rare transitions to occur. Most of

these rare event techniques fall into one of two categories: either biased sampling or

path sampling methods.

Splitting was the first rare event technique developed [18], and uses biased sam-

pling to gain efficiency in measuring rare phase space densities. Splitting consists of

running a single non-deterministic trajectory through phase space until it reaches a

rare region, bounded by a surface, after which it is split into several independent tra-

jectories whose statistical weights add up to that of the original. This way the region

can be efficiently sampled. The phase-space density is approximated by weighted

sampling of the space by all of the trajectories. A single splitting is usually insuf-

ficient to sample very rare regions, so several splitting surfaces are typically used,

which is called multi-level splitting [19]. Two main factors limit the usefulness of

multi-level splitting. First, the majority of the low weight trajectories go back to

the well sampled regions wasting computational effort. Second, the number of tra-
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jectories tend to exponentially grow or shrink depending on how closely the splitting

surfaces are spaced [19].

To overcome the first limiting factor of multi-level splitting, RESTART was de-

veloped [20]. RESTART works by designating a primary copy when spitting occurs

at a barrier. This primary copy is the only copy allowed to backtrack past the

splitting barrier without being removed. A splitting-like technique that does not

suffer from either of the limitations of multi-level splitting is forward flux sampling

(FFS) [21]. FFS uses splitting to measure the small probability of transitioning from

the surface of a well-sampled region to another region, using intermediate splitting

surfaces. This small probability multiplied by the average rate of leaving the well-

sampled region gives the overall transition probability. Lastly, milestoning [22] is a

technique that calculates the transition rate between two regions by calculating the

flux rates between a number of dividing surfaces. Milestoning differs from FFS in

that it equilibrates trajectories along each surface, requiring the system to satisfy

detailed balance; FFS does not require detailed balance.

Path sampling, the other major category of rare event techniques, aim to find a set

of paths that best represent the transition from one meta-stable state A to another,

usually meta-stable, state B. One of the first of these techniques to be developed

was transition path sampling (TPS) [23]. TPS performs Monte Carlo sampling over

all trajectories of fixed length, i.e., a sequence of neighboring states, that connect A

and B. For molecular dynamics, the acceptance rate of a trial move is unity when

the first state in the new trajectory (in A) has a higher phase-space density than the

first state in the old trajectory. When the first state in the new trajectory has lower

phase-space density, the new trajectory is accepted with a probability equal to the

ratio of the phase-space density of the first states of the two trajectories. A trial move
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is always rejected if the first state is not within A or the last state is not within B.

The resulting ensemble of states is then used to calculate the transition rate between

A and B with umbrella sampling. Related to TPS and FFS is transition interface

sampling (TIS) [24]. TIS samples trajectories like TPS but uses the simple rare

event calculation formula of FFS instead of the computationally expensive umbrella

sampling used in TPS.

In this thesis we will develop and use biased sampling techniques to measure rare

events in non-equilibrium systems.

1.3 Random fractals: Q-state Potts model clusters and Diffusion-
limited Aggregates

In this section, we give some background on the systems we study in this thesis.

Undoubtedly, the most well-studied model in statistical mechanics is the Ising

model [25], which models magnetic behavior. The hamiltonian of the Ising model

can be written as,

H = −J
∑

〈i,j〉

sisj, (1.1)

where J is the coupling constant and 〈i, j〉 indicates that the sum is over all nearest

neighbor sites i and j. When J is positive, the system is ferromagnetic and anti-

ferromagnetic when J is negative. The Ising model can be generalized to Q different

spins. One way to accomplishing this is to only allow same spin neighbors to interact,

in which case it is called the Q-state Potts model [15],

H = −J
∑

〈i,j〉

δsi,sj , (1.2)

where δsi,sj is the Kronecker delta, and si can take on integer values from 1 to Q.

The Potts model is related to a number of different systems [26] including bond

percolation [27] (Q = 1), the Ising model (Q = 2), and mono-layers absorbed on
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two-dimensional lattices [28] (Q = 3). The first four values of (Q = 1, 2, 3, 4) are

interesting because they all go through second order, continuous, phrase transitions

at their critical temperature, Tc = J/ ln(1+
√

Q). The clusters of like spin that form

at the critical temperature are self-similar (fractal) [14]. These fractal clusters can be

defined using the Fortuin-Kasteleyn (FK) method of re-writing the partition function

in terms of a generalized bond percolation [29]. Directly simulating these systems

at their critical temperature is notoriously difficult [30]. To overcome this challenge,

Swendsen and Wang [31] developed an extremely efficient dynamic updating scheme

for critical Potts model systems. While Q ≥ 2 can be understood in terms of Ising

model behavior, Q = 1, percolation, is sufficiently different and warrants further

discussion.

Percolation is a simple process that can be performed on any system consisting

of sites with bonds connecting them, e.g., regular lattices and graphs. Percolation

comes in two varieties: site and bond percolation. The connected clusters generated

by keeping only a fraction p of sites from an initially complete square lattice is an

example of site percolation. Bond percolation is performed by keeping a fraction of

bonds instead of sites. For small values of p, the remaining clusters of connected

sites are small. In contrast, the majority of the system remains as a single connected

cluster when p is large. A fundamental property of percolating systems is the value

of p at which there is a non-zero probability of making a single connected cluster for

an extremely large system, pc. This percolation threshold is known theoretically for

some simple lattice systems and known computationally for dozens of other lattices

and network models. Like the clusters formed when the other Q-states are prepared

at their critical temperature, the percolation clusters formed at pc are fractal.

Accurately measuring pc, as well as obtaining large clusters, is difficult using
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the simple method of selecting each site (or bond) and choosing to include it with

probability p. Methods like the Newman-Ziff algorithm [32] and the Leath algorithm

[33] are very efficient ways to obtain the percolation threshold and large percolation

clusters, respectively.

In addition to critical Potts model clusters, we studied diffusion-limited aggregate

(DLA) clusters [34]. DLA is a simple growth process where a particle starts very far

from the cluster and diffuses until it touches a part of it and sticks. This process is

performed one particle at a time, starting with an initial stationary particle. The

clusters that result from this process are visually striking, complex fractal structures

with spindly, spiky branches and deep maze-like fjords. The finger-like growth seen in

DLA is surprisingly similar to a wide range of physical phenomena including bacterial

growth with limited resources, electrodeposition, crystal growth on surfaces, and

viscous fingering, see [35].

The reason why this DLA-like growth gives rise to complex structure is two-

fold. First, the deep fjords never fill up because they are screened by the tips of

the branches. In fact, we have found that the growth probability deep within the

fjords can become as small as 10−30 for moderately large clusters [36]. Also, the

tips of the DLA fingers are the most likely to grow. The growth on these tips are

unstable, due to the Mullins-Sekerka [37] instability, and tend to split with one branch

winning out over the other. The mathematical framework and results that are used

to understand DLA can be mapped into the other finger-like growth systems due to

the similar mathematical forms of the Laplace equation and the source-free diffusion

equation. There is another interesting mathematical feature of DLA, namely the

distribution of locations at each step where the next particle will adhere, called the

harmonic measure. The harmonic measure is especially interesting in the case of
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DLA because it is intimately connected to the growth process.

1.4 Harmonic Measure

The solution of the Laplace equation on the surface of a conductor with a fixed

charge of unity is called harmonic measure. The harmonic measure, µ, is the normal

derivative of the potential at the surface of the object. Another interpretation of the

harmonic measure is the distribution of probabilities that a random walker starting

far from the object will hit a given section of the perimeter. This quantity is of

theoretical [38] as well as practical interest as it determines where diffusing particles

will land on rough objects, e.g., catalysts. The harmonic measure of fractals is

multi-fractal [39], that is, characterized by many generalized dimensions, D(q).

The harmonic measure is commonly analyzed in terms of the spectrum of D(q).

By definition, D(q) is the dimension of the surface of an object where the sections of

the surface are given weight pq
i , where pi is the measure for section i of the surface.

When the entire surface is weighted equally (q = 0), the fractal dimension of the

surface is recovered. D(q) is difficult to calculate for small and negative values of

q because the rarely reached regions carry a significant amount of the total weight.

We have developed several algorithms to measure these small probabilities and their

associated D(q) spectra for on- and off-lattice random fractals in two and three

dimensions.

1.5 Non-Equilibrium models with rare transitions: SIS, Maier-
Stein, and ZGB models

The majority of rare event techniques aim to determine the frequency of rare

transitions in models that satisfy detailed balance, i.e., models that have an under-

lying energy landscape which determines the steady-state phase space density. If the
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expression, πiPij = πjPji, where πi is the steady-state phase-space density and Pij is

the transition probability from state i to state j, is true for every pair of neighboring

states i and j, then the system in question satisfies detailed balance. To make this

idea more concrete, consider a two-state system (A and B) with πA, πB, PAB and

PBA. The system starts with some arbitrary probability of being in A and other-

wise being in B. After many steps, the probability of being in state A and state

B approach constant values. That is, after a long time there is no net probability

flux from A to B or B to A. For this to be true, the probability fluxes from A to

B and B to A must exactly cancel. The probability to move from A to B is the

probability of being in state A times the probability of moving from A to B, i.e.,

πAPAB; this must equal the flux in the opposite direction, hence, πAPAB = πBPBA.

Detailed balance is founded in many systems, for example, any system that is in

thermodynamic equilibrium satisfies detailed balance.

There are many systems with interesting rare events that lack detailed balance.

Part of this thesis focuses on several such models.

1.5.1 SIS model

One of the classic models in epidemiology is the susceptible-infectious-susceptible

(SIS) model. The model consists of a well-mixed population of fixed size N . Of these

N individuals, I are infected with the disease and S are susceptible. Infected indi-

viduals can infect susceptible individuals at a rate βSI/N and can recover, becoming

susceptible, at a rate γI, where β and γ are infectivity and recovery rates, respec-

tively. Because S = N−I, the SIS model is a one-dimensional model in I, or S. The

stability of the disease is characterized by R0 = β/γ. The disease dies out quickly

if R0 < 1 and is endemic for R0 > 1. When the disease is endemic, on average
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N(1− γ/β) individuals will be infectious at any give time.

The fraction of individuals in state I fluctuates over time. These fluctuations

can lead to the entire population becoming permanently disease-free (I = 0); when

I = 0 there are no infected individuals present to make any susceptible individuals

infected. In the case of endemic disease, the average time for the disease to go

extinct grows exponentially with population size, making the extinction time nearly

impossible to calculate for even modest population sizes, e.g., N = 50. Our rare

event techniques can help aid this effort by accurately calculating extremely long

disease extinction times as well as determining the most likely path to extinction for

many epidemiological models.

There are many ways in which the SIS model can be generalized. One such

generalization is to allow the population to fluctuate. This can be accomplished by

adding three events to the system: allow susceptible individuals to join the popu-

lation at rate µN , remove susceptible individuals at rate µS, and remove infectious

individuals at rate µI [7], µ. These additional transitions change the model from

an exactly solvable one-dimensional model to a two-dimensional model without an

exact solution. There has been recent theoretical interest in this generalized model

with several predictions including the extinction time and the most likely path to

extinction. We have verified these predictions using one of our techniques [40].

1.5.2 Maier-Stein model

Maier and Stein introduced a bistable non-equilibrium model, which has received

considerable interest [4]. The model consists of two coupled stochastic differential

equations:

ẋ = fx(x) + ξx(t), ẏ = fy(x) + ξy(t), (1.3)
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where x = (x, y) and f = (fx, fy) is a time-independent drift field:

fx = x− x3 − αxy2, fy = −µy(1 + x2). (1.4)

The white noise ξ = (ξx, ξy) is delta function correlated with a variance of ε:

〈ξi(t)〉 = 0, 〈ξi(t + τ)ξj(t)〉 = εδijδ(t− τ). (1.5)

For α = µ, the model obeys detailed balance; the force can be written in terms

of a potential energy. The model has two stable points at x = (±1, 0) separated by

a separatrix at x = 0. This model can be thought of as an over-damped Brownian

particle under the influence of some static force. A rare event in this model is a

transition from one stable point to the separatrix in the low noise limit (ε → 0). We

study this region because the theoretical predictions are only valid as ε → 0.

1.5.3 ZGB model

When a desirable chemical reaction naturally happens slowly, catalysts are fre-

quently used speed-up the rate of reaction. One everyday use of catalysis is to turn

carbon monoxide (CO) and molecular oxygen (O2) into carbon dioxide (CO2) in the

exhaust of automobiles. This reaction takes place on the platinum surfaces in cat-

alytic converters. A simple and effective representation of this reaction is the ZGB

model [17]. The platinum surface is modeled as a square lattice where a CO molecule

can adsorb on a single site, O2 disassociates and sticks onto two sites, and if a CO

and O are ever on neighboring sites, they desorb instantaneously producing CO2.

The only parameters in the model are the relative probability of attempting to place

a CO molecule on the lattice, versus placing an O2, (pCO) and the size of the system

(L by L).

The model displays surprisingly complex behavior including three distinct phases.

When the probability of placing a CO and O2 are roughly equal, the system is
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reactive and produces a steady throughput of CO2. Starting in the reactive state and

decreasing pCO causes the system to go through a second-order (continuous) phase

transition where the entire lattice becomes covered with oxygen atoms, called the O

poisoned state. A similar result occurs when the system is started in the reactive state

and pCO is increased. This time, there is a first-order (discontinuous) phase transition

where the lattice becomes covered with CO (CO poisoned). Unlike the second-order

phase transition, the first-order transition is robust to simple changes in the model,

like allowing occasional reactant desorption, and has been seen experimentally.

When pCO is slightly past the transition point, the system is seperated with both

reactive and CO poisoned regions present. Co-existance of these phases persists until

pCO reaches the spinodal point, at which only the CO poisoned state is present. The

same phenomenon can be seen in everyday life. A cup of undisturbed water in the

microwave can be heated above its boiling point, superheating it. If the temperature

is raised high enough, the cup boils instantaneously. Taking the analogy to the

ZGB model, the reactive state corresponds to the liquid water and the CO poisoned

state corresponds to the water vapor. Between the spinodal and transition point,

“bubbles” of the CO poisoned state are formed. These bubbles have a critical size

which depends on pCO, above which they will tend to grow indefinitely and below

which they will tend to shrink. These analogies from equilibrium physics all hold,

including droplet surface tension, even though the system is far from equilibrium.

1.5.4 Organization of thesis

The organization of the thesis is as follows. Chapter 2 covers the development of

our first rare event technique, signposting, and shows its application to the harmonic

measure of critical percolation and Ising model clusters. Chapter 3 is a continuation
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of the harmonic measure work on critical Potts model clusters and introduces the

etching method. Chapter 4 discusses our last published harmonic measure project,

which is the harmonic measure of 2D DLA clusters. Chapter 5 covers our mea-

surements of the hull height and length distribution of critical Potts model clusters.

Chapter 6 shows the development of our first long transition time algorithm, the

barrier method, and its application to the Maier-Stein and SIS models. Chapter 7

introduces our latest algorithm, forward flux sampling in time (FFST), and discusses

its application to the ZGB model of heterogenous catalysis. Finally, chapter 8 sum-

marizes the previous results, discusses future work, and gives some guidance towards

successful application of rare event techniques.
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CHAPTER II

Harmonic Measure for Percolation and Ising
Clusters Including Rare Events

The work in this chapter was published in Physical Review Letters in 2008 (Vol.

101, Art. Num. 144102). This chapter represents our first attempt to develop rare

event algorithms. We have adapted and used the algorithm developed in this chapter,

signposting, to obtain the harmonic measure of 2D and 3D DLA clusters.

2.1 Introduction

The harmonic measure is a fundamental property of geometric objects. It may

be defined by considering the object to be a grounded conductor with fixed charge

of unity. The harmonic measure, µ, specifies the normal derivative of the potential

(a harmonic function) on the surface. That is, it is the distribution of electric field

on the hull (surface) of the object. We may also allow many random walkers to

start far away from the object and record where they land. The probability density

of hitting the hull at a point is µ. This quantity is the focus of much theoretical

activity [38, 1, 2, 41] and it is of considerable practical interest because it predicts

where particles will diffuse to for adsorption, catalytic reaction, etching, etc. See

also [42]. If the shape in question is fractal, µ shows interesting scaling properties.
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Here we show how to find µ numerically for two systems that produce fractal

clusters in two dimensions, percolation [27] and Fortuin-Kasteleyn (FK) [29] clusters

in the Ising model. Our method allows us to sample very small probabilities (of order

10−300) using random walker simulations. In these cases µ is multifractal. Our large

dynamic range allows us to explore this property fully.

The function µ is non-negative and normalized on the hull:
∫

dµ = 1. A partition

function [43] can be defined by dividing the hull into j boxes of length l,

Zq =
∑

j

pq
j , (2.1)

where pj =
∫

dµ over box j. For large fractal clusters Zq scales as a power-law,

Zq ≈ (l/R)(q−1)D(q) , (2.2)

where R is the length scale of the cluster. D(q) is called the generalized dimension.

In our simulations, we choose the smallest l to be the lattice spacing, and use 2l,

4l, etc., until a sufficient range is available to fit Eq. (3.2). We recall some special

values of D(q): D(0) is the fractal dimension of the support of the measure, which

describes the region the hull covers. Additionally, D(1) = 1 is known from Makarov’s

theorem [44]. A related quantity is the curve f(α), which is the Legendre transform

of τ(q) ≡ (q − 1)D(q):

f(α) = q
dτ

dq
− τ, α =

dτ

dq
. (2.3)

We will focus on D(q) in this chapter.

The exact spectrum of D(q) for percolation [1] and the more general Q-state

Potts model [2] can be derived from generalized conformal invariance in terms of a

central charge c,

D(q) =
1

2
+

(√
24q + 1− c

25− c
+ 1

)−1

q ∈
[
−1− c

24
, +∞

)
. (2.4)
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Percolation and FK-Ising clusters correspond to c = 0 and c = 1/2, respectively.

Eq. (2.4) was derived for the accessible or external hull of the clusters [45, 46].

For a finite system, the external hull is approximately produced by closing all fjords

on the complete hull with a neck size of order unity. This reduces the dimension for

percolation and the Ising model from 7/4 and 5/3 for the complete hull to 4/3 and

11/8 for the external hull, respectively [2].

We should note that Eq. (2.4) is based on a computation about a continuum

model; in principle, it might not actually apply to the scaling limit of lattice perco-

lation. The prediction was made nearly ten years ago and has never been reliably

tested in the significant small-q regime. For percolation, and for large q it agrees

with results [38] on relatively small systems, ≈ 105 sites. These simulations did not

probe deep into the fractal surface, which is necessary for the small q regime.

The authors of Ref. [38] used the method mentioned above: a large number of

walkers were allowed to diffuse until they were absorbed on the hull. This method

is able to measure µ to an accuracy of ≈ 10−10. However, percolation clusters with

105 sites can have regions of the hull with probabilities per lattice site smaller than

10−100. Although these regions do not contribute to D(q) for large q, they dominate

for small and negative q.

The computation of D(q) is a very difficult numerical problem (as emphasized in

[41]). We have solved this once and for all for arbitrary shapes; the algorithm of this

chapter can measure probabilities down to 10−300. This accuracy completely samples

lattice systems with ∼ 104 hull sites. We have applied the method on systems as

large as ∼ 106 hull sites. Here we consider only percolation and Ising clusters on a

lattice. Our method is quite general and can also be applied to off-lattice clusters.

Ref. [41] is our only real competitor for finding the complete harmonic measure;
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however, it relies on a technique that is only applicable for small DLA [34] clusters.

2.2 Models and Methods

To treat rare events, we use iterative biased sampling to keep track of the “lucky”

walkers that penetrate deep into the fjords of the hull, see Fig.2.1. In the first

iteration, N random walkers with weight 1/N are released from outside the cluster

and allowed to diffuse until they are absorbed on the hull. The weights of the walkers

are temporarily added to the probability of the site where they land. This step probes

the cluster to find regions of small measure. The hull sites that bound regions below

a threshold (say 1/10) are used as the end points of absorbing lines (signposts) which

mark the depth of our current sampling. Then the probability added in the first step

is removed and N more random walkers are released. These walkers can either be

absorbed on the hull or on a signpost. The weights of the walkers that touch the hull

in this step are permanently added to the probability distribution. After all walkers

have been absorbed, the signposts are removed.

Next, the probe step is repeated with N walkers released from the locations along

the signposts where walkers absorbed previously. The threshold for small probability

is reduced by a constant factor, e.g., 10. These walkers carry a weight given by the

fraction of the walkers in the last step that touched a signpost. The method is

repeated until small probabilities are sampled. We find that errors build up slowly

in the method: even for probabilities of order 10−300 the fractional standard deviation

over the ensemble is only 10-20%.

In effect, we find the Green’s function for the random walkers by summing over

intermediate positions. At the intermediate points where the sampling is poor, we

enrich it. This is similar to methods used in chemical physics [22]. Fig. 2.2 shows
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Figure 2.1:
The signpost algorithm. Left: hull of the cluster divided into boxes A-F .
Absorbed walkers are the N = 18 dots. Right: histogram of probability
in each box. The initial threshold is 1/6. (a) Probe step: walkers absorb
onto the hull. Below the heavy black line on the histogram p < 1/6.
Thus, boxes B-E should be behind a signpost. (b) N more walkers are
released and absorb onto the hull and the signpost (horizontal gray line).
In this case, there are N/2 walkers on the signpost; histogram shows the
probability on the hull. (c) Next probe step: N walkers are released
from the signpost where walkers in step (b) landed (open circles). These
walkers have half of the weight as the ones released in parts (a) and (b).
The heavy line on the histogram shows the new threshold, 1/36. In the
next step, boxes C, D must be behind a signpost.
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Figure 2.2:
Harmonic measure on the complete hull of a percolation cluster. The
hull sites are outlined in black and the harmonic measure goes from high
to low; light colors are high and dark, low. The scale is given by the
color thermometer on the right. Sites outside the cluster are white, and
inside, grey.

the harmonic measure of the complete hull of a percolation cluster obtained using

this method.

Our simulations are performed on a periodic triangular lattice with height h and

width w such that h = 100w, so that we obtain clusters that wrap around in width

but not in height. One ambiguity which must be resolved is the definition of random

walkers touching the hull. Here, we interpret this as the walker hopping onto a hull

site.

The percolation clusters are grown using the Leath algorithm [33], with p equal
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Figure 2.3:
D(q) vs. q for the complete and external hulls of percolation clusters for
four different widths compared to theory, Eq. (2.4) [1] (black line). Inset:
small q behavior of D(q). Dashed lines are the theoretical limit for the
external hull; the vertical dashed line is at −1/24.

to the site threshold for the triangular lattice, pc = 1/2. If a given cluster spans

the width of the system, the top hull of the cluster is found using a simple border

walking algorithm related to the method of generating percolation cluster perimeters

by random walks [47]. The list of complete hull sites on the cluster is then used in

the signpost method to obtain the harmonic measure. If the topmost vacant sites

bordering the cluster are used instead of the occupied sites as the adsorbing sites,

one obtains the external hull.

For the FK Ising model clusters, bonds are placed between adjacent same-spin

sites with probability pc = 1− e−βJc , where on the triangular lattice pc = 1− 1/
√

3.

We use the Swendsen-Wang method [31] to equilibrate the system and simultaneously

generate the FK clusters. After the system is sufficiently equilibrated, we attempt
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to find a spanning cluster. These spanning bond clusters must be converted to site

clusters if they are to be used with our algorithm. We do this by making another

triangular lattice with half the lattice spacing. Bonds are copied to the new lattice

at the even sites on which they are centered. Odd sites are added to the cluster if

two adjacent bonds meet at the odd site. Next, the perimeter-walk algorithm is used

to record the locations of the hull sites; then, we use the signpost method to find the

harmonic measure. As in percolation, an external hull can be obtained. However, for

Ising clusters, we need to add artificial vacancies to all sites bordering the cluster.

The signpost method iteratively obtains smaller and smaller probabilities by re-

ducing the weight of the random walkers released in each round, in our case by a

factor of 10, on average. We took the number of walkers, N to depend on the sys-

tem width, w. For example, for w = 400 we use N = 2 × 106 and for w = 4000,

N = 2 × 107. The signpost method is performed until all probabilities have been

measured or until the minimum measurable probability 10−300 has been reached.

This minimum is close to the smallest value that can be stored in a double precision

floating point number. Smaller values, in principle, could be obtained by storing the

logarithm of the probability instead of the probability itself.

The locations of the sites and their associated probabilities are then used to

obtain D(q) and the histogram of the probability distribution (see below). D(q) is

obtained by applying a linear fit to log Zq in Eq. (3.1) versus log l, where l is the box

length. The fit was performed for a range of l over which the function was linear.

2.3 Results

Simulations of percolation and Ising clusters were performed for a number of

system widths. Our results are for w = 400, 1000, 2000, and 4000. Small systems,
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Figure 2.4:
Exponent of a power-law fit to the histogram of the probabilities as a
function of p for the complete hull of a percolation cluster for several
different widths. Inset: a similar plot for the external hull with the
associated theoretical prediction (black line) [1].

w = 400, have ≈ 5 × 105 hull sites in the cluster and large systems, w = 4000,

have ≈ 5× 106 hull sites. D(q) and the slope of the power-law fit to the probability

distribution were obtained for the complete and external hulls of both percolation

and Ising model clusters.

Figure 2.3 shows a comparison between the results of the complete and external

hulls of percolation clusters with the theory for the external hulls, Eq. (2.4). There is

good agreement among all three for large q, which is not surprising as the complete

hull fjords contribute negligibly to D(q) in this case. For small q, there is significant

disagreement between the complete hull and the theory as the two must approach

different values for D(0). Previous simulations [45] have shown that D(0) increases

with increasing width; however we see a peak at a width of 1000; see Fig. 2.3. This is

because there is a non-negligible fraction of the hull sites with probabilities less than
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Figure 2.5:
D(q) vs. q for the complete and external hulls of Ising clusters for four
different widths compared to theory from Eq. (2.4) (black line). Inset:
small q behavior of D(q). Dashed lines at (−1/48, 3/2) are the theoretical
limit for the external hull.

10−300 for large widths. We expect for very large systems, if we are able to record all

probabilities, that the complete hull D(q) will be nearly identical to the theory for

q > 0 because the small probabilities do not contribute. But at q = 0 there will be a

jump to D(0) = 7/4 because we are finding all of the sites. For q < 0, D(q) will be

ill-defined (unbounded). In comparison, for the external hull, we see good agreement

between the data and the theory (2.4) over the entire range of D(q), especially for

the largest system sizes.

The histogram of the frequency of occurrence of pj was tallied using exponentially

distributed bin sizes, e.g., the first box has size 1/2, the next 1/4, then 1/8, etc. The

histogram is a power law over, (incredibly) more than 150 orders of magnitude.

The exponent of the power-law is fit at different probabilities using 5 points which
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roughly span an order of magnitude in probability. It is shown for the complete and

external hull (inset) in Fig. 2.4. The exponent for the complete hull is −0.996±0.01.

We presume that the exact value of the exponent is −1, which implies that D(q)

is undefined for q < 0. Previous simulations [38] were unable to obtain this result

because the smallest probability that could be measured, ≈ 10−10, is still in the

transient regime. The initial overshoot of the power for small systems corresponds

to the probability distribution for the external hull being picked up by the complete

hull. The power-law exponent is also obtained for the external hull, −0.93 ± 0.05,

which is consistent with the theoretical prediction of −23/24 . −0.958.

Similar results were obtained for the Ising model. Fig. 2.5 shows the comparison

between the complete and external hulls of Ising clusters with the theory [2] for D(q).

As with percolation, there is good agreement with theory for large q for both the

complete and external hulls but significant disagreement at small q for the complete

hull, where Eq. (2.4) does not apply. The probability power-law exponents for the

complete and external hull are, -0.997±0.012 and -0.920±0.048, respectively for the

Ising model. The complete hull exponent again points to q = 0 as the discontinuity

point for D(q). The external hull exponent agrees roughly with theory which gives

−47/48 = −0.979.

2.4 Conclusions

In summary, we have described a method to obtain precise values of D(q) by

including events of extremely low probability. We probed the internal structure of

percolation and Ising model complete cluster hulls. We observe the histogram of

occurrences of probability p to be ∼ p−1. We are not aware of any prediction of this

case.
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In future work [36], we plan to apply the continuous version of this algorithm to

obtain the harmonic measure for Diffusion Limited Aggregation (DLA) [34] for which

there are no exact results, though there are several conjectures for the form of D(q)

for small and negative q [41]. For DLA, the harmonic measure plays a central role

because it represents the growth probability at every point on the cluster at a given

time. The best current results for D(q) use iterative conformal maps [48, 49], and

are restricted clusters of ≈ 104 sites. Our method can go to much larger sizes, ≈ 107

sites. This is important because the slow crossover of some length scales in DLA [50]

suggests large clusters are necessary to approximate the scaling limit. Our method

could shed light on the internal structure of DLA about which little is known.
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CHAPTER III

The Harmonic Measure for Critical Potts Clusters

The work in this chapter was published in Physical Review E in 2009 (Vol. 80,

Art. Num. 031141). This chapter is the followup article to the letter in chapter II,

in which only the first two Q states in the Q-state Potts model were studied. Here

we obtained the harmonic measure for the first four Q states. We also developed two

new harmonic measure algorithms: Etching and the Green’s function method. Both

of these algorithms influenced our later work: we used etching on 3D percolation

clusters, and the Green’s function method inspired our work on the barrier method.

3.1 Introduction

3.1.1 Potts model

The Q-state Potts model, a generalization of the Ising model to Q different spins,

has been the subject of considerable interest [26]. Two important cases are Q = 1

and Q = 2, which correspond to percolation [27] and the Ising model, respectively.

When a Potts system is prepared at its critical temperature, subsets of the clusters of

like spins, the Fortuin-Kastelyn (FK) clusters [51, 29] (to be defined below), are self-

similar fractals [14]. For Q = 1 the FK clusters are the same as the usual percolation

clusters. In this chapter, we will study the harmonic measure of the hulls of these
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fractal clusters for Q = 1, 2, 3, 4.

The harmonic measure may be thought of as the distribution of the surface elec-

tric field on a charged conductor. Since the Laplace equation and the steady-state

diffusion equation are identical in form, the harmonic measure is also equal to the

distribution of probabilities of random walkers diffusing far from the cluster onto a

given section of the hull. In this chapter, we use a biased random-walk sampling tech-

nique to obtain the harmonic measure. We also review other methods for measuring

small probabilities and give details of our algorithms.

The harmonic measure is of practical interest because of its relation to the anoma-

lous frequency dependence of the impedance of rough electrodes [42] and because of

its obvious connection to processes that involve absorption of diffusing particles such

as catalysis [52]. It has a deep connection to the structure of diffusion-limited ag-

gregates (DLA) [34], since the harmonic measure determines where each walker will

land; that is, for DLA it is the growth probability. In the case of critical Potts

clusters and DLA, the harmonic measure is multifractal [39]. Advances in conformal

field theory and Schramm-Loewner evolution have brought about renewed interest

in the harmonic measure. In particular, certain aspects of the harmonic measure

for Potts clusters can be computed in the continuum limit using these methods

[1, 2, 53, 54, 55, 56].

Numerical investigation of the harmonic measure of percolation [38] and DLA

[38, 57, 58] clusters is difficult because the measure has a huge dynamic range for

systems of even moderate size. In refs. [38, 57, 58] one of two methods were used:

the first is the straightforward one of releasing a large number of random walkers far

from the cluster and determining where they land. The second uses relaxation or

equivalent algorithms to solve the Laplace equation. The random walker method can
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only measure probabilities down to about 10−10 and samples a very small part of the

measure for clusters of reasonable size. Relaxation like methods are computationally

costly and limited to small clusters and give similar lower limits on the probabilities

that can be measured.

For DLA it is possible to go to much smaller probabilities by using the method

of iterated conformal maps [48, 59, 60]. However, this technique is only capable of

treating moderate size clusters [41]. In an earlier chapter we generalized the random

walker method and gave a technique capable of obtaining probabilities down to 10−300

for any fractal. We applied it to FK clusters for percolation and the Ising model [61].

This chapter describes a further development of those techniques.

3.1.2 Generalized dimensions

The harmonic measure, the distribution of probabilities that random walkers will

hit a given site on the perimeter of a cluster, is very complicated and varies wildly

for the cases we are studying; see Fig. 3.1. A popular and useful way to characterize

it is in terms of the generalized dimension, D(q), of the measure. We define these

objects as follows: we cover the hull with boxes of length L. With each box we

associate a probability, pi, which is the sum of the measure over the sites within the

box. We then define a function ZL(q), sometimes called the partition function:

ZL(q) =
∑

i

pq
i (3.1)

where q is some power [43]. If the object in question is fractal, then the partition

function will follow a power-law in L:

ZL(q) ∼ (R/L)−τq = (R/L)−(q−1)D(q) (3.2)
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Figure 3.1:
The harmonic measure for the complete perimeter of a small, W = 64,
percolation cluster. The solid grey regions represents the area that is
inaccessible to the random walkers diffusing from above the cluster. Ev-
ery perimeter site is colored according to its measure. The computation
was performed using the etching method described below. Note that the
measure on this small cluster spans 50 orders of magnitude.
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for (R/L) →∞, where R is the size of the cluster. For integer q, D(q) corresponds

to the fractal dimension of the q-point correlation function. There are special values

of D(q). D(0) is the fractal, box-counting, dimension of the hull. Also D(1), the

information dimension, is always unity by Makarov’s theorem [44]. A related function

is the singularity spectrum f(α), the Legendre transform of D(q):

f(α) = q
dτ

dq
− τ, α =

dτ

dq
. (3.3)

In this chapter, we will focus exclusively on D(q). The singularity spectrum can be

derived from our results using Eq. (4.2).

3.2 Models

3.2.1 Simulations of FK clusters for the Potts model

We produce critical Potts clusters in two ways. For percolation, we use the Leath

algorithm [33]. The algorithm starts with a single active site; we attempt to turn its

neighbors into active sites with probability p. If a conversion attempt fails, the site

is labeled inactive. The process is repeated with neighbors of the active sites which

have not been labeled as inactive. The process continues until there are no new

active sites. If p equals pc, the percolation threshold, a critical percolation cluster is

produced. The outer layer of active sites is called the complete perimeter. Its fractal

dimension is denoted DH . The cluster of active sites is surrounded by a single layer

of inactive sites; this layer is called the accessible (or exterior) perimeter [45] and has

a fractal dimension denoted DEP . The accessible perimeter is of interest because,

unlike the complete perimeter, it is expected to have a well-behaved limit when

clusters are very large and are rescaled. The harmonic measure has been determined

in this limit for the accessible perimeter of Potts clusters [1, 2].
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To obtain critical Potts clusters for Q = 2, 3, and 4, we grow equilibrated FK

clusters using the Swendsen-Wang (SW) algorithm [31]. For any configuration of

spins, FK clusters are subsets of clusters of like spins formed by a bond percolation

process. That is, we consider the clusters formed when adjacent spins are connected

with probability pc(Q) = 1 − exp[−Kc(Q)] where Kc(Q) is the critical coupling

constant. For Q = 2, 3, 4, on the triangular lattice, pc(Q) is known to be 1 − 1/
√

3,

1 − 1/[1 + 1
2

√
3 sec(π/18)], and 1/2, respectively [62]. To obtain the equilibrium

ensemble of FK clusters we iterate two steps until the system settles down (see

below). The first step takes every current FK cluster and replaces the spin with one

of the Q possible values, at random. In the second step, the bonds connecting the

clusters are discarded and bond percolation is performed again, with p = pc(Q), on

all neighboring sites with the same spin. The process is then repeated by updating

the spins on the newly formed clusters. These two steps together constitute a spin

update.

3.2.2 Parameters and Observables

We grew critical Potts clusters for Q = 1−4 on the triangular lattice, as described

above. We chose to use a triangular lattice rather than a square lattice because the

square lattice does not allow diffusion into fjords bounded by diagonal entrances.

We use the width of the system, W , as the characteristic length. The clusters we

want span in the width direction but not in the height direction. To make sure the

clusters will only span in one direction, we chose very large aspect ratios. The height

of the lattices were 100W and 8W for Q = 1 and Q > 1, respectively. We looked

at six different system widths, W = 128, 256, 512, 1024, 2048, and 4096. Because FK

clusters are intrinsically bond clusters, we needed to use a trick to turn them into
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Figure 3.2:
The signpost method. The system is periodic in the horizontal direction.
(a) First (probe) step: N random walkers are released from the top row
and absorb onto the perimeter sites. (b) We choose the first probability
threshold as 0.1. Using this threshold, we connect the the bounding
sites using signpost sites. In the second (measurement) step we send N
more random walkers from above which can absorb onto the signpost or
perimeter sites. (c) Second probe step: the random walkers are launched
from the signpost sites in the previous measurement step. The walkers
released in this step have a weight of p/N where p is the fraction of
the random walkers that hit the signpost site in (b). (d) The second
threshold, 0.01, is used to determine the location of the new signpost
sites.
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site clusters. We created a lattice twice as dense as the original and marked every

site at the center of a bond and every site where two bonds meet as cluster sites.

The FK cluster widths used were W/2 = 64, 128, 256, 512, 1024, 2048.

To have proper FK clusters we require equilibration in the SW algorithm. We

numerically determined that the equilibration time for Q = 2, 3, and 4 is of the order

of W spin updates by looking at the relaxation of the average energy per spin and the

average largest cluster size. For Q = 2, 3 and small W we ran a separate simulation

to equilibrium for each spanning cluster which was added to our ensemble. For Q = 2

and 3 and W = 2048 and 4096 and for all of the Q = 4 clusters, the equilibration

time was too large to proceed in this way. In these cases we equilibrated the system

once and recorded an ensemble of spanning clusters as the simulation proceeded. We

conservatively estimate the correlation time as 50 spin updates for all W and Q.

This means we recorded a spanning cluster every 50 spin updates.

For each system size we grew a number of clusters. For all Q our ensemble was

2000, 2000, 1000, 1000, 400, and 100 clusters for W = 128, 256, 512, 1024, 2048, and

4096, respectively.

3.3 Measuring small probabilities with random walkers

3.3.1 Previous Methods

Small probabilities in the harmonic measure correspond to very unlikely paths.

As the simulation proceeds we can think of the event of a random walker landing

where the measure is very small as a rare event. Thus, computing small probabilities

is a similar task to finding the rate of a rare chemical reaction [12], a rare extinction

of a disease [10] or a population [11], or the failure of a queuing system via queue

over-flow [8].
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Accelerated numerical methods for these problems often involve biased event

sampling. The sampling can frequently be cast as a random walk, either through

state space or in our case, physical space. For example, one could ask what is the

probability that a random walker starting halfway up a hill will successfully climb

up to the top before sliding down to the bottom. If the hill is steep, it could be

impossible to directly sample the probability to climb the hill. One could place

barriers uniformly on the hill, which when crossed by the random walker, will split

the random walker into two walkers, each with equal weight which add up to the

original weight of the walker. This will aid sampling of the events higher up on the

hill. This method is called “splitting” and effectively performs importance sampling

[18]. One significant drawback of splitting is that if the barriers are too densely or

sparsely spaced, the number of random walkers will tend to diverge or extinguish,

respectively.

The methods we detail in this chapter are related to the splitting method, but

differ in that our methods do not have the possibility of diverging or extinguishing.

Another popular method called “milestoning” [22], does not have a divergence prob-

lem, but does require the system studied to be in equilibrium and the location of

the barriers to be known a priori, whereas our method works for equilibrium and

non-equilibrium systems and the barriers are placed “on the fly.”

3.3.2 Signposts

We have developed several accelerated methods for the harmonic measure prob-

lem. The motivation, as we have stated, is that it is usually impossible to send in

enough random walkers to directly obtain the harmonic measure: the clusters will

frequently have regions with probabilities of being hit that are smaller than 10−100.
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It would require of order of 10100 random walkers to sample this region; such a

computation is clearly impossible.

We now review the first method we developed, the signpost method [61]. The

signpost method consists of two steps which are applied iteratively; see Fig. 3.2.

In the first (probe) step we release N diffusing random walkers far from the cluster

to determine which regions are rarely visited in straightforward sampling. Next,

we block off all poorly sampled regions with signposts (absorbing lines). In the

second (measurement) step, N more walkers are released far from the cluster and

either absorb on the cluster (or the accessible perimeter) or onto the signposts.

The walkers sent in this step have their weight permanently added to the harmonic

measure of the perimeter sites where they landed. In the next probe step, the walkers

are released from the points on the signposts where the walkers in the previous

measurement landed. The new walkers have a weight of p/N , where p is the fraction

of random walkers that absorb onto signpost lines in the previous step, to conserve

probability. The probe step again helps determine which regions are still poorly

sampled, which are subsequently blocked off. Next, another measurement step is

performed. This process is repeated until all regions are explored by the random

walkers. This algorithm can be applied to on- and off-lattice clusters.

We should note some things about this method. First, one must determine the

entire perimeter of the cluster at the beginning of the computation in order to figure

out how to block poorly sampled regions. Also, one needs to choose a rate to reduce

the threshold for calling areas “poorly sampled” in each iteration. In [61], we moved

the threshold down by a power of 10 each iteration, whereas in [36], we reduced it as a

function of how many walkers hit the signpost in the previous iteration. When more

walkers hit the signposts we moved them even deeper. The second method gave more
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Figure 3.3:
The etching method. Walkers are released from the current level sites.
The next level of soft sites absorb walkers; they are then relabeled as
current level sites. Future sites are all sites which will eventually become
current level sites. The first round of random walkers are launched from
the row above the cluster, (a). The weight of all of the walkers released
is 0.2/N , where N is the number of walkers released per current level
site. 20% of the walker weight is deposited onto the top row of perimeter
sites and the next level soft site, which will release N walkers in the next
step. (b). One more perimeter site is accessible to the random walkers
and 5% of the weight is deposited on the site in the next level. (c) Three
sites in the next level each absorb 1% of the walker weight. (d) Due
to the reduced weight of the walkers released in the next step, small
probabilities are measured on the newly exposed perimeter sites.

35



consistent walker saturation, which should lead to a slower compounding of error.

It is important to note the signpost algorithm is only practical for two-dimensional

problems. For higher dimensions, one would need to define signpost surfaces to block

poorly sampled regions. This is could be very complex for a complicated cluster.

3.3.3 Etching

We now describe the method we use here which we call “etching.” Consider the

hull of FK clusters grown on a triangular lattice with periodic boundary conditions.

We want to find the harmonic measure of the top perimeter from above. To do

this, we start by marking all sites that are exterior to the cluster from above as soft

sites; the soft sites are absorbing like the cluster (or accessible perimeter) sites. The

highest row is limited to one level above the highest point on the perimeter.

We next relabel every site on that highest row as a current level site; these are

not absorbing. We release N random walkers, each with weight 1/(NW ), from each

current level site. The walkers released from these sites are allowed to walk until

they deposit their weight onto a soft site or a perimeter site. If they move one level

further away from the cluster, they are immediately moved back onto the current

level sites using a Green’s function which must be determined in advance. However,

this is rather simple since it is the Green’s function to return to a plane from one site

above the plane. This Green’s function is used for the entire simulation and limits a

walker to backtrack to at most one level above the cluster. After all random walkers

are released, the labels on each current level site are removed and every soft site hit

in the previous step is labeled as a current level site. From each current level site i

we release N random walkers with weight pi, where pi is the amount of probability

deposited on the site in the previous step divided by N . This process is repeated
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Figure 3.4:
An example of the fit of log10 Z(L, q) versus log10 L to a straight line
for q = 2.0379. The behavior is similar for all q values that we have
examined. The slope of the line is τ(q) ≡ (q − 1)D(q).

until there are no more soft sites. See Fig. 3.3.

Etching can be thought of as the limit of the signpost method with the sign-

posts spaced one site apart. However, etching has several benefits over the signpost

method. First, the entire perimeter of the cluster does not need to be mapped out

before we start. Both algorithms have the same time complexity, O(W 3) for the

complete perimeter of Ising clusters, and both methods have similar memory re-

quirements. In contrast to the signpost method, the etching method can be easily

generalized to higher-dimensional lattice problems and networks. We have success-

fully used etching to obtain the harmonic measure of three-dimensional percolation

clusters [63].

3.3.4 Green’s functions

We have also developed a rare event method which may be significantly more

efficient than etching and signposting for some problems. Thus far we have applied

this method only to simple test problems. This method manipulates probabilities
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directly and does not allow backtracking of probability. To do this, we calculate the

Green’s function G(i, j; k, l), i.e., the probability to move to any of the sites i, j in

the next level from a given site k, l in the current level.

To illustrate our algorithm, consider finding the probability distribution in a

channel with absorbing walls on a square lattice. The initial condition is that the

probability is uniformly distributed among the sites in the first row of the channel and

the zeroth row is a reflecting boundary. All sites that initially have probability are

denoted by C. The previous level sites, absorbing sites, and next level sites accessible

to the current level sites are denoted by B, A, and N , respectively. (Initially, the

previous level is the reflecting boundary.) In each iteration, the goal is to move all

of the probability from each current level site to the all the next level and absorbing

sites.

We find the Green’s function by iteration on an index s. The process begins for

some current level site, k, l; (k, l) ∈ C. Initially, probability only resides at k, l so

that for s = 0, Gs(i, j; k, l) = δi,kδj,l. In each iteration, the probability is moved to

each of the current level site’s neighbors,

G(s+1)(i, j; k, l) =
∑

(m,n)

W (i, j; m, n)G(s)(m, n; k, l), (3.4)

using the jump probability,

W (i, j; m, n) =
1

4
(δi,m+1δj,n + δi,m−1δj,n + δi,mδj,n+1

+ δi,mδj,n−1) (m, n) ∈ C

= GB(i, j; m, n) (m, n) ∈ B

= δi,mδj,n (m, n) ∈ A ∪N (3.5)

Here GB(i, j; m, n) is the Green’s function for the previous level, see below, and

the last line represents the probability of staying at absorbing and next level sites.
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Figure 3.5:
The D(q) spectrum for the accessible perimeters of Q = 1, 2, 3, 4 clusters,
in (a), (b), (c), and (d), respectively. The solid lines are the theory of
[2] and the symbols are the results of our simulations for several system
widths. The vertical dotted lines marks qmin for the theoretical spectra
for infinite systems.

GB(i, j; m, n) takes into account all the processes that would correspond to random

walkers backtracking before the previous level. To start the process, the reflecting

boundary has GB(i, j; 0, n) = δi,1δj,n.

For large s, virtually all of the probability will be on absorbing sites and next

level sites. In any finite amount of time, some slight probability will remain in the

current level, so after some stopping criteria is met, the probabilities recorded on the

absorbing and next level sites must be normalized. When this has been achieved, we

have the Green’s function from a given site in the current level, k, l, to any site in

the next level, i, j:

GB(i, j; k, l) = lim
s→∞

G(s)(i, j; k, l). (3.6)

In the next step, this GB will be used as a jump probability.
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This process is repeated for all current level sites so that Green’s functions from

those sites to the next level sites and absorbing sites are calculated. With these

Green’s functions, it is easy to determine where the probability from the first level

will end up. If the probability in the starting level is P (k, l), then the probability in

the next level is,

P (i, j) =
∑

(k,l)∈C

GB(i, j; k, l)P (k, l) (3.7)

Note that (i, j) can be absorbing sites as well as next level sites.

The next step is to relabel all current level sites as previous level sites, relabel

all next level sites as current level sites, and mark all sites that are accessible to the

new current level sites (which are not previous or absorbing sites) as next level sites.

Then the process is repeated.

The end result of this process is that all of the original probability is at absorbing

sites, as it would be using signposting or etching. Although this example contained

only sites that were completely absorbing or non-absorbing, the Green’s function

method can easily be generalized to partial absorption problems.

The Green’s function method is somewhat more complex to program than the

etching method and the simplest implementation involves setting up the Green’s

function look-ups in sparse arrays. This leads to a memory complexity which grows

like W 2d, where d is the dimension of the space. The memory complexity would

significantly reduce its usefulness, as it would take at least one terabyte to store a two-

dimensional cluster with a length scale of 1000 lattice sites. However, it is possible to

store the Green’s function lookup in an associative array; this reduces the memory

complexity to W d−1+D, where D is the fractal dimension of the perimeter. For the

external perimeter of two-dimensional percolation clusters the memory complexity

grows like W 7/3, which is quite close to the memory complexity for etching, W 2. For
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Figure 3.6:
The D(q) spectrum for the accessible perimeters of Q = 1 clusters for
small q. As the system size increases the simulated values increase, pre-
sumably to approach infinity for q < −1/24.

a cluster with a length scale of 1000 sites, the minimum required memory would be

about ten megabytes for the Green’s function method.

3.4 Results

We used etching to find the harmonic measure of Q-state Potts model clusters.

We analyze the measure by producing D(q) spectra and histograms of the probability

distributions. To obtain D(q), we start by sectioning individual clusters into boxes

of length L as described above. Because we are using a triangular lattice, it is

convenient to use a parallelogram aligned with the lattice as a box. After completely

tiling the cluster with boxes, we define the probability within a box pi,L as the sum

of the measure of perimeter sites within the box. We then calculate Z(L, q) using

Eq. (3.1). D(q) is related to Z(L, q) by (q − 1)D(q) = m, where m is the slope of

log Z(L, q) versus log L.

We found that for a given Q and q, all system sizes have similar local slope

behavior over a range of L; see Fig. 3.4. In order to average over the ensemble
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Figure 3.7:
The D(q) spectrum for Q = 1 for the complete perimeter. There is
no theoretical prediction for this quantity. However, for q substantially
bigger than 0 we expect this result to be very similar to the result for
the accessible perimeter since large probabilities will dominate the sum
in Eq. (3.1). The line labeled “theory” is for the accessible perimeter.

we average log Z. However, if we use the slopes for each individual member of the

ensemble and average them we get virtually identical results.

The spectra of generalized dimensions for the external hulls of Q = 1 − 4 are

given in Fig. 3.5. In all cases the results are close to the theoretical predictions [2].

The theoretical predictions include a divergence of D(q) for q < qmin for an infinite

system, see below. Our simulation results increase rapidly with W for this regime,

as expected; see Fig. 3.6.

For completeness, we include the spectrum of generalized dimensions for the

complete perimeter for the case Q = 1; see Fig. 3.7. There is no theoretical prediction

for this quantity. For positive q the results are close to those of the accessible

perimeter shown in Fig. 3.5. This is because, for positive q, large probabilities

contribute most of the weight in Z(q). Near q = 0 the two spectra differ because

there are significantly more sites with small measure for the complete hulls.
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Figure 3.8:
The histogram of the frequency of occurrence of the values of p for the
accessible perimeter for Q = 1. The points for various values of W are
superimposed.

We also considered the distribution of the values of p directly, by making his-

tograms of its frequency for all Q and W . The histograms turn out to be power laws

with negative powers near −1; for an example see Fig. 3.8. Since the histogram is

very accurately a power-law in p, it is useful to plot the local slope of the histogram,

which is shown in Fig. 3.9 for the accessible perimeters for Q = 1 − 4. We also

show the local slope for the complete perimeter of Q = 1; see Fig. 3.10. The slope is

calculated over about 10 orders of magnitude in p for the accessible perimeter, and

more than one order of magnitude for the complete perimeter.

The significance of the slope is that it gives information about the non-scaling

aspects of the distribution, and, in particular, the value of qmin mentioned above. If

we call the slope of the histogram −φ (so that φ is a positive number) we see that

the partition function of Eq. (3.1) formally diverges if q < φ − 1, or, said another

way, we expect D(q) to be undefined for q < qmin = −1 + φ. This means that the

partition function is dominated by a few instances of very small probabilities which

43



Figure 3.9:
The local slope of the histogram of the frequency of occurrence of the
values of p for the accessible perimeter for Q = 1, 2, 3, 4 in (a), (b),
(c), and (d), respectively. Also shown (solid lines) are the theoretical
predictions of the local slope from [2]. Note that in (b) the smallest
probabilities recorded were not from the largest system size, but were
from W = 1024. This can be understood by the fact that ten times as
many clusters were generated for W = 1024. That is, among the many
samples at W = 1024, a few abnormally deep clusters were recorded
which happened to have the smallest probabilities.

does not scale as power law in R/L. The values for the limit of the spectrum agree

well with the predictions of Duplantier [1, 2]; see Fig. 3.9. Note that the slopes are

very nearly constant over about 40 orders of magnitude in p.

The slopes for the complete perimeter of percolation clusters are also constant

over many orders of magnitude; see Fig. 3.10. In this case, we find that φ is very

close to 1, and the limit of the spectrum is at qmin = 0. There is no theory for this

case and no explanation for this intriguing result.
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3.5 Error estimate

Since etching involves sampling the probability, there will be errors due to the

finite number of random walkers released at each step. For the results in this chapter,

we released 103 random-walkers per current level site for all system widths and Q

values.

We can estimate the sampling errors as follows: we considered one percolation

cluster with W = 2048 and made 10 independent computations of the pi. The

variance of the probability over this sample at a given point on the cluster, δpi, is

a measure of the reliability of the measurement. In our case, we found that some

points have a rather large percentage error, though always less than a factor of 3,

but the average over all the points, 〈δpi/pi〉, was 23%. Note that the very small

probabilities well inside the cluster have very small errors. There is no build-up of

the error as we etch toward the interior, as might have been expected.

If it is necessary to reduce the error further, more random walkers can be used.

However, we believe that the ensemble averaging that we did means that the gen-

eralized dimensions are much more accurate than the individual probabilities. Our

evidence for the last statement is the good quality of the fit in Fig. 3.4, and the

closeness of the results in Fig. 3.5 to theory. Note also that D(0) is close to the

known fractal dimensions of the exterior perimeters.

3.6 Conclusions

In this chapter, we presented the etching method, a new accelerated technique

for computing the harmonic measure. We are able to measure probabilities as small

as 10−4600. We showed how this method relates to other methods. We used etching

to obtain the harmonic measure for the accessible perimeter of FK clusters for the
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Figure 3.10:
The local slope of the histogram of the frequency of occurrence of the
values of p for the complete perimeter for Q = 1.

Q-state Potts model for Q = 1 − 4, for a range of system sizes. We compared this

data to theoretical predictions [1, 2]. These theories were produced for a continuum

model which, in principle, might not apply to the scaling limit of the Q-state Potts

model on a lattice. In fact, we found good agreement between our numerical results

and the theoretical predictions for every comparison we made including the D(q)

spectra and the slopes of the power-law probability distributions.

For the complete perimeter of percolation clusters, we found the slope to be

almost exactly −1 for about 4000 orders of magnitude. This suggests the smallest

q for which D(q) is defined is q = 0. This means that there are many instances of

small probabilities on the complete perimeter of percolation clusters which tend to

diverge towards negative infinity faster than any power of R/L.

Etching, signposting, and the Green’s function method are three tools which can

find very small probabilities. The advantage of signposting is that it is natural to use

in off-lattice systems, and, in fact, we have applied it to off-lattice DLA [36]. Etching

is simple to program and should be easy to use in higher dimensional on-lattice
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systems. Lastly, the Green’s function method is likely to be the most efficient of the

algorithms for on-lattice and network systems, but it is more difficult to implement

and requires more memory than etching. The etching and Green’s function methods

(but not signposting) can be used in problems which involve absorption probabilities

less than unity.
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CHAPTER IV

The Harmonic Measure of Diffusion-Limited
Aggregates including Rare Events

The work in this chapter was published in Europhysics Letters (EPL) in 2009

(Vol. 87, Art. Num. 20001). This chapter is an expansion of the work in chapter II,

using signposting to obtain the complete harmonic measure of DLA clusters. Because

of the deep connection between the harmonic measure and the growth process, DLA is

perhaps the most interesting system on which to study the harmonic measure. This

letter was selected as a highlight by the editors of EPL. It was also selected for the

list of “Best of 2009” in EPL; the selection criteria was the number of downloads of

the article.

4.1 Introduction

Diffusion-limited aggregation (DLA) is a stochastic model for irreversible growth

which gives rise to fractal clusters [34, 35], see figs. 4.1, 4.2. The growth process is

defined by releasing a random walker far from the cluster and allowing it to diffuse

until it sticks to the surface and becomes part of the cluster. Then another particle is

released, and so forth. The probability of sticking at various points on the cluster, i.e.

the distribution of the growth probability, is a function with very large variations.
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It is the subject of this chapter.

Since the Laplace equation is equivalent to the steady-state diffusion equation,

this probability distribution is proportional to the perpendicular electric field on the

surface of a charged electrode with the shape of the cluster; in this context the prob-

ability is called the harmonic measure, and is defined for any surface. For fractal

surfaces, including that of DLA, the harmonic measure is usually multifractal [39].

For DLA the harmonic measure is of particular interest because of the connection

with the growth probability. For other fractal surfaces this connection is lost. How-

ever, the measure is still of substantial practical interest because of its relationship

with physical processes such as catalysis [64].

For many interesting equilibrium fractals the harmonic measure can be calculated

using conformal field theory [53, 54, 55] or Schramm-Loewner evolution (SLE) [56].

There is no corresponding theory for DLA for which the measure must be found

numerically. There are numerous studies in the literature of this quantity, for example

[38, 57, 41, 58]. This is a difficult problem because of the very large variation of the

growth probability. As we will see, the dynamic range of the function is of the order

of 1080 even for rather small clusters. This is far out of the range accessible to

straightforward random walker sampling.

In this chapter, we use a biased random-walk sampling method. We can obtain

extremely small growth probabilities and to accurately obtain the complete harmonic

measure for DLA clusters of up to 106 particles. The method was previously used on

percolation and Ising clusters [61]. For those (equilibrium) systems, we found good

agreement with analytic predictions for the harmonic measure [1, 2].

The harmonic measure is usually characterized in terms of the generalized di-

mensions D(q). For integer q, D(q) corresponds to the fractal dimension of the q
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point correlation function. We define D(q) by partitioning the external boundary of

a DLA cluster into boxes of length l. The probability that a diffusing particle will hit

the section of the perimeter contained in box i is denoted by pi. These probabilities

define a “partition function” Zl(q) =
∑

i(pi)q [43]. If Zl(q) can be written as a power

law in the dimensionless ratio R/l, where R is the overall size of the cluster, then

the generalized dimension is given by

Zl(q) = (R/l)−τq = (R/l)−(q−1)D(q). (4.1)

There are special values of D(q) including the box-counting dimension, D(0) ≈ 1.71

[65]. For two dimensional clusters we always have D(1) = 1 [44].

Another quantity of interest is f(α), which is called the singularity spectrum.

This function is the Legendre transform of τ(q):

f(α) = q
dτ

dq
− τ, α =

dτ

dq
. (4.2)

As is the case for D(q), some special values of f(α) are known: f(1) = 1 and the

largest value of f(α) is equal to D(0). f(α) can have a phase transition, namely a

maximum value of α, αmax, for which f(α) is defined. There has been significant

disagreement as to whether f(α) for DLA has a phase transition. This controversy

is summarized in [41].

The main difficulty in resolving this issue is that large α, or small q, corresponds

to the smallest probabilities on the cluster. The straightforward method of obtaining

the harmonic measure, sending large numbers of random walkers at the cluster, is

only capable of measuring probabilities down to≈ 10−10; even clusters with only 1000

particles have sections with growth probabilities significantly smaller than that. This

issue was partially resolved by Jensen et al. [41], who used the method of iterated

conformal maps (CM) [48, 59, 60], to obtain significantly smaller probabilities. Their

50



main result was the determination of the harmonic measure of a single cluster of size

3 ·104, where they found probabilities down to 10−35. This work [41] was a significant

advance, though the CM results are not conclusive in giving the asymptotic results

for DLA because the CM method is limited to small clusters, and it is known that

some features of DLA have slow crossover to asymptotic scaling [50]. There are

other, technical, questions about the CM method that we discuss below.

Other groups have obtained the harmonic measure for on-lattice clusters using re-

laxation methods to solve the Laplace equation. Ball and Spivack [57] grew DLA clus-

ters, corrected for lattice anisotropy, up to 105 particles. They then solved Laplace’s

equation numerically to obtain the measure. Hanan et al. [58] measured the complete

harmonic measure of DLA clusters using a related relaxation technique. In contrast

to [57], these authors first grew the cluster off-lattice, then forced it on-lattice to

solve for the measure. The simulations in [58] were also limited to small clusters of

6 · 104 particles.

4.2 Simulation Methods

We grow our DLA clusters by the method that is now standard [35], which

includes speeding up the process by allowing the random walker particles to take

large jumps. We store the cluster in a data structure which allows the calculation of

the size of the jump to be performed in O(log(n)) time, where n is the cluster size.

These methods allow us to grow clusters in O(n log(n)) time, a big improvement

over the CM method, which is O(n2). In the CM method the harmonic measure

is available at each step. In our case, we use a biased random walker method (the

signpost method [61]) to obtain the harmonic measure once the cluster has finished

growing.
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Figure 4.1:
A branch of a DLA cluster with an external border representing the
Minkowski cover of the cluster. The particles filled blue in the center
are accessible to random walkers. The solid black particles can never
be reached. Inside the gray box is a narrow neck which marks a low
probability pathway for random walkers.

The signpost method consists of two iterated steps: a sampling step and a mea-

surement step. In the first step, a large number of random walker probe particles (N),

each with weight 1/N , are released far from the cluster and diffuse until they hit the

cluster. This allows us to determine which areas of the cluster are poorly sampled.

Next, we place line segments (signposts) blocking off all regions of the cluster that

have sites that are hit by fewer than some percentage of the probe particles, say 10%.

In the measurement step, we release N more probe particles far from the cluster and

allow them to hit the cluster and signposts. The probe particles that hit the cluster

have their weight permanently added to the perimeter site probability distribution.

The locations on the signposts where the probe particles hit in the measurement step

of the first iteration are used as the initial locations of the N probe particles released

in the probe step of the second iteration. To conserve probability, each probe parti-
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cle released in the second iteration has weight p/N , where p is the fraction of probe

particles that absorbed on the signposts in the first iteration. The probe particles

released in the probe step of the second iteration help determine which sections of

the cluster are still poorly sampled. More signposts are added to block off the still

poorly sampled regions and then the probe particles for the measurement step are

released. This process is repeated until the growth probability of all sites has been

measured. For a more detailed description of the algorithm, see [61].

This method is similar to a rare event method in chemical physics that uses

“milestones”[22]. The main difference between the our method and that of [22] is

we choose the locations of the signposts/milestones dynamically and that we do not

need to know an a priori distribution for the random walkers along the milestones.

See also [66].

This signpost method allowed us to measure probabilities down to 10−300 for

percolation and Ising clusters. For DLA we have measured probabilities down to

10−80. Performing the signpost algorithm on DLA clusters is more complex than

the percolation and Ising cases. DLA clusters are grown off-lattice, which means

that some sections of the exterior of the cluster are almost completely blocked by

two branches of the cluster nearly meeting, making a narrow passage slightly larger

than the diameter of a probe particle; see fig. 4.1. The probability of a probe

particle diffusing through some of these passages without touching the cluster is

smaller than 10−8. These passages are treated differently, but in a way consistent

with the signpost algorithm. Specifically, we slowly move signposts perpendicular to

the passage inward over several iterations until the probe particles can reach other

sections of perimeter. In other words, we allow narrow passages to have closely

spaced signpost lines so that proper sampling can be achieved.

53



10-5

10
10
10
10

-15
-25
-35
-45

0

Figure 4.2:
The Harmonic Measure for a cluster with 104 particles, the lighter the
color the smaller the measure. The size of the particles is doubled to
represent the cover of the DLA cluster. The smallest measure in the
cluster is ≈ 10−49. Sites that cannot be reached are marked grey.
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One minor difference between the signposting we use in this chapter and the one

used previously is that we now reduce the threshold for blocking off sections of the

cluster as a function of the total number of probe particles that hit signposts in

the previous iteration. When more probe particles hit the signposts, we move the

signposts much deeper the next time. Previously, we reduced the threshold by a

fixed amount each iteration. We found that this dynamic threshold adjustment gave

us more consistent particle saturation on the signposts, which in turn decreased the

rate at which the error grew from step to step.

Before we can apply the signpost method to a DLA cluster, we first must find

the perimeter of the cluster. More precisely, we must find all sites that are accessible

to the probe particles. First, we take a ball the size of a probe particle and roll it

clockwise around the cluster particle furthest from the center of the cluster until the

ball touches a second cluster particle. After that, the ball is rolled clockwise about

the second cluster particle until it touches a third particle. This process is repeated

until the ball returns to its initial location. Note that a single cluster particle can

be visited more than once by the ball. This process finds something akin to the

Minkowski cover of the cluster, fig. 4.1. We found that on average only 80% of the

particles in a cluster are accessible to random walkers. This means that 20% of the

particles have a measure of exactly zero and these regions of the cluster will never

grow. We found the 80% accessibility to be constant over a range of large cluster

sizes, which shows that the accessible perimeter has the same fractal dimension of

the complete perimeter and the cluster itself, in contrast to percolation where the

corresponding accessible perimeter has a smaller fractal dimension than the complete

perimeter [67, 1].

Our perimeter accessibility results agree qualitatively with other work [68], which
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Figure 4.3:
f(α) vs. α for seven different system sizes with error bars. Note that the
spectra appear to be converging to some asymptotic spectrum.

looked at cluster particle accessibility as a function of probe particle size. However,

the agreement is not precise because the authors of [68] measured the accessible

cluster using 105 random walkers, which are extremely unlikely to hit the low measure

sections of the perimeter.

We grew DLA clusters of various sizes: 103, 3 · 103, 104, 3 · 104, 105, 3 · 105, and

106 particles. For each DLA cluster grown, we obtained the harmonic measure using

the signpost algorithm. Fig. 4.2 shows the harmonic measure for a cluster with 104

particles. The different cluster sizes required a different number of random walkers

per iteration, 106, 106, 5 · 106, 107, 2.5 · 107, 108, and 2.5 · 108 for 103, 3 · 103, 104,

3·104, 105, 3·105, and 106 sized clusters, respectively. The number of random walkers

needed was estimated by determining the number of walkers required to get at least

104 random walkers absorbed on each signpost for every iteration. We believe this

is a conservative criterion.
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Figure 4.4:
f(α) vs. α for n = 106 and the asymptotic estimate, dotted, with error
bars estimated from the data in Fig. 4.3. Note that the asymptotic
estimate terminates at α = 11 only because there were too few system
sizes to extrapolate for larger α. We believe the phase-transition in f(α)
occurs at α ≈ 14.

4.3 Results

We use the method described above to obtain D(q). First, we take the space that

contains a cluster and section it into boxes of size l and then measure Zl(q). We do

this measurement of Zl(q) for various values of l for a given q. Next, we calculate

the slope of the function ln Zl(q) vs. ln l; this is τ(q), which when divided by (q− 1),

gives D(q). The fit is performed over the range of l for which the log-log plot is

linear. This range is about one order of magnitude for the smallest system size and

larger than one order of magnitude for larger systems. With this set of D(q)’s for

individual clusters of various sizes, we can calculate the average values of D(q) for

various sizes. We found that our results for large systems are close to the known

values for D(0) and D(1), 1.66 and 0.99 respectively.

Using the results of D(q) for individual clusters, we can Legendre-transform the
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Figure 4.5:
The slope of the power-law fit to the probability distribution at various
points. The slope at each probability is averaged over about an order of
magnitude in probability.

results to obtain f(α) for each cluster; see fig. 4.3. For a range of α’s, we estimated

the asymptotic value of f(α) using finite-size scaling techniques in n, so that the

correction to f(α) is of the form n−β where β is a crossover exponent. The asymptotic

values were determined by minimizing the residual of the power-law fit, see fig. 4.4.

We found the best fit for β was 0.4 for the entire range of α. Note that exponents

of 1/3 and 1/2 are also consistent with the data. This means we are consistent

with [50] where a crossover exponent of 1/3 was found (for different quantities).

The asymptotic f(α) values are consistent with special known values f(1) and the

maximum f , measured to be 1.00 and 1.71 respectively. We believe the asymptotic

f(α) calculated is the true f(α) for DLA. The last α for which f(α) is defined is

more difficult to estimate. From visual inspection, the asymptotic point of the phase

transition appears to be about α ≈ 14. This is significantly smaller than the value

found by the authors of [41], α ≈ 18.

We were also able to obtain a histogram of the growth probabilities for every
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system size. The bins were sized logarithmically, to allow for a power law fit to the

results. Fig. 4.5 shows the slope of the power law fit to the probability distribution.

The slope is fairly consistently −0.9 which corresponds to a smallest q for which

D(q) is defined being −0.1. These values agree moderately well with [41].

4.4 Conclusions

In this chapter we applied a rare-event technique to obtain the complete harmonic

measure of DLA clusters. We found that the probability distribution is consistent

with a power law exponent of −0.9. We also found a slow crossover to infinite-

size cluster behavior in f(α), in agreement with previous work [50, 58]. We believe

that our extrapolated f(α) is a very good approximation to f(α) for infinite-sized

DLA. We found a phase transition in f(α) at α ≈ 14. This maximum α is related

to the opening angle of the branches near the seed point of the cluster. The area

around the seed point should have the lowest measure, so the angles in that region,

φmax, are related to the largest alpha by αmax ∼ 1/φmax [41]. By determining the

exact relationship between αmax and φmax, Hanan and Heffernan [58] determined

the asymptotic αmax as αmax ≈ 15 using results from Mandelbrot et al. [69] for the

asymptotic estimate of φmax. This is in satisfactory agreement with our results for

αmax.

Our results differ significantly from those obtained by the CM method [41] in

several ways. First, we find a significantly smaller value for αmax. Second, we find

that finite-size effects are still noticeable on clusters with 106 particles. The authors

of [41] found no finite-size effects at their largest system size, 3 ·104 particles. This is

inconsistent with our findings. Lastly, we find that the smallest probabilities found

on clusters of size 3 · 104 are significantly smaller, about 5 to 10 orders of magnitude,
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than reported for CM clusters. We do find good agreement for small and moderate

values of α, which corresponds to a region of the spectrum which is easily measured

by random walker sampling. This explains why the difference between CM and

standard DLA clusters was not seen earlier.

Assuming that the signpost method and the CM method are both successful at

obtaining the measure for their respective clusters, then the only explanation for

the discrepancy is that CM clusters are not the same as DLA clusters grown using

particles. Superficially, CM clusters appear to be the cover of DLA clusters. If

this were the case, then both methods would obtain the same measure because the

measure for a probe particle the same size as a cluster particle hitting a standard

cluster is exactly the same as the measure for a point-sized particle hitting the cover

of the same cluster. The heart of the issue may be the shape and size of the “bumps”

added to the CM clusters during each step. These bumps are designed to have a

semicircular shape, and to be of fixed size, but they can distort as noted in [70, 71].

It is important to check that the bumps are, in fact of fixed size, and resize them

if necessary. It is not clear that this was done in [41]. Even if this correction were

made, the shape of the bumps can be very distorted deep inside the cluster.
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CHAPTER V

Fractal Dimensions of the Q-state Potts Model for
the Complete and External Hulls

The work in this chapter was published in Journal of Statistical Mechanics: The-

ory and Experiment in 2010 (Vol. 2010, Art. Num. P03004). This chapter is an

outgrowth to our work on the critical Potts model clusters. Given our code base, it

was straight forward to accurately measure the hull length and height distributions.

In the process, we discovered and resolved an apparent contradiction in the form of

the hull and height distributions.

5.1 Introduction

The Q-state Potts model [15] is a well-studied system in condensed matter physics,

exhibiting a continuous phase transition for Q ≤ 4 [26]. It is a generalization of the

Ising model [25] with Q different spins, such that like spins interact with a single

coupling constant K, and has applications to a range of different physical systems:

Q = 1 and Q = 2 correspond to percolation and the Ising model, respectively, and

Q = 3 has been used to represent absorbed rare-gas monolayers on graphite surfaces

[28, 72]. In this chapter we present results from a numerical study of the fractal di-

mensions of the hulls of the Fortuin-Kastelyn (FK) clusters [29, 51] for Q = 1, 2, 3, 4
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using a cylindrical system geometry. In addition we look at the probability distribu-

tion of the lengths of these hulls, and find that it has a simple exponential tail. A

related quantity, the probability distribution of the height (i.e. the vertical span) of

the hulls, also has such a tail.

Fractal clusters enter the Potts model in the following way: for percolation,

Q = 1, it is well known that the spanning cluster at the critical point is a fractal.

The generalization of this for other Q is that at the critical point, Kc, a subset of

clusters of like spins, the FK clusters [29, 51], are fractal [73]. FK introduced the

clusters by showing that the partition function of the Q-state Potts model can be

written as a sum over all bond configurations on a lattice with a bond occupation

probability p = 1−e−K , multiplied by a weight QNc where Nc is the number of clusters

in a distinct configuration. To go from a spin configuration to a corresponding bond

configuration, bonds are added between like spins with probability p; the connected

clusters are the ones we are interested in. The partition function for the Potts model

is thus a sum over all possible FK clusters, and at the critical point p = pc = 1−e−Kc ,

the clusters are fractal. The pc(Q) for the triangular lattice are given by [62]:

Q = 2 : pc(2) = 1− 1/
√

3 ≈ 0.42265,

Q = 3 : pc(3) = 1−
[
1 +

1

2

√
3 sec

( π

18

)]−1

≈ 0.46791,

Q = 4 : pc(4) = 1/2.

(5.1)

These clusters are characterized by several different fractal dimensions, including

DH , DEP , DM , DSC , and DG, corresponding to the complete hull, external hull,

mass, singly connected bonds, and narrow-gate fjords. Most previous work on the

fractal properties of these clusters has focused on percolation (Q = 1) for which
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Figure 5.1:
Visualization of the spanning cluster, the top and bottom hull, and the
height (vertical span) of the hulls.

numerical values have been given for DH [73, 47, 74, 75], DEP [76], DSC [77], and

DG [78]. Theoretical studies for percolation include studies of DSC [79, 80], DH [81],

DEP [76] and DG [46]. Theoretical values for DM , DH , and DSC have been calculated

for all Q values up to the upper critical dimension Q = 4 [67, 1, 2]. Hull exponents

have also been derived by SLE theory [82].

In this chapter we will present numerical data for DH and DEP and the height

and length distributions for both types of perimeters. In a recent paper, Asikainen et

al [78] measured DM , DH , DEP , DSC , and DG for Q = 1 through Q = 4 by studying

individual isolated clusters that do not touch the boundary. In the present work, we

consider a cylindrical geometry and look at the hulls of the clusters that wrap around

it. This method provides an unambiguous measure of the length scale (namely, the
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circumference) and leads to accurate numerical results for the fractal dimensions.

We also measure the height and length distributions of the hulls themselves.

5.2 Model

Two types of simulations are used. To model Q = 1 (percolation), we use the

Leath algorithm [33] with site percolation. This method starts with a single “active”

site, which attempts to change its undetermined neighbors into active sites with a

probability pc. If a change fails, the site becomes “inactive”, and can never be made

active. Each new active site attempts to make all of its neighbors active until no

more active sites remain. The resulting structure is a percolation cluster. All clusters

are grown on the triangular lattice.

For all other Q-states, we generate FK clusters [29, 51] using the Swendsen-Wang

(SW) method [31]. The SW algorithm is as follows: after the bonds have been placed

for a given configuration, each cluster of sites connected by bonds is labeled with a

randomly chosen spin. Then new bonds are put down with probability p between like

spins, forming the FK clusters. This process is then repeated. Each cycle constitutes

a spin update in that we have flipped entire FK clusters. The SW method allows for

fast equilibration of critical clusters.

5.3 Simulation

We grew our clusters on a triangular lattice with periodic boundary conditions

along both directions. We made the dimensions of the system elongated so that

most large clusters wrapped around in one direction but not the other. The system,

though really a torus, was effectively a cylinder. Clusters that wrapped around

both directions were rejected. The lattices had an aspect ratio of 100:1 and 8:1 for
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Q theory measured
1C 7/4 = 1.750 1.747
1E 4/3 = 1.333 1.330
2C 5/3 = 1.667 1.663
2E 11/8 = 1.375 1.375
3C 8/5 = 1.600 1.602
3E 17/12 = 1.417 1.412
4C 3/2 = 1.500 1.510
4E 3/2 = 1.500 1.534

Table 5.1:
The theoretical [67, 1, 2] and measured values for the fractal dimensions
for the complete (C) and external (E) hulls of Q-state Potts model

percolation and FK clusters, respectively. We use the width (W ), of the lattice as

the characteristic length. For Q = 1, clusters were grown for W = 8, 16, 32, 64, 128,

and 256. For Q = 2 through 4, we also considered W = 512 and 1024 in order to

reach the asymptotic fractal dimension.

For each valid cluster grown, the number of sites on the top and bottom of the

cluster were recorded as well as the height (vertical span) of the hulls, defined as

the highest point on the top hull minus the lowest point on the top hull; see figure

5.1. The top and bottom hulls were considered independently and both were used to

calculate the fractal dimension. To record the complete hull, we used the outermost

layer of active sites as the hull. For the external hull, we used the layer of inactive

sites that pad (are neighbors to) the outermost layer of active sites.

In the case of FK clusters, the system must be equilibrated before recording can

start. The equilibration times used are 2W , 3W , and 16W , for Q = 2, 3, and 4, re-

spectively. We use longer equilibrium times for Q = 4 because of its slower dynamics

[83]. To determine the equilibration time, we measure the average energy per spin

and the average largest cluster size as a function of the number of spin updates. We

find that both observables relax to their steady-state values exponentially quickly
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with the same decay time for a given Q and W , though the average energy is always

closer to the steady-state value at a given step. For example, we find the average

energy was within 1% of the steady-state value within 500 spin updates, whereas it

took the average largest cluster size 1500 spin updates to reach 1% of its steady-state

value for Q = 4 and W = 256. Because of its slower relaxation, we believe that the

average largest cluster size is a better measure of equilibration.

After the system is equilibrated, we pick a random cluster, and if the cluster

wraps around the width of the system, its hull length and height are recorded in

a similar fashion as was done with percolation. Note that while the FK clusters

are essentially bond percolation clusters, we consider the hulls on the sites of the

clusters – that is, we treat the sites in the FK clusters as a site percolation problem.

To record the external hulls of these clusters a layer of inactive sites are simply added

outside of the top and bottom hulls. (This is the advantage of using the triangular

lattice.) Several spin updates are taken between each successive attempt to find a

valid cluster. The number of updates between measurements are 8, 12, and 64 for

Q = 2, 3, and 4, respectively.

The work of Asikainen et al [78] differs from ours in several ways. For Q > 1,

they simulated a single system size, 4096 × 4096, and picked random clusters after

the system was well equilibrated. To equilibrate such a large system, they needed to

use a new technique to speed up equilibration. For their system of isolated clusters,

the length scale is not as clearly defined as it is in the cylindrical geometry; they

used the cluster’s radius of gyration for the length scale. Lastly, they used a square

lattice for their simulations, for which the complete and external hulls are not as

clearly defined as in the triangular case because of the corners in the square system

[45]. Our results are consistent with theirs in regards to the fractal dimensions, but
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Figure 5.2:
The probability distributions for the lengths of the complete hulls, for
several system widths: W = 32, 64, 128 and 256 for Q = 1 as a function
of L/〈L〉 where 〈L〉 = 0.93W 7/4 (left). The data are put into bins of size
C〈L〉 with C = 0.4. The black line is the best fit using an exponential
with an inverse decay length of λ−1. The plot on the right is of the
residual (difference) of the fit of exponentials to the different Q complete
hulls, where different C = 0.3 for Q = 2, 3. The best fit for the λ−1 for
Q = 1, 2, and 3 are 1.4, 1.65, and 1.7, respectively. The residual data
for different Q are offset vertically for clarity.

are significantly more precise.

5.4 Results

For each state Q we obtain a large set of values for the lengths of the complete

and external hulls and hull heights for a wide range of system widths. With this

data we can compute the fractal dimension of the different hulls. For a fractal the

length of the hulls scales as a power L ∝ WD, where D is the fractal dimension. We

measure D in the conventional way by making a linear fit of lnL as a function of

ln W . The accuracy can be assessed two ways: (1) the value of the square of the

Pearson product-moment coefficient, R2, of the fit and (2) the apparent randomness

of the residuals. We focus on the latter as it can be used to determine when finite-size

effects are significant, and thus which sizes we can use for the fit. We determined

that all measured widths for the complete hull can be used to fit D for Q < 4. For
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the external hull, there are significant corrections for W < 256, so for those systems,

we use 256, 512, and 1024. We use the same three sizes for both hulls of Q = 4.

Table 5.1 shows a summary of our findings for the fractal dimensions of the

complete and external hulls for Q = 1, 2, 3, and 4. With the exception of the

external hull for Q = 4, all the measured values agree with theory within a fraction

of a percent. The discrepancy at Q = 4 can be interpreted as arising from logarithmic

corrections to scaling [84]. In Ref [78] a correction is made for the slow crossover.

We now turn to the probability distribution of the quantities that we measured.

We first found that the average height of the hulls scales linearly with system width

so that these are isotropic fractals. We then measured the heights and hull lengths

of a large number of clusters in order to produce the probability distribution of hull

lengths. Figure 5.2 shows the scaled probability distributions of complete hulls for

Q = 1 and the residuals to the best-fit exponential for the first three values of Q.

Q = 4 is not shown because the scaling does not work for the size systems we used.

Figure 5.3 is a similar plot for the external hulls, with a finer bin size. All scaled hull

length distributions have exponential tails. The complete and external hulls appear

to have fairly similar decay lengths for the different values of Q.

We also calculate the probability distribution of hull heights for the complete

and external hulls, figures 5.4 and 5.5. Again we see that the distributions have

exponential tails.

The exponential tails are, in some sense, no surprise in this type of problem as

we can see from a simple example. Consider the track of a free random walker in a

channel with absorbing walls at x = ±W/2. The walker starts in the middle of the

channel, and we seek the probability distribution of the maximum height attained

by the walk before it hits the side walls. This is more-or-less what we are doing with
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Figure 5.3:
The probability distributions for the lengths of the external hulls, for
several system widths: W = 32, W = 64, W = 128, W = 256 for
Q = 1 (left) where the different system sizes are scaled in the same way
as fig. 5.2. The right shows the residuals for Q = 1 through Q = 3. The
best fit for λ−1 for the different Q’s are 2.5, 2.4, and 2.35 for Q = 1, 2,
and 3, respectively. The residual data for different Q are offset vertically
for clarity.

our spanning fractals, though they are not free random walks, of course.

It is not hard to see why we get exponential tails in this case, by considering the

following steps: first we define an auxiliary problem by putting an absorbing wall at

height h above the origin. The number of walks, N(h), that ever hit this wall before

being absorbed on the sides is the number of walks with height greater than h. The

distribution we seek is proportional to dN/dh. The problem can be solved exactly by

going to the continuum limit and using conformal mapping. However, we can guess

the solution easily: the probability for a walker to penetrate a channel for height h

is clearly exponentially decreasing in h; the conformal map gives e−πh/W . Then N

must have this dependence, along with its derivative.

For percolation or FK clusters, the probability distribution of the maximum

height can also be found from the derivative of the probability of crossing, and

in this case one also expects exponential behavior for large h [85, 86].

The existence of exponential tails in both the hull length and height distributions
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may appear contradictory. We know that the average height, h, is proportional

to the system width, W , which is related to hull length, L, through a power-law

W ∼ L1/DH . One might guess that this should lead to a stretched exponential

exp(−cL1/DH ) rather than simple exponential for the distribution of L. In order to

clarify this issue, we looked at another well-studied system: the percolation hull walk

in an open rectangular region [47] for which it is easy to generate a large ensemble

of fractal curves.

We performed simulations of the self-avoiding hull walker on a square lattice

[47, 74]. The hull walk algorithm is as follows. At every step the walker either turns

right or left. If the current site has not been marked, the walker turns left with

probability p, marks the site “active” and takes a step forward. With probability

1−p it turns right, marks the site “inactive,” and takes a step forward. If the walker

steps onto an active or inactive site it always turns left or right, respectively. We

used this walk to create closed figures that have the same fractal dimension as the

complete hull of percolation clusters, D = 7/4. We recorded the average walk length

as a function of the maximum height for several values of W .

For every W, the walk length is proportional to the maximum height,i.e., L ∼

mW h, as one would expect for large h. However, we find that the coefficient, mW ,

depends on W as mW = aW 3/4. With these expressions, we get back the known

power-law relationship between L and W , 〈L〉 ∼ mW 〈h〉 ≈ aW 3/4W = aW 7/4, so

that we recover the fractal dimension of 7/4.

5.5 Conclusion

In this chapter, we measured the fractal dimensions for the complete and external

hull lengths, DH and DEP for Q = 1 through Q = 4. We used the Leath algorithm
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Figure 5.4:
The probability distributions for the heights of the complete hulls, for
several system widths: W = 32, W = 64, W = 128, W = 256 for Q = 1
(left). The bin sizes are CW , where C = 0.4 . The right shows the
residuals for Q = 1 through Q = 3. The best fit for λ−1 for the different
Q’s are 1.15, 1.0, and 1.05 for Q = 1, 2, and 3, respectively. The residual
data for different Q are offset vertically for clarity.

to grow critical percolation clusters. For Q = 2,3, and 4, we used the SW method

to generate critical FK clusters. All systems used a triangular lattice with periodic

boundary conditions. The aspect ratio of the systems were heavily skewed so that

spanning clusters would span in one direction and not the other. The smaller length

(W) exactly determined the length scale of the system. We generated a large number

of spanning clusters of various system sizes, W = 8, 16, 32, 64, 128, and 256 and

additionally W = 512 and 1024, for percolation and Q > 1, respectively. We find

excellent agreement between our results and the associated theories [67, 1, 2]. We

also measured the distributions of the hull lengths and heights. We found that the

distributions for Q = 1, 2, and 3 have exponential tails. The values of the inverse

decay lengths for the exponentials are given in the figure captions. We discussed

the apparent contradiction between the height and length distributions both having

exponential tails, as opposed to one being a stretched exponential. We resolved this

contradiction by showing that the relationship between average height and width is in

fact linear for a fixed W . We found that the power-law scaling formula can be written
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Figure 5.5:
The probability distributions for the heights of the external hulls, for
several system widths: W = 32, W = 64, W = 128, W = 256 for Q = 1
(left). The bin sizes are CW , where C = 0.2 . The right shows the
residuals for Q = 1 through Q = 3. The best fit for λ−1 for the different
Q’s are 3.3, 1.8, and 1.7 for Q = 1, 2, and 3, respectively. The residual
data for different Q are offset vertically for clarity.

as 〈L〉 ∼ mW 〈H〉 ≈ aW 3/4W . This formula clarifies the relationships between L, H,

and W . We are not aware of any predictions regarding the exponential tails in the

hull length distributions.
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CHAPTER VI

The Barrier Method: A Technique for Calculating
Very Long Transition Times

The work in this chapter was published in Journal of Chemical Physics in 2010

(Vol. 133, Art. Num. 124103). This chapter is our first foray into long transition

times, or infrequent rare events. The algorithm developed in this chapter, the barrier

method, was inspired by our work on the Green’s function method in Chapter III.

6.1 Introduction

Important events for a transition may have a time scale many orders of magnitude

larger than typical events; in this case, they are called “rare events.” They have been

studied in a number of different contexts, including the extinction of diseases [10] or

of populations [11], network queue overflow [8], and slow chemical reactions [12].

To fix our ideas, we consider a very simple problem, that of an endemic disease

which fluctuates to extinction. Consider a population of fixed size, N , with S mem-

bers who are susceptible to an infection, and I who are infected. When S encounters

I, the infection is transferred with rate βSI/N ; β measures the infectivity. Infected

individuals can spontaneously recover with rate κ, and can be immediately rein-

fected. This is called the susceptible-infected-susceptible (SIS) model [16]. In this
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simple form it can be thought of as a Markov process in the number of infected; note

that S = N − I. Thus

W (I → I + 1) = βSI/N

W (I → I − 1) = κI.

(6.1)

There is a long-lived state where the disease persists when R0 = β/κ > 1, namely

I = N(1−R−1
0 ). However, there is an important rare event, namely a fluctuation to

I = 0, which means that the disease is extinct and cannot return. For this simple

form of the model the mean exit time for this transition T can be found exactly [3].

For large N , there is an asymptotic formula

T → R0

(R0 − 1)2

√
2π

N
eN(log R0−1+1/R0). (6.2)

This formula has features that are generic to the kind of “barrier climbing” problems

that we treat here. The exit time is of the form g(N) exp(NW ) where g is a slowly

varying prefactor, and W is a generalized barrier height (or quasipotential) scaled

by the large parameter, N . A plot of the exact results for the SIS model with

R0 = 2 is given in Fig. 6.1 along with results from numerical computations that

we will describe below. Note that even for modest-sized systems, the mean time to

extinction can be huge; for N = 300 we have T ≈ 4× 1024.

As we see from this simple case, these phenomena are frequently out of reach

for brute-force simulations. To overcome this problem, many techniques have been

developed [87]. In this article, we revisit this problem and present a very efficient

technique which we call the barrier method and which gives the mean first-passage

time for a transition to an unlikely target state. The method does not depend on

special features such as knowledge of a steady-state distribution or detailed balance

in the process. We need only that the dynamics be stochastic and that the transi-
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Figure 6.1: The mean time to extinction T as a function of the population size N for
the simple SIS model calculated exactly [3] and by two of the numerical
methods described in the text. All numerical results agree with the exact
result within statistical error.

tion probabilities depend only on the current state. That is, we deal with Markov

dynamics, which can be reversible or irreversible.

The essence of the algorithm is to follow the development of an ensemble of

systems and oversample the cases that happen to approach the target, and not

allow backtracking away from the target. In this respect our method resembles the

signposting algorithm [61, 36] that we developed for finding the penetration of a

random walker into a fractal.

We believe that the barrier method is the most efficient method available for

computations in low-dimensional systems. In this chapter, we explain how it differs

from previous techniques, and we apply it to two systems. The first is described by

a nonequilibrium model introduced by Maier and Stein.[4] The second is a general-

ization of the SIS model in which the population is allowed to fluctuate [88]. In this

model, we are concerned with the average time for the disease to go extinct. Lastly,

we discuss the advantages of our method and future work.
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6.2 Background

To study rare events in a Markov process, we must deal with states in state-space

that are unlikely to be visited in any simulation of reasonable length [18]. Most

sample paths spend the majority of time visiting the most likely states and give

good estimates of the corresponding probability density. For rarely visited regions,

we need to use special methods.

An example of such a method is biased sampling, in which we arrange our sim-

ulation to be biased towards rarely visited regions. Two important subsets of this

approach are importance sampling and splitting techniques. Importance sampling,

the most commonly used method for equilibrium systems, requires some a priori

information about the probability distribution. In contrast, if the probability dis-

tribution is only accessible via simulation, splitting and related techniques are very

useful. The latter case is the focus of our work.

6.2.1 Splitting and repetitive simulation trials after reaching threshold

Splitting [18] involves placing a barrier in state-space. When a sample path

crosses the barrier, it is split into independent realizations whose statistical weights

add up to the original. By placing one of these splitting barriers in a region which

would be infrequently visited, that region will subsequently be better sampled. For

very difficult-to-reach regions of state-space one barrier is not sufficient. The use of

several barriers is called multilevel splitting [19].

Multilevel splitting has two drawbacks. First, if the barriers are too close to-

gether or too far apart, the number of simulations will grow or decay exponentially.

Further, realizations which have small weight (because they have been split many

times) will often backtrack, i.e., tend to move back to the well-sampled regions and
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waste computational effort. Some of these problems have been solved by REpetitive

Simulation Trials After Reaching Threshold (RESTART) [20], which is designed for

dealing with queuing problems.

In RESTART [20] one considers nested subsets of phase space, A ⊃ B ⊃ C ⊃ D,

where D is the target. Barriers are placed between these regions. A sample path is

started in A and evolves until it reaches B. Then the sample is split into R “retrials”

with equal weight. One of these is designated the primary and all realizations evolve

independently. If any of the nonprimary paths backtracks into A, it is terminated.

Each barrier is crossed in turn, and the time spent in D by the reweighted paths

gives an estimator of the phase space probability in D.

RESTART partially solves the backtracking problem because most samples that

exit low probability regions are terminated. However, in the original version [20, 89]

RESTART still can lead to a divergence in the number of samples if the barriers are

too closely spaced. It has been noted that the barrier placement problem could be

partially alleviated by performing fixed effort RESTART instead of fixed splitting

RESTART [90], but this does not completely fix the problem. We give another

approach to this problem below.

6.2.2 Forward flux sampling

Forward flux sampling (FFS) [21] uses the same principles as splitting in appli-

cations to computational chemical physics. Most rare-event techniques in this area

[87] require equilibrium ensembles and detailed balance. FFS is unusual because it

is applicable to systems without detailed balance. It has been used to study genetic

switches [21, 66, 91], nucleation [91, 92, 93] and a model problem due to Maier and

Stein [91, 94] which we also treat below.
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FFS finds the first-passage time between metastable states A and D as follows.

First, we run a single long simulation and count the number of times the sample path

exits A through barrier λ0, which bounds region A. The average flux, k0, through

the barrier λ0 is calculated by dividing this number by the total simulation time,

discounting the time associated with trajectories that reach D and return to A.

If we call λM the barrier around D, the transition rate from A to D is

kAD = k0P (λM |λ0). (6.3)

where P (λM |λ0) is the probability that a sample path which starts on λ0 will cross

λM before going back to A.

We can get P (λM |λ0) efficiently by introducing intermediate barriers λi, i =

1 . . . (M−1) to divide the sample space along level surfaces of some reasonable guess

for the reaction coordinate — we call this the order parameter. The probability

factors into

P (λM |λ0) =
M−1∏

i=0

P (λi+1|λi), (6.4)

where P (λi+1|λi) is the probability of starting at λi and reaching λi+1 before going

back to λ0. To measure P (λ1|λ0), R samples are started from the locations along λ0

where they left A in the first step. The paths are continued until they reach λ1 or go

back inside λ0. The fraction of that reach λ1 is the estimator of P (λ1|λ0). Then we

proceed to λ2 and start R samples, etc. The point is to break down a long sample

path into a series of short segments.

FFS does not allow the number of samples to diverge, as in splitting. However, it

does allow backtracking because samples which start at λi must be allowed to return

to A. This effect can be somewhat reduced by pruning the backtracking paths [66].

However, if there are metastable states in the region between A and D, backtracking
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can take a long time.

Further, the calculation of k0 requires that the initial long simulation reaches the

end state D at least once in order to properly sample the entire region between the

start and the target. If one does this, FFS will often be bottlenecked by the calcula-

tion of k0; this defeats the purpose of using a rare-event technique. Fortunately, for

systems with featureless barriers, running an initial simulation that crosses λ0 a fixed

number of times, say 10R, is typically sufficient. We call this version “approximate

FFS.” For a comparison of the two versions of FFS for the SIS model, see Figs. 6.1

and 6.3. The approximate method of FFS gives good accuracy for this problem and

is quite fast. However, for systems with metastable states in the region between A

and D, this method of determining k0 is not sufficient. Our method (see below)

overcomes all of these problems.

6.2.3 Equilibrium methods

Milestoning [22] is a technique for equilibrium systems in which one runs simu-

lations of short paths between barriers to find the local first-passage time from one

barrier to the next. The equilibrium ensemble on the barriers gives the launching

points and there is no backtracking at all. The local first passage times are put into

an integral equation to find the global first passage time. As we will see, we avoid us-

ing equilibrium considerations on the barriers by keeping track of the landing points

of individual paths, but otherwise, our method uses similar ideas.

There are many other useful equilibrium rare-event techniques that have been de-

veloped, including transition path sampling (TPS) [23], which collects an ensemble of

possible transition paths between metastable regions. Transition interface sampling

(TIS) [24] is an improvement on TPS which uses the same rate calculation formula
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as FFS. Also, the finite temperature string method [95] finds the most likely path

between the start and end regions represented by a smooth curve (string). Because

of the equilibrium requirements of these methods, they cannot easily be applied to

the models studied in this chapter.

6.3 Barrier method

6.3.1 Algorithm

In the barrier method, we consider the same sort of problem as FFS. For the

moment, we assume that the locations of the barriers are known a priori, as shown

in Fig. 6.2. We will discuss the best way to distribute the barriers below. In the

first step, R trial simulations are started in A and run until they reach λ0. Each

trial r ends at W r
λ0

at time τ r
A,λ0

. R more trials are started at the locations along λ0

where each r ended in the previous step and run until they reach λ1. These trials

can backtrack as far as they need to. The locations along λ1 where the trials stopped

are W r
λ1

and the transition times from λ0 to λ1 are τ r
λ0,λ1

. For each r the total time

to start from A and reach λ1 is τ r
A,λ1

= τ r
A,λ0

+ τ r
λ0,λ1

.

In the next step we eliminate backtracking. We start each trial r at the location

on λ1 where the previous trial r finished, W r
λ1

. Each sample path continues until it

either reaches λ2 and stops or returns to λ0. If the trial returns to λ0, we move it

back to λ1 according to an estimate of where it would have crossed λ1 starting at

where it stopped along λ0; we also add the time that it would take that estimated

path to get from that spot on λ0 back to λ1 to the current trial time. In practice,

we find the closest W s
λ0

to the current location and add τ s
λ0,λ1

to the trial time and

continue the trial at W s
λ1

. That is, we move the sample point “in one step” to the

next barrier. Continuing, the sample path can either reach λ1 and stop or go back
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Figure 6.2:
Barrier method. Three different paths are started from A. The paths
cross barrier 0 then cross barrier 1. The middle path then moves back-
wards and reaches barrier 0. The end points on barriers 0 and 1 are used
to “jump” the path back to the barrier 1, grey path. Paths terminate
once they reach B.

to λ0, in which case we repeat the process of jumping. The locations along λ2 and

the transition time for each r are W r
λ2

and τ r
λ1,λ2. The total time to reach λ2 is

τ r
A,λ2

= τ r
A,λ1

+ τ r
λ1,λ2

. Then we repeat the process for the next barrier and continue

until τ r
A,λM

and WλM are calculated. The average transition time from A to λM is

∑
r τ r

A,λM
/R.

This method differs from FFS in two ways. First, we work with transition times

instead of transition rates and never deal with probabilities directly. Second, the

barrier method does not require sample paths to travel from λi all the way back to

λ0. This can lead to a dramatic improvement in efficiency over FFS, as we will see

in Section 6.3.2. Note that metastable states in the barrier region pose no problem

for this method.

81



6.3.2 Accuracy and Efficiency

The simple SIS model described above is exactly solvable. This allows us to

make a direct comparison between FFS and the barrier method. Using N = 20 to

200, we found less than 1% difference between the barrier method and the exact

results, which was within the variance of the measurement. Both versions of FFS

gave similar accuracy; see Fig. 6.1. The exact version of FFS, which samples the

whole region between A and D in the estimate of k0 is impractical for N > 60, as

shown in Fig. 6.3.

We now compare the efficiency of approximate FFS and the barrier method.

Simulation efficiency can be defined by the amount of computation time C needed

to obtain the exit time within a relative accuracy of σ; we chose σ = 0.1. Using this

definition, we varied the number of trials R to find C for R0 = 2 for a range of N ,

from 50 to 290 in steps of ten for FFS and the barrier method. For both, we used

N/10−1 barriers, placed every five infectious population size steps starting at I = 5.

No attempt was made to optimize the barrier placement. The comparison is given

in Fig. 6.3. We find that both algorithms appear to have a power-law relationship

between C and N , with powers of roughly 3 and 2 for FFS and the barrier method,

respectively. This shows that for a case where the barrier method is not obviously

better, because of the simple landscape, it still significantly outperforms FFS.

6.3.3 Dynamic Barrier Placement

We have also developed a way to determine the locations of all of the λi barriers

as the simulation progresses. The method outlined in this section can be applied to

FFS as well as any other biased sampling methods that use barriers, e.g., RESTART

[20]. We have previously used a similar method for signposting [61, 36].
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Assuming that the location of the first barrier has been chosen and all of the

W r
λ0

values have been calculated, p probe trials are started along λ0 at W r
λ0

for some

randomly chosen r’s. The probe trials are run for some fixed number of simulation

steps S. The location of λ1 is chosen as the average longest excursion along the

order parameter of the probe trials. Next, W r
λ1

and τ r
λ0,λ1

are recorded. We repeat

the process by running more probe trials for S simulation steps, not counting any

steps involved with jumping from λ0 to λ1, starting at random W r
λi

’s. The average

furthest excursion is used as the location of λ2. This process is repeated until λM

is reached. An alternative approach would be to estimate the location of the next

barrier such that a fixed fraction of samples reach λi+1 before reaching λi−1 when

starting at λi. A rough estimate of the optimal forward fraction is [89] e−2. We

did not chose this approach because we found that for small noise the probability of

making any forward progress is significantly smaller than e−2. This would cause the

barrier method to stop making progress.

There has been some previous work on barrier placement or staging using FFS

[96]. The scheme uses two FFS calculations: one with a guess of the best barrier

locations and fixed R, and a second with either the barrier locations optimized or

the number of trials R for each barrier optimized. The authors found that it is

better to optimize the spacing of the barrier to get uniform p(λi+1|λi) with fixed R

than to optimize R for each barrier. When we apply dynamic barrier placement to

FFS, we also take this view. The important difference from the approach outlined

above is that we determine the location of the barriers one at a time instead of all

at once. This should lead to comparative computational gains when the trial barrier

placement is significantly different from the optimal placement.
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Figure 6.3:
(a) CPU time required to calculate T to a fixed precision (arbitrary
units) for the SIS model. For FFS and the barrier method, the same
number of barriers were used and placed in the same locations (every
five steps in number of infected). (b) Efficiency comparison between
the (approximate) FFS method and the barrier method. The solid lines
represent the best fit to a power-law: with powers 3.3 (FFS) and 2.1
(barrier method). These values should be taken as rough estimates of
the powers.
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6.3.4 Additional lookups

As with FFS, the barriers should be set up at fixed values of the order param-

eter. The closer the order parameter is to the true reaction coordinate, the more

efficient the method becomes. For the barrier method, an additional issue arises if

the most probable exit path (MPEP) crosses a barrier more than once, so that it goes

backwards. The original set of lookups moves simulations from a previous barrier to

the current barrier along the paths already discovered. These lookups cannot move

the simulations along the correct MPEP, as seen in Fig. 6.4. This problem can be

fixed by allowing additional lookups to be created, if needed. For the barrier method

applied to the generalized SIS model, below, we used this feature.

6.3.5 Algorithm assumptions and limitations

To gain efficiency, rare-event techniques typically make assumptions about the

problem at hand. These assumptions frequently limit the models for which the tech-

nique can be applied efficiently. The performance gain of the barrier method is

achieved by using previous trajectories to move simulations “forward” if they travel

too far “back.” These previous trajectories are an attempt to approximate the trans-

fer function for that location. For discrete systems, the only assumption is that the

transfer function for every site on every barrier can be well-approximated by a small

number of samples on each barrier. The performance improvement of the barrier

method over brute-force simulations is strongly dependent on that assumption. For

continuous systems, another assumption is needed: the transfer functions in state-

space must vary smoothly over each barrier. This assumption is needed because we

pick the nearest lookup on the previous barrier. If the transfer function is signifi-

cantly different between the location where the trajectory crosses the barrier and the
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closest lookup, a systematic bias can result. This assumption is also strongly tied to

efficiency: the smoother the transfer functions in state-space, the fewer lookups are

required to well-approximate those transfer functions.

Another assumption made in the barrier method is that there is always a reason-

able amount of spread between the barriers. If there is no parallel diffusion between

barriers, i.e., paths started from a point on λi always reach a single point λi+1, then

the lookups become deterministic and trajectories will tend to cycle between lookups,

creating artificially long cycles before the next barrier is reached. The effect of this

cycling is a dramatic increase in the variance of the transition time. We found this

effect in the SIS model only when the birth-death rate µ is four orders of magnitude

lower than the other rates in the system. However, we found no apparent problems

when more comparable rates were chosen.

The final necessary assumption is that the model being studied is a memory-free

(Markov) process. For example, if the dynamics of the Maier–Stein model depended

on the particle velocity, the barrier method, as applied in this chapter, would not

work. However, this problem can be solved by defining the state-space as the position

and the velocity of the particle, making it a four-dimensional state space. In general,

any finite-memory process can be made into a Markov process with a larger state-

space [12]. Unfortunately, making the state-space larger poses a particular problem

for the barrier method.

The efficiency of the barrier method is strongly dependent on the dimensionality

of the state-space and smoothness of the transfer functions along every barrier. In

the two models treated in this chapter, the state-space is two-dimensional and the

barriers are one-dimensional, which made the sampling necessary to generate the

lookups fairly simple. In higher dimensions, D, one must well-sample the transfer
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1 2 30

Figure 6.4:
An example of the barrier method when the MPEP crosses barriers sev-
eral times. The line from A to B represents the MPEP. The ×’s represent
the initial locations where simulations reach a given barrier. These lo-
cations are used to generate the original set of lookups. The diamonds
represent the new lookups generated by trials originated on the second
barrier. Similarly, the triangles are new lookups generated by the trials
started on the third barrier. Note that without adding new lookups, the
simulation would never finish because the closest lookups on previous
barriers would move the simulations backwards along the MPEP when
they are moved to the next barrier.

functions on (D − 1)-dimensional manifolds. It appears that the number of lookups

tend to grow exponentially with D and this will likely limit the barrier method to

models with four or fewer dimensions in the state-space. However, many models

exhibit a useful property: the most likely trajectories that connect the start region

(A) to the end region (D) are focused along one or several “tubes” in state-space

[95]. In these cases, it is only necessary to approximate the transfer functions in

small regions on each manifold where the tubes cross. The barrier method will likely

have poor performance on high-dimensional systems that lack this property.

In addition to assumptions as limitations, there are also practical considerations

when applying the barrier method on a model. As with FFS, an order parameter,

which marks progress toward the end region, must be chosen. When applying the

barrier method on models with continuous state-spaces, one must define a distance
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measure, or metric, on the barriers to determine which lookup is closest. Also, it

is, in general, necessary to add more lookups. This requires setting some criterion

for when a new lookup is needed, an example of which is given below for the SIS

model. The best solutions for these design choices are dependent on the model being

studied, and require some knowledge about the model’s behavior.

6.4 Maier-Stein model

Maier and Stein [4] introduced an interesting example of a dynamic system which

lacks detailed balance. It has received considerable theoretical [97, 5], experimental

[98, 99], and computational interest [98, 100, 94, 91]. We study two aspects of this

model: the mean exit time T from one of the metastable states and the distribution

of exit locations along the separatrix.

The model is specified by two coupled stochastic differential equations

ẋ = fx(x) + ξx(t),

ẏ = fy(x) + ξy(t),

(6.5)

where x = (x, y) and f = (fx, fy) is the time-independent drift field

fx = x− x3 − αxy2,

fy = −µy(1 + x2).

(6.6)

For α = µ the model obeys detailed balance. The white noise ξ = (ξx, ξy) has

variance ε

〈ξi(t)〉 = 0, 〈ξi(t + τ)ξj(t)〉 = εδijδ(t− τ). (6.7)

We are interested in the small noise case: ε → 0. The model is bistable with the

metastable states located at x = (±1, 0). There is a separatrix at x = 0. The exit

time, the transition time from one of the metastable states to the separatrix is, in
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the small-noise limit

T ∝ eW/ε, (6.8)

where W is the generalized barrier height. In this model, W is a function of α and

µ. If µ = 1, for 1 < α < 4, there is a unique MPEP, and for α > 4 there are two

MPEP’s.

6.4.1 Simulation

To simulate the system, we solve Eq. (6.5) using the Euler method

x(t + h) = x(t) + h
(
x(t)− x(t)3 − αx(t)y(t)2

)
+
√

εh,

y(t + h) = y(t) + h
(
−µy(t)(1 + x(t)2)

)
+
√

εh,

(6.9)

where h is the time step.

6.4.2 Exit time and distribution of exit points

We start R simulations at the left metastable state (−1, 0) and iterate Eq. (6.9)

to obtain the trajectories. We dynamically locate each barrier. The first barrier is

located at the average furthest excursion along x, the order parameter, using S/4

probe steps. All subsequent barriers are located after S steps. To calculate the exit

time, we have three parameters at our control: the number of trials R, the time step

h, and the spacing of the barriers controlled by S. To find W , we record the exit

time for various values of ε and find the slope of 1/ε versus ln T .

6.4.3 Results

Using the barrier method, we measured W and the exit distributions along the

separatrix P (y). We computed W for µ = 1 and for α = 1 to α = 8, and compared

to the analytic theory[4]. These results are shown in Fig. 6.5.
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Figure 6.5:
Barrier height, W , for the Maier–Stein model as a function of α for µ = 1.
Circles, barrier method; line, analytic theory (Ref. [4]) for ε → 0.

In order to use this model, we have to choose h, R, and S. These parameters

have different, competing effects. Increasing h increases the efficiency but decreases

the accuracy. The opposite is true for S. Also, effects of the values of h and S are

connected; small S causes there to be a large number of barriers, which requires

a small h to give an accurate result and vice versa. We used h = 10−6, R =

7× 104, and S = 4× 106. However, we used a value of S which is four times smaller

than the general case to locate the first barrier. The exit time was measured with

five independent trials for five values of 1/ε: 20, 40, 60, 80, and 100, for each α.

The calculated value of W and the small-noise theory [4] are shown in Fig. 6.5.

The numerical results are consistently smaller than the theory and increase as 1/ε

increases. The values of W in Fig. 6.5 were consistent over other values of h, R, and

S, that we tested.

We ran separate simulations to measure the exit distribution along the separatrix.
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Figure 6.6:
The exit distribution for the Maier–Stein model for α = 10, µ = 0.67
and ε = 0.0025, 0.0004, 0.0001. The simulation results are denoted by
symbols. The dashed line is the symmetrized Weibull distribution P (y) =
N |y|2/µ−1 exp (−|y/A|2/µ/ε) from theory (Refs. [5, 6]), where N is the
normalization and A is a parameter of order unity. Solid line: Weibull
distribution convolved with a Gaussian with σ = B

√
ε.
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Because we are interested only in the final location along the separatrix and not the

time it takes to reach it, we found that we could use significantly larger h. We were

able to get reliable results for values of h as large as 0.0001. This allowed us to

reach much smaller values of ε (see Fig.6.6). The parameter values used to obtain

the results in Fig. 6.6 are h = 0.0001, R = 105, and S = 4 × 104. The results were

averaged over twenty independent simulations for each ε. The significant result is

that for the smallest noise value, ε = 0.0001, the value of P (0) is not close to zero

as the theory suggests. Rather the ratio of P (0) to the maximum of P (y) appears

instead to be increasing as ε decreases.

These results are consistent with other simulation [100] and experimental [6]

results. Previously, the results were assumed not to match the theory because the

values of ε were not small enough. The barrier method allows us to reach a value of

ε which is 50 times smaller than the best previous simulation result [100] and 110

times smaller than the best experimental result [6] without P (0)/Pmax getting any

closer to zero.

We propose that the reason for this is that the theoretical prediction of the

Weibull distribution represents the leading term in ε. For finite ε, the distribution

should be “rounded” over a scale y = O(
√

ε) [6]. Accordingly, we convolved the

asymptotic theory, the Weibull distribution given in the caption of Fig. 6.6, with

a Gaussian with σ = B
√

ε (see Fig. 6.6). We find good agreement between the

simulation results and the convolved theory. The values of B which gave the best

fit were 0.8, 0.85, and 0.85 for ε = 0.0025, 0.0004, and 0.0001, respectively. The fact

that B is roughly constant over a wide range of ε gives support to our estimate.

The reason that P (0)/Pmax does not tend to zero is that even though the rounding

is over a scale that decreases as
√

ε, the location of the maxima of P (y) also moves
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toward the origin. These locations are ymax = ±2−µ/2Aεµ/2(2−µ)µ/2, so that |ymax| ∝

Aεµ/2 ≈ Aε1/3 for µ = 0.67. If A were constant, P (0)/P (ymax) should approach zero

rather slowly. We numerically found this rate to be ε0.6. However, we find that A

is not constant. Our best fit values for A, which is unaffected by the convolution,

are 0.94, 0.72, and 0.4 for ε = 0.0025, 0.0004, and 0.0001, respectively, so that

P (0)/P (ymax) does not approach 0 in our computations.

6.5 Generalized SIS model

It is interesting to generalize the SIS model of Eq. (6.1) to allow the fluctuations

of the total population by introducing birth and death rates [16, 101, 88, 7]. Now

there are two independent stochastic variables; S the number of susceptibles and I

the number of infected; and four parameters: µ the birth and death rate assumed

equal, β the infectious contact rate, κ the disease-recovery rate, and N the steady-

state population size. The transition rates are now

W [(S, I) → (S + 1, I)] = µN, W [(S, I) → (S − 1, I)] = µS,

W [(S, I) → (S, I − 1)] = µI, W [(S, I) → (S + 1, I − 1)] = κI,

W [(S, I) → (S − 1, I + 1)] = βSI/N.

(6.10)

The model has an endemic state when R0 = β/(µ + κ) > 1. There is one stable fixed

point, the endemic state (S, I) = (NR−1
0 , N(1−R−1

0 )), and an unstable saddle point

(N, 0), where the disease is extinct. We seek the transition time from the endemic

state to the disease-free state which will be of the form T ∼ exp(NW ), as above.

We are interested in the case of small µ so that population fluctuations are slow

compared to disease dynamics. It might seem that the situation would be very

similar to the case µ = 0 treated above. However, this is not true [7]. Population

fluctuations make extinction of the disease much easier: the most likely exit path is
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via a population decrease at fixed S followed by extinction along a path of smaller

fixed population, and then an increase of population of susceptible individuals to

S = N .

6.5.1 Simulation

We simulate the SIS system using standard techniques [102, 103]. We define the

order parameter as −I; the barriers are added at decreasing values of I. Because this

system is on a two-dimensional parameter lattice it is much easier to dynamically

add new lookups if previously unexplored backward regions are reached or if a given

lookup has been used too frequently.

The method we use to add lookups is as follows. Every time a sample moves

backwards and reaches the previous barrier, a new lookup for that site is generated

with a probability pG = LG/D(S, I), where LG is a constant which controls the

growth rate of the lookups and D(S, I) is the number of lookups at site (S, I); if pG

is greater than 1, a new lookup is always added. If a new lookup value is needed, the

value is produced by starting a path at (S, I) until it reaches the next barrier and

stops or reaches the previous barrier. There a lookup is used to move back to the

current barrier to continue. Note that a new lookup can move back to a previous

barrier and cause another new lookup to be generated at that previous barrier. This

cascading effect can continue until the first barrier is reached. This effect makes

programming the algorithm more complex, but the cascading is necessary to pro-

duce accurate results when the MPEP crosses some of the barriers several times, as

illustrated in Fig. 6.4.
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Figure 6.7:
(a) Generalized barrier in the SIS model for µ = 1, κ = 100 as a function
of R0. The line is the theoretical estimate (Ref. [7]). (b) Distribution of
first-passage points on barriers for N = 1000, R0 = 1.667, µ = 0.25. The
exit point on the line I = 0 is in good agreement with the prediction
(Ref. [7]) S ≈ N/

√
R0.

6.5.2 Results

We found the exit time in the SIS model T ∼ exp(NW ) for µ = 1 and κ = 100,

and varied β to obtain different values of R0. We compare to analytic work [101, 88, 7]

in Figs.6.7 and 6.8. In these references the authors chose µ = 0.02. They did this

because the very large separation in time scales allowed them to use their analytic

techniques.

We calculate W by performing a linear regression of lnT versus N , as in section

6.4. We ran ten simulations for each of the following N : 50, 100, 150, 200, 250, 300,

350, 400, 450, and 500. For the last three values of N , we did this only for R0 < 2.5.

By looking at the residual of the fit, we found for smaller R0 the smallest sizes were

not large enough to reach a constant value of W . The smallest N included in the fits

were 350, 350, 300, 300, 250, 250, 200, 200, and 200 for R0 = 1.5, 1.625, 1.75, 1.875,
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Figure 6.8:
Exit paths for the SIS model for N = 700, R0 = 1.25. Left panels,
some sample paths; right panel, average over many paths to estimate the
MPEP with a dashed line for the corresponding theory (Ref. [7]).

2.0, 2.125, 2.25, 2.375, and 2.5 and greater, respectively. The calculated values of W

are shown in Fig. 6.7 and compared to analytic estimates [7].

The barrier method does not give the exit path directly. If we plot the distribution

of the W r’s on the barriers, it is the distribution of first passage points. However,

the paths that continue are not uniformly distributed on the barriers. Nevertheless,

it is interesting to plot the first-passage distribution, Fig.6.7b.

We did a separate, brute-force computation to find the actual MPEP. A few

sample paths are shown in Figs. 6.8(a) and 6.8(b), along with the average of many

paths, 6.8(c).

6.6 Discussion

In this chapter, we developed a new rare-event technique: the barrier method.

We described the relationship between it and other related techniques such as FFS

and showed that for a simple model problem, the barrier method is more efficient

than FFS.

The barrier method was then used to find exit times and distributions for the

Maier–Stein model [4]. We found fairly good agreement with theory on exit times
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and good agreement with previous simulation and experimental results on the exit

distributions. We determined that convolving the theory with a Gaussian to account

for the next correction to the theory gave excellent agreement for the distribution of

exit points.

The exit times for a SIS model with births and deaths were then calculated. The

results agreed with analytic estimates [101, 88, 7]. The MPEP was also found for

this case.

The barrier method is an excellent tool to determine rare events in low dimen-

sional systems. In this chapter, we have treated one and two degrees of freedom

and we have preliminary work for three dimensions. We believe the most important

aspect of the barrier method is the elimination of practically all “backtracking.” This

can enable the traversal of landscapes with many metastable states. The method is

also general enough to apply to on-lattice and off-lattice problems, equilibrium and

nonequilibrium problems, and any system that can be written as a nondeterministic

Markov process.

The barrier method is a reliable way to estimate the exit time because it faithfully

samples the ensemble of paths that lead to the goal region. For a given point on a

barrier λi, there is an ensemble of paths that start from that point and eventually

reach the next barrier λi+1, according to the dynamics of the model. These paths

can backtrack an arbitrary long distance before reaching λi+1. The lookups in the

barrier method approximate the transfer function that maps the single point on the

λth
i barrier to a distribution of points, and their associated times, on the λth

i+1 barrier.

Even though we only use the single closest point on λi to approximate the function,

this approach is valid so long as the lookup points are spaced close enough together

such that diffusion of a trajectory close to the barrier could cause the trajectory to
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be closest to several different lookups once it touches the barrier. Because we are

approximating the transfer function, and not randomly picking samples on previous

barriers, we are making no assumption of loss of memory between barriers. In fact,

in the SIS model discussed above, the lookups from barrier to barrier were strongly

correlated, whereas the lookups in the Maier–Stein model were not strongly corre-

lated. The barrier method performs well in both cases and does not depend upon

the lookups being uncorrelated. While the barrier method may not work well for

high-dimensional systems, we nevertheless believe that it can have wide applicability

for many rare-event problems.
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CHAPTER VII

Computation of Nucleation at a Nonequilibrium
First-order Phase Transition Using a Rare-event

Algorithm

The work in this chapter was published in Journal of Chemical Physics in 2010

(Vol. 133, Art. Num. 174107). This chapter is builds on the previous chapter. Here

we develop an improvement of FFS, called forward flux sampling in time (FFST)

and show the connection between FFS and the barrier method.

7.1 Introduction

In many systems, rare events occur with a very low probability compared to typ-

ical events. Sometimes they are of central interest. Examples include the extinction

of diseases [10] or of populations [11], network queue overflow [8], and slow chemical

reactions [12]. The study of such processes poses a particular challenge to simu-

lation. In the field of chemical physics, many rare-event techniques are commonly

used: transition path sampling [23], transition interface sampling [24], milestoning

[22], the string method [95], and the weighted-ensemble method [104], to highlight a

few methods. A thorough review can be found in Ref. [87]. Most of these methods

require that the system being studied has an underlying energy landscape, which pre-

cludes their use on nonequilibrium systems, i.e., systems that lack detailed balance.
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Forward flux sampling [21, 105, 106] (FFS) is a rare-event technique designed specif-

ically for nonequilibrium systems and has proven useful in studying genetic switches

[21, 66, 91], nucleation [91, 92, 93], isomerization of alanine dipeptide [107], and the

Maier–Stein model of reaction dynamics [4, 91, 94]. In this chapter, we develop a

variant on FFS and use it to study the first-order nonequilibrium phase transition

in a catalysis model.

FFS was developed to measure transition rates between two locally stable regions

A and B separated by a high, featureless barrier. When the barrier separating

these regions contains long-lived metastable states, FFS is generally inaccurate or

inefficient, depending on how it is applied. We have overcome this limitation of FFS

with a variant, which we call forward flux sampling in time (FFST). In our method,

we adjust for long-lived metastable states by measuring the times associated with

sampling the region between A and B in the second stage of the FFS algorithm. The

method is described in detail in Appendix A.

We apply FFST to the Ziff-Gulari-Barshad (ZGB) catalytic surface-reaction model

[17]. This model is of interest because it has a first-order phase transition which acts

in many ways like an equilibrium phase transition (it shows critical behavior, nucle-

ation, etc.), but also the model is manifestly nonequilibrium. Many techniques have

been applied to the transition in order to tease out its properties. FFST allows us

to study the dynamics as well as the overall rates. Using FFST, we found transi-

tion times for nucleation as large as 1040 Monte Carlo steps (MCS), more than 30

orders of magnitude longer than those accessible to direct simulation. The method

generates not only the transition times but the ensemble of most likely states as the

system progresses from one phase to another. This allows us to measure properties

of the ensemble during the transition, which helps determine the pathway.
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The outline of this chapter is as follows. In Sec. 7.2 we describe the model and

simulation method. In Sec. 7.3 we describe our results, and in Sec. 7.4 we summarize

our conclusions. In Appendix A we give the details of the FFST technique, and in

Appendix B we test FFST on an exactly solvable one-dimensional system.

7.2 Model and Simulation Method

7.2.1 The ZGB Model

The ZGB model was introduced to study the behavior of the oxidation of carbon

monoxide (CO) on platinum surfaces [17]. The catalytic surface is represented by a

square lattice on which CO and O2 can adsorb. The CO takes up one lattice site,

whereas the O2 dissociates into two O atoms that take two adjacent vacant sites.

Both species, CO and O, are bound to the surface until the other species adsorbs

on a neighboring site. At this point, the CO and O form CO2 and desorb from the

catalyst, leaving two lattice sites empty. The rates of reaction CO + O → CO2 and

desorption of CO2 are assumed to be infinite. The state of the catalyst is controlled

by the fraction of the time CO is attempted to be placed on the catalyst; this fraction

is called pCO.

In this basic model, there exists a region of steady-state reaction, bordered from

below at pCO = p1 by a second-order, continuous kinetic phase transition to an O-

covered state, and above at pCO = p2 by a discontinuous, first-order kinetic phase

transition to a CO-covered state. The first-order transition is robust to small changes

in the model (diffusion, small desorption, etc.) and is seen experimentally at lower

temperatures as a sharp transition from high to low reactivity [108]. The second-

order O-poisoning transition is weak and not seen experimentally. The first-order

transition is associated with many complex oscillatory and wave phenomena in the-
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Figure 7.1: The poisoning time T vs pCO

for various values of system
size L and FFST trials N .

Figure 7.2: The poisoning time T vs pCO

for various values of L with
N = 103.

oretical [109, 110] and experimental systems [111, 112] and has thus received much

attention. It also serves as a paradigm for general first-order kinetic phase transitions

[13].

Studying the first-order transition has proved to be a challenging problem in

simulations. Because of the difficulty of nucleating a sufficiently large CO cluster

or island, simply increasing pCO from the reactive steady-state misses the transition

point, and instead the CO-poisoning is seen to occur at pCO ≈ 0.5277 [113]. That

point is close to the effective spinodal point p∗, where the transition occurs without

any kind of barrier [114, 115].

Estimating the value of p2 and properties of the first-order phase transition have

received significant attention. Using a “constant-coverage” technique, the values

p2 = 0.52560(1) [116, 114] and more recently 0.525615(5) [115] have been found.

Other methods, including histograms [117], epidemic analysis [118], and epidemics
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and trigger waves [119, 120], have also been used to probe the first-order transition.

The results of these studies are that there is a first-order transition at p2 ≈ 0.5256,

and a spinodal at p∗ ≈ 0.527− 0.528 [116, 115], although the somewhat lower (and

very precise) value p∗ = 0.52675(5) has also been proposed [121]. For p2 < pCO < p∗,

there presumably exists a critical CO-cluster size, below which clusters tend to shrink

and above which they tend to grow. That critical size changes from ∞ to something

of the order of the lattice spacing as pCO goes from p2 to p∗. For finite systems,

the behavior is controlled strongly by the boundaries. Using periodic boundary

conditions, as pCO is increased, one finds that the largest CO cluster goes from being

isolated, to wrapping around one direction (leading to two interfaces that are flat on

the average), to wrapping around in both directions, as illustrated in Fig. 7.8. In

the intermediate coverage region, the constant-coverage method gives p2 accurately

with very small finite-size effects.

While the constant-coverage technique maps out the transition, it does not pro-

vide any information about the dynamics of the system. For that, it is necessary to

study the standard (constant-rate) ensemble. However, in that case, the nucleation

barrier makes it virtually impossible to study dynamics except for very close to the

spinodal point. To overcome this problem, we use a modified FFS technique to find

nucleation dynamics as well as overall rates for a wide range of pCO values.

7.2.2 The simulation method

We study the ZGB model using the constant-rate ensemble on a square L × L

lattice with periodic boundary conditions. The dynamics involve repeated attempts

to adsorb the CO or O2 species. The procedure for an adsorption trial is given below.

• Pick r ∈ [0, 1), if r < pCO, attempt to place a CO molecule, otherwise attempt
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Figure 7.3: The scaled transition time (lnT )/L vs L for various values of pCO.

to place O2.

• Pick a random lattice site (x, y) and continue if the site is empty. If placing

O2, also pick a neighboring site (x± 1, 0) or (x, y± 1) and continue if that site

is also empty.

• Place the CO or O2 (dissociated) onto the empty lattice site(s).

• For each lattice site now occupied, check all of the neighbors of that site and

determine if any of those neighbors are of the opposite species. If any are,

remove the recently placed species and a randomly chosen neighbor of the

opposite species.

Before any adsorption trials can be attempted, the system must be initialized.

Because we wish to study the first-order phase transition, we prepare the system

in the reactive state. Starting from an initially empty lattice with pCO close to the
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Figure 7.4: The average largest cluster
size M vs coverage C for vari-
ous values of pCO and L = 96.

Figure 7.5: The spanning probability vs
C for various values of pCO

and L = 96.

spinodal would frequently lead directly to the poisoned state. Instead, we prepare the

system by adsorbing CO with probability pi
CO = 0.07 and O with probability pi

O =

0.43 on every site. This initialization generates invalid states with CO neighboring O.

To remedy this problem, we run the simulation for 10 MCS, which drives the system

to a valid state. These 10 MCS “burn off” a significant fraction of the original CO

and O including those with neighbors of the opposite species.

7.2.3 Forward Flux Sampling in Time

To study the first-order phase transition, we use the FFST algorithm, which is

described in detail in Appendix A. A sketch of the algorithm is as follows. Before

the simulations begin, we define a starting region in state-space A and an ending

region B, bounded by “barriers” λ0 and λM , respectively. We also define λ1 through

λM−1 as dividing surfaces in state-space that effectively mark the distance between

A and B. The first step of the algorithm is to run a long simulation starting in A
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and recording where the sample path crosses λ0 going out of A, and the average time

spent after crossing back into A before leaving again; we call this the internal return

time Tint. Next, we start sample paths at different points along λ0, where the initial

simulation crossed, and continue them until they reach λ1 or go back into A. The

fraction of paths that reach λ1 gives an estimate of the probability of reaching λ1

without going back into A, P (λ1|λ0). We also keep track of the average time it took

to reach λ1 and go back into A starting from λ1. In the second step, we continue

paths from the locations along λ1, where the previous paths stopped, and run them

until they reach λ2 or go back inside A, crossing λ0. The results give estimates for

P (λ2|λ1) and the time it takes to reach λ2 or A from λ1. This process is repeated,

step by step, until λM is reached on the M th step. Finally, we use the results collected

to calculate the overall transition time, which is given by the probability of reaching

λM from λ0 without going into A (P (λM |λ0)) times the average time it takes to leave

A. The overall transition probability is given by the product of the intermediate

transition probabilities, P (λM |λ0) =
∏M−1

i=0 P (λi+1|λi). The time to leave A is the

average time it takes to return to λ0 from inside A, Tint, plus the average time it takes

to return to A from outside λ0, Text, which we calculate from the times measured

during the second stage of the algorithm. The gains of FFST over FFS are illustrated

in Appendix B.

Thus, the technique follows fruitful paths from the reactive state to the CO-

poisoned state. To apply the FFST to the ZGB model, we must first define an order

parameter, which is used to determine progress towards the poisoned state. This

function should smoothly increase as the system transitions from being reactive to

poisoned. We chose the fraction of CO on the lattice (C) as our order parameter.

FFST uses the order parameter to make surfaces (barriers) in state space which
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are used to mark progress. Simulations are run from locations along a barrier in

state space until they reach the next barrier, as defined by the order parameter, or

the first barrier.

These barriers can be placed before the sampling begins, which we call static bar-

riers. The disadvantage of static barriers is that without a priori information about

how to best place them, some barriers will have a large effective separation, creating

a performance bottleneck. To overcome these performance issues, two methods have

recently been developed [96, 40], which determine where to place the barriers au-

tomatically. To measure the poisoning time, we use the dynamic barrier placement

method [40] to place the barriers during the FFST algorithm. We use static barriers

for measurements of the average largest cluster, largest cluster spanning probability,

and committor probability [23]; these terms are defined below. We use static barriers

for the observables because we want measurements at uniformly spaced intervals of

coverage. When placing the barriers dynamically, we space them such that typically

10% of trials make it to the next barrier before returning to the steady state of

the reactive region with low CO coverage. We use N trials per step in the FFST

algorithm, except for the first barrier, which we use 10N ; we use N/10 trials to de-

termine where the next barrier should be placed. We locate the first barrier at the

largest value of the order parameter found in the first 50 MCS. For the calculation

of poisoning times, we used N = 103 and 104. N = 104 was used for average largest

cluster, largest cluster spanning probability, and committor probability.

7.3 Results

We desire the transition times from the reactive to poisoned state, which we call

the poisoning time T . We determine T for a range of L: 32, 48, 64, and 96, as well
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Figure 7.6: The average largest clus-
ter size Ms vs. coverage
C, as a function of L for
pCO = 0.5256.

Figure 7.7: The spanning probability
ps vs. coverage C for vari-
ous L and pCO = 0.5256.

as a number of values of pCO in the critical region, p2 < pCO < p∗, and in the reactive

region, pCO < p2 down to pCO = 0.505. The results are shown in Figs. 7.1 and 7.2.

Figures 7.1 and 7.2 show that the poisoning time grows smoothly as pCO decreases,

with no indication of a transition at p2. Even if pCO is much smaller than p2, we

found it possible to measure the poisoning time, demonstrating that the reactive

state for finite systems is always metastable. We were able to determine maximum

poisoning times of T = 1030 - 1040 MCS. The poisoning times converge to a value

that is independent of system size for pCO ≈ 0.5275, as shown in Fig. 7.2.

Classical nucleation theory [122], which has been recently used to study the first-

order nonequilibrium phase-transitions in the ZGB model [109], the quadratic contact

process [123], and Schloegl’s second model[124], states that transition (poisoning)

times take the form T ∝ v−2/3k−1/3, where v is the growth velocity of a critical

droplet and k is the critical droplet production rate per unit area per unit time. The
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above expression is valid when the characteristic length l = (v/k)1/3 is much larger

than the critical droplet radius and much smaller than the system width, a condition

which should hold near p2 for large enough system sizes. The largest system size

we use in this chapter is L = 96, which is much smaller than most critical droplet

sizes for pCO near p2. On the other hand, near p∗, the critical droplet size and other

length scales become small enough that finite-size effects disappear. This leads us to

believe that the spinodal is at pCO ≈ 0.5275. The poisoning times for all sizes were

also checked using brute-force simulations slightly above the spinodal: pCO = 0.5265

and 0.52675, and identical results were found.

We attempt to find the form of the transition time as a function of L and pCO.

In many nonequilibrium systems, transition times take the form T ≈ eWL, where W

is an effective energy barrier and L characterizes the size of the system. Figure 7.3

shows (ln T )/L which is an estimate for W . We see that (ln T )/L does not have a

strong system size dependence near p2, which may indicate that there is an effective

Arrhenius energy. If this were the case, then (lnT )/L would become independent of

L for very large system sizes.

Although FFST is primarily a tool for obtaining transition times, it also gives

ensembles of states along each barrier as the system progresses towards poisoning.

These ensembles at a fixed value of coverage represent essentially what the constant-

coverage ensemble attempts to mimic. Expectation values of quantities, like largest

cluster size, can be taken over these ensembles, which give insight into the dynamics

of the phase transition.

We ran FFST with evenly spaced static barriers and measured the average largest

cluster size and the spanning probability for the ensemble captured on every barrier.

Spanning occurs when the largest cluster wraps around the periodic boundary and
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Figure 7.8:
The evolution of the most likely path to the poisoned state for L = 128
and pCO = 0.5256 ≈ p2. The pictures are in increasing values of coverage
fraction from left to right starting at 0.09 and increasing in steps of 0.03.

touches itself. We see a dependence on pCO and L upon the spanning probability,

as shown in Figs. 7.5 and 7.7. Figure 7.5 shows that the smaller the value of pCO,

the more likely that the largest cluster will wrap earlier in the path to poisoning, at

fixed L. Figure 7.7 shows that increasing L appears to narrow the range of coverage

for which spanning has a non-negligible probability of occurring or not occurring,

at fixed pCO ≈ p2. This suggests that the variation in shape of the largest cluster

decreases with increasing L. It also appears that reaching a spanning probability of

50% is achieved at C ≈ 0.42 independent of L at p2. This indicates that the average

largest cluster is significantly elongated when it begins to span the system, as seen

in Fig. 7.8. We also found a linear relationship between the scaled average largest

cluster size and coverage, independent of both L and pCO, as shown in Figs. 7.4 and
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7.6.

We believe this analysis sheds light on the preferred pathway to poisoning for

finite-sized systems with periodic boundaries. For systems with nonperiodic (that is,

open) boundaries and pCO > p2, we expect clusters to form along the walls because

the open boundary tends to favor CO adsorption over O2 adsorption. For smaller

systems, these outer clusters (which have an net negative curvature) will expand to

poison the system, and therefore the poisoning should occur more quickly than in

the case of periodic boundary conditions. We have tested this at pCO = 0.5265 on

systems with L = 32 and 96, and indeed find poisoning for the nonperiodic case is

two orders of magnitude faster than for the periodic case. For very large nonperiodic

systems, on the other hand, we expect the wall effects to be small because many

critical clusters can form in the bulk before being overtaken by a wall cluster. That

is, we expect very large periodic and non-periodic systems will both form many

critical clusters that merge as the system poisons (the so-called Avrami process),

and thus have similar poisoning times [109, 123, 124].

The ensembles of states at different values of the coverage can also be used to

directly measure progress towards poisoning. By running every state in the ensemble

until it returns to the reactive (A) or poisoned (B) state, one obtains the probability

of poisoning from these particular values of the coverage. This probability as a

function of the order parameter is called the committor probability, pB. (In the case

of the ZGB model, this is only an estimate because the model is nonequilibrium,

so the forward-tending ensemble obtained is not necessarily the same as the steady-

state nonequilibrium distribution along the barriers.) We measured the committor

probability for various L and pCO, as shown in Fig. 7.9. We find that for pCO

below p2, the larger the system, the larger the coverage must be in order to have a
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Figure 7.9:
The committor probability pB vs C for four values of pCO and different
L. N = 104 for all data shown.

particular probability of poisoning. The opposite effect is found above p2. At p2, the

committor probability tends to a single form for the largest system sizes. This shows

the significance of p2, as the point where pB is independent of L.

By keeping track of which state on a given barrier is responsible for a particular

state on the next barrier, we were able to piece together complete trajectories from

the reactive state to the poisoned state. Among these reconstructed paths, it is

possible to determine a most likely path. Every state ji on every barrier λi has some
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probability of continuing to the next barrier before returning to the reactive state

denoted by P j(λi+1|λi), which is measured during FFST. We define the most likely

path as the path connecting λ0 and λM which has the largest value of the product of

the intermediate barrier crossing probabilities,
∏

i P
j(λi+1|λi). The states in Fig. 7.8

show the most likely path for L = 128 at the transition point p2. The preferred path

to poisoning involves wrapping around the system and then expanding to complete

CO coverage. This path is favored because nucleating droplets have an effective

kinetic surface tension which causes droplets to be unfavored. Once a droplet spans

the system and the net curvature disappears, the cluster is significantly more favored.

This preferred pathway of wrapping and expanding has also been seen in magnetic

memory switching [125]. This behavior is to be expected, at least near C ≈ 0.5, where

the cluster usually wraps around in one direction. In that case, at the transition point

p2, the system should be equally likely to poison or return to the reactive state, so

pB ≈ 0.5 independent of L.

7.4 Conclusions

In this chapter, we introduce forward flux sampling in time (FFST). We use it

to analyze the first-order phase transition in the ZGB model. We found a size-

independent poisoning time at p∗ ≈ 0.5275, which we associate with the spinodal

point. The poisoning time is a continuous function of pCO near the first-order tran-

sition for the relatively small system sizes we study. For larger systems, one would

expect a more pronounced change in behavior of the poisoning time at p2, because

below p2, very large clusters will grow at a constant rate and therefore poisoning will

take place relatively quickly once a large cluster is formed. However, we expect one

would have to go to systems of perhaps thousands of lattice spacing across in order
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to see this effect.

By inspecting the ensembles of states measured at each barrier, we found a linear

relationship between the scaled average largest cluster size and the total CO coverage,

which is practically independent of L and pCO. When the paths from barrier to barrier

are connected, they make the ensemble of successful trajectories. We determined the

most probable of these trajectories and found that wrapping and then expanding is

the preferred path to poisoning.

At pCO = 0.5256, the committor probabilities appears to be independent of sys-

tem size for large L. We believe that this is a signature of a first-order transition

for the following reasons: first, the committor probability is 0.5 for half coverage,

which is has been previously used to determine the transition point [17]. Second, the

matching of the entire curves for various L stems from the critical cluster size being

infinite at the transition point. This implies that the probability of a droplet growing

is always less than 1/2. The growth probability cannot be strongly dependent on the

cluster size as clusters of arbitrarily large size must all have roughly the same growth

probability, slightly less than 1/2. For large lattice sizes, what matters is how close

the cluster is to spanning, which is only dependent on the mass of the largest cluster

scaled by the total system size. Thus, we have found that the committor probability

can be used to locate the first-order transition point of the system. Lastly, we found

size-dependent poisoning times for systems well below the transition point, reflecting

the difficulty to nucleate a cluster the size of the system in this regime.

For the ZGB model, we found that the efficient implementation of FFS, i.e., a

fixed number of crossings in the first stage, gives accurate results. This shows that

ZGB does not have extremely long-lived metastable states, which is the primary

advantage of FFST. However, we still found that FFST can outperform FFS in
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Figure 7.10:
(a) A sketch of the effective energy landscape as a function of scaled
system length L for a model one-dimensional problem. (b) The relative
error of the estimated transition time as a function of system length N .

terms of smaller variance, which translates into better computational efficiency to

reach a target variance. Specifically, we found that FFST was effectively 35% more

efficient than FFS for a test case.

7.5 Appendix A: The FFST algorithm

The FFS algorithm works well for problems with a featureless barrier, i.e., prob-

lems with infrequent but fast transitions. However, in the case of problems with

slow transitions, typically caused by long-lived metastable states, it has significant

shortcomings [106]. In these cases, FFS either grossly underestimates the transition

time or becomes nearly as inefficient as direct simulation (see Appendix B for an

example). In the “inefficient” approach, where all of the times in the system are

sampled in the flux rate calculation, FFS produces a constant gain in simulation

efficiency, roughly ten times faster. The “efficient” approach, where a fixed number

of crossings is used to calculate the flux rate, can be about as efficient as FFST and
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reach gains of 1030, as found in this chapter. In this Appendix, we derive the version

of FFS, which we call FFST. We then outline two other variants on FFS which helps

us illustrate the connection between FFS and the barrier method, which we recently

introduced [40].

As we explained above, FFS separates the problem of finding rare transition

events into two steps. The first step is to find the rate of leaving the initial region A.

Finding the probability of reaching the final region B from the surface of A without

going back into A is the second step. Finding the rate of leaving A typically involves

running a single long simulation until it has exited A a fixed number of times, e.g.,

10N , where N is the number of trials per barrier in the second step. The number of

crossings divided by the total time of the simulation (discounting paths that reach B)

gives an estimate of the rate of leaving A. This calculation of the flux is accurate only

if the trajectory captures the important times and features of the entire landscape.

For example, if the trajectory does not sample a long-lived, metastable state between

A and B, the estimated flux would be higher than the true flux. We show such an

example in Appendix B.

A simple and correct way to avoid this problem is to run the initial simulation

until it reaches B one or more times. However, this is impractical because it ef-

fectively solves the problem using brute force, which is what FFS was designed to

avoid, and would lead to miniscule efficiency gains over brute-force simulations. Our

version of FFS has the accuracy of the “correct” calculation and the efficiency of the

usual flux calculation.
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7.5.1 Forward Flux Sampling in Time

FFST, the algorithm we use in this chapter, performs FFS in terms of transition

times instead of rates. The problem is decomposed in the same way as FFS [21],

utilizing the idea of endpoint regions A and B. In this view, there are three important

times: the time to return inside A from the surface of A (Text), the time to exit A

from just inside A (Tint), and the time to reach B from the surface of A without going

back into A (Tf ). The only additional quantity needed to calculate the transition

time, Ttot, is the probability p of reaching B from the surface of A. Then

Ttot =

(
1

p
− 1

)
(Text + Tint) + Tf . (7.1)

If the first term, which represents the total time spent on unsuccessful attempts to

reach B, is much larger than the time of a successful attempt to reach B, which is

explicitly used in the construction of FFS, [(1/p) − 1](Text + Tint) 3 Tf , and p is

small, then the above formula simplifies to the inverse of the FFS formula,

Ttot ≈
1

p
(Text + Tint) =

1

P (λM |λ0)

(
hA

ΦA,0

)
=

1

kAB
. (7.2)

The efficiency gain of FFST comes from measuring Tint during the first step and

measuring Text and p in the second step. This is because the features that would

require a long flux rate calculation to capture are instead captured in the second

step, allowing for less computational effort in the first step. Measuring Tint involves

counting the time that the initial simulation spent in region A. In the second step,

paths are allowed to run from the ith barrier to the (i+1)th or back to A. We record

the times to make these transitions to the next barrier (ti+1
i ) and back into A (t0i ) in

addition to the probability of making it to the next barrier P (λi+1|λi). Text can be
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calculated by properly weighting the time it takes for different paths to return to A,

Text =
M−1∑

i=0

P (λi|λ0)P (λ0|λi)
(
ti0 + t0i

)
/ (1− P (λM |λ0))

=

[
M−1∑

i=0

(
i−1∏

j=0

P (λj+1|λj)

)
(1− P (λi+1|λi))

(
i−1∑

k=0

tk+1
k + t0i

)]

/ (
1−

M−1∏

i=0

P (λi+1|λi)

)
.

(7.3)

The numerator in the last expression is the sum over return times of all paths sorted

by largest excursion. The probability that a path will start at λ0, make it to λi,

and then return to λ0 without making any further progress is the product of the

probability of reaching λi (
∏i−1

j=0 P (λj+1|λj)) and the probability of then returning to

λ0 without reaching λi+1 (1− P (λi+1|λi)). The average time of this excursion is the

time it takes to reach λi (
∑i−1

k=0 tk+1
k ) plus the time it takes to return to λ0 without

making any more progress (t0i ). The term in the denominator is for normalization and

represents the probability of returning to A. The expression for Tf is much simpler:

Tf =
∑M−1

i=0 ti+1
i . These values of Tint , Text , and Tf can be combined with P (λM |λ0)

in Eq. (7.1) to obtain Ttot . By measuring Text in the second step of FFS, the value of

Ttot obtained will be comparatively more accurate and have less variance than FFS.

The only extra work done in FFST over FFS is keeping track of the simulation time

during the second step, which makes the advantages gained by FFST practically free.

7.5.2 Forward Flux with Quasi-Markov Dynamics

In order to gain more insight into the connection between the FFS and the bar-

rier method, we formulate FFS as quasi-Markov dynamics. That is, we iteratively

calculate the time it takes to travel between three barriers. The first step is similar

to FFS: run a single long simulation and calculate the time it takes to reach the first

barrier (λ1) from the surface of A (λ0), and where along λ0 the trajectory exits A.
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N samples are started along λ1, where the initial trajectory crossed in the first step,

and are run until they reach λ2 or λ0. The average times to go from λ0 to λ1, λ1 to

λ2, and from λ1 to λ0 are t10, t21, and t01, respectively. In general, the time takes to

reach λj from λi is given by tji . The probability of reaching λ2 from λ1 without first

going back to λ0 is P (λ2|λ1). These times and probabilities can be used to make a

random walk with three states: λ0, λ1, and λ2. The transition time from λ0 to λ2

(t20) is given by the weighted times of all possible paths from λ0 to λ2. These paths

can be organized by the number of times they return to λ0. Writing out the first few

terms in this series exposes the general form,

t20 = (t10 + t21)P (λ2|λ1)

+ (t10 + t21 + (t01 + t10))P (λ2|λ1)(1− P (λ2|λ1))

+ (t10 + t21 + 2(t01 + t10))P (λ2|λ1)(1− P (λ2|λ1))
2 + . . .

=
∞∑

k=0

(t10 + t21 + k(t01 + t10))P (λ2|λ1)(1− P (λ2|λ1))
k.

(7.4)

The above expression is the sum over all possible ways to reach λ2 from λ0, sorted

by the number of times the simulation returned to λ0. The probability of returning

to λ0 k times before reaching λ2 is given by the product of the probability of not

reaching λ2 k times ((1 − P (λ2|λ1))k) and then reaching λ2 on the (k + 1)th try

(P (λ2|λ1)). The time this takes is given by the sum of the time it takes to go from

λ0 to λ1 to λ0 k times (k(t01 + t10)) plus the time it takes to make it from λ0 directly

to λ2 (t10 + t21). Note that in practice the sum converges quickly because of the factor,

(1− P (λ2|λ1))k.

The next step is to repeat the same process using λ0, λ2, and λ3 as the three

barriers. Brute-force dynamics is used to measure t32, t02, and P (λ3|λ2). Then, the

three-barrier calculation from Eq. (7.4) is used with 0, 2, and 3, in place of 0, 1, and
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2. The result from the calculation is an estimated value of t30. In general to calculate

ti+1
0 for the ith step we use

ti+1
0 =

∞∑

k=0

[
ti0 + ti+1

i + k(t0i + ti0)
]
P (λi+1|λi)(1− P (λi+1|λi))

k. (7.5)

This process of performing short brute-force simulations, followed by solving Eq.

(7.5), is repeated for every barrier until λM is reached. At the end we have tM0 = Ttot.

This method could be useful for practical simulations. Here we introduce it as a

pedagogical device to show that by making small changes to the FFS algorithm, the

barrier method can be effectively obtained.

7.5.3 Forward Flux Barriers

Our last FFS variant is a different take on quasi-Markov dynamics. We start by

measuring the average time it takes to reach λ1 starting at λ0 (t10), while also keeping

track of where along λ1 the trajectory exits A during a single long simulation. The

paths are continued from λ1 until they reach λ2 or λ0. If a sample reaches λ0, then

it is restarted at λ1 at one of the locations where paths ended in the first step, and

t10 is added to the time. This process is continued until all samples reach λ2. We

now have an estimate of t20 and the locations along λ2 where the sample paths ended.

From these locations, the paths are continued until they reach λ3 or λ0. If they reach

λ0 they are restarted at a location where a previous path stopped at λ2 and t20 is

added to the time. This step is finished once all sample paths reach λ3. The general

step is to start the paths on λk and run them until they reach λk+1 or λ0. If a path

reaches λ0, it is restarted at λk with tk0 added to the time. The step is complete when

all paths reach λk+1 and the time gives tk+1
0 . This process is repeated until λM is

reached. The result is a value for tM0 which is the estimate for the transition time.

This construction shows the relationship between FFS and the barrier method
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[40]. This version of FFS measures the average time it takes to reach each barrier

during the algorithm, as in the barrier method. Also, both methods avoid char-

acterizing the flux rate from the surface and the transition probability. The main

difference between this algorithm and the barrier method is that the barrier method

does not need the simulation to go all the way back to λ0 before jumping back to

the current barrier; only the previous barrier need be reached. This is the source of

the performance gains of the barrier method. However, this method is currently only

tractable for low-dimensional systems as it requires a reasonable sample of previous

barriers.

7.6 Appendix B: Testing FFS and FFST on an exactly solv-
able problem

In this appendix, we use a simple one-dimensional system to show that FFST

can give accurate results for transition times when FFS fails. We also briefly discuss

the comparative efficiency of the different algorithms applied to the ZGB model.

Consider a discrete hopping process on a line of length L. The probability of

jumping from the ith to the (i − 1)th site is pi. The time of a jump is unity. In the

cases where the first site (i = 0) is adsorbing and the last site is reflecting (pL−1 = 1),

the system can be solved exactly [3]. The solution can be written in terms of hopping

rates instead of hopping probability. λi and µi are the rates of hopping from i to

(i+1) and (i− 1), respectively. In terms of pi these are µi = pi and λi = 1− pi. The

average time to reach the adsorbing site i = 0 from site i = n is [3]

τn =
n∑

m=1

[
1

µm
+

m−1∏

i=1

µi

λi

L−1∑

j=m+1

1

µj

j−1∏

k=1

λk

µk

]
,

=
n∑

m=1

[
1

pm
+

m−1∏

i=1

pi

1− pi

L−1∑

j=m+1

1

pj

j−1∏

k=1

(
1

pk
− 1

)]
.

(7.6)
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This equation has been used to find the extinction time of a disease within a pop-

ulation in a simple model from epidemiology [3]. Equation (7.6) is general and can

be used to construct “energy landscapes.” We create a landscape with nonuniform

hopping probabilities such that there are three metastable states, regions A, B, and

C, all with roughly equal stability, as sketched in Fig. 7.10(a). We measure the time

it takes to reach the absorbing state starting near the reflecting boundary. This re-

quires escape from the first metastable region A, then the second metastable region

B, to finally reach the absorbing state near the center of the last metastable region

C. We measured the time using FFS and FFST for various sizes of systems (well

depths) as shown in Fig. 7.10(b). We found that FFS significantly underestimates

the transition time by as much as 50%. There is also a significant increase in the

variance of the result, roughly an order of magnitude for this model system. This is

caused by the flux being strongly influenced by the rare occurrence of a trajectory

that makes it to region B, spends a long time there, and then returns to region A.

Even in the absence of long-lived metastable states, FFST can produce transition

times with less variance than FFS because it samples the external return time sig-

nificantly better. We found this to be the case in the ZGB model. The FFS(T) and

ZGB parameters used were eleven evenly spaced static barriers starting at C = 0.06,

N = 103, L = 32, and pCO = 0.5268. Under these circumstances, we found a vari-

ance of 5.0% for FFST and 5.8% for FFS; an improvement of about 16%. To equal

the variance of the FFST result, FFS which would require roughly 35% more trials,

which would translate into a 35% longer run time. In the case of the ZGB model, this

effect can be mitigated by choosing λ0 to be far enough away from the metastable

region so that the internal return time Tint is much larger than the external return

time Text, bounding the effect on the increase in variance of Text. In general, moving
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λ0 is not always useful because metastable states can make Text arbitrarily large.
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CHAPTER VIII

Summary and Conclusions

8.1 Summary

The previous chapters showed several applications of rare event techniques.

Our first foray into rare events was the efficient calculation of the harmonic mea-

sure. Harmonic measure rare events occur when random walkers make deep excur-

sions into the fjords of fractals. These small probability events make a significant

contribution to the D(q) spectrum for small and negative q. Using signposting,

we were able to obtain the entire harmonic measure for the complete and external

perimeters of percolation and Ising model clusters. Our results for the D(q) spectra

for these systems agree with theory [1].

Next, we used signposting to make new measurements of the f(α) spectrum,

the Legendre transform of D(q), for DLA, and found significant disagreement with

previous iterative conformal mapping results [41]. Our results suggest that these con-

formal map clusters suffer from small distortions which affect measurement of small

probabilities. However, we did find agreement with iterative conformal mapping re-

sults in regard to the so called “wedge angle” in DLA. We found evidence that there

are many small wedges deep inside of DLA clusters. Next, we developed two more

techniques, etching and the Green’s function method, and used etching to obtain the
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measure of the first four (Q = 1,2,3,4) states of the Q-states Potts model. We again

found excellent agreement with previous theoretical predictions for the measure [2].

During this work, we found our smallest probability to date: 10−4600.

Along these same lines, we measured other properties of critical Q-state Potts

model clusters. Specifically, we measured the height and length distributions of the

complete and external hulls of critical clusters for the first four Q states. We found

exponential tails for both the hull height and length distributions. This, at first,

appears contradictory because of the power-law relationship between the average of

system width and hull length, L ∝ WD, and the linear relationship between the

height and the width h ∝ W . That is, we expect the hull length and height to

have a power-law relationship, which would lead to one of the distributions having a

stretched exponential tail. Through additional measurements, we were able to show

that there is, in fact, a linear relationship between average hull height and length,

for a fixed system width, which resolved the apparent contradictions.

Encouraged by our success with harmonic measure rare events, we expanded

our work into long transition times in non-equilibrium systems. Our first algorithm

developed for these problems was the barrier method, which, like the Green’s function

method, iteratively develops Green’s functions to map a backward moving trajectory

forward again. We found that avoiding backtracking leads to superior performance

compared to similar rare event techniques when applied to low-dimensional systems.

We used the barrier method to study the bi-stable Maier-Stein model and found good

agreement between simulation results and theory for the transition time from the

meta-stable state to the separatrix. We also measured the exit distribution along the

separatrix and found initial disagreement with theory. However, once we convolved

the theory with a Gaussian of size
√

ε, the size of the next correction to the theory,
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we found excellent agreement. In fact, the necessity of the convolution explains the

apparent disagreement between previous computational and experimental results and

theory.

Lastly, we exposed a limitation of the popular FFS technique and developed

an improved version, called FFST, which overcame this limitation. FFST works by

keeping track of the times associated with long excursions from the meta-stable state

during the second part of the FFS calculation, where typically only probabilities are

recorded. We used FFST to study the first-order phase-transition in the ZGB model

of heterogeneous catalysis. We found the transition time from the reactive state to

the poisoned state as a function of the two parameters of the model: the system

length L and the probability of attempting to place a CO molecule at every step,

pCO. We also tracked quantities as the system transitioned from the reactive state

to the poisoned state, including the average largest cluster size. Finally, we showed

how FFS and FFST are related to the barrier method by introducing two additional

algorithms.

8.2 Future Work

In work to be published, we have expanded our harmonic measure work to three

dimensions, see Fig. 8.1. 3D harmonic measure is fascinating because practically

nothing is known about it. This is because powerful theoretical techniques like con-

formal field theory and Schramm-Loewner evolution are limited to two dimensions.

Our first step into 3D harmonic measure was percolation. We grew critical perco-

lation clusters on a cubic lattice using the Leath algorithm. We then used etching

[126] to obtain the measure for all accessible sites. Our D(q) spectra agreed with

previous results for the dimension of the hull, D(0) ≈ 2.5. We also found another
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Figure 8.1:
The D(q) spectra for 3D percolation clusters. The spectra were computed
using the ratios of average values of the partition function Z(q, Rg) for
pairs of radii of gyration.

interesting result: the value of D(1) ≈ 2, which was also found for 3D Koch curves

[64]. Although it has been proven that an extension of Makarov’s theorem to three

dimensions, D(1) = d − 1, does not hold exactly [127], it appears to hold closely

for these two cases. We also looked at the histogram of the measure and found a

surprising result: the histogram was flat. This means that for small probabilities, all

probabilities are equally likely to be found. In contrast, in 2D Potts model clusters

and DLA clusters the smaller the measure the more likely a site will be found with

that measure. We are not aware of any previous observation of this result.

We have also expanded our DLA harmonic measure work to 3D, see Fig. 8.2.

Unlike 3D percolation, we could not directly apply any of our previous techniques,

since we aimed to study off-lattice clusters (making etching impossible) and bounding

low probability regions with signpost planes is exceedingly difficult. Our solution was
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The D(q) spectra for 3D DLA clusters. The spectra were computed using
the ratios of average values of the partition function Z(q, Rg) for pairs of
radii of gyration.
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to adapt signposting using spheres instead of planes. The idea is to make a surface

out of the intersection of spheres bounding cluster sites that are rarely visited. This

guarantees that regions that are poorly sampled will be bounded by a surface. Also,

the representation of the surface by spheres makes the simulated diffusion of the

random walkers very efficient because of the tree-based data structure used to store

the cluster. We call this “bubble signposting,” see Fig. 8.3.

Using bubble signposting, we obtained the complete harmonic measure of 3D

DLA clusters. Our results for D(q) look similar to that of 3D percolation, which is

reasonable considering that both have nearly the same fractal dimension. Also, their

D(q) spectra converge for large q suggesting that the tips of percolation and DLA

clusters “look similar.” One difference between the two is the value of D(1), which is

2% smaller for 3D DLA, i.e., ≈ 1.96; we find this value to be statistically significantly

different than 2.0. It is possible that the percolation and DLA spectra are different

for negative q, but the variance of our results for both percolation and DLA are

too large to be definitive. The similarities continue as we look at the histogram

of measure. Again, we find the histogram to be flat indicating all small values of

measure are equally likely to be present. This suggests that flat histograms of the

measure may be a common feature of 3D fractals.

Another studied aspect of 2D DLA is the terminating point of the f(α) spectrum,

e.g., the largest value of α for which f(α) is defined. In 2D DLA, the value is roughly

αmax = 14 [36], and the value of f(αmax) > 0. Because f(αmax) 4= 0, it is analogous

to a phase transition, and is connected to the so called “wedge angle.” The value of

f(αmax) ≈ 0 that we measured for 3D DLA hints at the lack of a wedge angle in 3D.
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(f)

Figure 8.3:
Visualization of bubble signposting. The initial probe step is shown in
(a). N probe particles are released far from the cluster and allowed to
diffuse until they reach the cluster. Every cluster site hit by less than
3 probe particles is under-sampled (grey). In (b), every under-sampled
site is covered by a blue bubble. The size of the bubble is determined by
the distance between the site and the closest well-sampled site. N more
particles are released and those that hit cluster sites add their weight to
the sites. The particles that hit the bubbles are temporarily frozen. The
locations of the frozen particles are used to launch the reduced weight
probe particles in (c). The weight of each new particle is w/N , where
w is the total walker weight not yet absorbed onto the cluster sites.
Those sites that are still under-sampled are marked grey. In (d), bubbles
surround those sites as more particles are released and stick to the cluster
sites and bubbles, adding their weight to the cluster sites. The particles
that stick to the bubbles are again used to release, even lighter weight
probe particles in (e). With all sites well-sampled during the probe step
(e), the final particles are released and give the remaining weight to the
cluster sites.
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8.3 Tips for Successfully using Rare Event Techniques

Rare event techniques, when applied successfully, can make seemingly impossible

calculations simple. When used incorrectly, they can be less efficient than direct

sampling methods and, more seriously, can give wildly inaccurate results. Rare

event techniques gain efficiency by leveraging common system properties. When the

properties assumed by a rare event technique are not valid for a system, significant

error typically results. Unfortunately, most descriptions of rare event techniques are

given without explicit statements about the many assumptions made. Below is an

attempt to review the most common assumptions, which algorithms are based on

them, and when the assumptions are true.

Assumption 1: Rare events are excursions from a well defined (meta)

stable state in phase space. With the exception of the harmonic measure al-

gorithms, all rare event techniques developed in this thesis make this underlying

assumption. In fact, practically all popular rare event techniques make this assump-

tion. The notable exception is RESTART when applied to events that rarely occur

within a fixed time period, like multi-component failure in reliable systems [89]. This

assumption is commonly used because it holds for most rare events studied. One

model for which this assumption does not hold is that of a population with a steadily

increasing carrying capacity; the problem is that the steady-state is not stationary.

Assumption 2: Detailed balance is obeyed and dynamics are reversible.

Many rare event techniques were developed with the aim to speed up calcu-

lations of slow chemical reactions and conformational changes in macro-molecules,

e.g., proteins. These systems are always near thermodynamic equilibrium, satisfy

detailed balance, and are typically described by pair-wise interaction potentials be-
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tween atoms and simulated via molecular dynamics or Langevin dynamics. Given

a particular configuration c of the system, the total energy E(c) can be calculated.

For a given temperature T , the probability that the system will be in that state

is given by the Boltzmann weight, p(c) = e−E(c)/kT
/
Z, where k is the Boltzmann

constant and Z is the partition function. If one is only interested in the ratio of the

probability of being in two different states, the partition function does not need to

be calculated: p(c1)/p(c2) = e(E(c2)−E(c1))/kT . Therefore, such systems obey detailed

balance.

One consequence of detailed balance is that the relative phase-space density es-

timated by performing Monte Carlo sampling of a subspace of the original system

will be the same as the relative phase-space density in that subspace sampled via

Monte Carlo sampling of the full system. In other words, when detailed balance

exists, Monte Carlo sampling of any area gives an accurate estimate of its relative

density. When detailed balance does not exist, little can be definitively said about

the phase-space density without sampling all of phase-space. Popular algorithms

like TPS, TIS, milestoning, and finite temperature string method require detailed

balance to be satisfied. Otherwise, full sampling of phase-space, which is typically

impractical, is necessary to ensure correct results.

All path sampling methods, e.g., TPS, TIS, and finite temperature string, re-

quire that simulations can be faithfully run forwards and backwards in time. This

requirement is met for molecular dynamics and Langevin dynamics but does not

have to hold in general. In this thesis, all of our algorithms work for systems that

lack detailed balance.

Assumption 3: The model is stochastic or chaotic. Biased sampling meth-

ods follow fruitful paths to better sample important events. This is done by mak-
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ing multiple copies (splitting) of “good” states and occasionally removing (pruning)

“bad” states. The multiple copies of a good state then must evolve in time indepen-

dently from one another and spread out so that splitting and pruning can be applied

again. The model being studied must have some non-determinism, stochasticity or

chaos, for the multiple copies to fan out in phase-space. This does not generally hold

for molecular dynamics simulations; however, several rare event techniques have this

requirement, including splitting, RESTART, FFS, FFST, and the barrier method.

Assumption 4: The model does not have long-lived intermediate meta-

stable states. One common feature of rare events is the separation in time scales

between the short time it takes the desired rare event to complete, e.g., a success-

ful transition between two meta-stable states, and the long time for the rare event

to first occur. Such systems are typically described as having a smooth landscape,

as compared to a rough landscape or diffusive transitions. Many popular techniques

make this assumption including TPS. TIS and FFS can be used without this assump-

tion, but not making this assumption degrades the performance of these algorithms

to the point where they are marginally better than direct sampling. Näıvely using

these techniques on systems with significant intermediate meta-stable states can, in

some cases, cause transition times estimated to be as much as a factor of two off

from the real result [128]. In addition to decreased accuracy, long-lived interme-

diate meta-stable states can degrade algorithm performance. Degradation occurs

because sample paths or trajectories tend to spend long periods in the intermediate

meta-stable states.

There are only a few algorithms that have good performance and accuracy when

applied to problems with meta-stable states, namely milestoning and the barrier

method. Both of these methods overcome this issue in the same way: (roughly)
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uniformly sampling all sample regions of state-space between the start and end points,

i.e., no heavy sampling of meta-stable states. Unfortunately, both milestoning and

the barrier method have limited applicably as milestoning only work on systems that

obey detailed balance and the barrier method is limited to systems with only a few

dimensions.

FFST gives accurate results, but is inefficient because its run-time is limited

by the time it takes a trajectory to escape the meta-stable state. Although not

ideal, FFST may be the best general purpose solution to systems with long-lived

meta-stable states as many algorithms, TPS, TIS, and FFS, are inefficient and give

inaccurate transition time estimates.

Assumption 5: The most likely reactive pathways are easy to find.

Underlying practically all rare event techniques is the assumption, or hope, that

given some reasonable initial guess for the reaction coordinate (for biased sampling

methods) or the most likely path (for path sampling methods) that the algorithm

will stumble upon the most likely path(s) and correctly calculate the transition time.

Finding the most likely path is similar to computationally minimizing the action

functional in classical mechanics, which is a global optimization problem. Global

optimization can, in general, be extremely hard and in some cases NP-complete.

Fortunately, many physical systems have energy landscapes which are simple and

smooth to the degree where stumbling upon the most likely path is difficult not to

do. Unfortunately, not all landscapes are that simple. The problem of mistaking

another path for the most likely path has been encountered and discussed in regard

to TPS [23] and FFS [106]. Figure 8.4 shows how this problem can manifest itself in

a simple 2D energy landscape.
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Figure 8.4:
Applying FFS to a difficult landscape. FFS is used to measure the tran-
sition time between A and B with five barriers. Along the first two
barriers both the top and bottom paths are well sampled. Between λ1

and λ2 the top path has a change in energy of 3 and the bottom path
has a change in energy of 2, i.e., the top path is steeper. Because the
bottom path is easier to cross, it ends up being the only path sampled.
The resulting estimate of transition time would be T ∼ e5/(kBT ). Direct
sampling would have resulted in trajectories going primarily over the top
path, as it has the lower energy barrier and the resulting transition time
would be lower, T ∼ e4/(kBT ). The steepness of the top path “fools”
FFS into not sampling it, even though it has the smaller barrier. The
inaccuracy in T in this example can be arbitrarily large as the relative
error grows like e1/(kBT ).
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